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Abstract: Cider is a fermented drink obtained from apple juice. As a function of the used apple
cultivar, cider can be classified in four different categories (dry, semi-dry, semi-sweet, sweet), dis-
tinguished by the attribute of “dryness,” which reflects the sweetness and softness perceived. The
dryness level is defined by scales (IRF, NYCA scales) based on the residual sugar, titratable acidity
and tannin contents. Despite some adjustments, these scales show limitations in the prediction of
actual perceived dryness, as they cannot consider the complicated interrelation between combined
chemical compounds and sensory perception. After defining the perceived sensory dryness and its
sensory description by using the quantitative descriptive analysis (QDA) method, a multivariate
approach (PLS) was applied to define a predictive model for the dryness and to identify the chemical
compounds with which it was correlated. Three models were developed, based on three different
sets of chemical parameters, to provide a method that is easily applicable in the ordinary production
process of cider. The comparison between the predicted rating and the relative scales scores showed
that the models were able to predict the dryness rating in a more effective way. The multivariate
approach was found to be the most suitable to study the relation between chemical and sensory data.

Keywords: apple cider; dryness; sensory perception; chemical characterization; PLS model; multivariate
analysis

1. Introduction

Cider, or “hard” cider, is a fermented drink obtained from apple juice. Any apple
cultivar can be used, but those that can contribute to the sensory characteristics of ciders
are of particular interest [1,2]. Apple cultivars are classified according to their malic acid
and tannin concentrations as “sweet” (low in acid, low in tannin), “sharp” (high in acid,
low in tannin), “bittersweet” (low in acid, high in tannin), and “bitter-sharp” (high in acid,
high in tannin). The high-tannin “bittersweet” and “bitter-sharp” apples are commonly
referred to as cider apples and they contribute to the structure, preservation, finish and
perceived complexity of the cider. In the United States, the availability of cider apples is
limited, so many cider producers use a combination of low-tannin fruit and high-tannin
cider-apple-juice concentrate or other tannin-rich adjuncts to meet the growing demand for
cider in the marketplace [3].

According to the most recent survey, conducted in May 2023, there were 1.071 cider
producers based in the United States. Most of these cider-producing companies were
traditional cideries. The largest collection of U.S. cider-producing companies can be found
in New York state, which accounted for 106 of the total (https://www.ciderguide.com
accessed on 21 May 2023).

Cider quality and its sensory characteristics are related to several important groups of
chemical compounds, including polyphenols, sugars and acids.
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Concerning phenolic compounds, researchers have found that apples, when compared
to 10 other commonly consumed fruits (avocado, banana, blueberry, white grape, grape-
fruit, lemon, melon, nectarine, orange and peach), had the highest content of soluble free
phenols [4]. Each apple cultivar has its own polyphenolic profile, which is also dependent
on harvest year, climatic variables, cultivation and storage conditions [5,6]. The polyphe-
nolic composition of ciders mainly depends on the mixture of apple varieties and the
cider-making procedures used for their elaboration. Apple polyphenols can be classified
into five main groups: phenolic acids, flavanols, anthocyanins, flavonols, dihydrochalcones.
Chlorogenic acid is the most abundant of the phenolic acids reported in apples [7]. The
flavanols consist of the monomers (+)-catechin and (−)-epicatechin, and procyanidins
(also referred to as condensed tannins), which are the oligomers of monomers [8–10]. An-
thocyanins are another group of polyphenols responsible for skin pigmentation in red
cultivars [11]. Flavanols (mainly quercetin derivatives) and dihydrochalcones (mostly
phloretin derivatives) are relatively minor contributors to pigmentation and are present in
relatively much lower concentrations than flavanols and phenolic acids [12–14].

The phenolic content and profile have important effects on the sensory properties of
apple ciders, particularly their color, bitterness, and astringency [15]. Given the compo-
sition of cider (water, sugar—mainly fructose—organic acid and phenolic compounds),
bitterness and astringency have been considered important attributes to define cider qual-
ity. These attributes were studied by Lea and Arnold [16] in bittersweet English cider,
which demonstrated that no individual procyanidin can be uniquely identified with bit-
terness or astringency, while bitterness can be associated with oligomeric procyanidins,
overall epicatechin tetramer and astringency to higher-molecular-weight procyanidins.
Simoneaux et al. [17] studied the taste and tactile characteristics (bitterness, astringency,
sweetness and sourness) of cider and highlighted that they were modified according to
the concentration of procyanidins. Their study was performed on model solutions with
procyanidins extracted from apples at different levels of polymerization and evaluated by
a panel of trained judges. The degree of polymerization of the procyanidins influenced
only the bitterness and astringency, but this impact was not the same for all concentrations.
The same authors, in another study [18], showed that procyanidins exerted a significant
negative effect on bitterness and a positive effect on astringency with interactions due
to fructose. Moreover, the presence of ethanol significantly increased the perception of
bitterness, while the presence of malic acid and fructose decreased it.

Pando Bedriñana et al. [19] studied the perceived characteristics of ice cider by us-
ing the citation-frequencies method and an assessment of quality by a group of experts
using a five-point discontinuous scale. The results of their study demonstrated that the
perceptions of sweetness, acidity and bitterness were closely interrelated and that these,
in turn, were related to the contents of sugars, acids, polyphenols and alcoholic degree.
According to the study by Riekstina et al. [20], polyphenols showed moderate negative
correlation with the perception of fruity aroma. To improve the structure and complexity
of cider, Martin et al. [21] enriched a base cider with the same amounts of endogenous
and exogenous tannins of three different types (high-tannin cider apple, grape tannin and
gallnut). A panel of 193 consumers were recruited to evaluate the quality of the ciders, but
no significant differences in overall enjoyment were detected, demonstrating a wide range
of astringency acceptability.

To allow consumers to choose according to their preferences, ciders are classified
by a marketable scale derived from the traditional sparkling-wine-style sweetness scale
(UE reg. n. 607/2009–encl. XIV), based solely on the quantity of residual sugar content
and expressed as “dryness.” The limit of this dryness scale was its low correlation with
consumer perception, as it does not consider the relation between sensory attributes such
as astringency, bitterness and acidity and other chemical compounds, such as tannins and
malic acid. Accordingly, two other scales are now available: the International Riesling Scale
(IRF) and the New York Cider Association (NYCA) scale. These better relate the perceived
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dryness to the chemical composition, taking into consideration not only the residual sugar
content, but also the titratable acidity, measured as malic acid, and the tannin concentration.

