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Abstract. This is a note based on the paper [32] written in collaboration with M.

Ritoré. The purpose of this note is to present and discuss the Bernstein type problems in

the sub-Finsler Heisenberg group H1. We give a general idea of the state of the art and

we prove that a complete, stable, (X,Y )-Lipschitz surface is a vertical plane.

Sunto. Queste note sono basate sull’articolo [32] scritto in collaborazione con M. Ritoré.

Lo scopo di queste note è quello di presentare e discutere alcuni problemi di tipo Bernstein

nel gruppo di Heisenberg H1 subfinsleriano. Forniamo un’idea generale dello stato dell’arte

e proviamo che una superficie (X,Y )-lipschitziana è un piano verticale.
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1. Introduction

In the 1915 N.S. Bernstein [4] established his celebrated theorem concerning entire

minimal graphs

Theorem 1.1. Assume u ∈ C2(R2) solves the minimal surface equation

(1.1) div

(
∇u√

1 + |∇u|2

)
= 0,

then u is linear.

The original proof provided by Bernstein was based on a topological argument, that is

difficult to generalized to higher dimension. We have to wait the 1962 when Fleming in
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[23] showed by the monotonicity formula that a set that is minimum of the perimeter in

Rn has to be an hypercone or an hyperplane. Therefore if we are able to show that all

minimizing hypercones in Rn are planes we solve the Bernstein’s problem. In the case

n = 2 this approach provides a straightforward proof of Theorem 1.1. Indeed, since a

minimal cone is foliated by straight lines one principal curvature is zero and also the other

principal curvature vanishing since the the sum of the principal curvature vanishing by

the minimal surface equation. Then we have that the cone is a plane. Following the

approach proposed by Fleming, E. De Giorgi [17] in 1965 solved the Bernstein’s problem

for n = 3 and F. J. Almgren [1] in 1966 for n = 4. Later on J. Simons [46] showed that

all stable minimal cones are planes for n 6 7. Finally E. Bombieri, E. De Giorgi and E.

Gusti [5] established a counterexample, nowadays known as the Simons hypercone, for the

Bernstein’s problem in dimension n = 8.

When we consider an oriented surface S ⊂ R3 we say that S solves the Finsler Bernstein’s

problem if S minimizes the Finsler area functional

Aφ(S) =

∫
S

φ(ν)dS,

where ν unit normal, φ is 1-homogenous positive C2 on S2 and dS the Riemannian area

element. Then the Euler-Lagrange equation associated to Aφ is given by

(1.2) φij(ν)IIij = 0,

for i, j = 1, 2 and where II is the second fundamental form and φij for i, j = 1, 2 are

the second partial derivatives of φ. If we assume that {φ < 1} is strictly convex body

then the minimal surface equation (1.2) is an elliptic equation of the second order that

coincides with (1.1) when φ is the Euclidean norm. Contrary to what happens for graphs,

where a solution of (1.2) is automatically a minimizer for the area functional by the

convexity of the area functional, for surfaces we need to assume an extra conditions in

order to solve the Bernstein’s problem. In 1959 R. Osserman [38] showed that a simply

connected complete minimal surface in the Euclidean 3-space whose spherical image omits

a whole neighborhood of a point must be a plane. In 1961 H.B. Jenkins [35] generalized

the result by R. Osserman [38] to the Finsler setting. The extra condition for surface
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considered by M. do Carmo and C. K. Peng [18] is the stability condition, namely that

the second variation of the area functional is positive. In [18] they proved that stable

oriented complete minimal surfaces in R3 are planes. Their result was generalized by D.

Fischer-Colbrie and R. Schoen in 1980 [22] to 3-manifolds of non-negative scalar curvature.

Finally non-existence of non-orientable complete stable minimal surfaces in R3 has been

proved by A. Ros [43].

Variational problems related to the sub-Riemannian perimeter introduced by Capogna,

Danielli and Garofalo [8] (see also Garofalo and Nhieu [30] and Franchi, Serapioni and

Serra Cassano [25]) have recently received great interest, specially in the Heisenberg

groups Hn. In particular, Bernstein type problems, either for stable intrinsic graphs or for

stable surfaces without singular points, have received a special attention, see for instance

[10, 42, 14, 3, 15, 34, 27, 44, 28, 41, 12, 11, 37, 7, 29]. The monograph [9] provides a quite

complete survey of progress on the subject.

The nature of the sub-Riemannian Bernstein’s problem in Heisenberg group even for

graphs is completely different from the Euclidean one. The first Heisenberg group H1 is

the simply connected Lie group (R3, ∗) endowed with the non-Euclidean product ∗ defined

by (2.1). In this setting we have to distinguish between t-graphs t = u(x, y) and intrinsic

graphs that, after a rotation about the vertical axis, are given by y = u(x, t).

On one hand the area functional for t-graphs is convex as in the Euclidean setting.

