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Abstract 42 

Melanoma is the deadliest skin cancer, with a poor prognosis in advanced stages. Available 43 

treatments have improved the survival, although long-term benefits are still unsatisfactory. The 44 

mitogen-activated protein kinase ERK5 promotes melanoma growth, and ERK5 inhibition 45 

determines cellular senescence and the senescence-associated secretory phenotype. Here, latent-46 

transforming growth factor β-binding protein 1 (LTBP1) mRNA was found to be upregulated in A375 47 

and SK-Mel-5 BRAFV600E melanoma cells after ERK5 inhibition. In keeping with a key role of 48 

LTBP1 in regulating transforming growth factor β (TGF-β), TGF-β1 protein levels were increased 49 

in lysates and conditioned media of ERK5-knock down (KD) cells, and were reduced upon LTBP1 50 

KD. Both LTBP1 and TGF-β1 proteins were increased in melanoma xenografts in mice treated with 51 

the ERK5 inhibitor XMD8-92. Moreover, treatment with conditioned media from ERK5-KD 52 

melanoma cells reduced cell proliferation and invasiveness, and TGF-β1-neutralizing antibodies 53 

impaired these effects. In silico datasets revealed that higher expression levels of both LTBP1 and 54 

TGFB1 mRNA are associated with better overall survival of melanoma patients, and that increased 55 

LTBP1 or TGF-β1 expression proved a beneficial role in patients treated with anti-PD1 56 

immunotherapy, making unlikely a possible immunosuppressive role of LTBP1/TGF-β1 upon ERK5 57 

inhibition. This study, therefore, identifies additional desirable effects of ERK5 targeting, providing 58 

evidence of an ERK5-dependent tumor suppressive role of TGF-β in melanoma.  59 
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Introduction 60 

Malignant melanoma is one of the most aggressive skin cancers, and its incidence is increasing 61 

worldwide. Early-stage disease can be cured in the majority of cases by surgical excision, while late-62 

stage melanoma is still a highly lethal disease [1]. Common genetic alterations associated with 63 

melanoma include mutations in BRAF (50-60%), NRAS (20-25%) and NF1 (14%) that hyperactivate 64 

the mitogen-activated protein kinase (MAPK) ERK1/2, thus supporting sustained cell proliferation 65 

[2]. Development of BRAF- and MEK1/2-targeting drugs and immunotherapy have greatly increased 66 

the survival of melanoma patients [3]. However, intrinsic or acquired resistance to the former as well 67 

as the lack of responsiveness to the latter limit the benefits of available therapies [4,5].  68 

ERK5 (also referred to as big mitogen-activated protein kinase 1, BMK1), the last discovered 69 

member of conventional MAPKs, is involved in cell survival, proliferation and differentiation of 70 

several cell types [6], and plays a relevant role in the biology of cancer, including melanoma [7,8,9]. 71 

ERK5 activation is achieved through MEK5-dependent or -independent phosphorylation that 72 

stimulates ERK5 nuclear translocation, a key event for cell proliferation [10,11]. On the other hand, 73 

a recent report showed that, upon ERK5 inhibition, melanoma cells undergo cellular senescence, and 74 

produce a number of soluble mediators (namely CXCL1, CXCL8 and CCL20) typically involved in 75 

the senescence-associated secretory phenotype (SASP) that slow down the proliferation of melanoma 76 

cells [9,12]. 77 

Accumulating evidence points to the involvement of transforming growth factor β (TGF-β) 78 

in cellular senescence [13]. TGF-β secretion and activation is regulated by its association to latent-79 

transforming growth factor β-binding protein 1 (LTBP1) [14,15]. The roles normally played by 80 

TGF-β signaling are to control proliferation, differentiation and other functions in most cells. These 81 

roles are highly context-dependent, and TGF-β appears to induce even opposite effects in different 82 

contexts [16]. Regarding melanoma in particular, the role of tumor suppression versus tumor 83 

promotion of TGF-β has been scarcely addressed [17]. This paper identified a tumor suppressive 84 
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role for LTBP1/TGF-β among the antitumoral outcomes of ERK5 inhibition, that could be 85 

exploited for future therapeutic strategies in melanoma. 86 

 87 

Material & Methods  88 

Cells and cell culture 89 

 A375BRAFV600E (RRID:CVCL_0132) [18] and SK-Mel-2NRASQ61R (RRID: 90 

CVCL_0069CVCL_0069) [19] melanoma cells were obtained from ATCC; SK-Mel-5BRAFV600E 91 

(RRID:CVCL_0527) melanoma cells [19] were kindly provided by Dr. Laura Poliseno (CRL-ISPRO, 92 

Pisa, Italy); SSM2c melanoma cells have been described elsewhere [20]. Cells were maintained in 93 

DMEM with 10% heat-inactivated fetal bovine serum (FBS), 2 mmol/L glutamine, 50 U/mL 94 

penicillin and 50 mg/mL streptomycin (Euroclone, Milano, Italy). Cell lines are authenticated yearly 95 

(BMR Genomics, Padua, Italy) by STR profiling using Promega PowerPlex Fusion System Kit 96 