The study of the relationship between chemical composition and sensory perception
is complicated by the fact that every sensory attribute is influenced by many variables. To
explore this relationship, a multivariate method, such as partial least squares (PLS), can be
appropriate. The use of PLS analysis is a “soft modeling” method to extract “factors” or
latent variables, which are linear combinations of one set of variables (such instrumental
data) able to predict much of the variation in another set of variables (such as sensory-
data-attribute ratings) [22]. The PLS model indicates how well the variables in one data
set predict the variation among variables in a second set by validation tests, which deter-
mine the percentage of variation in one data set that is accounted for by the other and
vice versa [23]. This multivariate method is largely applied to foods and beverages due to
the ability to examine samples in their entirety, to untangle all the complicated interactions
between the constituents and to understand their combined effects on the whole matrix.
Note that the emphasis is on predicting the characteristics and not necessarily on explaining
the underlying relationships between the variables [24].

Many authors have applied this method to study the relationships between sensory
descriptors and volatile compounds in wines [23,25–27]. Regarding cider, PLS was used as
a regression method, for example, to study the relation between the composition of the raw
material (apples) and cider quality, to ascertain a general prediction rule for the stage of
ripening of a set of apples selected for their technological suitability for cider making [28].
PLS model was also applied in a sensory study to predict bitter or non-bitter tastes in
cider using six polyphenols as predictor variables [7]. Lobo et al. [29] applied PLS in the
development and validation of prediction models to transform frequency signals obtained
by Fourier transform infrared (FT-IR) spectroscopy into concentrations of the different
components in the cider, which is useful for the routine analysis of samples.

Given the results of the previous studies, this study aimed to characterize hard-apple
ciders from a chemical point of view and to study the relationship between the production
process and customers’ sensory perceptions. Moreover, a sensory-dryness-prediction
model to monitor the production process was proposed. To meet consumer demand and
maintain consistent their perceptions of quality, a new marketable scale based on the
model was set up, which informed customers about the kind style of cider they intended
to purchase. This scale expressed the perceived dryness by considering taste and tactile
attributes (astringency, bitterness, acidity and sweetness), which, in turn, were correlated
with a set of selected chemical parameters considered as markers. In order to define the
most effective chemical variables to predict dryness by an appropriate scale, the present
study was articulated in several steps: (i) chemical and sensory characterization of ciders
representative of the New York region’s production; (ii) study of the relation between their
chemical and sensory profiles; (iii) analysis of the predictive capability of the chemical
parameters by using a PLS analysis and the selection of the most effective parameters;
(iv) model verification defined by a set of cider samples (calibration set) and by the dryness
prediction of another set of cider samples (validation set); (v) comparison of the predicted
values with the dryness scores attributed to the same samples, by the current scales, and by
the evaluation of a panel of trained judges.

2. Materials and Methods
2.1. Cider Samples

Seventy-six commercial cider samples (0.75-L glass bottle) were collected from twenty-
two facilities from the New York State area, representative of the different products and of
the relevant production orchards (Table 1).
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Table 1. Cider facilities, codes and number of samples collected from every producer.

Cider Facility Cider-Facility Code Number of Samples

Angry Orchard AO 2
Applewood Winery AW 1
Bad Seed Cider Co. BC 1
Blackbird Cider Works BB 4
Blackman Homestead BH 1
Brooklyn Cider House BK 2
Leonard Oakes Estate Winery LO 3
Nine Pin NP 2
Orchard Hill OH 2
Phonograph Cellars PC 1
South Hill Cider SH 10
Wayside Cider WC 1
Wolffer Estate WE 3
Kite and String KS 7
Eve’s Cidery EC 4
Black Diamond BD 13
Merchants Daughter MD 3
Westwind Orchard WW 6
Treasury Cider D23 4
Pennings Farm Cidery PF 2
Redbyrd Orchard Cider RB 3
Little Apple Cidery LA 1

2.2. Chemical Analyses
2.2.1. Chemical Standard Parameters

Residual sugar (glucose and fructose) and malic acid were measured using the enzy-
matic method on an automated chemical analyzer (Konelab 20XT, Thermo Fisher Scientific,
Waltham, MA, USA) with test kits for discrete analyzers (Vintessential, Rowe Scientific,
Adelaide, SA, Australia). The pH was analyzed using a standard pH probe (Ross Sure-Flow
pH electrode, Thermo Orion, Thermo Fisher Scientific, Cleveland, OH, USA), and the
titratable acidity was determined through potentiometric titration using 0.1 N NaOH and
the Mettler Toledo T90 (1900 Polaris Parkway, Columbus, OH 43240, USA) instrument.
Alcohol content was measured by gas chromatography using a Hewlett-Packard 5890 GC
(Roseville, CA 95747, USA) combined with a flame-ionization detector (GC-FID) and ac-
cording to official method of the Association of Official Analytical Chemists, or AOAC
(International Method 983.13, Rockville, MD 20850, USA).

2.2.2. Spectrophotometer Indices

Absorbances at 280 nm and 320 nm were measured using a 1-cm-path-length quartz
cell and a UV-VIS spectrophotometer (Genesys™ 10S UV-VIS, Thermo Scientific, Cleveland,
OH, USA). Samples were centrifuged before the analysis.

2.2.3. Phenolic Analysis

The HPLC analysis was performed using an Agilent 1100 Series HPLC (Agilent Tech-
nologies, Santa Clara, CA, USA). Each sample was injected (5 µL) and chromatographically
separated on a reverse-phase column LiChroCART 250-4 HPLC Cartridge LiChrospher
100 RP-18, endcapped (5 µm, 250 × 4 mm) (Agilent Technologies) and detected using a
diode-array detector. Flow was 0.5 mL/min and the time run was 80 min. Solvent and
gradients were set up according to Peng et al. [30]. Chromatograms were registered at
280 nm for the determination of tannins and hydroxybenzoic acids, at 316 nm for the
determination of hydroxycinnamic acids and at 365 nm for the determination of flavanols.
Calibration curves were obtained using the following standard compounds: gallic acid
for hydroxybenzoic acids, caftaric acid for hydroxycinnamic acids, rutin for flavanols and
(+)-catechin for tannins.
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2.3. Sensory Analysis

The sensory tests were carried out in the late morning before lunch time, in a sensory-
analysis laboratory equipped with individual cabins (temperature-controlled and combined
natural/artificial light), designed in accordance with the ISO standard.

2.3.1. Dryness Evaluation

Seventy-six samples were collected and submitted to a sensory analysis to evaluate the
sensory “dryness” perception and the sensory evaluation of sweetness, acidity, astringency
and bitterness. The panel consisted of 11 trained judges, who evaluated the cider samples
in two separate sessions. The panel was trained and calibrated using the scale applied
by the American Cider Association, Beer Judge Certification Program-BJCP, Great Lakes
International Cider and Perry Competition (GLINTCAP) and New York Ci-der Association
(NYCA), consisting of four categories of sweetness, defined according to the residual sugar
content in cider, as follows: dry (<9 g/L), semi-dry (9–18 g/L), semi-sweet (18–45 g/L)
and sweet (>45 g/L). In the first session, a category scale of 8 levels was set up. To anchor
the dryness level in the perceived intensity of sweetness, three reference standards of
sweetness (glucose in standard cider) were submitted to the judges: a total of 9 g/L of
glucose, corresponding to a score of 2; 18 g/L, corresponding to a score of 4; and 45 g/L,
corresponding to a score of 6. Based on these reference standards, the dryness levels
were defined as follows: 0–2, corresponding to dry; 2.1–4, to semi-dry; 4.1–6, to semi-
sweet; and 6.1–8. to sweet. According to this scale, the trained judges evaluated the cider
samples’ dryness.

