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Abstract
This is the first in a series of papers about foliations in derived geometry. After intro-
ducing derived foliations on arbitrary derived stacks, we concentrate on quasi-smooth
and rigid derived foliations on smooth complex algebraic varieties and on their asso-
ciated formal and analytic versions. Their truncations are classical singular foliations
defined in terms of differential ideals in the algebra of forms. We prove that a quasi-
smooth rigid derived foliation on a smooth complex variety X is formally integrable at
any point, and, if we suppose that its singular locus has codimension ≥ 2, its analyti-
fication is a locally integrable singular foliation on the associated complex manifold
Xh . We then introduce the derived category of perfect crystals on a quasi-smooth rigid
derived foliation on X , and prove a Riemann-Hilbert correspondence for them when
X is proper. We discuss several examples and applications.
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Introduction

This is the first of a series of works on foliations (mainly algebraic and holomorphic)
and derived geometry. In this paper we present a notion of a derived foliation on
algebraic or holomorphic varieties, thatwe think is interesting for the studyof foliations
with singularities. The point of view adopted here is not completely new and goes back
to previous works by Tony Pantev and the authors on existence of potentials for shifted
symplectic structures (see e.g. [15]). In a nutshell, a derived foliation F on a scheme
X consists of a perfect complex LF on X together with a map a : OX −→ LF
that satisfies formal properties of being a de Rham differential (i.e. is a derivation
squaring to zero). One major difficulty is to define the precise higher coherences for
such a structure, encoding the fact that a2 does not really identically vanish but is only
homotopic to zero in a homotopy coherent way. This is achieved by defining derived
foliation as graded mixed commutative differential graded algebras (graded mixed
cdga’s, for short) satisfying some extra properties (see Definition 1.2.1).

In this work we quickly restrict to the case of quasi-smooth derived foliations F ,
which consists of restricting LF to be just a two terms complex of vector bundles.
Among derived foliations, these quasi-smooth derived foliations are the closest to
classical foliations in the usual sense, and we think they form the most important
class of derived foliations. A quasi-smooth derived foliation F on a smooth variety
X can be truncated into a usual algebraic singular foliation τ0(F) on X (e.g. in
the sense of [1, 2]). More precisely, the kernel of the morphism �1

X −→ H0(LF ),
induced by a, defines a differential ideal inside differential forms and thus a singular
foliation τ0(F) on X . We remark however that arbitrary singular foliations are not
derived foliations: they can be represented by graded mixed algebras, but these do not
satisfy our conditions (except if the foliation has no singularities). Notice also that
being the truncation of a derived foliation is a non-trivial condition, even locally in
the analytic topology. Therefore, derived foliations are not really generalizations of
singular foliations, and these two class of objects do not live in the same categories.
Rather, it is more useful to keep in mind the intuition that derived foliations are
additional structures on their truncated singular foliations making them better behaved
objects.

The first two main results of this work are the following integrability theorems.
Note that for a derived quasi-smooth foliation being integrable, i.e. being induced by
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a morphism between smooth varieties, implies that its truncated singular foliation is
also integrable (by the same morphism). However, the converse is in general wrong.

Theorem 0.0.1 (Proposition 2.3.2 and Corollary 2.3.4) Let X be a smooth variety and
F be a quasi-smooth derived foliation on X. Assume that F is rigid (i.e. the induced
map H0(a) : �1

X → H0(LF ) is surjective). Then

(1) The derived foliation F is formally integrable around each point x ∈ X.
(2) If we further assume thatF has no singularities outside a closed subset of codimen-

sion at least 2, then F is analytically integrable, locally in the analytic topology
on X. As a consequence the truncated singular foliation τ0(F) is analytically
integrable, locally in the analytic topology on X.

Part (1) of the above theorem is a consequence (Corollary 1.5.4) of a more general
result concerning the local structure of quasi-smooth derived foliations (see Propo-
sition 1.5.1), while part (2) is a consequence of (1) and of a theorem of Malgrange
([12]). We remark here that a consequence of the above result is that a singular folia-
tion which is not formally integrable locally at all points can not be the truncation of
a derived quasi-smooth foliation.