(Promega Corporation, Madison, WI, USA). Presence of Mycoplasma was periodically tested by 97 

PCR. 98 

 99 

Drugs 100 

ERK5 inhibitors XMD8-92 [21] and JWG-071 [22] were from MedChemExpress (Monmouth 101 

Junction, NJ, USA). Cell cycle inhibitor L-mimosine was from Sigma-Aldrich (St Louis, MO, USA).  102 

 103 

Cell lysis and Western Blot 104 

Total cell lysates were obtained using Laemmli Buffer or RIPA buffer as reported previously 105 

[23]. Immunoprecipitation (IP) was performed by incubating 2 mg of CM proteins with the anti-TGF-106 

β antibody and 20 μL of Protein A/G PLUS-Agarose (Santa Cruz Biotechnology, USA) for 24 hours 107 

at 4 °C. Immunocomplexes were then washed for three times and proteins eluted using Laemmli 108 

Buffer. Proteins were separated by SDS-PAGE and transferred onto Amersham Protran nitrocellulose 109 
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membranes (GE Healthcare, Chicago, IL, USA) by electroblotting. Infrared imaging (Odissey, Li-110 

Cor Bioscience, Lincoln, NE, USA) was performed. Images were quantified with ImageJ 1.53k 111 

software (https://imagej.net/ij/; Last access 18/01/2024). The list of the antibodies is in Table 1. 112 

 113 

RNA interference 114 

A375 and SK-Mel-5 cells were transduced with control non-targeting shRNA (shNT) or 115 

ERK5-specific shRNAs (shERK5-1 and shERK5-2) (Table 2) as previously reported [23]. 116 

Transduced cells were selected with 2 µg/mL puromycin for at least 72 hours. Fourteen days after 117 

lentiviral transduction, medium was replaced with DMEM/10% FBS, and CM were harvested after 118 

72 hours. For siRNA inhibition studies, the cells were transfected with human LTBP1 siRNAs 119 

(SASI_Hs01_00187276 and SASI_Hs01_00168991) or negative control siNT (SIC001) from Sigma-120 

Aldrich at a final concentration of 100 nM using Lipofectamine 2000 reagent (Thermo Fisher 121 

Scientific, Waltham, MA, USA), following the manufacturer’s instructions. 72 hours after 122 

transfection, cells were harvested for protein extraction and additional analysis.  123 

 124 

Measurement of cell viability, cell cycle phase distribution and cell death 125 

The number of viable cells in culture was evaluated by counting trypan blue-positive and 126 

negative cells with a hemocytometer. Cell cycle phase distribution (propidium iodide staining) was 127 

estimated by flow cytometry using a FACSCanto (Beckton & Dickinson, San Josè, CA, USA) as 128 

previously reported [24]. Dead cells were evaluated by flow cytometry using a FACSCanto (Beckton 129 

& Dickinson). AnnexinV-positive and Annexin-V-negative/PI-positive cells were measured using 130 

Annexin-V-FLUOS Staining Kit (Sigma-Aldrich), as previously reported [24]. 131 

 132 

Transcriptomic analysis 133 

Total RNA was isolated using RNeasy Mini Kit (Qiagen, Hilden, Germany), and mRNA 134 

expression was evaluated with Affymetrix Clariom-S Human Genechip following the manufacturer’s 135 
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instructions. Transcriptome analysis console (TAC) software was used (fold change>1.5/<1.5 and 136 

p≤0.05) to identify differentially expressed genes (DEG).  137 

 138 

Patients 139 

Analysis of the relationship between LTBP1 and TGFB1 mRNA expression and overall 140 

survival (OS) of melanoma patients was carried out using the publicly available SKCM data set from 141 

The Cancer Genome Atlas (TCGA PanCancer Atlas) on cBioPortal for Cancer Genomics 142 

(https://www.cbioportal.org; last access: October 10th, 2023 [25,26]). The same database was used 143 

to verify the correlation between LTBP1 and TGFB1 mRNA. Analysis of the relationship between 144 

LTBP1 and TGFB1 mRNA expression and outcome OS and DFS of melanoma patients treated with 145 

anti-PD1 therapy was carried out using the open access database Kaplan-Meier plotter 146 

(http://www.kmplot.com; last access: October 10th, 2023 [27]). Expression of LTBP1 in normal, 147 

primary and metastatic tumors was obtained from TCGA dataset on TNMplot database 148 

(http://www.tnmplot.com; last access: October 10th, 2023 [28]). 149 

 150 

Quantitative real-time PCR (qPCR) 151 

Total RNA was isolated using TriFast II (Euroclone). cDNA synthesis was carried out using 152 

ImProm-II Reverse Transcription System, while qPCR was performed using GoTaq qPCR Master 153 

Mix (Promega Corporation). QPCR was performed using CFX96 Touch Real-Time PCR Detection 154 

System (Bio-Rad, Hercules, CA, USA). Expression levels were determined by qPCR with the 155 

primers: Forward: 5′-TGAATGCCAGCACCGTCATCTC-3′ and reverse: 5′-156 

CTGGCAAACACTCTTGTCCTCC-3′ for LTBP1. mRNA expression was normalized to: Forward: 157 