2.3.2. Descriptive Analysis

In the second session, the evaluation of the samples was performed by using quanti-
tative descriptive analysis (QDA). The panel leader trained the panelists in four 60-min
training sessions. In the first session, the panelists were presented with a range of cider
samples and invited to describe them through the evaluation of three taste attributes (sweet-
ness, acidity, bitterness), and one mouthfeel descriptor (astringency). In the subsequent
sessions, the judges were provided with a subset of samples and reference standards until
they reached a consensus as to the attributes and the score-sheet sequencing. The references
were prepared using a standard cider with addition of the compounds reported in Table 2
and corresponded to 6 (medium intensity) on an intensity-category scale, ranging from 1,
on the left (not detected), to 10, on the right (very intense). The level of training of the
panelists was checked by an individual evaluation of a subset of the samples and the statis-
tical analysis of the data. The evaluation of the cider samples by the QDA was performed
by serving them at a temperature of 12 ◦C in plastic test tubes. Each sample contained
a constant volume of 30 mL of cider. Judges evaluated three taste attributes (sweetness,
acidity, bitterness), and one mouthfeel descriptor (astringency). Samples were blind-tasted
and coded with randomized three-digit numbers. Before each evaluation, panelists tasted
the taste and mouthfeel standards, which were prepared following the same procedure as
the panel training.

Table 2. Taste and mouthfeel standard recipes: compounds added to the standard cider and their
relative concentrations, corresponding to 6 on the intensity scale.

Taste and Mouthfeel Standards Recipe Compound Dose (g/L) Product

Acidity citric acid 7 Toscolapi (Italy) enological use

Sweetness cane sugar 12 Italia Zuccheri (Italy)

Bitterness caffeine 1 Sigma & Aldrich (Saint Louis, MO, USA), food grade

Astringency alum 7 A.C.E.F. (Italy)
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Panelists evaluated all samples in a total of 11 sessions. Each session featured 6 or
7 samples in duplicate, served across judges in a balanced incomplete block design. Given
that some cider samples showed very different contents of residual sugar and alcohol and to
avoid the influence of outliers, the sessions were organized in such a way that homogeneous
group of samples for these compounds were presented. Judges were required to spit all the
cider samples, wait 30 s between samples and cleanse their palates with water.

2.4. Statistics

Principal component analysis (PCA) and partial least-squares regression (PLS1) were
performed using Unscrambler (ver. 10.3, CAMO Process AS, Bedford, MA, USA). Principal
component analysis was performed before PLS models to examine any relevant and inter-
pretable structures in the data and to detect outliers [31]. Principal component analysis
was performed on the trained judges’ average scores attributed by QDA to the taste and
tactile descriptors (sweetness, acidity, bitterness, astringency) after determination of their
significance by ANOVA (Statgraphic Centurion Ver.XV, StatPoint Technologies, Warrenton,
VA, USA). For the PLS1 analysis, the x-variables were represented by the selected chemical
variables affecting the taste and tactile perception and, therefore, the dryness of the cider
(residual sugars, alcohol, titratable acidity, malic acid, pH, tannins, polyphenol content,
hydroxybenzoic and hydroxycinnamic acids, 280- and 320-nm absorbances); the y-variable
was represented by the dryness scores. Cross-validation with randomization were used for
prediction and the Nipals algorithm was applied.

3. Results and Discussion
3.1. Chemical and Sensory Characterization

The cider samples were submitted to chemical analysis for standard parameters such
as alcohol content, pH, titratable acidity, malic acid content and residual sugar. Moreover,
parameters such as the polyphenol content, hydroxybenzoic and hydroxycinnamic acids
and absorbance at 280 nm and 320 nm were determined to define the polyphenol profiles of
the samples. The results of the descriptive statistics are reported in Table 3. Samples were
divided into two groups according to their chemical composition to form two homogeneous
cider samples groups, in order to build and validate a prediction model. Table 3 shows that
the two sample sets selected for the calibration and validation models presented similar
chemical compositions. However, some exceptions were presented and highlighted by the
maximum and minimum values for all the chemical parameters considered. In particular,
the residual sugar content was found to be one of the parameters with the highest variability,
as several samples showed very high values (i.e., 7689 mg/100 mL for calibration samples,
and 17,059 mg/100 mL for validation samples) and, for this reason, they strongly affected
the average value. The same trend, albeit less evident, was observed for other chemical
parameters, such as the alcohol content, the malic acid and the related titratable acidity,
as well as the polyphenol content. These chemical data indicated that the selected cider
samples were substantially homogeneous, with some exceptions, which were suitably
managed for both the evaluation and the model building.

This was confirmed by the PCA shown in Figure 1 (the KS2 and KS8 samples presented
outliers and were removed from the data), which displays the distribution of the cider
samples according to their chemical parameters (alcohol content, pH, titratable acidity,
malic acid, hydroxybenzoic acids, hydroxycinnamic acids, polyphenol content, total tannins
and residual sugar), their sensory attributes (sweetness, acidity, bitterness and astringency)
and their sensory dryness.
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Table 3. Concentration ranges and absorbances (max, min, median, lower quartile Q1 (25◦), upper quartile Q3 (75◦) and average) of calibration and validation
cider samples.

