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Abstract
Experimental and clinical findings suggest a crucial role for inflammation in the onset of pediatric seizures; this mechanism is not
targeted by conventional antiepileptic drugs and may contribute to refractory epilepsy. Several triggers, including infection with
neurotropic viruses such as human herpesvirus 6 (HHV-6), other herpesviruses, and picornaviruses, appear to induce activation of
the innate and adaptive immune systems, which results in several neuroinflammatory responses, leading to enhanced neuronal
excitability, and ultimately contributing to epileptogenesis. This review discusses the proposed mechanisms by which infection
with herpesviruses, and particularly with HHV-6, and ensuing inflammation may lead to seizure generation, and later develop-
ment of epilepsy.We also examine the evidence that links herpesvirus and picornavirus infections with acute seizures and chronic
forms of epilepsy. Understanding the mechanisms by which specific viruses may trigger a cascade of alterations in the CNS
ultimately leading to epilepsy appears critical for the development of therapeutic agents that may target the virus or inflammatory
mechanisms early and prevent progression of epileptogenesis.
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Introduction

Growing experimental and clinical evidence suggests an impor-
tant role for viral infections as one of the triggers of an inflam-
matory cascade that may ultimately lead to seizure generation.
While other pathogens, such as for example influenza virus [1],
dengue virus [2], and Arboviruses [3], have been shown to cause
systemic infections sometimes resulting in seizures, this review

will focus on the role of ubiquitous neurotropic viruses belonging
to the herpesviruses family, particularly human herpesvirus 6
(HHV-6), and picornaviruses. We will discuss clinical associa-
tions, potential pathogenic mechanisms of sterile inflammation,
and viruses as trigger for inflammatory responses that may be
associated with acute seizure generation and epileptogenesis.
Finally, we will discuss a seizure model in mice induced by a
picornavirus, Theiler’s murine encephalomyelitis virus (TMEV),
to better understand the role of the innate immune response in the
development of acute seizures.

Infection in humans with picornaviruses, particularly severe
forms of enteroviral infection [4] and infantile encephalitis with
human parechovirus [5, 6], can manifest with acute seizures.

Primary infection with herpesviruses and reactivation have
been associated with different forms of seizures in children,
ranging from acute symptomatic seizures secondary to en-
cephalitis [7], to febrile seizures [8], status epilepticus [9],
and temporal lobe epilepsy (TLE) [10]. Early provoked sei-
zures as the result of a viral infection, particularly encephalitis,
are considered a risk factor for later development of chronic
epi lepsy [11] , a l though the exact mechanism of
epileptogenesis in these cases is still unclear [12]. Current
hypotheses describe several contributing factors during the
period between infection and onset of chronic epilepsy, that
involve overexpression of inflammatorymediators, damage to
the blood-brain barrier leading to neuronal hyperexcitability,
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neuronal cell loss, alteration of neuronal circuits, and modifi-
cation of receptors and ion channels [13].

Viruses can enter the central nervous system (CNS) during
initial viremia or retrograde neuronal spread and herpesviruses
are also able to infect peripheral neurons. After the virus enters
the CNS, direct infection of neurons can result in cell death
and release of proinflammatory mediators which in turn may
activate the innate first and then adaptive immune systems.
Understanding the mechanisms by which specific viruses
may trigger a cascade of alterations in the CNS ultimately
leading to epilepsy appears critical for the development of
therapeutic agents that may target the virus or inflammatory
mechanisms early and prevent progression of epileptogenesis
[12].

Role of Sterile Inflammation in Seizure
Generation

Different mechanisms and triggers can be involved in an in-
flammatory response involving the nervous system which
may contribute to seizure generation. Non-infectious brain
damage, including enhanced neuronal activity, as it occurs
during seizures, evokes neuroinflammation. This sterile form
of neuroinflammation has been recently defined as
Bneurogenic inflammation^ [14]. This process contributes to
the pathogenesis of epilepsy, since it is not properly and timely
resolved, and it has a widespread induction.