5’-GTCTCCTCTGACTTCAACAGCG-3’ and reverse: 5’-ACCACCCTGTTGCTGTAGCCAA-3’ 158 

GAPDH mRNA and: Forward: 5’-ACCCGTTGAACCCCATTCGTGA-3’ and reverse: 5’- 159 

GCCTCACTAAACCATCCAATCGG-3’ for 18S mRNA. 160 

 161 
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Cell viability assay  162 

Cell viability was measured by 3-(4,5-dimethylthiazol-2-yl)-3,5-diphenyltetrazolium bromide 163 

(MTT) assay. Cells were seeded in 96-well plate in DMEM/10% FBS. After 24 hours, medium was 164 

replaced with CM and cells were further incubated for 72 hours. MTT (0.5 mg/mL) was added during 165 

the last 4 hours. Plates were read at 595 nm using a Microplate reader-550 (Bio-Rad). For 166 

neutralization experiments, control isotype IgG or neutralizing antibodies (Table 1) were added to 167 

CM prior to administration to cells. 168 

 169 

Immunohistochemistry 170 

Formalin-fixed paraffin-embedded sections from archival xenografts established with A375 171 

cells from XMD8-92 (25 mg/kg)- or vehicle (2-hidroxypropyl-β-cyclodextrin 30%)-treated mice 172 

were used [8]. Experiments had been approved by the Italian Ministry of Health (authorization no. 173 

213/2015-PR) and were in accordance with the Italian ethic guidelines and regulations. Sections (3 174 

μm thick) were deparaffinized and were incubated overnight at 4°C with primary antibodies (Table 175 

2) and 3,3′-diaminobenzidine (DAB; Thermo Fisher Scientific) used as a chromogen. Sections were 176 

counterstained with hematoxylin and the percentage of stained area was evaluated with ImageJ 1.53k 177 

software. Representative photographs are shown (original magnification, 40X). Scale bar, 100 µm. 178 

 179 

Invasion assay 180 

A375 or SK-Mel-5 melanoma cells (1 × 104 cells/well) were seeded in DMEM supplemented 181 

with 10% Bovine serum albumin (BSA), in the presence or absence of neutralizing antibodies onto 182 

the top chamber of 48-well transwell plates equipped with 8 μm polycarbonate nucleopore filters 183 

(Neuro Probe, Gaithersburg, MD, USA) pre-coated with Matrigel (Sigma-Aldrich). The bottom 184 

chamber was supplemented with CM obtained as described above. After 24 hour-incubation cells that 185 

had not migrated were removed with a cotton swab from the upper surface of filters and cells that had 186 

migrated to the lower surface of the membrane were subjected to Diff-Quick staining (Medion 187 
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Diagnostics AG, Dudingen, Switzerland) and observed with a light microscope. The number of cells 188 

per well was evaluated by counting cells in 5 randomly chosen microscope fields (20X 189 

magnification). 190 

 191 

Statistical analysis 192 

Data represent mean or ± SD values calculated on at least three independent experiments. P 193 

values were calculated using Student t-test or one-way ANOVA (multiple comparison). P < 0.05 was 194 

considered statistically significant. 195 

 196 

Results 197 

ERK5 inhibition determines an increase of LTBP1 198 

CXCL1, CXCL8 and CCL20 have been recently identified among the SASP-related soluble 199 

mediators that are responsible for the reduced proliferation in BRAFV600E melanoma cells 200 

undergoing cellular senescence following ERK5 KD [9]. In view of the exploitation of ERK5 201 

targeting for the treatment of melanoma, further characterization of the secretome of BRAFV600E 202 

melanoma cells upon ERK5 inhibition was performed, taking advantage of a previously performed 203 

transcriptomic analysis in A375 and SK-Mel-5 ERK5-KD cells [9]. Using this approach, it emerged 204 

that ERK5 KD upregulated LTBP1 mRNA levels, when compared to control non-targeting shRNA-205 

transduced cells (Supplementary Figure S1). QPCR confirmed the increased expression of LTBP1 206 

mRNA upon ERK5 KD in both A375 and SK-Mel-5 BRAFV600E cells (Figure 1A). Interestingly, 207 

publicly available Skin Cutaneous Melanoma (SKCM) data set from TCGA on TNMplot [28] 208 

provided evidence that LTBP1 mRNA levels are lower in primary and metastatic melanomas than in 209 

normal tissues from non-cancer patients (Figure 1B). However, the same data set did not provide 210 

evidence of changes in ERK5 mRNA along melanoma progression (not shown), in keeping with a 211 

previous report showing consistent activation of the MEK5/ERK5 pathway without appreciable 212 

ERK5 overexpression in melanoma patients [8]. More importantly, using the same dataset on 213 
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cBioPortal for Cancer Genomics it emerged that higher expression levels of LTBP1 mRNA are 214 

associated with a better overall survival (OS) (Figure 1C) of melanoma patients, pointing to a possible 215 

tumor suppressive role of LTBP1 in melanoma. ERK5 KD resulted in increased levels of LTBP1 216 

protein (Figure 1D), and the same effects were recapitulated by pharmacological inhibition of ERK5 217 

using XMD8-92 [21] and the more specific JWG-071 [22] small molecule inhibitors (Figure 1E). 218 