Alcohol
Content (% v/v) pH Malic Acid

(g/L)
Titratable acidity
(g/L Malic Acid)

Residual Sugar
(mg/100 mL)

Polyphenols
Content (mg/L)

Hydroxybenzoic
Acids (mg/L)

Hydroxycinnamic
Acids (mg/L) Abs. 320 nm Abs. 280 nm

Calibration samples

Max 20.22 3.98 0.83 0.93 7689.00 5399.0 109.7 398.0 0.3758 4.5855
Min 5.03 3.26 0.00 0.25 1.00 50.4 15.0 7.0 0.0120 0.0279

Median 7.28 3.62 0.47 0.56 361.83 435.7 24.5 76.5 0.0760 0.2329
Lower quartile (Q1) 6.69 3.50 0.22 0.43 8.08 210.5 20.8 27.0 0.0523 0.1207
Upper quartile (Q3) 8.16 3.82 0.61 0.69 1738.67 702.1 28.8 139.3 0.1492 0.3858

Average 7.73 3.64 0.40 0.56 1248.51 824.1 28.9 101.2 0.1117 0.5940

Validation samples

Max 19.03 3.99 1.45 1.62 17,059.00 5356.2 94.3 390.3 0.4266 3.2950
Min 5.67 3.27 0.00 0.33 1.00 62.0 16.0 15.0 0.0248 0.0476

Median 7.68 3.63 0.48 0.55 691.17 409.4 24.0 75.7 0.0812 0.2130
Lower quartile (Q1) 6.79 3.54 0.37 0.48 11.67 258.0 20.0 30.3 0.0558 0.1028
Upper quartile (Q3) 8.18 3.68 0.61 0.69 1953.25 744.4 31.3 126.3 0.1730 0.3730

Average 7.98 3.61 0.50 0.61 1758.83 793.8 31.4 101.5 0.1313 0.4811
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The PCA results explained 52% of the variance and separated the cider samples
along the first dimension (PC1 explained 36% of the variance) according to the chemical
parameters of pH, hydroxycinnamic and hydroxybenzoic acids and alcohol on the right side
of the graphic and residual sugar, malic acid, titratable acidity, polyphenols and total tannins
on the left side. Furthermore, the samples were separated along the second dimension (PC2
explained 16% of the variance) according to the titratable acidity, malic acid, polyphenol
content, hydroxycinnamic and hydroxybenzoic acids, total tannins, polyphenols and the
spectrophotometric measurements abs 320 nm and 280 nm, which are correlated with
polyphenol compounds, and pH on the opposite side. The sensory attributes of bitterness,
astringency and acidity were related to the hydroxycinnamic acids and, albeit to a lesser
extent, to the hydroxybenzoic acids, pH and alcohol content. Instead, the sweetness and
sensory dryness were related to the residual sugar and, to a lesser extent, to the malic acid,
titratable acidity, tannins and polyphenols. The distribution of the samples showed that
most of them were concentrated between the fourth and the first quadrants and were related
to the chemical parameters of pH, alcohol and hydroxycinnamic and hydroxybenzoic acids.
The other samples were more spread out, with a different level of relationship with the other
chemical parameters: RB1, LO2, LO1, MD3, KS7, BB1 and MD1 were strongly correlated
with abs 280 nm, abs 320 nm, polyphenols, total tannins, titratable acidity and malic acid,
while BB3, BB2, MD2, KS1, AO1, LO3, BB4, WE2, BH1, WE3, PC1, NP2, OH2 and AW1
were heavily related to chemical parameters such as residual sugar, titratable acidity and
malic acid and the sensory attributes of sweetness and sensory dryness.

The sensory dryness was found to be strictly correlated to the sweetness perception,
which, in turn, was directly correlated with the residual sugar content and negatively
correlated with the pH, alcohol content, hydroxycinnamic and hydroxybenzoic acids and
abs 280 nm. The relationship between the sensory attributes and chemical parameters
demonstrated that sweetness hindered acidity and astringency, with some exceptions [32]
and only when the residual sugar content was low (lower than ~15 g/L) but, overall, when
hydroxycinnamic and hydroxybenzoic acids were high (generally more than about 50 mg/L
for hydroxycinnamic acid and about 20 mg/L for hydroxybenzoic acid), the acidity and
astringency became perceptible, which was also due to the synergism between these two
oral perceptions [33]. The hydroxybenzoic and hydroxycinnamic acids, combined with high
alcohol content, showed a greater ability to interfere with the sweetness perception than acid
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compounds, such as malic acid, and the titratable acidity. This confirmed that sweet taste
suppressed astringency perception and that it was the only taste to be slightly or not affected
by astringency [34]. On the other hand, these findings confirmed those of other studies,
in which the ethanol significantly increased the perception of bitterness, while the acidic
compounds decreased it [35]. The similarity in the trends of bitterness and astringency
attributes could have been due, beyond the low sweetness level, to the fact that these
two sensations were often induced by the same compounds, such as polyphenols [36,37].
Moreover, the correlation of the pH with the astringency and bitterness sensations seemed
to confirm the findings of other studies on wine, in which the increase in the pH led to an
increase in the perception of these attributes [38].

3.2. Definition of the Dryness Rating by Marketable Scales and Sensory Evaluation

In Table 4, the scores and the relative rating of the dryness attributed to the cider
samples are reported as resulting from the application of four different scales: the Interna-
tional Riesling Scale (IRF) with and without pH correction, the New York Cider Association
(NYCA) scale and scores attributed by the Quantitative Descriptive Analysis (QDA). Al-
though the IRF rating demonstrated that the ratio between the residual sugar and the
malic acid had to be corrected as a function of the pH value, the IRF scores without pH
correction were also considered as they represented the base value for the calculation of the
NYCA-scale rating (see Tables 5 and 6).

Table 4. Scores and ratings of the cider samples: IRF scale with and without pH adjustment; NYCA
scale; sensory dryness by the panel of trained judges.

IRF Scale Scores
(Residual
Sugar/Malic Acid)

IRF Rating
without pH
Correction

IRF Rating
with pH
Correction

NYCA Scale
Scores (without
pH Correction)
IRF with Tannin
Correction

NYCA Rating
Rating (No pH
Correction-IRF
with Tannin
Correction)

Sensory
Dryness
Scores

Sensory
Rating

AO1 10.049 sweet sweet 10.050 sweet 5.5 semi-sweet

AW1 9.259 sweet sweet 8.510 sweet 4.5 semi-sweet

BB1 3.814 semi-sweet sweet 3.060 semi-sweet 3.4 semi-sweet

BB3 9.534 sweet sweet 8.780 sweet 5.6 semi-sweet

BH1 3.979 semi-sweet sweet 3.980 semi-sweet 4.8 semi-sweet

BK2 1.213 semi-dry semi-sweet 1.210 semi-dry 2.9 semi-dry

LO2 2.587 semi-sweet sweet 1.837 semi-dry 1.2 dry

NP1 0.020 dry semi-sweet 0.020 dry 2.3 semi-dry

OH1 0.034 dry semi-sweet 0.100 dry 1.6 dry

SH1 0.009 dry semi-sweet 0.002 dry 1.9 dry

WC1 0.002 dry semi-sweet 0.002 dry 1.4 dry

WE2 3.211 semi-sweet semi-dry 3.211 semi-sweet 5.1 semi-sweet

KS1 7.265 sweet sweet 7.260 sweet 5.2 semi-sweet

EC1 0.920 dry semi-sweet 0.920 dry 2.1 semi-dry

BD1 0.020 dry semi-dry 0.020 dry 2.3 semi-dry

BD3 0.460 dry semi-sweet 0.460 dry 2.0 dry

BD5 4.330 sweet sweet 4.330 sweet 3.6 semi-dry

BD7 2.640 semi-sweet semi-sweet 2.640 semi-sweet 3.1 semi-dry

MD1 4.069 sweet sweet 3.320 semi-sweet 3.6 semi-dry

MD3 1.008 semi-dry semi-sweet 0.258 dry 2.9 semi-dry

BD11 4.772 sweet sweet 4.522 sweet 3.5 semi-dry

BD13 0.048 dry semi-dry 0.047 dry 1.8 dry

WW1 11.000 sweet sweet 11.000 sweet 2.6 semi-dry
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Table 4. Cont.

