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A B S T R A C T

Background: The serotonergic system modulates brain processes via functionally distinct subpopulations of
neurons with heterogeneous properties, including their electrophysiological activity. In extracellular recordings,
serotonergic neurons to be investigated for their functional properties are commonly identified on the basis
of ‘‘typical’’ features of their activity, i.e. slow regular firing and relatively long duration of action potentials.
Thus, due to the lack of equally robust criteria for discriminating serotonergic neurons with ‘‘atypical’’ features
from non-serotonergic cells, the physiological relevance of the diversity of serotonergic neuron activities results
largely understudied.
New Methods : We propose deep learning models capable of discriminating typical and atypical serotonergic
neurons from non-serotonergic cells with high accuracy. The research utilized electrophysiological in vitro
recordings from serotonergic neurons identified by the expression of fluorescent proteins specific to the
serotonergic system and non-serotonergic cells. These recordings formed the basis of the training, validation,
and testing data for the deep learning models. The study employed convolutional neural networks (CNNs),
known for their efficiency in pattern recognition, to classify neurons based on the specific characteristics of
their action potentials.
Results: The models were trained on a dataset comprising 27,108 original action potential samples, alongside
an extensive set of 12 million synthetic action potential samples, designed to mitigate the risk of overfitting
the background noise in the recordings, a potential source of bias. Results show that the models achieved
high accuracy and were further validated on ’’non-homogeneous’’ data, i.e., data unknown to the model and
collected on different days from those used for the training of the model, to confirm their robustness and
reliability in real-world experimental conditions.
Comparison with existing methods : Conventional methods for identifying serotonergic neurons allow
recognition of serotonergic neurons defined as typical. Our model based on the analysis of the sole action
potential reliably recognizes over 94% of serotonergic neurons including those with atypical features of spike
and activity.
Conclusion: The model is ready for use in experiments conducted with the here described recording parame-
ters. We release the codes and procedures allowing to adapt the model to different acquisition parameters or
for identification of other classes of spontaneously active neurons.
1. Introduction

Activity of serotonergic neurons is known to regulate a wealth of
autonomic and higher functions in mammals (Steinbusch et al., 2021;
Faulkner and Deakin, 2014; Pilowsky, 2014; Lesch et al., 2012; Monti,
2011). Present knowledge of the physiological and pharmacological
properties of serotonergic neurons is mostly based on electrophysio-
logical recordings of neuronal activity from raphe nuclei of laboratory
animals both in vivo and in vitro. However, most of recordings have
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been performed on neurons whose serotonergic identity was based on
criteria that were empirically developed in the years to restrict the
investigations to recordings from neurons that displayed very typical
activity. For serotonergic neurons, the accepted criteria require the
concomitant regularity of firing, broad action potential and, when phar-
macological assays were allowed by the experimental design, sensitivity
to serotonin1 A receptor agonists that typically produce reversible
slowing or cessation of neuron firing. When recordings are conducted
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in slices under microscopy guidance, the large size of serotonergic
neuron soma could be used as an additional criterion. Adhering to
these strict criteria for serotonergic neuron identification, however,
results in a selection bias that has limited the studies to the “typical”
neurons which might underrepresent the variety of serotonergic neuron
population. The implication of serotonin neuron activity in behavioral
tasks in mice has been studied using selective optogenetic activation
and recording from raphe neurons in vivo (Liu et al., 2014) as well
as with one-photon calcium imaging (Paquelet et al., 2022). Interest-
ingly, the latter study revealed anatomically defined subpopulations
of DRN serotonin neurons with different activity and projecting to
either reward-related or anxiety-related brain areas. This confirmed
previous evidence for the existence of subpopulations of serotonergic
neurons with distinctive neurochemical and pharmacological properties
as well as firing patterns, emerged in the course of the past 40 years of
dedicated research (e.g. Calizo et al., 2011; Paquelet et al., 2022; see
also in Gaspar and Lillesaar, 2012; Andrade and Haj-Dahmane, 2013;
Commons, 2020). For instance, using in vitro recordings from dorsal
raphe nucleus the possibility that serotonergic neurons display also
irregular firing or peculiar rhythmic fluctuations in firing activity has
been described since early recordings both in vivo and in vitro (Mosko
and Jacobs (1974, 1976)) and more recently confirmed with recordings
of serotonergic neurons from transgenic mice selectively expressing
fluorescent proteins in serotonergic neurons (Mlinar et al., 2016). Thus,
the principal drawback of the intra-experiment recognition of 5-HT
neurons is that serotonergic neurons displaying atypical activity or
spikes narrower than expected are discarded and their pharmacological
and physiological characteristics remain elusive. In addition, in the
course of our research on genetically fluorescent serotonergic neurons
(Montalbano et al., 2015; Mlinar et al., 2016) we also noticed the
existence of non-serotonergic (non-fluorescence labeled) neurons with
regular activity and relatively broad spikes whose duration often over-
laps that of action potentials recorded in serotonergic neurons. Thus, in
“real life” experimental conditions the activity characteristics of a non-
neglectable number of serotonergic and non-serotonergic neurons could
overlap and adherence to the above-mentioned strict criteria for iden-
tification of typical serotonergic neurons has the advantage to ensure
a reasonable homogeneity of the population under study, in spite of
the selection bias introduced. On the other hand, the characteristics of
what we define ‘‘atypical’’ serotonergic neurons remain understudied.

In the present work we have taken advantage of the recordings
present in our internal database and obtained from transgenic mice
selectively expressing fluorescent proteins in serotonergic neurons to
develop deep-learning based models for recognition of serotonergic and
non-serotonergic neurons with relatively high accuracy and that can
be implemented in the recording programs to quickly help the experi-
menter in the decision of continuing the recording or to change the ex-
perimental design, should an atypical serotonergic or non-serotonergic
neuron be identified.