The second main result of this work is a Riemann–Hilbert correspondence for
derived quasi-smooth foliations. We first introduce the notion of a crystal along a
derived foliation F , which morally consists of a vector bundle together with a partial
connection along the leaves of F . Once again, there are homotopical coherences to
be taken into account, and crystals are rather defined as certain graded mixed dg-
modules over the graded mixed dg-algebra defining the derived foliation. On the other
hand, a derived foliation F defines a sheaf OFh , in the analytic topology, of locally
constant functions along F . This is a sheaf of commutative dg-algebras, which is
in general not concentrated in degree zero, and whose higher cohomology sheaves
reflect the singularities ofF . The Riemann–Hilbert correspondence can then be stated
as follows (see Corollary 4.2.2):

Theorem 0.0.2 Let F be a quasi-smooth and rigid foliation on a smooth and proper
algebraic variety X. Assume that F is non-singular outside of a closed subset of
codimension at least 2. There is an equivalence of categories

Vect(F) � Vect(OFh )

between on the l.h.s. the category of crystals along F , and on the r.h.s. the category
of sheaves of OFh -dg-modules which are locally free of finite rank.

The above theorem is a consequence of two results proved in the text: amore general
statement (validwithout the rigidity or codimension assumptions)which relates perfect
complexes of crystals with a nilpotent condition (we call such crystals h-nilpotent) and
perfect complexes ofOFh -dg-modules (see Theorem 4.2.1), and the fact that a vector
bundle crystal (i.e. an object in Vect(F)) is h-nilpotent once F satisfies the hypothe-
ses of Theorem 0.0.2 (see Theorem 3.2.3). We also prove that the above theorem is
compatible with cohomologies, giving rise to an isomorphism between algebraic de
Rham cohomology along the leaves of a crystal and the analytic cohomology of the
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corresponding sheaf of OFh -module. Note that Theorem 0.0.2 recovers for instance
Deligne’s relative Riemann–Hilbert correspondence (see [7]) and extends it to the
case of a possibly non-smooth morphism (see Sect. 4.3.1 for details). It is also pos-
sible to recover from Theorem 4.2.1 Kato-Nakayama’s logarithmic Riemann–Hilbert
correspondence (see Sect. 4.3.3).

Plan of the paper. The present work is organized in four parts. In the first section
we present the notion of derived foliations. We present several examples and show
a formal structure theorem for quasi-smooth and rigid derived foliations. We also
discuss the notion of leaves in the setting. The second section is devoted to the analytic
aspects of derived foliation. We construct the analytification functor and discuss local
integrability, in the analytic topology, of derived foliations. The third section contains
the definition of crystals along a derived foliations, their analytifications, as well as
the notion of h-nilpotent crystals. Finally, the last section contains the statement and
proof of the Riemann–Hilbert correspondence. We also have included some examples
and applications.

Related works. In [3], the authors borrow their definition of derived foliation from
[15], and study Lagrangian derived foliations in relation with the problem of realizing
the moduli space of sheaves on a Calab-Yau fourfold as the derived critical locus of
a (shifted) potential. In [1], J. Ayoub have systematically studied underived singu-
lar foliation on schemes; his theory lives algebraic geometry rather than in derived
geometry, and his purposes are somehow different, being related to differential Galois
theory.

Conventions and notations.Everything, like vector spaces, commutative dg-algebras
(often shortened as cdga’s), algebraic varieties etc., is defined over the field C of
complex numbers. The ∞-category of complexes (of C-vector spaces) is denoted by
dg, and the ∞-category of topological spaces by T op.

By convention dAff is the ∞-category of derived affine schemes locally of finite
presentation over C. Derived Artin stacks are, by definition, locally of finite presenta-
tion. For a derived stack F we denote by QCoh(F) its ∞-category of quasi-coherent
complexes. In the samemannerPerf(F) ⊂ QCoh(F)denotes the full sub-∞-category
of perfect complexes on F .