Therefore the critical points of the area, called H-minimal graphs, are automatically

minimizers for the area functional. However, since t-graphs admit singular points where

the horizontal gradient vanishing their classifications is not an easy task. Thanks to a deep

study of the singular set for C2 surface in H1, J.-H. Cheng, J.-F. Hwang, A. Malchiodi, and

P. Yang provided in Theorem A in [10] a classification of the C2 entire H-minimal t-graphs.

Afterwards, M. Ritoré and C. Rosales showed in [42] that area-stationary entire t-graphs

of class C2 are congruent to the hyperbolic paraboloid u(x, y) = xy or to Euclidean planes.

If we consider the huge class of Euclidean Lipschitz t-graphs, the previous classification

does not hold true since there are several examples of area-minimizing surfaces of low

regularity, see [41]. The complete classification for stable C2 surfaces was established by A.

Hurtado, M. Ritoré and C. Rosales in [34] where they showed that a complete, orientable,
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connected, stable area-stationary surface is congruent to u(x, y) = xy or Euclidean planes.

As well as in the Euclidean setting the stability condition is crucial in order to avoid

H-minimal surfaces such as helicoids and catenoids.

On the other hand, the situation for the intrinsic graphs is completely different since

their associated area functional is not convex. Indeed D. Danielli, N. Garofalo, D.M. Nhieu

in [14] discovered that the family of graphs uα(x, t) = αxt
1+2αx2

for α > 0 are area-stationary

but unstable. In [36] R. Monti, F. Serra Cassano, D. Vittone established an example of

area minimizing intrinsic graph of regularity C0,1/2(R2) that is an intrinsic cone, although

in addition it is the t-graph of an entire C1,1 function. Therefore the Euclidean threshold

of dimension n = 8 fails in the sub-Riemannian setting. In [29] M. Galli and M. Ritoré

proved that complete, oriented and stable area-stationary C1 surface without singular

points is a vertical plane. Finally, S. Nicolussi Golo and F. Serra Cassano [37] showed that

an Euclidean Lipschitz stable area-stationary intrinsic graphs are vertical planes. Lately,

R. Young [48] proved that a ruled area-minimizing entire intrinsic graph in H1 is a vertical

plane by introducing a family of deformations of graphical strips based on variations of a

vertical curve.

Recently, a left-invariant sub-Finsler perimeter has been considered on the Heisenberg

groups, see [45, 40, 24, 31, 39]. A sub-Finsler structure is obtained from a left-invariant

asymmetric norm || · || in the horizontal distribution of H1. Such a norm can be recovered

from a convex set K contained in the horizontal plane at 0 ∈ H1. Following the De Giorgi

approach [16], in [40, 24] they define the K-perimeter testing with horizontal vector fields

with K-norm small or less that one. When K = D, the closed unit disk centered at the

origin of R2, the K-perimeter coincides with classical sub-Riemannian perimeter.

A quite natural question is whether Bernstein type results similar to the sub-Riemannian

ones hold for the sub-Finsler perimeter. A positive answer to this problem was first given by

[32] where the authors proved that, in the Heisenberg group H1 with a sub-Finsler structure,

a complete, stable, (X, Y )-Lipschitz surface (that roughly speaking means ”without singular

points”) is a vertical plane. This is a generalization of the sub-Riemannian result obtained

by S. Nicolussi and F. Serra-Cassano in [37] and by M. Galli and M. Ritoré [29]. The aim
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Figure 1. The contact distribution H in H1

of this paper is to provide an easy presentation of the proof of the result, see Theorem 6.3,

obtain in [32].

2. Preliminaries

2.1. The Heisenberg group. We denote by H1 the first Heisenberg group, defined as

the 3-dimensional Euclidean space R3 endowed with the product

(2.1) (x, y, t) ∗ (x̄, ȳ, t̄) = (x+ x̄, y + ȳ, t+ t̄+ x̄y − xȳ).

A basis of left invariant vector fields is given by

X =
∂

∂x
+ y

∂

∂t
, Y =

∂

∂y
− x ∂

∂t
, T =

∂

∂t
.

For p ∈ H1, the left translation by p is the diffeomorphism Lp(q) = p ∗ q. The horizontal

distribution H is the planar distribution generated by X and Y , which coincides with the

kernel of the (contact) one-form ω = dt− ydx+ xdy.

We shall consider on H1 the auxiliary left-invariant Riemannian metric g = 〈·, ·〉, so that

{X, Y, T} is an orthonormal basis at every point. Let D be the Levi-Civita connection
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associated to the Riemannian metric g. The following relations can be easily computed

(2.2)

DXX = 0, DY Y = 0, DTT = 0

DXY = −T, DXT = Y, DY T = −X

DYX = T, DTX = Y, DTY = −X.