IRF Scale Scores
(Residual
Sugar/Malic Acid)

IRF Rating
without pH
Correction

IRF Rating
with pH
Correction

NYCA Scale
Scores (without
pH Correction)
IRF with Tannin
Correction

NYCA Rating
Rating (No pH
Correction-IRF
with Tannin
Correction)

Sensory
Dryness
Scores

Sensory
Rating

WW3 1.000 dry semi-sweet 1.000 dry 3.0 semi-dry

WW5 5.000 sweet sweet 4.740 sweet 2.9 semi-dry

EC4 4.137 sweet sweet 3.640 semi-sweet 3.0 semi-dry

SH3 9.000 sweet semi-sweet 8.250 sweet 2.0 dry

SH6 0.622 dry semi-dry 0.122 dry 2.2 semi-dry

SH8 0.521 dry semi-dry 0.521 dry 2.6 semi-dry

SH12 1.657 semi-dry semi-sweet 1.450 semi-dry 3.4 semi-dry

TC1 0.533 dry semi-dry 0.533 dry 2.3 semi-dry

PF1 7.333 sweet sweet 7.333 sweet 1.8 dry

KS3 0.022 dry semi-dry 0.001 dry 2.5 semi-dry

KS5 0.622 dry semi-dry 0.622 dry 2.8 semi-dry

KS8 20.449 sweet sweet 20.450 sweet 6.3 sweet

TC4 0.037 dry semi-dry 0.012 dry 2.8 semi-dry

RB2 0.140 dry semi-sweet 0.140 dry 2.2 semi-dry

WW6 1.000 dry semi-sweet 1.000 dry 2.3 semi-dry

AO2 0.002 dry semi-sweet 0.002 dry 2.0 dry

BC1 0.002 dry semi-sweet 0.002 dry 1.5 dry

BB2 6.700 sweet sweet 5.950 sweet 5.2 semi-sweet

BB4 3.744 semi-sweet sweet 2.990 semi-sweet 4.4 semi-sweet

BK1 3.994 semi-sweet sweet 3.994 semi-sweet 3.5 semi-dry

LO1 1.335 semi-dry semi-sweet 0.580 dry 2.3 semi-dry

LO3 5.827 sweet sweet 5.080 sweet 4.4 semi-sweet

NP2 3.722 semi-sweet sweet 2.970 semi-sweet 4.3 semi-sweet

OH2 4.617 sweet sweet 3.870 semi-sweet 4.1 semi-sweet

PC1 3.934 semi-sweet sweet 3.934 semi-sweet 3.8 semi-dry

WE1 3.080 semi-sweet sweet 3.080 semi-sweet 3.9 semi-dry

WE3 3.353 semi-sweet sweet 3.353 semi-sweet 4.4 semi-sweet

KS2 11.789 sweet sweet 11.789 sweet 7.0 semi-sweet

EC2 1.850 semi-dry semi-sweet 1.850 semi-dry 2.3 semi-dry

BD2 2.195 semi-dry semi-sweet 2.195 semi-dry 2.2 semi-dry

BD4 0.004 dry semi-dry 0.004 dry 1.8 dry

BD6 1.670 semi-dry semi-sweet 1.670 semi-dry 3.8 semi-dry

BD8 0.019 dry semi-sweet 0.019 dry 1.7 dry

MD2 8.261 sweet sweet 7.510 sweet 5.8 semi-sweet

BD9 0.032 dry semi-sweet 0.032 dry 1.8 dry

BD12 0.051 dry semi-sweet 0.051 dry 2.4 semi-dry

BD14 4.949 sweet sweet 4.949 sweet 3.2 semi-dry

WW2 1.000 dry semi-sweet 1.000 dry 2.6 semi-dry

WW4 4.000 semi-sweet sweet 4.000 semi-sweet 2.6 semi-dry

EC3 0.030 dry semi-sweet 0.030 dry 2.0 dry

SH1 0.766 dry semi-sweet 0.766 dry 3.7 semi-dry

SH5 178.000 sweet sweet 178.000 sweet 2.7 semi-dry
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Table 4. Cont.

IRF Scale Scores
(Residual
Sugar/Malic Acid)

IRF Rating
without pH
Correction

IRF Rating
with pH
Correction

NYCA Scale
Scores (without
pH Correction)
IRF with Tannin
Correction

NYCA Rating
Rating (No pH
Correction-IRF
with Tannin
Correction)

Sensory
Dryness
Scores

Sensory
Rating

SH7 0.011 dry semi-sweet 0.011 dry 1.9 dry

SH11 9.554 sweet sweet 9.554 sweet 1.8 dry

SH13 3.299 semi-sweet sweet 3.299 semi-sweet 3.3 semi-dry

TC2 0.047 dry semi-sweet 0.047 dry 2.0 dry

PF2 0.019 dry semi-sweet 0.019 dry 2.0 dry

KS4 1.660 semi-dry semi-sweet 1.660 semi-dry 3.7 semi-dry

KS7 1.724 semi-dry semi-dry 1.724 semi-dry 2.9 semi-dry

TC3 11.931 sweet sweet 11.931 sweet 3.1 semi-dry

RB1 0.179 dry semi-dry 0.179 dry 2.4 semi-dry

RB3 0.193 dry semi-sweet 0.193 dry 2.1 semi-dry

LA1 0.011 dry semi-sweet 0.011 dry 3.1 semi-dry

Table 5. IRF scale: technical guidelines for the calculation of the cider samples’ dryness.

IRF Scale—Technical Guideline

Sugar-to-Acid Ratio pH pH Shift Due to pH

DRY <1.0 3.1 to 3.2 if = or >3.3 Medium Dry

3.5 or > Medium Sweet

MEDIUM DRY 1.0 to 2.0 = or >3.3 Medium Sweet

< or =2.9 Dry

MEDIUM SWEET 2.1 to 4.0 = or >3.3 Sweet

< or =2.9 Medium Dry

< or =2.8 Dry

SWEET >4.0 < or =2.9 Medium Sweet

< or =2.8 Medium Dry

Table 6. IRF tannin adjustment for the calculation of the NYCA rating (RS: residual sugar; MA:
malic acid).