Notably, the large array of inflammatory molecules re-
leased by resident brain cells during epileptic activity (i.e.,
cytokines, chemokines, alarmins/danger signals, prostaglan-
dins, complement factors, etc.) act as neuromodulators. They
impact on neuronal function and excitability, thus having a
CNS-specific role independent of their role in the classical
immune/inflammatory responses. Specific inflammatory me-
diators were reported to significantly contribute to the mech-
anisms of seizure generation and epileptogenesis in preclinical
models [15, 16] and in the clinical setting [17, 18].

Besides the classical induction of Nf-κB/activator protein
(AP)1-mediated gene transcription, proinflammatory cyto-
kines, prostaglandins, and danger signals act directly on neu-
ronal function by altering voltage- and receptor-gated ion
channels function in target neurons via post-translational mod-
ifications [16, 19–21]. IL-1β and TNF-α increase Ca2+ per-
meability of N-methyl-D-aspartate (NMDA) and α-amino-3-
hydroxy-5-methyl-4-isoazolepropionic acid (AMPA)
receptor-gated ion channels respectively, by modifying recep-
tor subunit composition at the membrane level [22, 23]. These
cytokines also induce endocytosis of γ-aminobutyric acid
(GABA)A receptors and inhibition of GABA-mediated Cl−

fluxes [23, 24]. All these changes contribute to the rapid in-
crease in neuronal network excitability, and to the generation
of seizures and seizure-related neuronal damage.

Indirect effects of inflammatory mediators on neuronal ex-
citability have also been described, and they include changes
in endothelial and astrocytic cell physiology. Among these
mechanisms, the inflammation-mediated alteration of the
blood-brain barrier permeability has a prominent role; these
changes are one of the hallmarks of epileptogenic tissue.
Inflammatory molecules released by perivascular glia pro-
mote the downregulation of tight junctions on microvascula-
ture [25–27], thus favoring the extravasation of serum albu-
min into the brain parenchyma. This event activates
transforming growth factor (TGF)-β signaling in astrocytes,
thus inducing a plethora of phenomena such as (1) the tran-
scriptional activation of inflammatory genes in astrocytes, and
the concomitant downregulation of Kir4.1 potassium channels
and glutamate transporter [28, 29]; and (2) the degradation of
perineuronal nets—a protective structure of the extracellular
matrix that provide synaptic stability and restrict reorganiza-
tion of inhibitory interneurons [30]. These changes contribute
to establish a hyperexcitable neuronal network in surrounding
tissue [29], and long-lasting decrease in seizure threshold [31].
Accordingly, experimental findings suggest that blockade of
TGF-β signaling impacts on epileptogenesis and reduces
chronic seizures [32].

Reactive astrogliosis is a common feature observed in
epilepsy-associated pathologies [33, 34]. In epileptogenic tis-
sue, astrocytes acquire an inflammatory phenotype, and show
reduced K+, water, and glutamate buffering capacity [33, 34],
thus promoting neuronal hyperexcitability.

Specific Viruses Associated with Seizures
and Epilepsy

Human Herpesvirus 6

HHV-6 is an enveloped DNA virus that belongs to the 훽-
herpesvirus family similar to cytomegalovirus (CMV).
Primary infection with HHV-6 occurs in almost 80% of chil-
dren by age 2 years with peak incidence of acquisition be-
tween 9 and 21months and is therefore considered ubiquitous.
The virus is usually transmitted through saliva and acute in-
fection may result in one of the classic exanthematous dis-
eases of childhood known as roseola or sixth disease.
Common symptoms include fussiness (70%), rhinorrhea
(66%), fever (58%), and rash (31%) [35], but infection may
also result in more serious neurological manifestations such as
seizures [36] and encephalitis.