Setting J(U) = DUT for any vector field U in H1 we get J(X) = Y , J(Y ) = −X and

J(T ) = 0. Therefore −J2 coincides with the identity when restricted to the horizontal

distribution. The Riemannian volume of a set E is, up to a constant, the Haar measure

of the group and is denoted by |E|. The integral of a function f with respect to the

Riemannian measure is denoted by
∫
f dH1.

2.2. The pseudo-hermitian connection. The pseudo-hermitian connection ∇ is the

only affine connection satisfying the following properties:

1. ∇ is a metric connection,

2. Tor(U, V ) = 2〈J(U), V 〉T for all vector fields U, V .

The torsion tensor associated to ∇ is defined by

Tor(U, V ) = ∇UV −∇VU − [U, V ].

From this definition and Koszul formula, see formula (9) in the proof of Theorem 3.6 in

[19], it follows easily that ∇X = ∇Y = 0 and ∇J = 0. For a general discussion about

the pseudo-hermitian connection see for instance [20, § 1.2]. Given a curve γ : I → H1

we denote by ∇/ds the covariant derivative induced by the pseudo-hermitian connection

along γ.

2.3. Sub-Finsler norms. Given a convex set K ⊂ R2 with 0 ∈ int(K) its associated

asymmetric Minkowski norm is given by

||u||K = inf{λ > 0 : u ∈ λK}.

The dual norm is given by || · ||K,∗ = sup||v||K61〈u, v〉. Then we define a left-invariant norm

|| · ||K on the horizontal distribution of H1 by means of the equality

(||fX + gY ||K)(p) = ||(f(p), g(p))||,
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Figure 2. The Minkowski norm relative to K on the plane and the map

πK of a vector in S1.

for any p ∈ H1.

If the boundary of K is of class C`, ` > 2, and the geodesic curvature of ∂K is strictly

positive, we say that K is of class C`
+. When K is of class C2

+, the outer Gauss map NK

is a diffeomorphism from ∂K to S1 and the map

πK(fX + gY ) = N−1
K

(
(f, g)√
f 2 + g2

)
,

defined for nowhere vanishing horizontal vector fields U = fX + gY , satisfies

||U ||K,∗ = 〈U, πK(U)〉.

See § 2.3 in [40].

2.4. Sub-Finsler perimeter. Here we summarize some of the results contained in sub-

section 2.4 in [40].

Given a convex set K ⊂ R2 with 0 ∈ int(K), the norm || · ||K defines a perimeter

functional: given a measurable set E ⊂ H1 and an open subset Ω ⊂ H1, we say that E

has locally finite K-perimeter in Ω if for any relatively compact open set V ⊂ Ω we have

|∂E|K(V ) = sup

{∫
E

div(U) dH1 : U ∈ H1
0(V ), ||U ||K,∞ 6 1

}
< +∞,

where H1
0(V ) is the space of horizontal vector fields of class C1 with compact support in V ,

and ||U ||K,∞ = supp∈V ||Up||K . The integral is computed with respect to the Riemannian

measure dH1 of the left-invariant Riemannian metric g. When K = D, the closed unit

disk centered at the origin of R2, the K-perimeter coincides with classical sub-Riemannian

perimeter.
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If K,K ′ are bounded convex bodies containing 0 in its interior, there exist constants

α, β > 0 such that

α||x||K′ 6 ||x||K 6 β||x||K′ , for all x ∈ R2,

and it is not difficult to prove that

1
β
|∂E|K′(V ) 6 |∂EK |(V ) 6 1

α
|∂E|K′(V ).

As a consequence, E has locally finite K-perimeter if and only if it has locally finite

K ′-perimeter. In particular, any set with locally finite K-perimeter has locally finite

sub-Riemannian perimeter.

Riesz Representation Theorem implies the existence of a |∂E|K-measurable vector field

νK so that for any horizontal vector field U with compact support of class C1 we have∫
Ω

div(U) dH1 =

∫
Ω

〈U, νK〉 d|∂E|K .

In addition, νK satisfies |∂E|K-a.e. the equality ||νK ||K,∗ = 1, where || · ||K,∗ is the dual

norm of || · ||K .

Given two convex sets K,K ′ ⊂ R2 containing 0 in their interiors, we have the following

representation formula for the sub-Finsler perimeter measure |∂E|K and the vector field

νK

|∂E|K = ||νK′ ||K,∗|∂E|K′ , νK =
νK′

||νK′||K,∗
.

Indeed, for the closed unit disk D ⊂ R2 centered at 0 we know that in the Euclidean

Lipschitz case νD = νh and |Nh| = ||Nh||D,∗, where N is the outer unit normal and Nh is

the projection of N onto the distribution H. Hence we have

|∂E|K = ||νh||K,∗d|∂E|D, νK =
νh

||νh||K,∗
.