TANNIN CORRECTION

<500 ppm The numerical RS/MA remains unadjusted

501 to 750 The RS/MA is reduced by 1/4 of the unit

751 to 1000 The RS/MA is reduced by 1/2 of the unit

>1000 ppm The RS/MA is reduced by 3/4 of the unit

The values attributed to the ciders by the four scales were quite similar for most of the
samples, although some relevant exceptions were detected (Table 4).

The IRF scale without pH adjustment expressed the dryness as the ratio between the
residual sugar and the titratable acidity (expressed as the malic acid content), assuming that
the perceived intensities of sweet and sour tastes were different when both tastes were in
the same mixture. Mixture suppression is a phenomenon in which the perceived intensity
of two tastes in a mixture is lower than if they were unmixed, at the same concentration
level [39]. Generally, sourness is suppressed by sweetness with a stable pattern, depending
on the levels of both components. Previous studies showed that the overall perceived



Foods 2023, 12, 2191 12 of 21

intensity was the result of “perceptual additivity,” i.e., the additivity of the taste intensity,
that is, the perceived taste within the mixture, rather than the “stimulus intensity” [40–43].
Moreover, the influence of the intensity concentration on the taste interaction was modeled
according to a psychophysical function, in which the ratio between different intensity
perceptions is different at low, medium, and high levels of perception [44]. This function
can also be applied to sweetness, the most heavily related taste to perceived dryness
(see PCA Figure 1), and it is generally considered an especially effective suppressor of
sourness, which is also affected by the alcohol, which generally enhances the perception of
sweetness [32]. Therefore, the ratio between the concentrations of the two stimuli (residual
sugar and malic acid), given that their intensity perception in a complex mixture such as
cider was unknown, represented a poor predictor of the overall perceived intensity of the
related taste. The IRF scale presented another critical point in relation to the calculation
modality of the rating: when the malic acid concentration was low or very low (a fraction
of mg per liter), the ratio and, hence, the scores, became very high (WW5, SH3, WW1, PF1,
WW4, SH5 and TC3), although the residual sugar of the sample was not relevant in terms
of its perception (Table 4). For example, the sample WW5 had a ratio of 5, corresponding to
the IRF rating of “sweet,” resulting from the ratios of 5 mg/100 mL of residual sugar and
0.001 g/L of malic acid. The score for the same sample obtained by the sensory evaluation
of dryness, given the concentration of the residual sugar (5 mg/100 mL), was probably
more realistic and noticeably lower (2.9), corresponding to a “semi-dry” rating. A similar
situation occurred with the sample SH3, with a ratio of 9, corresponding to the rating of
“sweet,” resulting from the ratios of 90 mg/100 mL of residual sugar and 0.001 g/L of
malic acid, presenting a score obtained by the sensory evaluation of dryness of 2, which
is equivalent to a “dry” rating. The most evident case was that of the sample SH5, with a
residual sugar level of 178 mg/100 mL and a similarly low content of malic acid (0.001 g/L),
which presented a very high IRF value of 178, corresponding to a “sweet” rating, while
the sensory dryness score attributed by the panel of trained judges was 2.7, corresponding
to “semi-dry”.

The IRF scale with pH correction demonstrated that the ratio between the residual
sugar and the malic acid had to be adjusted as a function of the pH of the sample (Table 5),
assuming that the higher the pH, the higher the dryness perception and that other acid
compounds than malic acid significantly contributed to the perceived acidity. The studies
on this topic provided conflicting results. Stone et al. [45] found that in an aqueous solution,
reducing the pH from 5.8 to 4.0 had little effect on the sweetness of glucose and fructose,
but a reduction from 4.0 to 2.7 caused a 50% reduction in the relative sweetness.

The study by Stevens [46] found that weak concentrations of citric acid (e.g., below 10−3 M)
had little effect on sucrose thresholds, while higher concentrations (2 × 10−3 M and above)
slightly elevated sucrose thresholds; the pH values were not reported. Schimann et al. [47]
evaluated the effect of pH on sweetness, at five different levels (pH 3.0, 4.0, 5.0, 6.0 and 7.0)
in aqueous solutions of HCl or NaOH. No significant changes in perceived sweetness were
found over a pH range from 3 to 7, but the acidity and astringency perceptions increased
with decreasing pH values. The latter finding could in some way support the IRF scale
with the pH correction, given that the perceived dryness was a sensation which could
contribute to both the perception of sweetness and to the acidity. Compared to the others,
the scores obtained by this scale were found to be the higher for almost all the samples,
indicating that the pH adjustment had a strong effect and noticeably increased the rating,
however it seems to have led to oversized values, since almost none the resulting scores
were confirmed by those of the panel of trained judges.

The NYCA scale (Table 4) was used to calculate the perceived dryness according
to the ratio of the residual sugar content to the malic acid (corresponding to IRF score),
adjusted as a function of the tannin concentration. This scale assumed that tannins were
the main compounds responsible for astringency and, hence, that they are able to decrease
the sweetness perception. Polyphenols (tannins and hydroxybenzoic and hydroxycinnamic
acids) play an important role in cider quality, since they are responsible for its color and
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the balance of bitterness and astringency, which defines the “overall mouthfeel” of ciders.
Several studies confirmed that astringency depends mainly on tannin content [19–21,35]
and that its perception can be enhanced or depressed as a function of different factors.
However, there were conflicting results regarding the effects of sweetness on astringency.
Lyman et al. [48] found that the addition of 0.5 M of sucrose to 1000 mg/L tannic acid
solution reduced the perception of dryness, while Brannan et al. [34]’s results showed
that in a model solution of alum and tannin at low concentrations, astringency was not
affected by sweetness, while at high concentrations, sweet taste suppressed astringency
perception. The authors concluded that sweetness was the only taste to be slightly or not
affected by astringency.

Studies on pH state that in general, the higher the pH, the lower the perceived
astringency [49–51]. Furthermore, studies on the effect of total acidity on the perceived
astringency have hypothesized that it was not significant [51,52] and that the astringency
elicited by acids was a function of pH and not of acid concentration [53,54].

The NYCA scale provided the values that must be subtracted from the ratio between
the residual sugar and the malic acid, in relation to the concentration of tannins (Table 6).
This scale, did not change the calculated IRF-dryness score when the tannin concentration
was lower than 500 mg/L and decreased it for higher values as a function of their concentra-
tion, up to a maximum of 3/4 of a unit, for values equal to or more than 1000 mg/L tannins.
Although it seemed to have a good relationship with the perceived dryness evaluated by
the panel of trained judges, when there was a very high tannin content, the scale appeared
to lose its ability to detect their effect on the perception. This was the case with the sample
MD1, which had an IRF value of 4.009, corresponding to a “sweet” rating but, given the
high content of tannins (5000 mg/L), a final value on the NYCA scale was 3.32, which
corresponded to a “semi-sweet” rating. In fact, the perceived dryness assigned by the scale
determined by the panel of trained judges was clearly lower (3.6), corresponding to the
“semi-dry” rating. This can be explained by the fact that the very high content of tannins
had a strong effect on the perceived dryness, while the NYCA tannin correction affected
the score values both at 1000 and 5000 mg/L of tannins (Table 6) in the same way.