2. Material and methods

2.1. Source database

To train, test and validate our deep-learning based models we
used the original recordings from our internal database built in the
occasion of our studies in which we described the firing characteristics
of genetically identified dorsal raphe serotonergic neurons in brain
slices. Serotonergic and non-serotonergic neurons were thus identified
on the basis of a parameter independent from their electrophysiolog-
ical features, i.e., on serotonergic system-specific fluorescent protein
expression (serotonergic) or lack of expression (non-serotonergic). In
our original articles (Mlinar et al., 2016; Montalbano et al., 2015) we
detailed the procedure to obtain the three transgenic mouse lines with
serotonergic system-specific fluorescent protein expression used in the
present work: Tph2::SCFP; Pet1-Cre::Rosa26.YFP ; Pet1-Cre::CAG.eGFP.
2

2.2. Loose-seal cell-attached recordings

Detailed description of the electrophysiological methods and of the
measures for improving reliability of loose-seal cell-attached recordings
has been previously published (Montalbano et al., 2015; Mlinar et al.,
2016). In brief, mice (4–28 weeks of age) were anesthetized with
isofluorane and decapitated. The brains were rapidly removed and
dissected in ice-cold gassed (95% O2 and 5% CO2) ACSF composed
of: 124 mM NaCl, 2.75 mM KCl, 1.25 mM NaH2PO4, 1.3 mM MgCl2,
2 mM CaCl2, 26 mM NaHCO3, 11 mM D-glucose. The brainstem
was sliced coronally into 200 μm thick slices with a vibratome (DSK,
T1000, Dosaka, Japan). Slices were allowed to recover for at least
1 h at room temperature and then were individually transferred to a
submersion type recording chamber and continuously superfused at a
flow rate of 2 ml min-1 with oxygenated ACSF warmed to 37 ◦C by
a feedback-controlled in-line heater (TC-324B/SF-28, Warner Instru-
ments, Hamden, CT). Slices were allowed to equilibrate for 10–20 min
before the beginning of the recording. To reproduce in brain slices
noradrenergic drive that facilitates serotonergic neuron firing during
wakefulness (Baraban and Aghajanian, 1980; Levine and Jacobs, 1992),
ACSF was supplemented with the natural agonist noradrenaline (30
μM) or with the 𝛼1 adrenergic receptor agonist phenylephrine (10
μM; Vandermaelen and Aghajanian, 1983). Neurons within DRN were
visualized by infrared Dodt gradient contrast video microscopy, using
a 40X water-immersion objective (N-Achroplan, numerical aperture
0.75, Zeiss, Göttingen, Germany) and a digital CCD camera (ORCA-
ER C4742-80-12AG; Hamamatsu, Hamamatsu City, Japan) mounted
on an upright microscope (Axio Examiner Z1; Zeiss) controlled by
Axiovision software (Zeiss). Loose-seal cell-attached recordings were
made from fluorescent protein-expressing or not expressing neurons,
visually identified by using Zeiss FilterSet 46 (eGFP and YFP, excitation
BP 500/20, emission BP 535/30) or Zeiss FilterSet 47 (CFP, excitation
BP 436/20, emission BP 480/40). Fluorescence was excited using a
Zeiss HXP 120 lamp. Patch electrodes (3–6 MΩ) were pulled from
thick-walled borosilicate capillaries (1.50 mm outer diameter, 0.86 mm
inner diameter; Corning) on a P-97 Brown-Flaming puller (Sutter In-
struments, Novato, CA) and filled with solution containing (in mM):
125 NaCl, 10 HEPES, 2.75 KCl, 2 CaCl2 and 1.3 MgCl2, pH 7.4 with
NaOH. After positioning the pipette, development of loose-seal was
monitored by using a voltage-clamp protocol with holding potential of
0 mV and test pulse of 1 mV/100 ms, repeated every second. Weak
positive pressure was released and gentle suction was slowly applied
until detected spikes increased to 50–100 pA peak-to-peak amplitude.
In some experiments this procedure was repeated during recording to
increase signal to noise ratio. Corresponding seal resistance was in
10 to 20 MΩ range. Recordings were made using an Axopatch 200B
amplifier (Molecular Devices, Sunnyvale, CA) controlled by Clampex
9.2 software (Molecular Devices). Signals were low-pass filtered with
a cut-off frequency of 5 kHz (Bessel) and digitized with sampling rate
of 40 kHz (Digidata 1322 A, Molecular Devices). After the recording,
images of recorded neuron were acquired to document the expression
of the fluorescent marker in the recorded neuron.

2.3. Offline analysis of recordings

Detection of spikes was performed using event detection routine of
Clampfit 9.2 software. Spike duration (width) was determined from the
shape of averaged action potential by measuring the interval between
the spike upstroke and the downstroke (or second downstroke, when-
ever present) hereby named UDI (Upstroke–Downstroke Interval) for
convenience (see Fig. 6; see also Fig. 3 in Mlinar et al., 2016).
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3. A deep learning model

Recognizing serotonergic cells is a binary classification problem,
i.e., serotonergic vs. non-serotonergic cells, for which deep learning
(DL) algorithms and, more specifically, the use of convolutional neural
networks (CNN) have yielded excellent results. Notably, CNN are in-
spired by the organization of the animal visual system, particularly the
human brain, and excel at tasks like image feature extraction, which is
fundamental for recognition purposes (Liu, 2018). They employ mech-
anisms such as feedforward inhibition to alleviate issues like gradient
vanishing, enhancing their effectiveness in complex pattern recognition
tasks (Liu et al., 2019). With these considerations in mind, we have cho-
sen to use a CNN architecture even in the apparently unconventional
context of numerical pattern recognition, i.e., the recorded signal of a
neuronal cell. The inspiring idea behind this choice is to leverage the
ability of CNNs to amplify numerical patterns that occur at different
scales, in this case within time intervals that are orders of magnitude
smaller than the entire examined signal. In fact, this is a characteristic
typical of neuronal spikes, where the maximum peak impulse can occur
within a scale of 1 ms, while the firing period, i.e., the time inter-
val between two consecutive spikes, can be two orders of magnitude
greater.