Effectiveness of the ERK5 inhibitors was confirmed by the reduced protein level of the downstream 219 

target KLF2 [29]. Of note, AX15836 that inhibits the catalytic function of ERK5 but paradoxically 220 

stimulates its transactivation function [30,31] did not elicit the same effects (not shown). Taken 221 

together, the above data indicate that ERK5 negatively regulates LTBP1, whose expression correlates 222 

with a better outcome in melanoma patients. 223 

 224 

ERK5 inhibition promotes an LTBP1-dependent increase of TGF-β1, whose expression is associated 225 

with a better prognosis in melanoma 226 

Because LTBP1 is involved in the stabilization and activation of TGF-β, which plays a 227 

relevant role in cancer onset and progression [15], the impact of ERK5 KD on TGF-β protein levels 228 

was analyzed. Increased protein levels of both mature (Figure 2A) and latent forms (Supplementary 229 

Figure S2A) of TGF-β1 were found, in conditioned media (CM) and whole cell lysates, respectively, 230 

of ERK5-KD A375 and SK-Mel-5 cells. Of note, mRNA levels of TGFB1 were not consistently 231 

affected (i.e. were not increased in both cell lines upon ERK5 KD), pointing to post-transcriptional 232 

effects of LTBP-1 on TGF-β upon ERK5 KD (Supplementary Figure S2B), at least in our 233 

experimental models. Interestingly, in line with the fact that LTBP-1-dependent regulation of TGF-β 234 

could impact the activity of transcription factors (e.g. SMAD proteins, AP-1, NF-kB, and SP1 235 

[32,33,34]) known to be regulated by TGF-β itself that are, in turn, able to regulate TGF-β expression, 236 

the SKCM data set from TCGA on cBioPortal provided evidence of a positive correlation (Spearman: 237 

0.32, p = 2.82e-12) between LTBP1 mRNA and that of TGFB1 (Figure 2B). More importantly, the 238 

same dataset provided a positive association between higher levels of TGFB1 expression and a better 239 
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prognosis in melanoma patients (Figure 2C). To prove that LTBP1 participates in the regulation of 240 

TGF-β1 protein level in melanoma cells, LTBP1 was KD using two different siRNAs (Figure 2D). 241 

LTBP1 KD determined a marked decrease of TGF-β1 protein in both A375 and SK-Mel-5 cells 242 

(Figure 2E), and prevented the increase of TGF-β1 upon pharmacological inhibition of ERK5 243 

(Supplementary Figure S2C). Importantly, both LTBP1 and TGF-β1 protein levels were increased 244 

upon ERK5 inhibition in vivo. Indeed, administration of the ERK5 inhibitor XMD8-92, which had 245 

been previously shown to reduce melanoma tumor growth similarly to ERK5 KD [8], induced a 246 

robust increase of both LTBP1 and TGF-β1 in A375 xenografts, with respect to vehicle-treated mice 247 

(Figure 2F).  248 

 249 

TGF-β1 exerts an antiproliferative effect in melanoma cells upon ERK5 KD 250 

It has been shown that ERK5 KD results in the increased production of CXCL1, CXCL8 and 251 

CCL20 in melanoma cells, and that these chemokines are responsible for a reduced viability of 252 

melanoma cells [9]. TGF-β is involved in cellular senescence and is able to exert potent growth 253 

inhibitory activities in various cell types and in different context, including cancer cells [13]. Along 254 

this line, here TGF-β1 emerges to be among the soluble factors responsible for a reduced viability of 255 

melanoma cells upon ERK5 KD. Indeed, TGF-β1-neutralizing antibodies prevented in a dose-256 

dependent manner the anti-proliferative effect induced by CM harvested from ERK5-KD A375 257 

(Figure 3A) or SK-Mel-5 (Figure 3B) cells. The above effects were not restricted to BRAFV600E-258 

mutated melanoma cells. Indeed, in both N-RAS-mutated SK-Mel-2 and triple wild type SSM2c 259 

melanoma cells, TGF-β1-neutralizing antibodies reverted the reduction of cell proliferation elicited 260 

by the ERK5-KD-derived CM (Supplementary Figure S3A). Moreover, in keeping with the biological 261 

evidence, both pharmacological and genetic inhibition of ERK5 determined an increase of TGF-β1 262 

in these cell lines (Supplementary Figure S3B). To confirm that TGF-β1 exerts an antiproliferative 263 

effect in melanoma cells, A375 and SK-Mel-5 cells were treated with human recombinant TGF-β1. 264 
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This cytokine reduced the number of viable cells in culture in a dose-dependent manner in both cell 265 

lines (Figure 3C). This effect was maximal with 100 ng/ml, a concentration in line with previous 266 

reports [35,36]. In order to deepen how TGF-β1 affects cell growth, cell-cycle analysis was 267 

performed, and showed that treatment with TGF-β1 significantly increased the fraction of cells in 268 

