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Abstract: With the recent advances in medicine, human life expectancy is increasing; however, the
extra years of life are not necessarily spent in good health or free from disability, resulting in a signifi-
cantly higher incidence of age-associated pathologies. Among these disorders, neurodegenerative
diseases have a significant impact. To this end, the presence of the protective blood–brain barrier
(BBB) represents a formidable obstacle to the delivery of therapeutics. Thus, this makes it imperative
to define strategies to bypass the BBB in order to successfully target the brain with the appropriate
drugs. It has been demonstrated that targeting the BBB by ultrasound (US) can transiently make
this anatomical barrier permeable and in so doing, allow the delivery of therapeutics. Thus, our
aim was to carry out an in depth in vitro molecular and morphological study on the effects of US
treatment on the BBB. The rat brain endothelial (RBE4) cell line was challenged with exposure to
12 MHz diagnostic US treatment for 10, 20, and 30 min. Cell viability assays, Western blotting analysis
on the endoplasmic reticulum (ER), and oxidative stress marker evaluation were then performed,
along with cytological and immunofluorescence staining, in order to evaluate the effects of US on the
intercellular spaces and tight junction distribution of the brain endothelial cells. We observed that the
US treatment exerted no toxic effects on either RBE4 cell viability or the upregulation/dislocation of
the ER and oxidative stress marker (GRP78 and cytochrome C, respectively). Further, we observed
that the application of US induced an increase in the intercellular spaces, as shown by Papanicolaou
staining, mainly due to the altered distribution of the tight junction protein zonula occludens-1 (ZO-
1). This latter US-dependent effect was transient and disappeared 20 min after the removal of the
stimulus. In conclusion, our results show that US induces a transient alteration of the BBB, without
altering the intracellular signaling pathways such as the ER and oxidative stress that could potentially
be toxic for endothelial cells. These results suggested that US treatment could represent a potential
strategy for improving drug delivery to the brain.

Keywords: blood–brain barrier; ultrasound; tight junction; zonula occludens-1

1. Introduction

Neurodegeneration is a term encompassing a range of neurological disorders affecting
the central nervous system (CNS), such as dementia, Alzheimer’s disease, Huntington’s
disease, and Parkinson’s disease [1]. The mechanism(s) underlying neurodegeneration
remain to be determined; however, it is generally accepted that neurological disorders can
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arise from a variety of factors, including physiological aging, chronic inflammation, and
toxicant exposure [2–5].

From a therapeutic point of view, the treatment of these dramatic disorders of the CNS
is hampered by the presence of the blood brain barrier (BBB), a highly efficient anatomical
barrier that prevents the delivery of the appropriate drugs to the brain [6].

Indeed, the BBB is a defense system that supplies the brain parenchyma with oxygen
and nutrients while at the same time, blocking the entry of toxic substances [7]. The BBB
microvessels consist of endothelial cells that are strictly sealed by each other, thanks to the
presence of tight junction (TJ) proteins [8], which only allow highly selected substances to
have access to brain parenchyma [9]. Thus, invasive and non-invasive methods have been
evaluated in order to identify effective drug delivery systems to target specific areas of
the brain [9,10]. To this end, the use of ultrasound (US) has been shown to be a promising
approach [11].

Ultrasound is a non-invasive imaging technique mainly used in medicine to perform
both diagnostic and therapeutic procedures. Indeed, it has been demonstrated that US,
thanks to its mechanical vibrations, could be used to positively influence neurons and
microglia physiology [11–14], without damaging or increasing the temperature of the in-
volved tissues [15–17]. Hameroff et al. demonstrated that transcranial US has beneficial
effects on the psychological aspects of chronic pain patients [11]. Moreover, in vitro exper-
iments showed US-dependent neurites sprouting and increase in length and number of
cytoplasmic elongations [18–20].

It is therefore not surprising that US has been widely used to noninvasively induce
localized BBB openings in specific areas of the brain as a drug delivery system, bypassing
the BBB [21–24].

Despite the multiple in vivo and in vitro demonstrations of US effects, very little
is known about the US-induced molecular and morphological mechanism triggered in
endothelial cells of the BBB; this prompted us to investigate the effects of US on a rat brain
endothelial cell line (RBE4), a well-established BBB in vitro model [25–27].