There are two species of this virus, HHV-6A and B, which
share approximately 90% homology. Although HHV-6A is
thought to be more neurotropic, HHV-6B is the primary type
causing roseola. A peculiar aspect of this virus is that it can
integrate near telomeres of infected cells, a mechanism known
as chromosomal integration; as a result, up to 2% of infected
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individuals have the complete HHV-6 genome in every cell of
their body and can transmit the virus vertically in Mendelian
fashion. The mechanisms involved in HHV-6 integration are
still largely unknown; it is hypothesized that through homol-
ogous recombination between the telomeric repeat sequence
present within the HHV-6 genome and the telomeres, the
HHV-6 genome gets integrated within human chromosomes
[37]. Viral load, detected by PCR, in the case of chromosomal
integration is much higher (1 copy/cell) than what is observed
with viremia during primary infection [38], but primary infec-
tion can also result in high viral load and to discriminate be-
tween the two, in-situ hybridization is sometimes needed [39].

Detection of HHV-6 in Febrile Seizures and Status Epilepticus

Febrile seizures are associated with a variety of infections
other than HHV-6, such as respiratory syncytial virus [40],
influenza virus A [41, 42], and adenovirus [41]. Seizures
may be the result of a complex interplay between exogenous
pyrogens, endogenous pyrogens [43], and virus-mediated ef-
fects [44], which are often difficult to distinguish especially in
a clinical setting.

Prior reviews of the literature between 1995 and 2004 iden-
tified 902 patients of age less than 3 years with primary infec-
tion with HHV-6 and fever and estimated that 16% of them
had a seizure at presentation, including focal, generalized, and
status epilepticus [45]. A prospective observational study that
enrolled 1653 children under 3 years of age who presented to
the emergency room with acute febrile illness detected prima-
ry HHV-6 infection (documented by viremia and seroconver-
sion) in 160 children and 13% of them had seizures [46].

Other investigators came to different conclusions. A
population-based study that followed 277 infants from birth
until age 2 years analyzed serial saliva (and when available
blood) samples by PCR, and showed a cumulative incidence
of HHV-6 infection of 77% by 24 months of age but none of
these children had seizures [35]. The Consequences of
Prolonged Febrile Seizures in Childhood (FEBSTAT) study
[9] was a large prospective multicenter study that aimed to
evaluate the frequency of HHV-6 and HHV-7 infection using
qPCR analysis of blood from children aged 1 month–5 years
presenting with febrile status epilepticus. HHV-6B viremia
was found in 54 of 169 children (32%), including 38 with
primary infection and 16 with reactivated infection, defined
as the presence of viral-specific antibodies at baseline in the
presence of viremia. This frequency was higher than what had
been reported in historical controls with acute non-febrile ill-
ness and in controls without acute illness [46].

An important consideration has to be made regarding sig-
nificant genetic heterogeneity as highlighted by differences in
both prevalence and clinical course/outcome between western
studies and Asian and also among Asian studies themselves
regarding HHV-6 and seizures; as an example, a geographic

variability and lesser role for HHV-6 infection in the etiology
is observed inMalaysia [47] and Thailand [48] compared with
the USA and Canada [45].

HHV-6 Encephalitis

HHV-6 encephalitis is a rare occurrence, with a reported inci-
dence of 0–12% after bone marrow or peripheral blood stem
cell transplantation and 5–21% after cord blood transplanta-
tion [49]. Of 1000 patients enrolled in the California
Encephalitis Project, 4 immunocompetent children tested pos-
itive for HHV-6 by means of PCR [50]. This form of enceph-
alitis is frequently accompanied by seizures and it has also
been described in immunocompetent children during primary
infection in the context of roseola [51, 52]. A nationwide
survey that included responses from 2293 hospitals in Japan
between 2003 and 2004 reported 86 cases of exanthema
subitum-associated encephalitis, primarily in children youn-
ger than 2 years, diagnosed by serology (53 patients) and PCR
(33 patients). Full clinical data were available only for 60
patients, 72% of which had convulsions and altered mental
status, and 28% of which had isolated seizures. HHV-6 DNA
was detected in half of patients whose cerebrospinal fluid
(CSF) was tested [53].