G0/G1 phase (Figure 3D). In the same experimental settings, TGF-β1 determined the increase of the 269 

cyclin dependent kinase inhibitor p21 (Supplementary Figure S3C). In further support of a possible 270 

involvement of p21 in the antiproliferative effects of TGF-β1 upon ERK5 inhibition, the treatment 271 

with TGF-β1-neutralizing antibodies was able to reduce the increase of p21 elicited by CM harvested 272 

from ERK5-KD (A375) cells in both A375 and SK-Mel-5 cell lines (Supplementary Figure S3D). 273 

The reduction of cell number observed in melanoma cells treated with TGF-β1 was partially due to 274 

increased cell death (Figure 3E). On the whole, the above data provides evidence that TGF-β1 is 275 

among the soluble mediators that increase upon ERK5 inhibition, and is then responsible for the 276 

reduced proliferation. 277 

 278 

TGF-β1 produced upon ERK5 inhibition reduces the invasive ability of melanoma cells 279 

The possible impact of the secretome of ERK5-KD cells on melanoma cell invasiveness was 280 

then tested. CM from ERK5-KD cells markedly reduced the invasive ability of A375 and SK-Mel-5 281 

cells (Supplementary Figure S4A), in the presence of mimosine, a DNA replication inhibitor used at 282 

concentration able to completely prevent changes in the number of cells along the duration (i.e. 24 283 

hours) of the invasion assays (Supplementary Figure S4B and C). To shed light on the possible role 284 

of TGF-β1 in the regulation of this biological process upon ERK5 KD, the effect of TGF-β1 285 

neutralizing antibodies on cell invasion ability was evaluated. TGF-β1 neutralizing antibodies were 286 

able to restore A375 (Figure 4A) and SK-Mel-5 (Figure 4B) invasion ability reduced by CM harvested 287 

from ERK5-KD A375 or SK-Mel-5 cells, while control IgG did not. To confirm that TGF-β1 is able 288 

to reduce melanoma cell invasiveness, A375 and SK-Mel-5 cells were treated with increasing doses 289 
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of this cytokine. TGF-β1 dose-dependently decreased the invasive ability of both A375 and SK-Mel-290 

5 cells (Figure 4C and D). Altogether, the above data indicate that TGF-β1 reduces the invasive 291 

propensity of melanoma cells, at least in vitro. 292 

 293 

Increased TGF-β1 and LTBP1 expression positively affects the impact of immunotherapy in 294 

melanoma patients 295 

As reported above, higher levels of both TGF-β1 and LTBP1 correlate with a better OS 296 

(Figure 1C and 2C). Moreover, OS and disease-free survival (DFS) of patients treated with anti-PD1 297 

therapy (i.e. Nivolumab or Pembrolizumab) are significantly higher in patients with high TGF-β1 298 

expression than in those with lower expression (Figure 5A). This positive association was also 299 

detected regarding high levels of LTBP1 expression and better OS and DFS in melanoma patients 300 

treated with anti-PD1 therapy (Figure 5B), pointing to additional desirable effects of ERK5 inhibition 301 

in melanoma. 302 

 303 

Discussion 304 

TGF-β controls a wide spectrum of cellular functions, and deregulated TGF-β signaling has 305 

been linked to several human diseases, including cancer [37]. In particular, TGF-β may play a double-306 

edged sword role in tumor progression [38,39], acting as a tumor suppressor during the early stage of 307 

the tumor, since inhibition of TGF-β signaling results in the disruption of normal homeostatic process 308 

and subsequent carcinogenesis, while behaving as a tumor promoter at later stages [40]. 309 

Understanding how TGF-β1 can coordinate its effects in melanoma is a key issue in the biology of 310 

this cancer.  311 

ERK5 has been recently reported to be involved in melanoma growth [8], and ERK5 inhibition 312 

induces marked cellular senescence and production of several soluble mediators involved in the SASP 313 

in both BRAF-mutated and -wild-type melanoma cells and xenografts [9]. In this study, ERK5 314 

inhibition evokes an increased expression of LTBP1, which is known to modulate the availability of 315 
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TGF-β1 [15]. Along this line, besides increased LTBP1 expression, increased TGF-β1 protein levels 316 

were found in ERK5-KD melanoma cells, and in A375 xenografts from XMD8-92-treated mice. 317 

LTBP1 resulted to be responsible for the regulation of TGF-β1 protein levels, likely through a post 318 

transcriptional regulation, and also to prevent the increase on the latter upon ERK5 inhibition. This 319 

work also identifies an anti-proliferative and anti-invasiveness ability of TGF-β1 in melanoma cells, 320 

providing evidence that the increase of LTBP1/TGF-β1 complex could be an additional desirable 321 

effect obtained by ERK5 inhibition.  322 

TGF-β is a potent inhibitor of cell proliferation, which is thought to result from its ability to 323 

induce G1 cell cycle arrest [41]. In line with this fact, the data provided in this work indicate that 324 

TGF-β1 is among the soluble factors responsible for the reduction of melanoma cell proliferation 325 

induced by the secretome of ERK5-KD melanoma cells. In fact, this event is partially restored by 326 