3.1. Preliminary approaches and definition of appropriate parameters for
developing the model

Starting from the assumption that two factors are typically relevant
in recognizing serotonergic cells, namely the specific shape of the ac-
tion potential together with its repetitiveness and firing frequency, we
initially decided to consider time segments of 7 s as training data for the
neural network. This ensured an adequate number of action potentials
to evaluate their consistency and periodicity. After several attempts
in this direction, however, we realized that the importance of the
cell’s action potential shape was so predominant that the information
obtained from analyzing the firing periodicity alone was not sufficient
to compensate for the accuracy gained by focusing on the individual
action potential.

Our first preliminary analysis was done on 108 serotonergic cells
and 45 non-serotonergic cells. Every action potential for the training
consisted in the recording of 7 ms taken from 2 ms before the detection
threshold to 5 ms after. While the final accuracy of the resulting
models was fairly high, ranging from 94.3% to 99.3%, further anal-
ysis on non-homogeneous data, i.e. data from neurons whose identity
was kept unknown to the model and were collected on experimental
days different from those used for the training and evaluation of the
models, showed a much lower accuracy, which was a strong sign of
the overfitting. Further investigation allowed to identify an important
source of overfitting in the background noise of the recordings which,
having a specific signature, the model learned to incorporate in the
recognition of the neuron types. Thus, models trained with action
potentials embedded in 7 ms time-segments learned how to classify
the spikes on the basis of the background noise instead of the peculiar
shape of the event.

Therefore, we decided to reduce the impact of the background noise
present in the samples by limiting the time-window of action potential
analysis to 4 ms. This solution worked well, since we had a comparable
accuracy of the metrics on non-homogeneous data.

Another very efficient solution for expanding the training data,
beside splitting the samples in different segments, was given by the
generation of a synthetic data set for which we develop a very specific
procedure (see Section 3.2) that combines smoothed action potentials
signals along with real noise masks. To this purpose, we produced
12M synthetic action potentials from a pool of 600 different noise
backgrounds, thus reducing the impact that such noise could have in
the training. The training on synthetic data led to an improvement on
3

all accuracy types on non-homogeneous data (e.g. from binary accuracy
0.9125 to 0.9375, from AUC 0.8976 to 0.9255 and from F1-Score
0.8679 to 0.9056, see Fig. 9 for more details). Besides the specific
improvement in model performance, it is important to note the utility
of the synthetic model in monitoring sources of overfitting arising from
noise signatures in the recordings. More specifically, the difference in
accuracy on non-homogeneous data between the biological model and
the synthetic model provides a rough estimate of the overfitting in the
biological model resulting from noise signatures. This is highly signifi-
cant when determining how additional experiments with different noise
signatures could improve the model.

3.2. Data used for originating and validating the final model

Original training data. The original data for the training, validation
and testing of the models consisted in 43,327 action potential samples
extracted from 108 serotonergic cells and 45 non-serotonergic cells.
Since the two classes were unbalanced (29,773 serotonergic and 13,554
non-serotonergic) we undersampled the serotonergic class, to obtain a
more balanced dataset for training. Therefore, the training set data con-
sisted in 13,554 action potentials from serotonergic cells, and 13,554
action potentials from non-serotonergic cells. In all cases, the triggering
threshold of the event was −50 pA and the spike was then sampled
1 ms before the triggering threshold until 3 ms after (see Figs. 1, 2).
Since the sampling rate of the original recordings was 40 kHz, every
action potential sample consists of 160 values. All the samples were
then randomly subdivided into 18,975 for training, 4066 for validation
and 4067 for testing.

Non-homogeneous data. The non-homogeneous data consisted in
24,616 samples extracted from a new set of 55 serotonergic cells
(18,595 action potentials) and 27 non-serotonergic cells (6021 action
potentials) collected in experimental days not used to obtain the
training data, thus with different signal noise. These data were never
part of the training set, nor validation, nor testing set during the
training. Furthermore, the identity of the neurons from which these
data were obtained was unknown to the model. Non-homogeneous data
were therefore used as an additional, independent, test for the already
trained model to assess its robustness when cells have a noise signal
never encountered by the model.

Synthetic data. The synthetic data consisted in 12,700,600 action po-
tentials samples of 160 points (simulating 4 ms at 40 kHz of sam-
pling), 6,675,300 of which emulated action potentials from serotoner-
gic cells and 6,025,300 from non-serotonergic action potentials. From
the original training data recordings we extracted 600 noise masks
(see e.g. Fig. 3) from a selection of which were randomly applied to
the biological action potentials thus obtaining the synthetic data (see
e.g. Fig. 4). The purpose of generating the synthetic data, besides plain
data augmentation for higher accuracy, is also to provide an estimate
of the overfitting of the biological model based on the noise signature
of the data.

The generation of the synthetic data was done according the follow-
ing procedure. Each original training data sample is smoothed through
averaging, i.e. the values of the smoothed sample

{

𝑦′𝑚
}

with 𝑚 ∈
{1,… , 160}, are given as the averages of the values of the original
ample

{

𝑦𝑚
}

by

′
𝑚 =

(

𝑦𝑚−1 + 𝑦𝑚 + 𝑦𝑚+1
)

3
. (1)

The reason for this 3-point averaging preprocessing of the signal is
due to the need to combine two requirements: the need to smooth the
original signal from the specific noise of the recording, and the need
to maintain the structure of the signal. The rapid depolarization of the
cell is such that the most relevant data of the action potential recording
are often formed in a few tenths of a millisecond, i.e., most useful
informations are supposedly condensed in about a dozen of recording
points. This means that considering 𝑛-point averaging with 𝑛 > 3
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Fig. 1. Summary of the various steps used to implement the model from recorded signals: from neuronal cell the signal is sampled at 40 kHz and recorded as .abf file, then the
all events are selected and sent to 10 neural networks with the above architecture for classification (only difference between the architectures is the value of the 2D convolutional
kernel with ranges between 20 to 30).
could undermine the fundamental information inside the signal, while
𝑛 = 2 might not be sufficient to remove the background noise. After
the averaging process, the values of smoothed action potential