The sensory evaluation of the cider samples by the QDA method confirmed that the
dryness rating was directly correlated with the perceived sweetness (Table 4). Moreover,
given the mixture’s effect [39] on the perceived sweetness represented by the results of
the interactions among the different tastes and tactile stimuli contained in the mixture,
QDA is the most effective method for providing the final perception of the overall intensity
according to the tastes perceived after any and all peripheral and central interactions
occur [40,42,43].

According to these results, it is possible to highlight that the marketable scales dis-
cussed here, despite the improvements introduced (see the NYCA scale), take into consid-
eration the different chemical compounds that directly influence the perception of dryness
without consider their interactions. To better correlate the scores with the actual perception
of dryness, including the interaction effects of the different tastes and tactile sensations, a
multivariate approach can be exploited.

3.3. Dryness Prediction by Chemical Parameters: Set-Up of the Model and Validation

To define a model for the prediction of the dryness, it was necessary to focus on
the relation between the perceived dryness and the chemical parameters related to its
perception. Given the studies on this topic, several chemical parameters were selected as a
function of their direct or indirect influence on taste and tactile perception: residual sugars
and alcohol for sweetness; titratable acidity, malic acids and pH for acidity; and tannins,
polyphenol content, hydroxybenzoic and hydroxycinnamic acids and 280-nm and 320-nm
absorbances for astringency and bitterness.

Partial least squares (PLS1) regression was applied to compare the dryness scores with
the chemical compounds of a set of cider samples (calibration set), with the goal of setting
up a model to predict the dryness of a new set of ciders (validation set). When the first
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model was set up, the Hotelling T2 Test showed that there was an outlier (KS8) and a new
model was set up without that sample.

The resulting model is reported in Figure 2a, while Figure 2b reports the Bw regression
coefficients. The values of explained variance (24%, 20% for Factor-1 and 71%, 10% for
Factor-2) were at their maximum after Factor-3, so these factors were considered for the
prediction. The predicted-versus-reference plot (Figure 2a) showed that it was a good-
quality model (R2 = 0.909; RMSEC = 0.472; SEC = 0.478). The predictions made during
the calibration were checked against the predicted-versus-measured plot to examine the
ability of the single chemical variables to model the dryness, but their importance was
better summarized as weighted regression coefficients (Bw) (Figure 2b). The Bw coefficients
made it possible to explain their weight and the quality of the relationship with the dryness
parameter. Moreover, in order to improve the model’s efficiency, it was more convenient to
select the most predictive chemical variables, i.e., those whose regression coefficients had
estimated uncertainty limits within the 95% confidence interval (Figure 2b, bars marketed
with grid). The variables with uncertainty limits crossing the zero line were not significant
even if they presented large regression coefficients because the estimated uncertainty was
consistent with the relationship between such variables and Y (dryness), since only some
of the samples spanned the range. The regression coefficients showed that the residual
sugar, malic acid, abs 320 nm and hydroxybenzoic acid had a direct relationship with the
predicted dryness, while the total tannins, polyphenols, hydroxycinnamic acid, abs 280 nm,
pH and alcohol content were negatively correlated. The uncertainty-test limits and the
Bw coefficients indicated that the residual sugar, hydroxycinnamic acid and abs 280 nm
were the chemical variables that were able to significantly predict the dryness, whose
predicted values are shown in Table 7. The defined model was tested by the prediction of
the dryness scores of a second set of ciders, the validation set, after their transformation
into the corresponding rating values. The predicted ratings were compared to the sensory
dryness ratings obtained through the QDA analysis and the NYCA scale. The IRF scale
was not considered.

The values predicted by the model set up based on all the chemical variables (Table 7—
model #1: residual sugar, titratable acidity, malic acid, tannins, polyphenols, hydroxycin-
namic and hydroxybenzoic acids, abs 280, abs 320, alcohol content and pH), were found to
be more similar to the evaluated sensory dryness than the NYCA scale. In fact, the NYCA
scale predicted different values with respect to the evaluated dryness for twenty samples,
three of which (SH5, SH11 and TC3) had two different ratings, while the predicted model’s
values showed different ratings for 18 samples, none of which had more than one level. A
large deviation from the predicted value was also detected for the sample KS2, but this can
be explained by the very high content of residual sugar (177 g/L), which made it an outlier
and, hence, difficult to predict with precision within of this category of cider.

The model set up by the important variables (Factor-1: 50%, 39%; Factor-2: 75%, 6%;
R2 = 0.901; RMSEC = 0.490; SEC = 0.497), which were the variables whose regression
coefficients had estimated uncertainty limits within the 95% confidence interval (Figure 3:
residual sugar, pH and abs 280 nm), showed an even better performance, as 14 rating
levels were found to be different from the sensory dryness scores, versus 20 on the NYCA
scale and 18 from the model defined by all the chemical variables (Table 7; model #2).
Although the samples SH11, RB1 and RB3 presented a larger range of variation, the dryness
values predicted by the defined model suggest that it was possible to obtain a good level of
prediction by using three defined chemical variables for the tested cider, i.e., the residual
sugar, hydroxycinnamic acid and abs 280 nm.

Selected-Variables Model

Given the purposes of this study, which were to set up a model to predict dryness
based on appropriate chemical parameters and to explore the possibility of refine the
model itself by making it easily applicable in the cider-production process, the choice
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of chemical variables was considered in light of their readiness for use in an ordinary
laboratory analysis of a production company.

Foods 2023, 12, x FOR PEER REVIEW 15 of 22 
 

 

 
Figure 2. PLS 1 plots: (a) Prediction model (sensory dryness predicted by all chemical variables); (b) 
weighted regression coefficients—Bw (important variables reported as black-striped bars) with es-
timated 95% confidence intervals; (c) predicted of dryness values for cider samples by the prediction 
model with uncertainty limits. 

  

Figure 2. PLS 1 plots: (a) Prediction model (sensory dryness predicted by all chemical variables);
(b) weighted regression coefficients—Bw (important variables reported as black-striped bars) with
estimated 95% confidence intervals; (c) predicted of dryness values for cider samples by the prediction
model with uncertainty limits.