Here |∂E|D is the standard sub-Riemannian measure. Moreover, νh = Nh/|Nh| and

|Nh|−1d|∂E|D = dS, where dS is the standard Riemannian measure on S. Hence we get,

for a set E with Euclidean Lipschitz boundary S

(2.3) |∂E|K(Ω) =

∫
S∩Ω

||Nh||K,∗ dS,
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where dS is the Riemannian measure on S, obtained from the area formula using a

local Lipschitz parameterization of S, see Proposition 2.14 in [25]. It coincides with the

2-dimensional Hausdorff measure associated to the Riemannian distance induced by g. We

stress that here N is the outer unit normal. This choice is important because of the lack

of symmetry of || · ||K and || · ||K,∗. Moreover when S = ∂E ∩ Ω is a Euclidean Lipschitz

surface the K-perimeter coincides with the area functional

AK(S) =

∫
S

||Nh||K,∗ dS.

2.5. Surfaces in H1. Following [2, 25] we provide the following definition.

Definition 2.1 (H-regular surfaces). A real continuous function f defined on an open set

Ω ⊂ H1 is of class C1
H(Ω) if the distributional derivative ∇Hf = (Xf, Y f) is represented

by a continuous function.

We say that S ⊂ H1 is an H-regular surface if for each p ∈ H1 there exist a neighborhood

U and a function f ∈ C1
H(U) such that ∇Hf 6= 0 and S ∩ U = {f = 0}. In other words,

the horizontal unit normal

νh =
∇Hf

|∇Hf |
is a non-vanishing continuous function. Notice that Z = −J(νh) is tangent to S and is

horizontal.

Following [47] we provide the following definition.

Definition 2.2. A set S ⊂ H1 is an (X, Y )-Lipschitz surface if for each p ∈ S there exist

a neighborhood Up ⊂ H1, a Lipschitz function f : U → R such that

S ∩ U = {f = 0}

and

Xf > l a.e. on U or Y f > l a.e. on U

for a suitable l > 0.

Given a vertical plane P ⊂ H1, and a function u defined on a domain D ⊂ P , we denote

by Gr(u) the intrinsic graph of u, defined as the Riemannian normal graph of the function
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Figure 3. The horizontal foliation of a (X, Y )-Lipschitz surface S

u. Since the Riemannian unit normal to P is the restriction of a unitary left-invariant

vector field XP , the intrinsic graph of u is given by

Gr(u) =
{

expp
(
u(p)XP (p)

)
: p ∈ D

}
.

where exp is the exponential map on the Riemannian manifold (H1, g). Clearly, when u is a

Euclidean Lipschitz function we say that Gr(u) is an intrinsic graph of a Euclidean Lipschitz

function. In the following we state a characterization theorem for (X, Y )-Lipschitz surfaces,

for further details see [32, Theorem 2.3] or [47, Theorem 3.2] .

Theorem 2.3. A set S ⊂ H1 is a (X, Y )-Lipschitz surface if and only if S is locally the

intrinsic graph of a Euclidean Lipschitz function.

3. Intrinsic graph of a Euclidean Lipschitz function on a vertical plane

in H1

We denote by Gr(u) the intrinsic graph (Riemannian normal graph) of the Lipschitz

function u : D → R, where D is a domain in a vertical plane P . Using Euclidean rotations

about the vertical axis x = y = 0, that are isometries of the Riemannian metric g, we

may assume that P is the plane {y = 0}, then XP = Y . Since the vector field Y is a unit

normal to this plane, the intrinsic graph Gr(u) is given by {expp(u(p)Yp) : p ∈ D}, where

exp is the exponential map of g, and can be parameterized by the map

Φu(x, t) = (x, u(x, t), t− xu(x, t)),

for (x, 0, t) ∈ D. Notice that Φu(x, t) = (x, 0, t) ∗ (0, u(x, t), 0), where ∗ is the Heisenberg

product defined in 2.1. For further details, we refer the reader to [26].
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Given the intrinsic graph Gr(u) of a Euclidean Lipschitz function defined on some

domain D of the vertical plane P , we know by Rademacher’s Theorem that u is H2-a.e.

differentiable on D, where H2 is the 2-dimensional Euclidean Hausdorff measure on D.

Assuming P = {y = 0}, and given a differentiability point (x0, 0, t0) of u, the tangent

plane of Gr(u) is well defined at Φu(x0, t0) and so it is the normal vector field N . The

tangent plane to any differentiability point of S = Gr(u) is generated by the vectors

Φu
x = (1, ux,−u− xux) = X + uxY − 2uT,

Φu
t = (0, ut, 1− xut) = utY + T

and the characteristic direction is given by Z = Z̃/|Z̃| where

(3.1) Z̃ = X + (ux + 2uut)Y.