{

𝑦′𝑚
}

are added to the values of randomly chosen noise mask
{

𝑛(𝑘)𝑚

}

where
𝑘 ∈ 1,… , 600 is randomly chosen. The final synthetic sample is thus
4

{ }
obtained as the sample
{

𝑦(𝑘)𝑚
}

with

𝑦(𝑘)𝑚 = 𝑦′𝑚 + 𝛼 ⋅ 𝑛(𝑘)𝑚 , (2)

where 𝛼 ∈ [0.2, 0.4] is a randomly generated ‘‘dumping coefficient’’ ex-
perimentally found around 0.3 to modulate the noise. The choice of this
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Fig. 2. Example on how single events were isolated and selected. The image depicts the recording of the serotonergic cell A140313#073 and the 4 ms event of triggered at point
1 007 585, i.e. at 25.189 s.
coefficient requires some clarification. Indeed, the coefficient dumps
the noise intensity to synthesize more physiologically plausible spike
waveforms. First, the background noise was not completely removed
when averaging action potentials, just smoothed with a 3-point aver-
age. Thus directly adding the full noise mask would excessively boost
the background noise compared to the original recording. Moreover,
the original noise does not influence all points of the signal equally,
but is more pronounced in slower changing current regions. Applying
the raw noise mask tends to produce unrealistic action potential shapes,
e.g. double bottoms. The dumping coefficient between 0.2 and 0.4 was
deemed a suitable range by visual inspections by an expert author with
over 30 years of experience on serotonergic action potential recordings.

3.3. Model description

In accordance with the origin of our dataset, we developed two dis-
tinct models, namely the ‘‘biological’’ model (trained only over original
data) and the ‘‘synthetic’’ model (trained only on synthetic data). The
biological model underwent training, validation, and testing using the
original training data, which comprises 27,108 action potential samples
after the balancing of the classes. Conversely, the synthetic model was
5

trained, validated, and tested utilizing synthetic data, encompassing
12,700,600 action potential samples.

Fig. 1 summarizes the various steps used to implement the model
from recorded signals. The architecture of the models is a sequence of
layers commonly used in deep learning, specifically in the context of
convolutional neural networks (CNNs) for image or signal processing.
We implemented the architecture using the Keras libraries in Tensor-
Flow 2. The model of the neural network consists of a normalization
layer for stabilizing the learning process and reducing training time;
two repetitions of a 2D convolutional layer with 32 filters and a max
pooling layer with a pool size of (2 × 1); a flatten layer to connect
to a dropout layer and dense layers with 2 output units used for
binary classification. Activation functions of the convolutional layers
are the ReLU, while for the dense layer we used the classic sigmoid
(see Table 1 for a summary of the model). For training we chose
the ‘‘binary crossentropy’’ loss function, which is standard for binary
classification problems, while the optimizer was ‘‘Adam’’ (Adaptive
Moment Estimation) as these are common choices. A special treatment
was devoted to the kernel of the 2D convolutional layers. Indeed,
since the kernel of these layers express the ability of the convolutional
process in enlarging a specific portion of the pattern, we explored a
range of possible kernels between 1 to 31. All models were trained



Journal of Neuroscience Methods 407 (2024) 110158D. Corradetti et al.
Fig. 3. Examples of noise masks collected from the recordings of cell A140724#065 (on the left) and A160127#015 (on the right).
Table 1
Summary of the CNN architectural model with kernel 20 used for the neural network.
Other models follow the same architectural structure and change only for the dimension
of the kernel.

Layer (type) Output shape Param #

Layer normalization (None, 160, 2, 1) 320
Conv2D (None, 141, 2, 32) 672
MaxPooling2D (None, 70, 2, 32) 0
Conv2D (None, 51, 2, 64) 41 024
MaxPooling2D (None, 25, 1, 64) 0
Flatten (None, 1600) 0
Dropout (None, 1600) 0
Dense (None, 2) 3202

Total params 45 218

on 25 epochs with a batch size of 64 and their test accuracy ranged
from 88.3% (model with kernel 1) to 98.4% (model with kernel 23)
with a test loss of 0.2641 and 0.05524. To enhance the robustness of
the model, instead of selecting a single kernel and using one model for
inference, we selected all models with kernels ranging between 20 and
30 and took the consensus between the models. This technique ensures
more stability in the overall architecture and is often considered best
practice. Since this article presents a method rather than offering a
specific optimized deep learning model, we did not systematically
search for a specific architecture other than the one above which is
a standard. However, we explored a few different architectures with
varying numbers of layers and neurons per layer. Nevertheless, the
improvement in accuracy was not enough to justify adopting a more
complicated architecture. At this stage, to our understanding, acquiring
more data represents the most relevant advancement for achieving a
better model. Nevertheless, since this article is just a proof of concept,
we leave open the possibility of future research into the most suitable
architecture for this problem.

Finally, it is worth noticing that while the training of the biological
model did not require any specific adjustment, the synthetic model,
involving >12M action potential samples required a continuous learn-
ing implementation, where the model was trained over 200 training
sessions of 63,450 synthetic action potential samples.

3.4. Assessment of accuracy and sensitivity

For the assessment of the models we used the following metrics:
Accuracy, Sensitivity at Specificity 0.5, Area Under the Curve (AUC),
F1-Score and the Confusion Matrix.

• Accuracy measures the proportion of total predictions (both sero-
tonergic and non-serotonergic cells) that the model correctly
identifies, i.e.

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = True Positives + True Negatives ∕Total Samples. (3)
6

( )
This metric was chosen for identifying if the models are generally
effective in classifying both serotonergic and non-serotonergic
cells.