Residual sugar is a common, easy and inexpensive parameter, determined by a specific
enzymatic method and spectrophotometric analysis. The polyphenols presented some
difficulties, as they were measured by a HPLC method, a very expensive instrument that
can only be handled by specialized technicians; moreover, the polyphenols included a
pool of chemical compounds (which also included hydroxybenzoic and hydroxycinnamic
acids), which had a different kind and level of influence on the perception of sweetness.
The measurement of abs 280 nm is in fact, an easy and widely used method determinate
the polyphenols content, together with abs 320 nm, correlated to hydroxybenzoic and
hydroxycinnamic acids [55]. For these reasons, this study was performed to test the predic-
tive power of easily measurable parameters correlated with polyphenol contents, such as
280-nm and 320-nm absorbance, and the chemical compounds and parameters influencing
sweetness perception beyond residual sugar, such as pH and titratable acidity, which
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are usually determined in the quality-control process and correlated with the perception
of sweetness.

Table 7. Predicted dryness rating by the PLS1 models (model #1: all chemical variables; model #2:
important chemical variables; model #3: selected chemical variables) and comparison with NYCA
and QDA ratings.

Cider Samples
Validation Set NYCA Scale Sensory Dryness

by QDA

Predicted Dryness
Rating by All
Chemical Variables
(Model #1)

Predicted Dryness
Rating by Important
Chemical Variables
(Model #2)

Predicted Dryness
Rating by Selected
Chemical Variables
(Model #3)

AO2 dry dry semi-dry semi-dry semi-dry

BC1 dry dry semi-dry semi-dry semi-dry

BB2 sweet semi-sweet semi-sweet semi-sweet semi-sweet

BB4 semi-sweet semi-sweet semi-dry semi-dry semi-sweet

BK1 semi-sweet semi-dry semi-sweet semi-dry semi-dry

LO1 dry semi-dry dry dry dry

LO3 sweet semi-sweet semi-dry semi-sweet semi-sweet

NP2 semi-sweet semi-sweet semi-dry semi-dry semi-sweet

OH2 semi-sweet semi-sweet semi-dry semi-dry semi-dry

PC1 semi-sweet semi-dry semi-sweet semi-sweet semi-sweet

WE1 semi-sweet semi-dry semi-dry semi-dry semi-dry

WE3 semi-sweet semi-sweet semi-sweet semi-dry semi-sweet

KS2 sweet semi-sweet sweet sweet sweet

EC2 semi-dry semi-dry semi-dry semi-dry semi-dry

BD2 semi-dry semi-dry semi-dry semi-dry semi-dry

BD4 dry dry semidry dry dry

BD6 semi-dry semi-dry semi-dry semi-dry semi-dry

BD8 dry dry dry dry dry

MD2 sweet semi-sweet semi-sweet semi-sweet semi-sweet

BD9 dry dry semi-dry semi-dry semidry

BD12 dry semi-dry semi-dry semi-dry semi-dry

BD14 sweet semi-dry semi-dry semi-dry semi-dry

WW2 dry semi-dry semi-dry semi-dry semi-dry

WW4 semi-sweet semi-dry semi-dry semi-dry semi-dry

EC3 dry dry semi-dry semi-dry semi-dry

SH1 dry semi-dry semi-dry semi-dry semi-dry

SH5 sweet semi-dry dry semi-dry semi-dry

SH7 dry dry semi-dry semi-dry semi-dry

SH11 sweet dry sweet dry dry

SH13 semi-sweet semi-dry semi-dry semi-dry semi-dry

TC2 dry dry semi-dry semi-dry semi-dry

PF2 dry dry semi-dry semi-dry semi-dry

KS4 semi-dry semi-dry semi-dry semi-dry semi-dry

KS7 semi-dry semi-dry semi-dry semi-dry semi-sweet

TC3 sweet semi-dry semi-dry semi-dry semi-dry

RB1 dry semi-dry semi-dry semi-dry semi-dry

RB3 dry semi-dry semi-dry semi-dry semi-dry

LA1 dry semi-dry semi-dry semi-dry semi-dry
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The new model is reported in Figure 4. The explained variance (35%, 73% for Factor-1
and 28%, 10% for Factor-2) was at its maximum after Factor-3, so these factors were
considered for the prediction. The predicted-versus-reference plot (Figure 4a), with R2

equal to 0.857, RMSEC to 0.441 and SEC to 0.447, showed a good level of prediction. The
uncertainty test and Bw coefficients made it possible to identify the chemical variables that
significantly predicted the dryness, i.e., the residual sugar was positively correlated and
the pH and titratable acidity were negatively correlated with the dryness. These results
confirmed the relation, evidenced by the PCA (Figure 1), between acidity (together with
astringency), and sweetness in the perception of the dryness.
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The model set up based on the selected chemical variables (model #3—residual sugar,
titratable acidity, abs 280, abs 320 and pH) was tested in the same way as the others, by
predicting the dryness values of the validation set and comparing the resulting ratings
with those calculated by all the variables, the important variables model and the NYCA
scale. The comparison made it possible to conclude that the model was more similar to
the evaluated sensory dryness than the NYCA scale, and even more effective than the
important-variables-based model itself. In fact, the ratings predicted by model #3 showed a
different rating from the sensory evaluated dryness for just 11 samples, none of which for
more than one level, compared with the 18 samples with different ratings on the NYCA
scale and the 14 samples in the important-variables model. Using the latter model, the
sample SH11 also demonstrated better predictability, while the large range of values of the
sample KS2 was confirmed. The model equation used to calculate the dryness score is as
follows (Equation (1)):
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Dryness (y) = 5.928 − 0.929 × pH + 0.0687 × Titratable acidity − 0.425 × Abs 280 nm − 0.0395 × Abs 320 nm
+0.0005243 × Residual sugar

(1)

4. Conclusions

The traditional scales applied so far (IRF and NYCA scales) to define the dryness of
cider cannot comprehend the complexity of the relationship between chemical and sensory
profiles when using a univariate approach, in which single compounds are considered sep-
arately. On the other hand, sensory evaluation is complex, expensive and time-consuming
and cannot be used as an ordinary tool to define marketable product parameters. Given
that the relationships between sensory perception and chemical composition are complex,
a predictive model for dryness using the multivariate method of PLS was applied, using
several chemical variables of cider that are correlated with dryness. The PLS method
is an important tool to study the relationship between chemical and sensory data, with
important practical applications. The PLS methodology makes it possible to untangle the
complicated interactions between chemical constituents to understand their combined
effects on perceptions and to explore the relationships between chemical compounds and
the sensory perception of dryness.

The determination of cider dryness by using chemical-composition data is challenging
because the chemical interactions are complex. Studies that account for this complexity
using statistical correlation could be of interest for this purpose.

However, further research is needed, as this topic has not yet been completely explored.
It is important to note that to obtain an efficient and effective predictive model and, given
the large variability of several chemical parameters, specific studies on different kinds of
cider are needed. As with every predictive model, the extension and application of this
predictive model over time will be necessary for its optimization.
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