A unit normal to S is given by N = Ñ/|Ñ | where

(3.2) Ñ = Φu
x × Φu

t = (ux + 2uut)X − Y + utT

and Jac(Φu) = |Φu
x × Φu

t | = |Ñ |. Therefore the horizontal projection of the unit normal

to S is given by Nh = Ñh/|Ñ |, where Ñh = (ux + 2uut)X − Y. Notice that N is never

vertical. At differentiability points of Gr(u) we define

νh =
Nh

|Nh|
=

(ux + 2uut)X − Y√
1 + (ux + 2uut)2

,

and the vector field Z by

Z = −J(νh),

which is tangent to S and horizontal. An orthonormal basis at the tangent space of Gr(u)

at the differentiable point is obtained by adding to Z the vector

(3.3) E = 〈N, T 〉νh − |Nh|T.

Remark 3.1. Let γ(s) = (x, t)(s) be a Lipschitz curve in D then

Γ(s) = (x, u(x, t), t− xu(x, t))(s) ⊂ Gr(u)

is also Lipschitz and

Γ′(s) = x′X + (x′ux + t′ut)Y + (t′ − 2ux′)T
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a.e. in s. In particular horizontal curves in Gr(u) satisfy the ordinary differential equation

(3.4) t′ = 2u(x, t)x′.

From (2.3), the sub-Finsler K-area for a Euclidean Lipschitz surface S is

AK(S) =

∫
S

‖Nh‖K,∗dS,

where ‖Nh‖K,∗ = 〈Nh, π(Nh)〉 with π = (π1, π2) = πK and dS is the Riemannian area

measure. Therefore when we consider the intrinsic graph S = Gr(u) we obtain

A(Gr(u)) =

∫
D

〈Ñh, π(Ñh)〉 dxdt

=

∫
D

(ux + 2uut)π1(ux + 2uut,−1)− π2(ux + 2uut,−1) dxdt.

Observe that the K-perimeter of a set was defined in terms of the outer unit normal.

Hence we are assuming that S is the boundary of the epigraph of u.

Given v ∈ C∞0 (D), a straightforward computation shows that

(3.5)
d

ds

∣∣∣
s=0

A(Gr(u+ sv)) =

∫
D

(vx + 2vut + 2uvt)Mdxdt,

where

(3.6) M = F (ux + 2uut),

and F is the function

(3.7) F (x) = π1(x,−1) + x
∂π1

∂x
(x,−1)− ∂π2

∂x
(x,−1).

Since (ux + 2uut) is continuous and π is at least C1 the function M is continuous.

3.1. The local bi-Lipschitz homeomorphism. Let Γ(s) be a characteristic curve

passing through p in Gr(u). Let γ(s) be the projection of Γ(s) onto the xt-plane. By

composition with a left-translation we may assume that (0, 0) ∈ D is the projection of p to

the xt-plane. We parameterize γ by s→ (s, t(s)). By Remark 3.1 the curve s→ (s, t(s))

satisfies the ordinary differential equation t′ = 2u. For ε small enough, Picard-Lindelöf’s
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Figure 4. An intrinsic graph on the plane {y = 0}

theorem implies the existence of r > 0 and a solution tε :] − r, r[→ R of the Cauchy

problem

(3.8)

t
′
ε(s) = 2u(s, tε(s)),

tε(0) = ε.

We define γε(s) = (s, tε(s)) so that γ0 = γ. By Lemma 2.6 in [32] we obtain that

G(ξ, ε) = (ξ, tε(ξ)) is a biLipschitz homeomorphisms where the determinant of the Jacobian

of G is given by ∂tε(s)/∂ε > C > 0 for each s ∈]− r, r[ and a.e. in ε .

Remark 3.2. Notice that

t′′ε(s) = 2(ux + 2uut).

4. Foliation by straight lines of area-stationary surfaces

Definition 4.1. Let S ⊂ H1 be a (X, Y )-Lipschitz surface. We say S is area-stationary

if, for any C1 vector field U with compact support such that supp(U) ∩ ∂S = ∅, and

associated one-parameter group of diffeomorphisms {ϕs}s∈R, we have

d

ds

∣∣∣
s=0

AK(ϕs(S)) = 0.

Theorem 4.2. Let K ∈ C2
+ be a convex body with 0 ∈ int(K). Let S ⊂ H1 be an area-

stationary (X, Y )-Lipschitz surface. Then the surface S is an H-regular surface foliated by

horizontal straight lines.
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Proof. Here we recall the main steps of the proof, for further details see [32] . Let p ∈ S.

Since S is (X, Y )-Lipschitz, by Theorem 2.3, there exist an open ball Br(p) and a Lipschitz

function u : D → R such that S∩Br(p) = Gr(u) where Gr(u) = {(x, u(x, y), t−xu(x, t)) ∈

H1 : (x, t) ∈ D}. By providing more details, after a rotation about the vertical axis we may

assume that there exists l > 0 such that Y f(q) > l > 0 for every point of differentiability

close enough to p. By the Implicit function Theorem for Lipschitz functions [13, page 255]

there exists an open neighborhood D ⊂ {y = 0} of the projection of p on {y = 0} and a

Euclidean Lipschitz function u : D → R such that the S is locally an intrinsic Euclidean

Lipschitz graph over the vertical plane {y = 0}.