Role of HHV-6 in Mesial Temporal Lobe Epilepsy

HHV-6Bwas detected via rtPCR in brain specimens from four
of eight patients with mesial temporal lobe epilepsy (MTLE)
and from none of seven patients with neocortical epilepsy. In
the subset of MTLE patients, the investigators localized viral
antigen in glial fibrillary acidic protein (GFAP)-positive astro-
cytes [54]. A confirmatory study detected HHV-6B viral DNA
by TaqMan PCR in surgical specimens from 11 of 16 addi-
tional patients with MTLE and from none of 7 additional
patients without MTLE [10], with the highest viral load being
found in the hippocampus. Other studies confirmed these find-
ings in larger cohorts, suggesting a potential role for the virus
in the development of MTLE [55, 56].

Several potential mechanisms have been hypothesized on
how HHV-6B infection leads to glutamatergic excitotoxicity
and neuronal damage in the mesial temporal lobe. It is possi-
ble that pathologic changes are the result of reactivation of
latent virus due to an unknown trigger or are the result of
damage from persistent subclinical active infection.
Astrocyte cultures infected in vitro with HHV-6 had a signif-
icant decrease in expression of the glutamate transporter ex-
citatory amino acid transporter 2 (EAAT2) [10]. Classic in-
flammatory changes such as cellular infiltrates are lacking in
resected epileptogenic tissue where HHV-6 is detected [36].
Experimental evidence suggests other mechanisms are in-
volved such as modulation of neuroinflammation mediated
by chemokines/cytokines. Investigation of gene expression
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revealed upregulation of GFAP and chemokine (C-C motif)
ligand 2 (CCL2) in the amygdala of MTLE patients with
HHV-6 infection and a positive correlation between expres-
sion level and viral load existed [55]. The increased expres-
sion of these proteins results in gliosis and neuronal loss,
which may contribute to the development of MTLE [57,
58]. High expression of GFAP has been previously shown in
resected epileptogenic tissue from the hippocampus [59].
CCL2 is an essential chemokine that regulates migration and
infiltration of monocytes. HHV-6 can establish latent infection
in these cells; therefore, increased expression of CCL2 can
facilitate migration of infected cells into the amygdala and
be conducive to chronic changes seen in MTLE. Some evi-
dence suggests a potential role of upregulation of the tran-
scription factor nuclear factor-κB (NF-κB) in patients with
HHV-6 infection who develop MTLE [56].

Pathophysiology of Neuroinflammation Associated
with HHV-6

HHV-6 exhibits neuroinvasive and proinflammatory proper-
ties. Studies suggested that this virus can invade the CNS and
persist beyond primary infection [60]. Pathological analyses
revealed that HHV-6 can infect astrocytes and oligodendro-
cytes [61] leading to upregulation of several proinflammatory
cytokines, including interleukin (IL)-1β, interferon (IFN)-α,
and tumor necrosis factor (TNF)-α, and can infect T cells
leading to a reduction of IL-10 and IL-14 gene expression,
suggesting that HHV-6 infection favors a T helper (Th) 1 type
proinflammatory cytokine response [62]. Other hypotheses on
how HHV-6 can induce neuroinflammation include cross-
reaction via molecular mimicry of viral antigens, leukocyte
chemoattraction mediated by U83, a chemokine-like protein
encoded by the virus that promotes monocyte infiltration, in-
fection of CNS endothelial cells with upregulation of proin-
flammatory chemokines resulting in increased permeability of
the blood-brain barrier, and binding to CD46 with modulation
of the adaptive immune response, with induction of IL-17 and
inhibition of IL-10 production by T cells [63]. This latter
mechanism involving complement activation has been sug-
gested to contribute to neuroinflammation in patients affected
by multiple sclerosis [64] and, as will be discussed later, com-
plement also plays an important role in acute seizure genera-
tion in the TMEV-infected mouse model, and could, therefore,
represent a common pathway for different forms of infection.