All the various functors, Sym, ⊗, ∧, f∗, f ∗, etc. will be suitably derived when
necessary.Wewill occasionally need underived functors for whichwewill use specific
notations Symu , ⊗u , f u∗ , etc., if necessary.

A vector bundle on X will be a locally free OX -Module of finite rank.

1 Derived algebraic foliations

In this section, after some reminders on mixed graded structures, we define derived
foliations on arbitrary derived stacks, give several classes of examples of derived
foliations, study derived foliations on formal completions, and finally establish the
local structure of quasi-smooth rigid derived foliations. We also discuss the notion of
formal, algebraic and analytic leaves of derived foliations in general.



Algebraic foliations and derived... Page 5 of 47 5

1.1 Reminders on gradedmixed objects

We remind from [6] (see also the digest [18]) the ∞-category of graded mixed com-
plexes (over C). Its objects are Z-graded objects E = ⊕n∈ZE(n), inside the category
of cochain complexes together with extra differentials εn : E(n) −→ E(n + 1)[−1].
These extra differentials combine into a morphism of graded complexes ε : E −→
E((1))[−1] (where E((1)) is the graded complex obtained from E by shifting the
weight-grading by +1), satisfying ε2 = 0. The datum of ε is called a graded mixed
structure on the graded complex E . The complex E(n) is itself called the weight n
part of E .

Morphisms of graded mixed complexes are defined in an obvious manner, and
among them, the quasi-isomorphisms are themorphisms inducingquasi-isomorphisms
on all the weight-graded pieces individually. By inverting quasi-isomorphisms, graded
mixed complexes constitute an ∞-category denoted by ε − dggr . Alternatively, the
∞-category ε − dggr can be defined as the ∞-category of quasi-coherent complexes
QCoh(BH), over the classifying stack BH for the group stack BGa � Gm (see [6,
Rmk. 1.1.1] and [17, Prop. 1.1]).

The ∞-category ε − dggr comes equipped with a canonical symmetric monoidal
structure⊗. It is defined on objects by the usual tensor product ofZ-graded complexes
(taken over the base field C), with the mixed structure defined by the usual formula
ε ⊗1+1⊗ ε (see [6, §1.1]). When viewed as QCoh(BH), this is the usual symmetric
monoidal structure on quasi-coherent complexes on stacks.

Commutative algebras in ε − dggr form themselves an ∞-category ε − cdgagr ,
whose objects are called graded mixed cdga’s. Its objects can be described as Z-
graded cdga’s A = ⊕n A(n), endowed with a graded mixed structure ε which is
compatiblewith themultiplication in A (i.e. is a graded biderivation). The fundamental
example of such a graded mixed cdga is given by the de Rham algebra. For a cdga
A we can consider its dg-module �1

A of dg-derivations as well as its symmetric cdga
Symu

A(�1
A[1]). The usual de Rham differential induces a graded mixed structure on

Symu
A(�1

A[1]) making it into a graded mixed cdga for which the induced morphism
ε : A −→ �1

A is the usual universal derivation. Applied to a cofibrant model A′ of
A we get a graded mixed cdga DR(A) := Symu

A′(�1
A′ [1]) which is functorial, in the

sense of ∞-categories, in A. This defines an ∞-functor

DR : cdga −→ ε − cdgagr

which can be checked to be the left adjoint to the forgetful∞-functor sending a graded
mixed cdga A to its weight 0 part A(0).

We remind the existence of the realization ∞-functor

| − | : ε − dggr −→ dg

given by RHom(C,−), where the derived hom is taken as graded mixed complexes,
and C is equipped with the trivial graded mixed complexes purely concentrated in
weight and cohomological degree 0. The object C being the unit of the symmetric
monoidal structure on ε − dggr , the ∞-functor | − | possesses a natural lax monoidal
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structure and thus sends graded mixed cdga’s to cdga’s. It can be explicitly described
as follows. For a graded mixed complex E we from the product

|E | :=
∏

p≥0

E(p)[−2p]

and endow |E |with the total differentiald+ε,whered is the cohomological differential
of E and ε is the graded mixed structure. When E is a graded mixed cdga the formula
above for |E | can also be used to describe themultiplicative structure, which is induced
by the natural maps E(n)[−2n] ⊗ E(m)[−2m] −→ E(n + m)[−2n − 2m].
Remark 1.1.1 The following simple observations will be useful in the rest of the paper.