2. Materials and Methods
2.1. Cell Culture and Treatments

The BBB monolayer model, the rat brain endothelial (RBE4) cell line (kindly provided
by Dr. Vincenzo Giuseppe Nicoletti—Dept. of Biomedical Sciences, University of Catania,
Catania, Italy) was used. The cells were cultured in alpha-minimal essential medium
(alpha-MEM)/Ham’s F10, supplemented with 10% fetal bovine serum (FBS), 1 ng/mL
basic fibroblast growth factor (bFGF), 1% penicillin/streptomycin (Thermo Fisher Scientific,
Milan, Italy) at 37 ◦C, 5% CO2, in a humidified atmosphere. The US stimulation was
executed using the MyLab ultrasound device (ESAOTE, Florence, Italy) plugged to the
linear probe LA523 at 12 MHz of frequency.

In order to reduce the US signal attenuation caused by air, an ultrasound transmission
gel (Aquasonic 100, Parker Laboratories, Fairfield, NJ, USA) was used. Preliminary tests
were carried out to assess the ability of the US beam to cross a plastic medium and the glass
coverslip, as previously reported [18,19]. The frequency of 12 MHz allows the penetration
of the US in the medium up to about 2 cm. This value was greater than the cumulative
thickness of polystyrene dish and cellular layer. The RBE4 were either cultured in complete
growth medium on a square (22 mm × 22 mm) coverslip at 8 × 104 cell density, or on Petri
dishes (Ø = 100 mm) at 3.5 × 106 cells. The different supports were used accordingly to the
different evaluation performed, as reported in the Materials and Methods (Sections 2.3–2.5).
When the experiments were performed on Petri dishes, one randomly chosen half of the
Petri dish underwent the US treatment, whereas the other half was used as an internal
control. When cells were seeded on square cover glasses, the US linear probe was aligned
in the central part of the coverslip, while the lateral regions were used as the untreated,
internal control group. The length of the US stimulation was set at 10, 20 and 30 min at
the same frequency, according to the method used in a previously published report [28].
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The exposure to ultrasound was chosen according to the results of previous experiments
(not shown) at earlier exposure times (1, 3, and 6 min), but no significant changes were
observed. The experiments were performed in starvation medium.

2.2. MTT Assay

RBE4 cells (2× 104 cells/well) were plated on 96-well plates and incubated in complete
medium for 24 h to reach confluence. After 24 h starvation, cells were stimulated by
ultrasonic radiation, as previously described [18,19]. A potential US cell cytotoxicity was
assessed by spectrophotometrically measuring mitochondrial reductase activity using the
MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay kit, according
to the manufacturer’s instructions (Sigma Aldrich, cat n. M2003, Milan, Italy).

Absorbance values were measured by a spectrophotometer (MultiskanFC™ microplate
photometer, Thermo Fisher Scientific, Milan, Italy) set to a 570 nm wavelength.

All experiments were repeated three times in quintuplicate.

2.3. Western Blotting Analysis

After US stimulation, Western blotting analysis was performed. Equal amounts of
proteins (30 µg) were separated on 12% SDS-PAGE gels and transferred to nitrocellulose
membranes (Porablot NPC, MACHEREY-NAGEL, Milan, Italy). After blocking in 5% BSA
(bovine serum albumin) for 1 h at room temperature (RT), the membranes were incubated
overnight at 4 ◦C with primary antibodies against GRP78 (1:500; Thermo Fisher Scientific,
cat. n. PA1014A, Milan, Italy) and β-actin (1:10000; Santa Cruz Biotechnology, cat. n.
sc-47778, Milan, Italy). Detection was performed with the appropriate HRP-conjugated
secondary antibodies (1:5000; Santa Cruz Biotechnology, cat. n. sc-2004 and sc-2005, Milan,
Italy) and enhanced by chemiluminescent substrates (ECL Plus Western Blotting Detection
Reagent, GE Healthcare, Milan, Italy). All assays were performed in triplicate.

The band density was determined using ImageJ software (ImageJ, National Institute
of Health, Bethesda, MD, USA, http://imagej.nih.gov/ij, 1.53f) and normalized by β-actin
as an internal loading control.

2.4. Papanicolaou Cytological Staining and Intercellular Spaces Evaluation

RBE4 cells were cultured in complete growth medium on square (22 mm × 22 mm)
coverslips at 8 × 104 cell density. The steps related to starvation and treatment are the same
as those described above.

After US stimulation, the specimens were fixed with 0.5% paraformaldehyde for 10
min at RT and subsequently washed twice in PBS.

The quantitative analysis of intercellular spaces was performed on RBE4 cells using a
routinely used Papanicolaou staining, without the use of the Orange G6 step, in order to
obtain the greatest contrast between the stained cells and the background.