TGF-β1-neutralizing antibodies. Moreover, in BRAFV600E-expressing cells, TGF-β1 slows down 327 

cell cycle progression with the accumulation of cells in G0/G1 phase, and is able to increase cell 328 

death. Despite these effects are elicited at relatively high TGF-β1 concentrations, the latter are in line 329 

with previous reports [35,36], and are consistent with the amount contained in the CM of ERK5-KD 330 

melanoma cells. The observed antiproliferative effects are consistent with the results obtained in other 331 

studies, which demonstrated that cell cycle arrest was induced upon treatment with TGF-β1 via 332 

SMAD2/3 in proliferating melanoma cells in vitro and in vivo [42,43,44]. Moreover, in another paper, 333 

the activation of TGF-β1 led to the upregulation of PAI-1 expression that resulted in tumor growth 334 

inhibition in murine melanoma [45]. The above results, including those described in this manuscript, 335 

are at variance with a previous report showing that inhibition of canonical TGF-β signaling inhibited 336 

tumor growth in melanoma [46]. Despite here it clearly emerges an oncoppressive role for TGF-β1 337 

in melanoma cells upon ERK5 inhibition, the molecular mechanism underlying this connection 338 

remains to be established. However, TGF-β1 was found to increase the expression of the cyclin 339 
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dependent kinase inhibitor p21, a previously established ERK5-regulated protein [8,9], that is a 340 

downstream mediator of the antiproliferative effects of TGF-β, including in melanoma cells [38,47]. 341 

Another interesting finding of this study is the demonstration that ERK5-KD melanoma 342 

cells produce TGF-β1, which exerts an anti-invasive capacity. These results, together with the 343 

identified antiproliferative effect, are in keeping with the evidence reported here that melanoma 344 

patients with higher expression of TGF-β1 have a better prognosis. On the other hand, they are at 345 

variance with the established notion that, at least in the advanced stages, TGF-β acts as a tumor 346 

promoter by stimulating invasiveness along the epithelial to mesenchymal transition [48]. Of note, 347 

A375 and SK-Mel-5 cell lines used as models for this study were derived from metastatic 348 

melanoma [18,19]. Moreover, elevated expression levels of TGF-β1 have been associated with 349 

melanoma progression in vivo, and TGF-β1-elicited signals have been reported to stimulate 350 

melanoma cell dissemination from primary tumors [49,50].  351 

From the clinical point of view, the possibility to elicit an increase in LTBP1 and TGF-β1 352 

expression following ERK5 inhibition seems to have positive therapeutic implications in melanoma 353 

patients. Indeed, LTBP1 expression is lower in primary and metastatic melanoma compared to 354 

healthy tissues, and melanoma patients with higher expression of LTBP1 or TGF-β1 have a better 355 

prognosis (OS) with respect to those with lower ones. On the other hand, in silico data analysis 356 

revealed that among melanoma patients that have received anti-PD1 antibodies, those with higher 357 

expression of LTBP1 or TGF-β1 showed improved OS or DFS compared to those with low 358 

expression. This fact is of relevance, taking into consideration that TGF-β affects multiple 359 

components of the immune system, exerting most of times systemic immune suppression [51]. 360 

Furthermore, the first-line therapeutic approach for advanced melanoma consists in immunotherapy 361 

with anti-PD1 antibodies (Nivolumab/Pembrolizumab) or targeted therapy with BRAF and MEK 362 

inhibitors, and their combination is under study [52]. Based on all above, targeting ERK5 is also 363 

expected to boost the efficacy of immunotherapy in melanoma patients, adding value to the possible 364 
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targeting of ERK5 in this cancer, taking into consideration that ERK5 inhibition has been reported 365 

to reduce melanoma growth and to improve BRAF targeting in vivo [8], and that ERK5 activation is 366 

among the resistance mechanism to RAF-MEK1/2-ERK1/2 directed therapies [9].  367 
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Figure Legends  518 

Figure 1. Effects of ERK5 inhibition on the expression of LTBP1 in melanoma cells. A) 519 

A375 and SK-Mel-5 cells transduced with lentiviral vectors harboring control non-targeting shRNA 520 

(shNT) or ERK5-specific shRNAs (shERK5-1 and shERK5-2) were lysed after 72 hours, and LTBP1 521 

mRNA levels determined by qPCR. Data shown are means (± SD) from three independent 522 

experiments. **, p < 0.01 vs shNT. B) Violin plots show LTBP1 gene expression profile in normal 523 

skin (Normal), primary (Tumor) and metastatic (Metastatic) melanoma obtained by SKCM data set 524 

(TCGA) on TNMplot. ****, p<0.0001. C) Kaplan-Meier analysis of the relationship between LTBP1 525 

expression and overall survival (OS) in melanoma patients using the SKCM data set (TCGA) on 526 

cBioPortal. Patients were stratified according to low or high LTBP1 expression. Median LTBP1 527 

expression value was used as cut-off. In order to reduce noise, 5% of samples above and below the 528 

cut-off value were excluded from the analysis (n=423, with n=223 and n=200 in the low/high group, 529 

respectively). HR = hazard ratio; HR < 1 indicates reduced hazard of death. D) A375 and SK-Mel-5 530 

cells transduced with control shNT or shERK5 (shERK5-1 and shERK5-2) were lysed after 72 hours. 531 