By Section 3.1 we consider the biLipschitz homeomorphisms G(ξ, ε) = (ξ, tε(ξ)) where

tε(s) solves (3.8). Any function ϕ defined on D can be considered as a function of the

variables (ξ, ε) by making ϕ̃(ξ, ε) = ϕ(ξ, tε(ξ)). Since the function G is C1 with respect to

ξ we have

∂ϕ̃

∂ξ
= ϕx + t′ε ϕt = ϕx + 2uϕt.

Furthermore, by [21, Theorem 2 in Section 3.3.3] or [33, Theorem 3], we may apply the

change of variables formula for Lipschitz maps. Assuming that the support of v is contained

in a sufficiently small neighborhood of (0, 0), we can express the integral (3.5) as

(4.1)

∫
I

( ∫ r

−r

(
(
∂ṽ

∂ξ
+ 2ṽ ũt)M̃dξ

)
dε = 0,

where I is a small interval containing 0. Putting ṽh/(tε+h− tε) instead of ṽ in (4.1), where

h is a small enough parameter and letting h→ 0 we obtain

(4.2)

∫
I

(∫ r

−r

∂ṽ

∂ξ
M̃ dξ

)
dε = 0.

Let η : R→ R be a positive function compactly supported in I and for ρ > 0 we consider

the family ηρ(x) = ρ−1η(x/ρ), that weakly converge to the Dirac delta distribution. Putting

the test functions ηρ(ε)ψ(ξ) in (4.2) and letting ρ→ 0 we get

(4.3)

∫ r

−r
ψ′(ξ)M̃(ξ, 0) dξ = 0,

for each ψ ∈ C∞0 ((−r, r)). Since F is C1 and the distributional derivatives of a Lipschitz

function belongs L∞ we gain that M defined in (3.6) is L∞(D). In particular we have
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that M belongs L1
loc(D), thus also M̃ belongs to L1

loc((−r, r)). By Lemma [6, Lemma 8.1]

we get that M̃ is constant a.e. in ξ. Therefore M is constant a.e. in s. By Lemma 3.2

in [31] F is a C1 invertible function, therefore also g(s) = (ux + 2uut)Γ(s) = F−1(M) is

constant a.e. in s. Let c ∈ R be the previous constant. By construction we know that

t′ε(s) is a Lipschitz function, therefore the function h(s) = t′ε(s)
2
− cs is also Lipschitz in s.

Since t′′ε(s) = 2(ux + 2uut) we gain that h′(s) = 0 a.e. in s. Since h is Lipschitz we gain

that h(s) is constant for each s and h′(s) = 0 for each s. Therefore g(s) is constant for

each s. This shows that horizontal normal given by

(4.4) νh =
(ux + 2uut)X − Y√

1 + (ux + 2uut)2

is constant along the characteristic curves, thus also Z = −J(νh) is constant. Hence the

characteristic curves of S are straight lines. Moreover tε(s) is a polynomial of the second

order given by

(4.5) tε(s) = ε+ a(ε)s+ b(ε)s2

where a(ε) = u(0, ε) that is Lipschitz continuous and b(ε) = (ux + 2uut)(0, ε) = (ux +

2uut)(s, ε). Furthermore, choosing s > 0 we can easily prove that b(ε) is also a Lipschitz

function function in ε. Hence in particular the horizontal normal νh given by (4.4) is

continuous, then the regular part S is an H-regular surface. �

5. The second variation formula and the Codazzi equation

In this Section, we recall the second variation formula obtained in [32]. Notice that a

similar proof was obtained in the sub-Riemannian setting in [29] for surfaces of class C1,

but the proof here is more delicate, since the surface is only (X, Y )-Lipschitz.

Theorem 5.1. Let K ∈ C2
+ be a convex body with 0 ∈ int(K). Let S ⊂ H1 be an area-

stationary (X, Y )-Lipschitz surface. Let U be an horizontal C2 vector field compactly

supported on S and associated one-parameter group of diffeomorphisms {ϕs}s∈R. Then the

second variation of the sub-Finsler area induced by U is given by

(5.1)
d2

ds2

∣∣∣
s=0

AK(ϕs(S)) =

∫
S

(
Z(f)2 + qf 2

) |Nh|
κ(πK(νh))

dS,
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where

q = 4

(
Z

(
〈N, T 〉
|Nh|

)
− 〈N, T 〉

2

|Nh|2

)
,

κ is the positive curvature of the boundary ∂K and f = 〈U, νh〉.