Finally, the specimens were mounted on microscope glass slides with Canada balsam.
All reagents used were purchased from Sigma Diagnostics (St. Louis, MO, USA). Each
sample was examined by an optical microscope (Zeiss Axioskop 20; Carl Zeiss S.p.A.,
Milano, Italy) at different magnifications, and images were acquired with a digital photo
camera (Truechrome HD, TiEsseLab S.r.l., Milano, Italy). The intercellular spaces were
measured by ImageJ software (ImageJ, National Institute of Health, Bethesda MD, USA,
http://imagej.nih.gov/ij, 1.53f), converting the image in black and white, and using the
threshold mode, as reported in Figure 1.

http://imagej.nih.gov/ij
http://imagej.nih.gov/ij
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Figure 1. ImageJ threshold tool for intercellular spaces analysis on Papanicolaou staining. The original
images (panel A) were first converted to black and white 8-bit images (panel B), and subsequently,
the threshold tool was used (panel C).

Five microscopic fields were randomly selected for each experiment at different time
points; each time point was performed in triplicate.

2.5. Immunofluorescent Labeling

RBE4 cells were seeded on sterilized coverslips, as described in the Papanicolaou
staining section. After US stimulation, the cells were fixed with cold methanol for 20 min
for zonula occludens-1 (ZO-1), or with 4% paraformaldehyde for 10 min at RT for cytochrome
C and F-actin. After permeabilization with 0.1% Triton X-100 for 10 min and blocking
nonspecific binding in 1% BSA for 30 min, the cells were incubated with rabbit anti-ZO-1
(1:50; Thermo Fisher Scientific, cat. n. 402200, Milan, Italy) or anti-cytochrome C (1:200;
Santa Cruz Biotechnology, cat. n. sc-13156, Santa Cruz, CA, USA) primary antibodies
overnight at 4 ◦C. F-actin was stained using Alexa-488 conjugated phalloidin (1:200; Thermo
Fisher Scientific, cat. n. A12379, Milan, Italy). Alexa-568 or -488 conjugated donkey anti-
rabbit or donkey anti-mouse IgG secondary antibodies (1:200; Invitrogen, cat. n. A10042
and A21202, Milan, Italy) were used to reveal the immunopositive cells. Cellular nuclei
were stained with DAPI (4′,6-diamidino-2-phenylindole; 1:2000 dilution; Invitrogen, Milan,
Italy). Five microscopic fields were chosen for each experimental point at 400× total
magnification using a motorized Leica DM6000B microscope equipped with a DFC350FX
camera. Each experimental point was performed in triplicate.

F-actin immunostaining was conducted, measuring the peripheral edge and the in-
ternal area using ImageJ software (ImageJ, National Institute of Health, Bethesda, Mont-
gomery, MD, USA, http://imagej.nih.gov/ij, 1.53f), and both surfaces were normalized by
the whole cell area.

2.6. Statistical Analysis

The one-way analysis of variance (ANOVA) for assessing significant differences was
performed in all the evaluations, since the performed experiments involved compari-
son between two homogeneous groups (treated-untreated). Differences were considered
statistically significant when p < 0.05.

3. Results
3.1. Cell Viability Assay

In order to verify whether US stimulation altered the brain endothelial cells viability
and metabolic activity, MTT assays on the RBE4 cells, with and without US treatment, were
performed at different exposure times. As reported in Figure 2, the US application did not
alter the cell viability at any time following US treatment.

http://imagej.nih.gov/ij
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Figure 2. Cell viability (MTT) assay on RBE4 cells during US stimulation. The RBE4 cell line was
stimulated with US for 10, 20, and 30 min. As reported, the cell viability did not significantly
change during treatment in comparison to those in the control (untreated cells), arbitrarily taken
as 100%. Values are expressed as the mean ± S.E.M. of three independent experiments, performed
in quintuplicate.

3.2. Endoplasmic Reticulum and Oxidative Stress Evaluation

The safety of the US treatment on RBE4 was further assessed by monitoring the
expression of the endoplasmic reticulum (ER) stress marker GRP78 [29] by Western blotting
analysis. In Figure 3, we show that the exposure to US did not alter the expression of
GRP78 protein.
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Figure 3. GRP78 protein expression on RBE4 cells during US treatment. Western blotting analysis
and quantification of the ER stress marker GRP78 on the RBE4 cell line during US stimulation at 10,
20 and 30 min. time-points. Values are reported as the percentage of the control (untreated cells),
arbitrarily taken as 100%. The results are expressed as the mean ± S.E.M. of three independent
experiments, performed in triplicate.
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Moreover, we evaluated the expression level of cytochrome C as an oxidative stress
marker [30]. Our results demonstrated that the US treatment did not induce the cytochrome
C spillage from the mitochondrial subcellular compartment into the cytoplasmic region.
However, although the data were not statistically significant, it would appear that the
cytoplasmic level of cytochrome C tends to raise with an increasing time of exposure to US
(Figure 4).
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Figure 4. Mitochondrial cytochrome C localization during US treatment. (A) Immunofluorescence
staining analysis of cytochrome C (green), counterstained with DAPI (blue) during US stimulation
for 10, 20, and 30 min, showing a punctate immunostaining pattern of cytochrome C. (B) The semi-
quantitative analysis of fluorescence levels did not show any differences between the treated samples
and the control (untreated cells). Values are reported as percentages of the control (untreated cells),
arbitrarily taken as 100%. The results are expressed as the mean ± S.E.M. of three independent
experiments, performed in triplicate. Five microscopic fields per treatment have been recorded. Total
magnification: 400×; scale bar: 25 µm.
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3.3. Evaluation of Intercellular Spaces