Epstein-Barr Virus, Herpes Simplex Virus,
Varicella-Zoster Virus, Cytomegalovirus

Neurologic complications of Epstein-Barr virus (EBV) infec-
tion are not rare, accounting for up to 7% of EBV-related
admissions in large historical series, and include encephalitis
with seizures [65], status epilepticus [66], and even a case of

infantile spasms [67]. EBV DNA was also detected in brain
specimens from TLE patients [68]. Pathogenic mechanisms
responsible for neurologic symptoms include a direct viral
effect on neurons; indirect effect mediated by proinflammato-
ry cytokines such as TNF-α, IL-6, and IL-1β, which are se-
creted from infected and immortalized B cells; and bystander
damage caused by the interaction between infected, immortal-
ized B cells and the T cell response against them [69].

Herpes simplex virus (HSV) is the pathogenic agent of
approximately 10% of cases of encephalitis [70] and 50–
100% of children with HSV-1 encephalitis develop seizures
[71], particularly focal seizures. HSV, similar to HHV-6, most
likely gains access to the CNS via the olfactory pathway and
has particular tropism for the mesiotemporal lobe and
orbitofrontal region of the brain. Several proinflammatory sig-
naling pathways are implicated in the robust immune response
that follows infection with HSV, and often leads to acute sei-
zures. Dimerization of Toll-like receptors with subsequent
production of several interleukins, interferons, and other in-
flammatory mediators appears to be an early mechanism [72].
Reduced dynorphin expression in dentate gyrus of the hippo-
campus due to HSV-1 infection was found in a mouse model
and suggests an alteration in hippocampal excitability as a
potential neurochemical basis for seizure generation [73].

Seizures are described among several major possible neu-
rological complications of Varicella-Zoster virus (VZV) infec-
tion, either as isolated seizures or in the context of meningo-
encephalitis. In a pediatric study that analyzed neurological
manifestations in patients that had a classic chickenpox rash
or positive CSF PCR [74], 3 of 16 children who initially
presented with isolated seizures developed epilepsy at the 1-
year follow-up. Up to 40% of CNS VZV infections can occur
without herpetic rash [75]; therefore, it is likely that several
studies that utilized solely a clinical criterion for inclusion
underestimated the real extent of VZV-related neurological
manifestations, including seizures.

Asymptomatic or paucisymptomatic cytomegalovirus
(CMV) infection is very common and the estimated seroprev-
alence worldwide is 60–100% [76]. CMVencephalitis is rare
in immunocompetent hosts, and is usually seen as an acute
monophasic infection, with seizures frequently described as
part of the neurological manifestations [77].

Viruses in Brain Tissue of Subjects Without Epilepsy

PCR-based studies that analyzed control brain tissue found
HHV-6 DNA in brain samples from individuals with neuro-
logical diseases other than epilepsy such as multiple sclerosis
and brain tumors [78–80], but usually at lower viral load than
samples obtained from resected epileptogenic foci. Similarly,
viral RNA from other viruses such as EBV, CMV, HSV, and
VZVwas found in brain specimens from patients with schizo-
phrenia and controls [81]. These findings suggest that
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different viruses may establish a latent infection in the brain
even under normal conditions, and highlight variability in
detection rates, potentially owing to different selection criteria
for controls and sensitivity of the assays across different lab-
oratories. They also suggest that presence of the virus alone
does not prove causation and that several other factors, includ-
ing clinical context, specific type of epilepsy, and viral load,
need to be taken into account when analyzing the role of
viruses in epileptogenesis.

Picornaviruses and Clinical Associations with Seizures

Enteroviruses are among the most commonly identified path-
ogens in pediatric patients with aseptic meningitis, sometimes
complicated by seizures [82].

Major pathogens of hand, foot, and mouth disease in chil-
dren are enterovirus 71 (EV71) and coxsackievirus A16
(CA16), both of which are non-enveloped, single-stranded
RNA viruses belonging to family Picornaviridae. Typically,
this disease affects children younger than 5 years of age and
is mild and self-limited, but severe cases with encephalitis
with seizures are described [83]. In a series from Thailand
including 156 children, 18/25 severe cases of enterovirus in-
fection included seizures as initial manifestation [4]. EV71
was the major cause of severe disease, including four fatal
cases.