Western Blot was performed with the indicated antibodies. Images are representative of three 532 

independent experiments showing similar results. Migration of molecular weight markers is indicated 533 

on the left (kDa). The graphs show average relative integrated density (RID) ± SD of ERK5 protein 534 

levels normalized for tubulin content from three independent experiments. *, p <0.05, **, p < 0.01 vs 535 

shNT. E) A375 and SK-Mel-5 cells treated with XMD8-92 (5 μM) or JWG-071 (5 μM) for 72 hours 536 

were lysed. Western Blot was performed with the indicated antibodies. Images are representative of 537 

three independent experiments showing similar results. Migration of molecular weight markers is 538 

indicated on the left (kDa). The graphs show average relative integrated density (RID) ± SD of LTBP1 539 

protein levels normalized for tubulin content from three independent experiments. *, p <0.05, **, p 540 

< 0.01 vs Vehicle. 541 

 542 

Jo
urn

al 
Pre-

pro
of



24 
 

Figure 2. Effects of ERK5 inhibition on TGF-β1 expression in melanoma cells and in 543 

xenografts. A) TGF-β1 immunoprecipitation was performed in 72-hour-conditioned media (CM) 544 

from A375 or SK-Mel-5 cells transduced with shNT or shERK5 (shERK5-1 or shERK5-2) lentiviral 545 

vectors. Human recombinant TGF-β1 (100 ng/ml) was used as positive control. Western Blot was 546 

performed with the indicated antibodies. Images are representative of three independent experiments 547 

showing similar results. Migration of molecular weight markers is indicated on the left (kDa). The 548 

graphs show average relative integrated density (RID) ± SD of TGF-β1 protein levels normalized for 549 

IgG content from three independent experiments. *, p <0.05, **, p < 0.01 vs shNT. B) Expression 550 

levels of TGFB1 and LTBP1 mRNA from SKCM dataset (TCGA) on cBioPortal. C) Kaplan-Meier 551 

analysis of the relationship between TGFB1 expression and overall survival (OS) in melanoma 552 

patients using SKCM dataset (TCGA) on cBioPortal. Patients were stratified according to low or high 553 

TGFB1 expression, using median TGFB1 expression value as cut-off. In order to reduce noise, 10% 554 

of samples above and below the cut-off value were excluded from the analysis (n=376, with n=195 555 

and n=181 in the low/high group, respectively). HR= hazard ratio; HR < 1 indicates reduced hazard 556 

of death. D) QPCR of LTBP1 mRNA from LTBP1-KD A375 and SK-Mel-5 cells following treatment 557 

with LTBP1-targeting (siLTBP1-1 or siLTBP1-2) siRNAs or control non-targeting siRNAs (siNT) 558 

for 72 hours. Data shown are mean (±SD) of three independent experiments. *, p <0.05, **, p < 0.01 559 

vs siNT. E) Western Blot showing TGF-β1 protein levels in LTBP1 KD-cells 72 hours after 560 

transfection with LTBP1-targeting siRNA (siLTBP1-1 or siLTBP1-2) or control non-targeting 561 

siRNA (siNT). Migration of molecular weight markers is indicated on the left (kDa). The graphs 562 

show average relative integrated density (RID) ± SD of TGF-β1 protein levels normalized for tubulin 563 

content from three independent experiments. *, p <0.05 vs siNT. F) IHC detection of LTBP1 (left) or 564 

TGF-β1 (right) in XMD8-92 (25 mg/kg)- or vehicle (2-hidroxypropyl-β-cyclodextrin 30%)-treated 565 

mice [8]. Hematoxylin counterstaining was performed. Bar plots of percentage (%) of LTBP1 or 566 

TGF-β1-positive cells are shown. The percentage of positive cells was calculated from six different 567 

×40 magnified fields from three randomly chosen vehicle and XMD8-92-treated tumors. 568 
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Representative photographs are shown (original magnification, ×40). Scale bar, 100 μm. *, p <0.05 569 

vs Vehicle. 570 

 571 

Figure 3. Involvement of TGF-β1 in the anti-proliferative outcome of ERK5 inhibition 572 

in melanoma cells. A-B) MTT performed in A375 and SK-Mel-5 cells treated for 72 hours with 72-573 

hour conditioned media (CM), obtained from A375 or SK-Mel-5 cells transduced with shNT or 574 

shERK5 (shERK5-1 or shERK5-2) lentiviral vectors, alone or in combination with the indicated 575 

concentrations of TGF-β1 neutralizing antibodies (TGF-β1 Neu-Ab). Data shown are means (± SD) 576 

from three independent experiments. *, p <0.05, **, p < 0.01 vs shNT CM; §, p<0.05, §§, p<0.01 vs 577 

shERK5-1 CM; #, p<0.05 vs shERK5-2 CM. C) Cells were treated with the indicated concentrations 578 

of TGF-β1 for 72 hours, and the number of viable cells was counted. Histograms represent means 579 