Here we show that the quantity q defined in the second variation is well-posed, indeed

〈N, T 〉/|Nh| solves a Codazzi type equations along the characteristic curves.

Proposition 5.2. Let S be a complete oriented area-stationary (X, Y )-Lipschitz surface.

Then along any arc-length parametrization geodesic γ̄ε(s), the function 〈N, T 〉/|Nh|(γ̄ε(s))

satisfies the ordinary differential equation (5.4) for a.e. ε. Furthermore, 〈N, T 〉/|Nh|(γ̄ε(s))

is smooth in s for a.e. ε.

Proof. Let p in S. Since S is (X, Y )-Lipschitz, Theorem 2.3 implies the existence of an

open ball Br(p) and of a Lipschitz function u : D → R such that S ∩ Br(p) = Gr(u).

Following Section 3 the unit normal is given by N = Ñ/|Ñ |, where Ñ is define in (3.2).

Let Γ(s) be a characteristic curve passing through p in Gr(u). Let γ(s) be the projection

of Γ(s) onto the xt-plane, and (0, 0) ∈ D . We parameterize γ by s→ (s, t(s)). By Remark

3.1 the curve s→ (s, t(s)) satisfies the ordinary differential equation t′ = 2u and

Γ′(s) = X + (ux + 2uut)Y.

Since we have

νh =
(ux + 2uut)X − Y√

1 + (ux + 2uut)2
and Z = −J(νh)

we get that Z = −Γ′(s)/|Γ(s)|. Let tε(s) be the solution of (3.8) and γε(s) = (s, tε(s)).

Since S is area-stationary we have that (ux + 2uut) is constant along γε(s). Moreover

t′′ε(s) = 2(ux + 2uut)(γε(s)) = 2b(ε) = 2(ux + 2uut)(0, ε)

is constant as a a function of s. Thus we have

(5.2) tε(s) = ε+ a(ε)s+ b(ε)s2,

where a(ε) = u(0, ε). Choosing s > 0 in (5.2) we can easily prove that b(ε), that a priori is

only continuous, is also a Lipschitz function. By equation (7) in [37, Theorem 3.7] we have

(5.3)
∂

∂ε

∂

∂s
tε(s) =

∂

∂s

∂

∂ε
tε(s)
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a.e. in ε, where the equality has to be interpreted in the sense of distributions. Putting

(3.8) in the left hand side of (5.3) and applying the chain rule for Lipschitz functions (see

[37, Remark 3.6]) we get

2ut(s, tε(s))(1 + a′(ε)s+ b′(ε)s2) = (a′(ε) + 2b′(ε)s)

a.e. in ε. Therefore we get

ut(s, tε(s)) =
a′(ε)

2
+ b′(ε)s

(1 + a′(ε)s+ b′(ε)s2)
,

a.e. in ε, since by Lemma 3.9 in [32] we have ∂tε/∂ε > 0 a.e. in ε. Since we have

Z = −Γ′(s)/|Γ(s)| we consider γ̃ε(s) = γε(−s). By Lemma 5.3 we have that

ut(γ̃ε(s)) =
a′(ε)

2
− b′(ε)s

(1− a′(ε)s+ b′(ε)s2)

solves the equation (5.4) with initial condition y(0) = a′(ε)/2 and y′(0) = a′(ε)2

2
− b′(ε) for

a.e. ε. Moreover we have

tε(−s) = ε− a(ε)s+ b(ε)s2

For each ε fixed we have b(ε) = (ux + 2uut)(γ̃ε) is constant, let

γ̄ε(s) = γ̃ε

(
s/
√

1 + b(ε)2
)

be an arc-length parametrization of γ̃ε. Then Remark 4.2 in [32] shows that also

〈N, T 〉/|Nh|(γ̄ε) =
ut√

1 + (ux + 2uut)2
(γ̄ε)

is a solution of (5.4) a.e. in ε. �

Lemma 5.3. Given a, b ∈ R, the only solution of equation

(5.4) y′′ − 6y′y + 4y3 = 0

about the origin with initial conditions y(0) = a, y′(0) = b, is

(5.5) ya,b(s) =
a− (2a2 − b)s

1− 2as+ (2a2 − b)s2
.

Moreover, we have

(5.6) y2
a,b(s)− y′a,b(s) =

a2 − b
(1− 2as+ (2a2 − b)s2)2
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If ya,b is defined for every s ∈ R then either a2 − b > 0 or ya,b ≡ 0.

6. The sub-Finsler Bernstein’s problem for (X, Y )-Lipschitz surfaces

Definition 6.1. We say that a complete oriented area-stationary surface S ⊂ H1 is stable

if

(6.1)

∫
S

(
Z(f)2 + 4

(
Z

(
〈N, T 〉
|Nh|

)
− 〈N, T 〉

2

|Nh|2

)
f 2

)
|Nh|

κ(π(νh))
dS > 0

holds for any continuous function f on S with compact support such that Z(f) exists and

is continuous.