Similarly, human parechoviruses, especially genotype 3,
are an increasingly recognized cause of meningoencephalitis
in young children, particularly ex-premature babies [5, 84].
Up to 90% of affected neonates can present with seizures
and may go on to develop long-term neurodevelopmental dis-
ability [5]. Large prospective surveillance studies that ana-
lyzed stool samples of 284 children with suspected CNS
infection/inflammation via PCR showed that 4% were posi-
tive for human parechovirus and 15% for adenovirus, after
ruling out other etiologies. Human parechovirus-positive pa-
tients were more likely to present with seizures when com-
pared to human parechovirus-negative patients [6].

Pathogenic Mechanisms Linked to Epilepsy
Following Viral Infection of the CNS

Insights into triggers and the mechanisms by which inflam-
matory molecules can affect neuronal excitability and lead to
seizure generation are summarized in Fig. 1.

Seizures have previously been induced through viral infec-
tion in rabbits, rats, and mice [85]. However, in most in-
stances, acute encephalitis resulting from the viral infection
causes the death of the animals [85]. Therefore, although mul-
tiple animal models exist of acute or chronic viral encephalitis,
such as the persistent Borna disease virus (strain He/80-1)
infection of Lewis rats [86], the West Nile virus (Sarafend

strain) infection of C57BL/6 mice [87], the equid herpesvirus
type-1 (Brazilian strains A4/72 and A9/92) infection of mice
[88], and more recently the Zika virus (strain PRVABC59)
infection of AG129 mice [89] which allow for the study of
acute seizures, they are not suitable for the study of
epileptogenesis and epilepsy. As it stands, only the TMEV-
induced model exists to investigate viral and host immune
contributions to the development of seizures and/or epilepsy
during and following viral encephalitis. The TMEV-induced
seizure model is unique in that epilepsy occurs late, after acute
viral encephalitis with seizures, after the virus is cleared and
the acute seizures resolve, and after a latent period [12,
90–95]. Close examination shows that this model recapitu-
lates many of the clinical and pathological characteristics that
are commonly seen in human TLE following encephalitis,
such as CNS inflammation [92, 93, 96–98], hippocampal scle-
rosis with reactive gliosis [97–100], neuron loss [92, 96, 97,
99, 101–103], and anxiety-like and cognitive deficit behavior-
al comorbidities [96, 99, 101, 103, 104]. Thus, the TMEV-
induced seizure model allows for the study of the mechanisms
involved in the induction and progression of postinfection
epileptogenesis in an animal model that closely reflects the
prevalent form of human epilepsy, TLE, which has also been
associated with herpesvirus encephalitis.

TMEV is a picornavirus which, upon intracerebral infec-
tion of C57BL/6J mice, causes acute behavioral seizures in a
percentage of the mice infected, dependent on the viral titer in
the inoculum [91, 93, 105]. The acute seizures are observable
between days 3 and 10 post infection [92, 94]. A mechanistic
role for viral encephalitis with acute seizures in the subsequent
development of epilepsy was suggested by (1) the presence of
significantly reduced limbic and forebrain seizure thresholds,
equating with chronically increased seizure susceptibility; (2)
increased hyperexcitability, detected through corneal kindling,
at 2 months post infection [95]; and (3) the detection of spon-
taneous seizures, in a significant proportion (65%) of the mice
that had experienced acute seizures, at 2–4 months post infec-
tion [95]. Therefore, the occurrence of acute seizures during
acute viral encephalitis appears to set the stage for the subse-
quent development of epilepsy. Examination of the induction,
development, and consequences of acute seizures should be
informative as to the mechanisms underlying the later devel-
opment of epilepsy.