(±SD) from three independent experiments. **p < 0.01 vs untreated. D) Cells were treated or not with 580 

100 ng/ml human recombinant TGF-β1 for 72 hours, and cell-cycle phase distribution was then 581 

determined. Data shown are means ± SD from three independent experiments. *p < 0.05 vs untreated. 582 

E) Dead cells (Annexin-V-positive and Annexin-V-negative/PI-positive cells) were evaluated after 583 

treating A375 or SK-Mel-5 melanoma cells with or without 100 ng/ml of human recombinant TGF-584 

β1. Histograms represent mean percentages ± SD from three independent experiments. *p < 0.05 vs 585 

untreated. 586 

 587 

Figure 4. Involvement of TGF-β1 in the anti-invasive effect of ERK5 inhibition in 588 

melanoma cells. A-B) Invasion assays were performed for 24 hours in A375 (A) and SK-Mel-5 (B) 589 

cells in the presence of 72-hour CM, obtained from A375 or SK-Mel-5 cells transduced with shNT 590 

or shERK5 (shERK5-1 or shERK5-2) lentiviral vectors, alone or with TGF-β1 neutralizing antibodies 591 

(TGF-β1 Neu-Ab, 10 µg/ml) or control IgG. Histograms represent means (± SD) from three 592 

independent experiments. **p < 0.01 vs shNT CM/0, ##p<0.01 vs shERK5-1 CM/0, §§p<0.01 vs 593 

shERK5-2 CM/0; ns: not significant. Representative pictures of wells treated as above are included. 594 
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Scale bar, 150 µm. C-D) A375 and SK-Mel-5 cells were exposed for 24 hours at increasing 595 

concentrations of human recombinant TGF-β1. Histograms represent means (± SD) from three 596 

independent experiments. **p < 0.01 vs NT. 597 

 598 

Figure 5. Impact of LTBP1 and TGF-β1 expression on the overall survival and disease-599 

free survival in anti-PD1-treated melanoma patients. A) 60 months follow-up Kaplan-Meier 600 

analysis of the relationship between TGF-β1 expression and overall survival (OS) in anti-PD1-treated 601 

melanoma patients (n=325) from Kaplan-Meier plotter database. Patients were stratified according to 602 

low or high TGF-β1 expression. The number of patients at risk in the low and high expression groups 603 

are indicated. B) 60 months follow up Kaplan-Meier analysis of the relationship between TGF-β1 604 

expression and DFS in melanoma anti-PD1 treated patients (n=234) calculated as in A. C) 60 months 605 

follow up Kaplan-Meier analysis of the relationship between LTBP1 expression and OS in melanoma 606 

anti-PD1 treated patients (n=325) calculated as in A. D) 60 months follow up Kaplan-Meier analysis 607 

of the relationship between LTBP1 expression and DFS in melanoma anti-PD1 treated patients 608 

(n=200) calculated as in A.  609 

 610 

 611 

 612 

 613 

 614 

 615 

 616 

 617 

 618 

 619 
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Table 1. List of the antibodies used and their application.  621 

 WB: Western Blot; IHC: Immunohistochemistry; N: Neutralization. 622 

 623 

 624 

 625 

 626 

 627 

 628 

 629 

 630 

 631 

 632 

 633 

 634 

 635 

 636 

 637 

 638 

 639 

 640 

 641 

 642 

 643 

ERK5 WB Rabbit polyclonal #3372 Cell Signaling Technology, USA 

LTBP1 WB, IHC Mouse monoclonal sc-271140 Santa Cruz Biotechnology, USA 

α-Tubulin WB Mouse monoclonal sc-32293 Santa Cruz Biotechnology, USA 

TGF-β WB Rabbit polyclonal #3711 Cell Signaling Technology, USA 

TGF-β1 N, IHC Mouse monoclonal 69012-1-Ig Proteintech Group, Inc, USA 

KLF-2 WB Rabbit monoclonal #15306 Cell Signaling Technology, USA 

IgG1 N Mouse monoclonal MAB002 R&D Systems, Inc. USA 

Jo
urn

al 
Pre-

pro
of



28 
 

Table 2. List and sequences of the shRNA. *Sequence reference from 644 

https://www.ncbi.nlm.nih.gov/gene/5598 645 

 646 

 647 

Gene Sequence 

reference* 

shRNA Clone ID Sequence 

none none shNT SHC202 5’-

CCGGCAACAAGATGAAGAGCACCAACTCG

AGTTGGTGCTCTTCATCTTGTTGTTTTT-3’ 

MAPK7 NM_139032.X shERK5-1 TRCN00

00010262 

5’-CCGGGCTGCCCTGCTCAAGTCTTTG 

CTCGAGCAAAGACTTGAGCAGGGC 

AGCTTTTT-3’ 

MAPK7 NM_139032.X shERK5-2 TRCN00

00010275 

5’-CCGGGCCAAGTACCATGATCCTGA 

TCTCGAGATCAGGATCATGGTACTT 

GGCTTTTT-3’ 
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