• Sensitivity at Specificity measures the sensitivity of the model,
i.e.

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = True Positives∕(True Positives + False Negatives),
(4)

at a fixed specificity, i.e. True Negatives∕(True Negatives + False
Positives), which we set at 0.5. The choice of this metric with
this setting ensures that the models are not overly biased towards
identifying serotonergic cells at the expense of misclassifying
non-serotonergic ones.

• The Area Under the Curve (AUC) of the Receiver Operating Char-
acteristic (ROC) provides a measure of the model’s ability across
classification thresholds, i.e.,

AUC = ∫

1

0
TPR(𝑡), 𝑑𝑡, (5)

where 𝑡 is the threshold, and 𝑇𝑃𝑅(𝑡) is the true positive rate
at threshold 𝑡. This metric is particularly useful because it is
independent of the classification threshold and provides a single
measure of performance across all possible levels of sensitivity
and specificity.

• The F1-Score is the harmonic mean of precision and sensitivity
(recall). The F1-Score takes both false positives and false neg-
atives into account, providing a balanced view of the model’s
performance. We considered useful this metric for the measuring
the robustness of the model, balancing the trade-off between
precision and recall.

• Finally, the Confusion Matrix shows the percentages of True
Positives, False Positives, True Negatives, and False Negatives
giving a complete feedback of the models. This is a detailed view
that we considered essential for understanding the specific areas
where the models need improvements.

All these metrics were used for all the data, i.e. Original Training Data,
Non-homogeneous Data and Synthetic Data. In the specific case of the
Original Training Data all the metrics were used in the three phases of
Training, Validation and Testing. The training phase was developed on
30,328 action potentials selected uniquely for training. The Validation
phase, which is used to tune hyperparameters, was on 6500 action
potentials which the model has not seen during training. Finally, the
last 6499 action potentials were used for the Testing of the models,
and are those on which the true performance of the models is assessed.
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Fig. 4. Example of 4 synthetic action potentials generated by the event triggered at 1 007 585, i.e. 25.189 s, of the serotonergic cell A140313#073. Top trace: the original recording
of the event. The panels report four action potential obtained by processing the original trace with different noise masks (see methods).
3.5. Repository of the model and data

We made available in the GitHub respository at GitHub.com/
neuraldl/DLAtypicalSerotoninergicCells.git the fol-
lowing:

1. the .abf recordings of original training data and the non-
homogeneous data,
7

2. the 43,327 single action potentials samples of the original train-
ing data stored in .csv files of 160 points,

3. the 24,616 single action potentials samples of the non-
homogeneous data stored in .csv files of 160 points,

4. the 12,700,600 million single action potentials samples of the
synthetic data stored as numpy vector,

5. the trained models with different kernels,
6. the results of the models,
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Fig. 5. Examples of action potentials recorded from serotonergic and non-serotonergic neurons in slices of dorsal raphe nucleus. A. Fluorescent protein-labeled (serotonergic)
neurons: a1,a2: typical action potentials of serotonergic neurons; note the long interval between spike upstroke and downstroke (UDI) highlighted by the shaded area in all traces.
a3–a4: recordings from serotonergic neurons displaying spikes of shorter duration. B. Fluorescent protein-unlabeled (non-serotonergic) neurons: b1: typical biphasic spike of short
duration from a non-serotonergic neuron; b2–b4: spikes of variable shape recorded from non-serotonergic neurons. Shaded areas indicate the width of the spike measured by UDI
(see methods). Note the overlap in action potential width of some serotonergic and non-serotonergic neurons. Traces are averages of 15–50 sweeps. Calibrations 25 pA (polarity
inverted); 1 ms.
7. the Python notebooks for training of the models and for infer-
ence.

4. Results

In this study we compared the spiking activity of 300 neurons
recorded in DRN slices obtained from transgenic mouse lines with
serotonergic system-specific fluorescent protein expression.

4.1. Visual discrimination of action potentials

As illustrated in Fig. 5, serotonergic neurons displayed action po-
tentials of different shape and duration that were often difficult to be
discriminated from those observed in non-serotonergic neurons. Thus,
with the exception of action potentials showing the typical shape and
duration of serotonergic neurons (e.g. Fig. 5: traces a1, a2) or of non-
serotonergic cells (e.g. Fig. 6: trace b1) both types of neurons may
display action potentials similar in width and/or shape. Therefore,
the sole duration of the spike, which could be determined online
by measuring the upstroke/downstroke interval (UDI) may result not
conclusive for immediate serotonergic neuron identification.

From our database of recordings we have selected 150 serotonergic
neurons labeled by fluorescent proteins and 150 non labeled cells,
deemed to be non-serotonergic cells. The distribution of spike width of
these two populations is shown in Fig. 6. These neurons were chosen on
the sole technical characteristic of not showing detectable artefactual
transients that could be mistaken by the deep-learning routine as action
potentials. From these two populations of neurons we extracted 108
serotonergic and 45 non-serotonergic neurons to implement the train-
ing of the Biological Model. In addition, 12 serotonergic neurons from
three different experimental days and 10 non-serotonergic neurons
from four different experimental days were used for testing the model
with data non homogeneous to the training (see methods).
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As shown in Fig. 7, the neurons used from training and testing
the model 1 are representative of the two (serotonergic and non-
serotonergic) populations of neurons.

An additional group of recordings (𝑛 = 30) from fluorescence
identified serotonergic and non-serotonergic neurons, not previously
used for the model implementation, were processed by the model 1
to test its ability to recognize cell type from the spike characteristics
distilled by the model itself.