Role of the Innate Immune System

Upon viral infection, the host mounts an immune response
within hours that initially involves only the innate immune
response [96, 101, 106–108]. The appearance of seizures as
early as day 3 post infection, prior to the activation of the
adaptive immune response (discussed below), suggests that
the innate immune response to viral infection likely contrib-
utes to the development of acute seizures. Macrophages and
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microglia, effector cells of the innate immune response, and
the proinflammatory cytokines IL-6 and TNF-α produced by
these effector cells have been shown to be instrumental in the
development of acute seizures in the TMEV-induced seizure
model [93, 94, 98, 109]. Infiltrating macrophages were found
to be the major producer of IL-6, while microglia were found
to be the major producer of TNF-α in the CNS. A twofold
reduction in the number of macrophages infiltrating into the
CNS was shown to be sufficient to significantly reduce the
number of infected mice experiencing acute seizures [109].
Near complete in vivo depletion of macrophages from the
periphery via intraperitoneal or intravenous injection of
clodronate-containing liposomes resulted in a significant re-
duction in the number of infected mice experiencing acute

seizures without altering the levels of TMEV antigen-
positive cells in the brain [107, 110]. Conversely, adoptive
transfer of bone marrow-derived monocytes (without in vitro
differentiation into macrophages) directly into the brains of
TMEV-infected mice significantly increased the number of
mice experiencing acute seizures [91, 107].

Examination of TMEV-infected mouse brains prior to the
day 3 time point demonstrated that hippocampal neuron loss
occurred early post infection, was via apoptosis, and was dis-
sociated from direct viral infection of the neurons [101, 111].
This hippocampal damage was instead caused by infiltrating
i n f l amma to ry monocy t e s (CD45 h iCD11b+ +F4 /
80+Gr1+1A8−), not neutrophils (CD45hiCD11b+++F4/
80−Gr1+1A8+), although both cell types were present [96,

Fig. 1 Schematic representation
of the chain of triggers and
molecular events linking
neuroinflammation to neuronal
hyperexcitability and seizures
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111]. Expression of the chemokine CCL2 by neurons drove
the infiltration [112].

Examination of TMEV-infected mouse brains over the time
course of seizures, days 3, 7, and 10 post infection, demon-
strated that the peak of cellular infiltration of macrophages
corresponded with the peak of seizures (day 7 post infection)
and that these infiltrating macrophages were inflammatory
macrophages (CD45hi CD11b+ Ly-6C+), not patrolling mac-
rophages (CD45hi CD11b+ Ly-6C−) which increased over the
time course and were highest at day 10 post infection [107].

Another component of the innate immune response, the
complement system, has been shown to be involved in the
development of acute seizures in this seizure model [100,
113]. More specifically, complement component 3 (C3) acti-
vation within the CNS, more specifically within inflammatory
macrophages and activated microglia, contributes to the de-
velopment of acute seizures, and its contribution may be
through the IL-6 and TNF-α pathways [100, 113].

Other components of the innate immune response include
neutrophils and natural killer cells. Although present in the
CNS following infection with TMEV, both of these effector
cell types have been discounted as contributing to the devel-
opment of acute seizures in the TMEV-induced seizure model
[114].

Role of the Adaptive Immune Response

The adaptive immune response develops days to weeks fol-
lowing the initial viral insult and is antigen specific [115]. The
effector cells of the adaptive immune response include CD4+

and CD8+ Tcells and B cells (lymphocytes), and these effector
cells produce cytokines and antibodies. The numbers of lym-
phocytes in the brains of TMEV-infected mice were found to
be elevated over the time course of seizures, days 3, 7, and 10
post infection, whether the mice were experiencing seizures or
not [91], suggesting that these cells are not involved in the
development of acute seizures. More specifically, CD8+ T
cells were shown not to be involved in the development of
acute seizures through the use of OT-I mice with an
ovalbumin-specific T cell receptor [98]. Additionally, TMEV
infection of RAG−/−mice, which are deficient in mature Tand
B cells, resulted in a comparable number of mice experiencing
acute seizures as control mice [107]. Finally, adoptive transfer
of spleen-derived T cells directly into the brains of TMEV-
infected mice did not lead to a significant increase in the num-
bers of mice experiencing acute seizures [107].

