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ABSTRACT: The problem of estimating a circular regression when the predictor is
contaminated by errors is studied. Other than some estimators, we also present a
novel smoothing degree selection rule.
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1 Introduction

Statistical regression models are generally based on the assumption that the
independent variables have been measured exactly. However, sometimes the
regressors are, for some reason, not directly observable or measured with er-
rors. When this is the case specific models, known as errors-in-variables or
measurement error models, have to be taken into account.

Formally, suppose that we are interested in estimating the regression of Y
on X∗, denoted as m, and that our data are realizations from variables X =
X∗+η and Y , say (x1,y1), . . . ,(xn,yn). A general model for this case could be

yi = m(x∗i )+ζi (1)
xi = x∗i +ηi

for i= 1, . . . ,n, where X∗ and Y respectively refer to the predictor and response
variable, ζis are observations of the random error term ζ, ηis are realizations
of η. The unobserved variable X∗ is always referred as latent or true vari-
able. Usual assumptions include that ζ is independent from both X∗ and η, the
distribution of ζ is unknown but has mean 0 and constant variance, while the
distribution of η is known.
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Let fX , fX∗ and fη respectively denote the probability density function of
X , X∗ and η. Basic theoretical considerations suggest that fX is the convolution
between fX∗ and fη:

fX(x) =
∫ ∞

−∞
fX∗(x−ν)dFη(ν), (2)

where Fη denotes the distribution function of η. As the consequence, the es-
timators of the free-error model are clearly not consistent. In such a context
there are two approaches to obtain accurate estimates: deconvolution methods
and explicit bias estimation and correction.

In this paper we address the measurement error case when data can be
represented as points on a circumference. Specifically, we present a non-
parametric deconvolution estimator along with a rule for smoothness selection.

2 Circular data

Angular or circular data are collected whenever observations are measured by
means of a periodic scale. They are usually represented as points on the cir-
cumference of a circle with unit radius. Classical examples of such data are
wind directions, animal movements, any phenomenon measured by the 24 h
clock, etc. Once a zero direction and a sense of rotation have been arbitrarily
chosen, these observations can be expressed as angles. Due to their periodic
nature, circular data cannot be analysed by standard real-line methods, there-
fore in the last decades great attention has been devoted to circular statistics.
For a comprehensive account, see the survey paper by Lee, 2010, and the ref-
erences therein.

3 The estimator

Consider a pair of random angles (Θ,∆), i.e. variables taking values on [0,2π).
Given the random sample (Φ1,∆1), . . . ,(Φn,∆n), we can write model (1) as

∆i = (m(Θi)+ εi)mod(2π), (3)
Φi = Θi +ui,

where Θis are independent copies of the circular latent variable Θ, the εis are
i.i.d. random angles independent of the Θis, with zero mean direction and finite
concentration, and the uis are realizations of the random angle U independent
of the Θis.
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A local estimator for m at θ ∈ [0,2π) can be defined as

m̂(θ;κ) = atan2(m̂s(θ;κ), m̂c(θ;κ)), (4)

with

m̂s(θ;κ) =
n

∑
i=1

sin(∆i)Lκ(Θi−θ),

m̂c(θ;κ) =
n

∑
i=1

cos(∆i)Lκ(Θi−θ),

where the function atan2(y,x) returns the angle between the x-axis and the
vector from the origin to (x,y), and Lκ is a circular deconvolution kernel func-
tion depending on γ`(κ) and λ`(κU) which are, for ` ∈ Z, respectively, the `th
Fourier coefficient of the periodic weight function Kκ and the error density fU
whose concentration parameter is κU :

Lκ(θ) =
1

2π

{
1+2

∞

∑̀
=1

γ`(κ)
λ`(κU)

cos(`θ)

}
. (5)

4 Smoothing degree selection

In the context of measurement error the standard cross-validation criterion for
the selection of the smoothing degree κ is not suitable. Indeed, if we knew the
values Θ1, . . . ,Θn in addition to (Φ1,∆1), . . . ,(Φn,∆n) then we could compute
the conventional cross-validation smoothing degree κ̂0 = argminCV0(κ), with

CV0(κ) =
1
n

n

∑
i=1

(1− cos(∆i− m̂−i(Θi))), (6)

where m̂−i denotes the version of m̂ computed by omitting the ith pair of the
sample. However, since Θis are unknown above criterion is not attainable.

However, a cross-validation idea could still be employed through a SIMEX
(simulation-extrapolation) approach proposed by Delaigle and Hall, 2008 by
following the steps listed below:

1. Generate two i.i.d. samples from U denoted as u∗1, . . . ,u
∗
n and u∗∗1 , . . . ,u∗∗n .

Then, for i = 1, . . . ,n, define Φ∗i = Φi +u∗i and Φ∗∗i = Φi +u∗i +u∗∗i and
consider the problem of estimating two regression functions, m1 and m2,
respectively from the contaminated data (Φ∗i ,∆i) and (Φ∗∗i ,∆i).
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2. Define the objective functions CV ∗(κ) and CV ∗∗(κ)

CV ∗(κ) =
1
n

n

∑
i=1

(1− cos(∆i− m̂1,−i(Φi)))

CV ∗∗(κ) =
1
n

n

∑
i=1

(1− cos(∆i− m̂2,−i(Φ∗i )))

in order to obtain κ̂∗1 = argminCV ∗(κ) and κ̂∗∗2 = argminCV ∗∗(κ).
3. The dependence of κ̂∗1 on Φ∗i and κ̂∗∗2 on Φ∗∗i can be removed by averaging

over a large number, say B, of CV ∗ and CV ∗∗ for different simulated
sequences of u∗1, . . . ,u

∗
n and u∗∗1 , . . . ,u∗∗n :

CV1 =
1
B

B

∑
b=1

CV ∗b

CV2 =
1
B

B

∑
b=1

CV ∗∗b

4. Then, we define, for j = 0,1,2,

κ̂ j = argminCVj(κ). (7)

Now, Φ∗∗ approximates Φ∗ in the same way that Φ∗ approximates Φ and
Φ approximates Θ. Therefore we expect that the relationship between κ̂0
and κ̂1 is similar to that between κ̂1 and κ̂2. As the final result, we get

κ̂0 = κ̂2
1/κ̂2. (8)
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