4.2. Discrimination with deep learning models

The metrics of both the biological model and the synthetic model
were collected over the testing data (original and synthetic) during
their training phase, as standard practice in deep learning. Over this
data both the biological model and the synthetic model scored >98%
accuracy. In addition to the standard practice we evaluated the models
over non-homogeneous data in order to evaluate possible sources of
overfitting arising from noise signatures in the recordings. On this
dataset the biological model scored >91.2% accuracy showing the
existence of some light source of overfitting. As expected the synthetic
model showed better results with >93.7% accuracy. Overall, we con-
sider the metrics evaluated on non-homogeneous data more indicative
and more reliable than those arising from the training data. Indeed,
non-homogeneous data not only were unknown to the model, but were
also collected on different days than those of the data used for the
training.

4.2.1. Results on the training data
Biological model. The biological models, when tested on the original
training dataset, showed varying performance metrics. For kernels
ranging from 1 to 31, the test loss was observed between 0.26417
(kernel 1) and 0.05006 (kernel 27). Accuracy measurements ranged
from 0.88296 (kernel 1) to 0.98401 (kernel 29), as detailed in Fig. 8.
The consensus biological model, obtained from models with kernels 20
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Fig. 6. Distribution of spike duration of serotonergic and non-serotonergic neurons. Histograms report the distribution of spike width measured by the interval between spike
upstroke and downstroke (UDI) in serotonergic (blue) and non-serotonergic neurons (red) recorded in slices of dorsal raphe nucleus. Note the overlap in spike duration between
serotonergic and non-serotonergic neurons. Firing rate (mean ± s.e.m) of serotonergic and non-serotonergic neurons was 2.17 ± 0.08 Hz (range 0.51–5.80 Hz; n = 150) and
3.6 ± 0.32 Hz (range 0.07–16.60 Hz; n = 150), respectively.

Fig. 7. Distribution of spike duration recorded from the neurons utilized to develop the model 1. Histograms report the distribution of spike width measured by the interval
between spike upstroke and downstroke (UDI) in serotonergic (blue) and non-serotonergic neurons (red) recorded in slices of dorsal raphe nucleus. Firing rate (mean ± s.e.m) of
serotonergic and non-serotonergic neurons was 2.29 ± 0.09 Hz (range 0.38–5.08 Hz; n = 120) and 2.43 ± 0.33 Hz (range 0.07–9.32 Hz; n = 55), respectively.
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Fig. 8. Each of the 32 models, with kernel sizes varying from 1 to 31, was evaluated for test loss, accuracy, sensitivity at a specificity of 0.5, AUC and F1-Score. The resulting
graphs depict a monotonic trend correlating with the increasing kernel sizes, which eventually stabilizes in the range from kernel size 20 to 31.
Table 2
A selection of the metrics on the test data of the models trained with Original Training
Data. Beside Accuracy, Sensitivity At Specificity 0.5, AUC and F1-Score we reported also
Test loss, which represent the error between the predicted values and the actual values
and is a standard metric in evaluating DL models. Values reported in last row ‘‘biological
model’’ refer to the metrics of the full biological model given as the consensus of the
single models with 20 ≤ kernel ≤ 30.
Kernel Test loss Accuracy Sens. at Spec. 0.5 AUC F1-Score

1 0.26417 0.88296 0.99409 0.95765 0.88333
5 0.10187 0.95893 0.99901 0.99314 0.95941
10 0.06001 0.97934 0.99926 0.99729 0.97910
15 0.06673 0.98155 0.99827 0.99663 0.98143
20 0.05831 0.98303 0.99852 0.99706 0.98278
25 0.05343 0.98131 0.99901 0.99789 0.98119
30 0.07726 0.97713 0.99704 0.99544 0.97726

Biological model 0.05457 0.98401 0.99852 0.99747 0.98340

to 30, tested on the original data recorded a test loss of 0.05457, an
accuracy of 0.98401, and a sensitivity at specificity 0.5 of 0.99852, an
AUC of 0.99747 and an F1-Score of 0.98340 as shown in the last row
of Table 2).

Synthetic model. The evaluation of the 32 synthetic models on the
synthetic dataset yielded superior metrics compared to the biological
models on the training dataset. These results on the training dataset
are not deemed highly significant, as overfitting not related to record-
ing noise tends to be amplified in the augmented dataset. However,
we considered significant the results of the synthetic model on non-
homogeneous data. Indeed, as pointed out in Fig. 9 the synthetic model
outperformed the biological model on non-homogeneous data.

4.2.2. Results on non-homogeneous data
The most significant outcomes were derived from non-homogeneous

data, i.e., cells that were not utilized in training and that were collected
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on different days other than those used for the training data. Using this
dataset, the biological model achieved an accuracy of 0.9125, a sensi-
tivity at specificity of 0.5 of 0.8518, an AUC of 0.8976 and an F1-Score
of 0.8679. An even better result was given by the synthetic model which
achieved an accuracy of 0.9375, a sensitivity at specificity of 0.8888,
an AUC of 0.9255 and an F1-Score of 0.9056. A crucial indicator of per-
formance is the confusion matrix (refer to Fig. 9). The best results were
obtained by the synthetic model. Indeed, out of 55 serotonergic cells,
53 (96.2%) were accurately identified as serotonergic (True Positive),
while 2 (3.8%) were incorrectly classified as non-serotonergic (False
Negative). Conversely, of the 27 non-serotonergic cells, 24 (88.8%)
were correctly recognized (True Negative), and 3 (11.1%) were erro-
neously labeled as serotonergic (False Positive). The biological model
had similar results but misclassified 3 (5.5%) serotonergic cells as non-
serotonergic an 4 (14.8%) non-serotonergic cell as serotonergic. In the
non-homogeneous data the False Positive Rate is higher than the False
Negative Rate. We do not have explanation for this phenomenon other
than randomness. Indeed, in the original data, the False Positive and
False Negative Rates are similar, and this phenomenon is not present
when testing either the biological or synthetic models.