The BBB permeability was evaluated by Papanicolaou staining (Figure 5A), offering
the greatest contrast between the cells (light blue) and the background (white), allowing
for the evaluation of the width of the intercellular spaces. As reported in Figure 5B, the US
treatment increases the intercellular spaces between the RBE4 monolayer cells, starting at
the 10 min stimulation time point.
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Figure 5. Intercellular spaces analysis on RBE4 monolayer during US treatment. (A) Representative
illustrations showing the RBE4 monolayer treated with Papanicolaou staining, in both natural
condition and after US stimulation. (B) Histograms showing the width of the intercellular gaps
after US treatment for 10, 20, and 30 min. The results are expressed as the mean ± S.E.M. of
three independent experiments, performed in triplicate. Five microscopic fields per experimental
point were taken and analyzed. The control (untreated cells) were arbitrarily taken as 100%. Total
magnification 200×; scale bar: 100 µm; * p ≤ 0.05 vs. control (untreated cells).
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3.4. F-actin and Tight Junction ZO-1 Distribution Analysis

The US-dependent alteration of the F-actin distribution was evaluated after 10, 20, and
30 min of US treatment. As reported in Figure 6, the peripheral F-actin distribution seems
to slightly increase the area after 20 and 30 min of US stimulation (Figure 6A). On the other
hand, the internal area seems to decrease after 20 and 30 min (Figure 6B).
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Figure 6. F-actin microfilament distribution and localization during US treatment on RBE4 cells.
The microfilament distribution was not significantly altered during US treatment, even if a slight
increase in peripheral F-actin surface appeared between 20 and 30 min of stimulus (panel A), along
with a small opposite decrease in the background actin filament (panel B). Values are reported as
percentages of the control (untreated cells), arbitrarily taken as 100%. The results are expressed
as the mean ± S.E.M. of three independent experiments, performed in triplicate. Representative
immunocytofluorescent images at different times of US stimulation were reported (panel C). Five
microscopic fields per treatment have been recorded. Total magnification 400×; scale bar: 25 µm.

Finally, we examined the morphological distribution of the tight junction ZO-1 in the
RBE4 monolayer cells during US stimulation and in the unstimulated controls. As shown
in Figure 7, the US application induced an altered localization of ZO-1 that appeared as a
“zip-like” structure, in comparison to untreated controls.

However, the analysis of the dislocation of this TJ, carried out at different times after
the removal of the US stimulus, showed a restoration of its morphology comparable to that
of the control (untreated cells) (Figure 8).
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Figure 7. Tight junction ZO-1 localization and distribution on RBE4 cell during US stimulation. The
RBE4 cell line was stimulated with US for 10, 20, and 30 min. A clear ZO-1 altered distribution
was seen starting at 10 min of US stimulation, highlighting an increased “zip-like” morphology
(arrowhead). Five microscopic fields per treatment have been recorded. Total magnification 400×;
scale bar: 25 µm.

This result was also confirmed by the cytological staining analysis (Figure 9), where
the intercellular gaps induced by US stimulation were significantly reduced 20 min after
US removal.
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Figure 8. Restoration of the ZO-1 subcellular localization in the absence of US stimulation. The RBE4
cells were treated for 20 min with US, and the distribution of ZO-1 was evaluated 20 min after the
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treatment and an additional 20 min after its removal. (B) The histogram shows the intercellular spaces
(lacuna, gaps) between cells. The results are expressed as the mean ± S.E.M. of three independent
experiments, performed in triplicate. Five microscopic fields per experimental point were taken and
analyzed. The US treatment cells were arbitrarily taken as 100%. Total magnification 200×; scale bar:
100 µm; * p ≤ 0.05 vs. US treatment.