From Acute Seizures to Epilepsy

The immune response of the host to viral infection is impor-
tant in order to effectively combat the infection and to prevent
damage or repair tissues. TMEV infection of the CNS induces
an immune response consisting of both inflammatory

macrophages and lymphocytes. The rapid response made by
the inflammatory macrophages likely serves to stem the rep-
lication of the virus but also, through their production of IL-6,
induces acute seizures. The increasing and sustained response
of the lymphocytes likely clears the virus from the CNS and
late responding patrolling macrophages may function in the
resolution of inflammation and repair of tissue damage.

Proinflammatory cytokines, such as IL-6 and TNF-α, may
induce hyperexcitation leading to excitotoxicity and seizures.
Additional support for a role for cytokines in seizure develop-
ment comes through the study of a variant of TMEV named
H101 [116, 117]. This viral variant does not replicate within
the brain parenchyma [105, 118]; however, a significant pro-
portion of C57BL/6J mice intracerebrally infected with this
viral variant still develop seizures [105, 116]. Infiltration of
macrophages into the CNS and activation of microglia was
reduced, but IL-6 and TNF-α were found to be significantly
higher in the serum in H101-infected animals [116].
Peripheral administration of recombinant IL-6 to these ani-
mals resulted in an increase in both macrophage infiltration/
microglial activation and the number of mice experiencing
seizures [116]. Therefore, when viral replication within the
brain is limited, pathologic levels of IL-6 in the periphery
may play a role in seizure development in this model. Serum
levels of IL-6 have been found to be elevated in TLE patients
as well, confirming the importance of this cytokine in the most
common form of epilepsy [119].

IL-6 and TNF-α may induce seizures through modulation
of glutamate signaling. IL-6 has been shown to disrupt the
balance of neuronal excitation/inhibition by affecting gluta-
mate clearance [120], the expression and/or function of gluta-
mate receptors and receptor subunits [121], and by decreasing
inhibitory tone [122]. TNF-α has been shown to contribute to
hyperexcitability by affecting the expression of glutamate re-
ceptors and receptor subunits. Therefore, acute seizures during
viral encephalitis likely result from disruption of the
excitatory/inhibitory balance induced by proinflammatory cy-
tokines acting through glutamate. The role of glutamate and
glutamate signaling in the development of acute behavioral
seizures is being actively investigated in the TMEV-induced
seizure model [123].

Acute TMEV infection, the immune response to virus, and
the presence of acute seizures leave lasting marks on the hip-
pocampus. Mice which experienced acute seizures and then
went on to develop epilepsy have extensive hippocampal scle-
rosis [95]. Neuronal loss, persistent activation of microglia
and astrocytes, glial proliferation, and glial scarring likely
contribute to a lasting neural network hyperexcitability that
in turn likely contributes to epileptogenesis and seizure gen-
eration [97]. Although significant increases in the amplitude
and frequency of spontaneous and miniature excitatory cur-
rents in CA3 pyramidal neurons of the hippocampus were
recorded in brain slices during both the acute infection and
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2 months post infection, the patterns of changes observed
were different, suggesting pathological long-term changes in
the network over time [124]. Analysis of inhibitory currents in
CA3 pyramidal neurons demonstrated an initial decrease in
inhibition during the acute infection, measured via amplitude
of spontaneous and miniature inhibitory currents, which was
lost at 2 months post infection [125]. Thus, two different
mechanisms may be operating to cause an excitatory/
inhibitory imbalance during the acute infection with seizures
and during epilepsy in the TMEV-induced seizure model
[124, 125].

Conclusions

Infection with herpesviruses, especially HHV-6, appears to be
an important trigger for acute seizure generation and in certain
cases later development of epilepsy. Growing preclinical data
and observations in biological specimens from children with
seizures have identified a complex cascade of specific
neuroinflammatory mechanisms that may contribute signifi-
cantly to the pathophysiology of epilepsy, and potentially rep-
resent an early therapeutic target.
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