5. Discussion

Deep-learning based models have gained increasing importance
in biomedicine for their high performance in image processing and
morphological recognition of cells that can be applied both in clinical
diagnostics (Johansen et al., 2016; Litjens et al., 2017; Rácz et al.,
2020) and in preclinical research when complex patterns of data need
to be measured, classified and interpreted (De Luca et al., 2023). More
specifically, convolutional neural networks (CNN) effectively address
complex pattern recognition especially when patterns are hidden across
varying scales and orders of magnitude. This is highly relevant in
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Fig. 9. Confusion matrix for the biological and synthetic model over the non-homogeneous data labels serotonergic cells as 0 and non-serotonergic cells as 1. The matrix of the
biological model (last panel) shows the True Positive Rate 94.4% at the Top-Left; the False Negative Rate 5.6% at the Bottom-Left; the False Positive Rate 14.8% at the Top-Right;
and the True Negative Rate 85.1% at the Bottom-Right. On the other hand, the matrix of the synthetic model (right panel) shows the True Positive Rate 96.2% at the Top-Left;
the False Negative Rate 3.7% at the Bottom-Left; the False Positive Rate 11.1% at the Top-Right; and the True Negative Rate 88.8% at the Bottom-Right. In the table below all
accuracy types of the two models over non-homogeneous data.
neuronal action potentials, where the peak impulse and the rise of
the spike may occur in a fraction of millisecond, whereas the interval
between spikes can be vastly longer. The here proposed model provides
an important proof of concept for usefulness of CNN for identification
of neuron types in the central nervous system on the basis of their
spiking activity. To the best of our knowledge, this is the first time that
this type of architecture is applied to recognition of neuronal action
potentials by their recorded traces. Moreover, the recognition of sero-
tonergic neurons has been validated by an independent identification
of the recorded neuron by its serotonin neuron specific expression of a
fluorescent protein.

5.1. Comparison with existing procedures for serotonergic neuron identifi-
cation from their physiological activity

Identification of different neurons active in a restricted brain area
on the basis of their spike shapes may be a valid and sufficient criterion
when the characteristics of spikes can reliably be separated in different
classes. For instance, Tseng and Han (2021) recorded in vivo the activity
of behavioral-task responsive neurons of prefrontal cortex in mice and
discriminated excitatory and inhibitory neurons taking advantage of
the known, clearcut, difference in the duration of spikes in the two
classes of neurons. In contrast, our DL based model finds its application
when the characteristics of spikes from different neurons overlap as for
serotonergic and non-serotonergic neurons of the dorsal raphe nucleus.
Indeed, automatic routines for online measurements of action potentials
can be designed, however until now no valid criteria for discriminat-
ing between spikes generated by serotonergic and non-serotonergic
neurons have been established. Recognition of serotonergic neurons
during extracellular recordings relies mostly on visual evaluation of the
shape of the spike, that is often polyphasic, combined with the regular
firing activity at relatively low frequency (up to 3–4 Hz). Thus, the
mean criterion is mainly based on the asymmetric proportion between
the upstroke and the downstroke of the spike (with a ratio usually
>2.5) and duration of the spike itself after the main upstroke (usually
accepted in the range >1.2 ms) (see Fig. 10). Coexistence of these
characteristics is sufficient to enable an experienced Researcher to
identify typical serotonergic neurons with a high degree of confidence.
Nevertheless, in our recordings from genetically identified serotonergic
neurons we noticed relatively frequent deviations from these criteria.
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Indeed, the spike duration of several neurons was less than 0.9 ms,
down to 0.4–0.5 ms (see Fig. 6 in Mlinar et al., 2016). Similarly, a
not negligible percentage of non-serotonergic neurons displayed spike
shape and firing characteristics different from the expected biphasic,
symmetric spikes of brief duration (<0.5–0.6 ms) and high frequency,
often irregular, firing. Thus, some non-serotonergic neurons show long
and asymmetric action potentials and sometimes have a regular, low
frequency activity (<4 Hz) which makes their recognition difficult.
Therefore, while “typical” serotonergic and non-serotonergic neurons
are relatively easy to be discriminated with the currently accepted
criteria a number of serotonergic neurons that do not comply with the
classically established recognition criteria are discarded and not studied
for their pharmacological and physiological characteristics.

Given these limits of the online visual recognition of serotonergic
neurons, our model provides a valid tool for the intra-experiment
identification of neurons recorded in the dorsal raphe nucleus, as the
model can be implemented in the initial routine of in vitro recordings.
Notably, our DL biological model relies only on spike shape for recog-
nition of serotonin neurons and therefore it enables the identification
and investigation of subpopulations of serotonergic neurons displaying
irregular firing or low frequency oscillatory patterns of firing (see
e.g. Mlinar et al., 2016).

5.2. Characteristics and limits of the model for its application

For the identification of serotonergic neurons we relied on trans-
genic mice lines that express fluorescent marker proteins under the con-
trol of serotonergic system-specific Tph2 and Pet-1 promoters. While
the Tph2 promoter-driven expression of fluorescent reporter genes is
expected to unmistakably label serotonergic neurons, there is a possi-
bility that the Pet-1 Cre-based method does not label few serotonergic
neurons in the DRN (see in Mlinar et al., 2016 for more detailed dis-
cussion and references). In the present context we used both promoters
and the probability that these rare neurons participated in the training
of the model is very low. In this unlikely case, as these non fluorescent
cells were not categorized as serotonergic neurons during the model
training, this specific serotonergic neuron subtype would probably be
misclassified by the model.