4. Discussion

In recent decades, the increased life span has led to a significant increase in the
incidence of significant neurodegenerative disorders such as Alzheimer’s and Parkinson’s
disease [31]. Over the years, many strategies and therapeutic approaches have been
attempted in order to ameliorate or counteract these adverse events. One of the main
obstacles to the delivery of effective doses of specific therapeutics to the brain is the presence
of the BBB [32]. On one hand, this anatomical barrier protects the brain parenchyma from
interacting with potentially harmful molecules, while on the other hand, it also restricts the
entry of most pharmaceuticals into the brain. To overcome this problem, many strategies
have been devised, ranging from nanocarriers, as liposomal-based approaches, to US
application [33–35].

US is well known in the medical field, especially for its diagnostic use [36] and, in
recent years, for its role in affecting neuronal functions [11,37,38]. Additionally, many
studies, both in vitro and in vivo, have demonstrated the efficacy of US in increasing BBB
permeability in order to facilitate drug delivery to the brain. Although considered safe,
with different biological effects [39,40], it has been shown that US treatment can affect cell
viability via alteration of the cellular membrane [41]. However, this latter effect could be
minimized by the US conditions used and the use of specific precautions, such as frequency
control and the chelation of intracellular Ca2+ [42]. Since the precise mechanisms leading
to US-mediated opening of the BBB remain poorly understood, we sought to investigate
the US effects using a rat brain endothelial (RBE4) cell line as a BBB in vitro model [43].

It was demonstrated that cell viability was not only dependent on the device specifica-
tions (voltage, temperature, exposure time), but also on cell type. Indeed, small changes
in temperature significantly affected cell stress and cytotoxicity [44]. In order to assess
whether our US experimental conditions altered cellular viability per se, RBE4 underwent
an MTT assay following exposure to US. We observed that our device specifications had
no effect on the viability of RBE4 cells at any time point taken into consideration, confirm-
ing previous data obtained using the same US settings on different cell types [24,25]. As
previously described, endothelial cells experience shear stress associated with the blood
flow [45]. Such a phenomenon is considered to be the main cause of the stress-related
expression of genes involved in cell signaling, function, and structure [46] and the forma-
tion of reactive oxygen species (ROS) [47]. To this end, it is worth highlighting that US
treatment itself has been reported as triggering the shear stress response resulting in ROS
formation [48]. This prompted us to monitor the US-mediated shear stress response by
measuring the mitochondria release of cytochrome C [49], a marker of oxidative stress.
Our data suggested that US did not induce the shear stress response. This is in contrast
with the observations by others, although this discrepancy could be explained due to
different US properties. Indeed, in our experiments, we used 12 MHz frequencies instead
of the commonly used 1–5 MHz [48,50,51]. Moreover, US treatment has been reported to
trigger the ER-stress response, leading to the production of GRP78 [49]. In this case, we
failed to observe an increase in GRP78 protein expression, thus confirming that under our
experimental conditions, US treatment did not induce detectable ER stress.

US treatment induced an increase in the intercellular spaces. Indeed, Papanicolaou
staining showed that intercellular gaps between cultured RBE4 cells significantly increased
at all time points tested following cell exposure to US treatment. This is in agreement
with a previous observation describing US-dependent cytoskeleton alterations [52]. In
particular, the appearance of F-actin stress fibers in the center of sonoporated cells has
been described [52]. However, in contrast to these data, the immunofluorescent analysis
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of F-actin in US-treated RBE4 cells failed to confirm these observations. Indeed, a trend
towards an increase in the presence of F-actin stress fibers was observed at 20 min post US
exposure. However, even if this increase was not statistically significant, it is still present
at 30 min. The transient nature of this event might explain these apparently conflicting
results. However, we believe this transient event might also impact the US-mediated
modification of the distribution of the TJ protein ZO-1. Indeed, the US-related stretching
of the F-actin microfilament appeared to be dragging the ZO-1 bound to the cytoskeleton
microfilaments [53,54]. The altered distribution of the ZO-1 is likely to result in an increased
BBB permeability.

Finally, it is important to note that 20 min after the removal of the US stimulus, the
endothelial barrier regained its original morphology, as indicated by the restoration of the
ZO-1 distribution and reduction in the intercellular gaps.

5. Conclusions

These data demonstrate that US treatment induced a transient and reversible increase
in intercellular spaces, without altering cell viability and/or triggering potentially harmful
signaling pathways. Although the effects of a US-dependent altered permeability of the
BBB are not yet well known and further investigation on the mechanisms underlying BBB
opening has yet to be examined, we interpret this data as showing that US could represent a
potential tool to deliver safe and efficient therapeutics across the BBB in clinical applications.
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