The following lemma is proven in [3, page 45].

Lemma 6.2. Let A,B ∈ R be such that A2 6 2B and set h(s) := 1 + As+Bs2/2. If∫
R
φ′(s)2h(s)ds > (2B − A2)

∫
R
φ(s)2 1

h(s)
ds

for each φ ∈ C1
0(R) then 2B = A2.

Theorem 6.3 (Bernstein’s theorem). Let S ⊂ H1 be a complete, stable, (X, Y )-Lipschitz

surface. Then S is a vertical plane.

Proof. First of all we have that S is an H-regular surface by Theorem 4.2. Let p in S.

Since S is (X, Y )-Lipschitz, by Theorem 2.3, there exist an open ball Br(p) and a Lipschitz

function u : D → R such that S∩Br(p) = Gr(u) where Gr(u) = {(x, u(x, y), t−xu(x, t)) ∈

H1 : (x, t) ∈ D}. Let (0, 0) ∈ D be the projection of p to the xt-plane. On D we consider

the coordinates around (0, 0) furnished by G(s, ε) defined in Section 3.1. Let I be a

small interval containing 0, then ε ∈ I and s ∈] − r, r[. Since S is complete by the

Hopf-Rinow Theorem each geodesic (in particular the straight lines in the Z-direction)

can be indefinitely extended along any direction, thus the open interval ]− r, r[ extend

to R. Notice that γ̄ε(s) is the integral curve of Z, thus Z(f) = ∂s(f). Hence, taking into

account that (ux + 2uut)(s) is constant along γ̄ε and equal to b(ε), the stability condition

(6.1) is equivalent to

(6.2)

∫
I

∫
R

(
(∂sf)2 − 4

(
〈N, T 〉2

|Nh|2
− ∂s

(
〈N, T 〉
|Nh|

))
f 2

)
∂tε
∂ε

√
1 + b(ε)2

κ(π(νh))
ds dε > 0,
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for any continuous function f on S with compact support such that Z(f) exists and is

continuous.

Since 〈N, T 〉/|Nh| solves the equation (5.4) with initial condition y(0) = a′(ε)/2 and

y′(0) = a′(ε)2/2− b′(ε), by Lemma 5.3 we get

〈N, T 〉2

|Nh|2
−
(
〈N, T 〉
|Nh|

)′
=

b′(ε)− a′(ε)2

4

(1− a′(ε)s+ b′(ε)s2)2
.

Therefore, computing ∂tε/∂ε from (5.2), we obtain that (6.2) is equivalent to∫
I

∫
R

(
(1− a′(ε)s+ b′(ε)s2)(∂sf)2 − 4b′(ε)− a′(ε)2

(1− a′(ε)s+ b′(ε)s2)
f 2

)√
1 + b(ε)2

κ(π(νh))
ds dε > 0.

Let η : R → R be a positive function compactly supported in R and for ρ > 0 we

consider the family ηρ(x) = ρ−1η(x/ρ), that weakly converge to the Dirac delta distribution.

Putting the test functions ηρ(x− ε)ψ(s), where ψ ∈ C1
0(R), in the previous equation and

letting ρ→ 0 we get∫
R
(1− a′(ε)s+ b′(ε)s2)(ψ′(s))2ds > (4b′(ε)− a′(ε)2)

∫
R

ψ(s)2

(1− a′(ε)s+ b′(ε)s2)
ds,

for a.e. ε since κ(π(νh)) is a positive constant along the horizontal straight lines for each

ε (since νh is constant along such horizontal straight lines) and
√

1 + b(ε)2 is a positive

constant on γ̄ε.

Setting A = −a′(ε), B = 2b′(ε) and h(s) := 1 + As+Bs2/2, we obtain∫
R
h(s)ψ′(s)2ds > (2B − A2)

∫
R

ψ2(s)

h(s)
ds

for each ψ ∈ C1
0 (R). Assume that 2B − A2 > 0 then by Lemma 6.2 we get that 2B = A2,

then 4b′(ε)− a′(ε)2 = 0. Therefore by Lemma 5.3 we obtain 〈N, T 〉 ≡ 0, a′(ε) = b′(ε) = 0

a.e. in ε. On the other hand, if 2B − A2 < 0 then directly by Lemma 5.3 we obtain

〈N, T 〉 ≡ 0, a′(ε) = b′(ε) = 0 a.e. in ε. Hence a(ε) and b(ε) are constant functions in ε and

tε(s) = ε+ as+ bs2,

for some constant a, b ∈ R. Since t′ε(s) = 2u(s, tε) = 2ũ(s, ε) we get ũ(s, ε) = a/2 + bs,

thus ũ is an affine function. Hence S is locally a strip contained in a vertical plane. A

standard connectedness argument implies that each connected component of S is a vertical

plane. �
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