It should be mentioned that the present model applies to the specific
recording method used in collecting our database of action potentials.
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Fig. 10. The above images are Gradient-weighted Class Activation Mapping (Grad-CAM) visualizations that highlight the regions of the input signal deemed most significant by
the first convolutional layer (Conv2D) of the biological model for the classification of three serotonergic and three non-serotonergic cells. Although not a definitive pattern, the
model tends to focus more on the initial portion of the signal, particularly the spike. In each panel, the left scale indicates the time step of the input signal, while the right color
scale shows the activation intensity within the Conv2D layer’s neurons.
Thus, for immediate application of the model the sampling frequency
should be set at 40 kHz. Our data were acquired using the Clampex
program in loose-seal cell attached patch clamp mode, but since the
routine transforms the signals in *.csv files any acquisition program
that produces files in a format that can be transformed in *.csv format
would provide adequate input for the model. The amplitude of the
recorded current should be greater than the detection threshold that we
have imposed in the model to minimize acquisition of small transients
(>50 pA). Finally, our recordings were performed at the temperature
of ∼37 ◦C. Although small deviations from this temperature could be
tolerated, it should be considered that the width of the action potential,
may be influenced by temperature. Notwithstanding these limitations,
if the sampling rate is adequate and the signal reaches the detection
amplitude the model provides an answer on neuron type with an
12
accuracy of >91.2% within an inference time of a few milliseconds after
the submission of the recorded traces (the inference time is the raw time
taken by the model in classifying the signal without considering the
latent time of converting and transmitting the signal to the model which
can vary depending on the user interface chosen in the deployment of
the model).

It is noteworthy that in several experiments (∼30% of those used
here) used for training the model we applied a gentle suction in the
patch pipette during the recording to improve the signal to noise ratio.
We have previously shown (Mlinar et al., 2016) that this procedure
does not alter the shape and duration of the recorded signals. In
our context, this intra-experiment change in the amplitude of events
recorded from the same neuron increases the robustness of the training
data because implemented the model with events of constant shape but



Journal of Neuroscience Methods 407 (2024) 110158D. Corradetti et al.

i
n

v
a

n
c
w
v
I

D

c
i

D

i
R
D

A

w

R

A

A

B

C

C

D

F

different weight of the background noise on the recorded signal. On the
other hand, this was probably one source of the overfitting found in
the initial, preliminary, model where the processed spike traces were
longer (7 ms) than those used in the final models (4 ms). Indeed, in
the presence of small and larger spikes with the same noise the DL
processing could have retained the background noise as a signature
of serotonergic neurons in addition to their shape and therefore this
may explain the improvement of the model obtained by shortening
the traces to be processed and limiting the recognition process to
the action potential shape. Notably, our synthetic model in which
various background masks were superimposed to 4 ms spikes did not
significantly improve the metrics compared to those of the biological
model obtained using original 4 ms spikes, confirming that limiting the
DL process to the spike was sufficient to eliminate the overfitting caused
by the background recognition together with the action potential shape
for categorizing of neuron type. For this reason we considered sufficient
to limit the model to recognition of short events and we did not include
other parameters such as e.g. those defining the firing rhythm, in
spite of the biological importance of this neuronal property. Indeed,
our preliminary results (Section 3.1) indicated that long segments of
recording (e.g. 7 s), needed to allow the incorporation of periodicity
of events in the model, resulted detrimental for the accuracy of the
model itself. On the other hand, if deemed necessary for improving the
accuracy and/or the complexity of the neuron classification, additional
models directed to discriminate different, complementary, character-
istics of each neuron class could be developed and then merged in
a more refined model. For instance, a subset of putative serotonergic
neurons recorded in vivo displays complex firing in doublets or triplets
(Hajós et al., 1995). Unfortunately, this specific activity is seldom
observed in slices and our dataset of in vitro recordings from genetically
identified serotonergic neurons does not include any neuron with firing
in doublets or triplets. Thus, our model may result not adequate to
classify these neurons as serotonergic and should be modified to comply
with this need. Nevertheless, it is likely that such neurons would not
be missed even by our model developed to recognize single spikes
because the interval between the two spikes in a doublet is usually
greater than 3 ms (Hajós et al., 1995). Thus, the first spike will be
fully comprised in the 4 ms detection window (of which ∼3 ms after
upstroke) and recognized before the beginning of the second spike.
In addition, when solitary spikes flank the doublets the recognition
can be confirmed on these spikes. Thus, with minor fine tuning of
parameters during training, the deep-learning procedure here described
would be set to recognize also burst-firing neurons. Altogether these
considerations suggest that robust models based on CNN deep-learning
procedures could be developed for specific application in conditions
of recording where spikes of different amplitudes and possibly slightly
variable shapes could be recorded from the same neuron as typical for
in vivo recordings while the neuron is approached by a micropipette
or in long duration recordings. The favorable characteristic of the
model is that recognition of the neuron type can be performed at the
beginning of the experiment on a limited number of spikes until the
neuron is classified. Similarly, these models may be applied in high-
density recordings in which special probes (e.g. silicon probes) allow
simultaneous recording of hundreds of neurons in brain areas where
different neuron types coexist. A model trained to recognize spikes from
specific neurons would enable very rapid identification of the neurons
captured in the different recording channels.

Perspectives. Importantly, a relatively low number of recordings was
sufficient to develop our deep-learning based model. In perspective,
the procedure we describe can be applied to construct further models
for the identification of other spontaneously active monoaminergic
neurons. For instance, our approach with genetically fluorescent mice
can be extended to the recognition of other neurons for in vitro record-
ngs. Similarly, application of the CNN deep-learning procedure to
13

euronal types recognized with optogenetic methods (Liu et al., 2014)
or with post-hoc immunohistochemistry (Allers and Sharp, 2003) in
ivo may enable to construct a template of models capable to recognize
variety of neurons during in vivo recordings from mouse and rats.

Once validated, these models would allow rapid identification of the
recorded neuron, making in vivo recording of the activity of selected
neurons more feasible and less demanding than at present. This may
also facilitate studies on the correlation between the firing of different
neuron types and behavioral responses in laboratory animals and in-
crease our understanding of the physiological role of these neurons in
modulating higher brain functions.

In conclusion, our model provides the first proof of concept that
neurons can be recognized from the sole characteristics of extracel-
lularly recorded action potentials and independently of their firing
rhythm. Our model could readily be applied for intra-experiment deci-
sion making on the experimental design to apply to record that specific
neuron and/or for helping the training of young Researchers at the
beginning of their experience.
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