• For A ∈ cdga, the underlying graded cdga of DR(A), obtained by forgetting
the mixed structure, is naturally equivalent to Sym A(LA[1]), where LA is the
cotangent complex of A.

• As a consequence of the comment above, when A is a smooth algebra, the
graded mixed cdga DR(A) is canonically equivalent to the usual de Rham alge-
bra Sym A(�1

A[1]) endowed with its usual de Rham differential as graded mixed
structure.

The notions of gradedmixed complexes, gradedmixed cdga’s and deRhamalgebras
DR as defined above, all make sense internally to a (nice enough) base symmetric
monoidal C-linear ∞-category (see [6, Section 1.3.2], as well as [18, Rmk 1.5 and
Section 2.1]). These internal notions and constructions can be understood simply as
follows. Graded mixed cgda’s and modules make sense over any derived stack F , as
quasi-coherent sheaves ofOF -linear graded mixed cdga’s and modules. Equivalently
the∞-category of gradedmixedmodules over a derived F can be defined asQCoh(F×
BH), where, as above, H is the group stack BGa � Gm . Graded mixed cdga’s are
then naturally defined as commutative ring objects inside the symmetric monoidal
∞-category QCoh(F × BH).

Any commutative ring A in QCoh(F) will be called an OF -cdga. Any such OF -
cdga possesses an internal de Rham complex, which is a gradedmixed cdga over F .We
denote this object byDRint (A).Moreover, we can apply the direct image functor along
F × BH −→ F to get a lax monoidal ∞-functor QCoh(F × BH) −→ QCoh(F).

This lax monoidal ∞-functor is called the realization ∞-functor and is denoted by

| − | : QCoh(F × BH) −→ QCoh(F).

When A is a cdga over F , we have a graded mixed cdga DRint (A) over F , and by
applying |−|we get a cdga denoted byDR(A) := |DRint (A)|, and called the de Rham
cohomology of A over F . There is also a relative version, for a morphism A −→ B of
cdga’s over F , which is |DRint (B/A)|, another cdga. The explicit formula giving the
realization recalled earlier is also valid in this internal setting. Indeed, for an object
E ∈ QCoh(F × BH), its realization |E | is the object in QCoh(F) given by

|E | =
∏

p≥0

E(p)[−2p]
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endowed with the total differential, sum of the cohomological differential and the de
Rham differential.

This discussion applies in particular to F = BH itself. We have to note here
that QCoh(BH × BH) consists of doubly graded mixed complexes, i.e. complexes
endowed with two extra gradings and two associated graded mixed structures com-
patible with each others. By our convention the realization

| − | : QCoh(BH × BH) −→ QCoh(BH)

consists of realizing the first graded mixed structure. For example, if one starts with
an algebra A in QCoh(BH) (i.e. a graded mixed cdga), then |DRint (A)| is another
graded mixed cdga. It is obtained by considering DRint (A) ∈ QCoh(BH× BH) and
realizing it with respect to the internal mixed structure, that is the one induced from the
graded mixed structure on A as opposed to the one given by the de Rham differential.
Using the correct convention here is essential for the rest of the paper.

If we have a morphism of graded mixed cdga’s A −→ B, the above construction
produces an internal graded mixed cdgaDRint (B/A) inside graded mixed complexes.
Its realization is thus a graded mixed cdga DR(B/A) called the internal de Rham
cohomology of B relative to A.

With these notations, we have the following lemma recovering a class of graded
mixed cdga’s A from their DRint (A(0)/A). We will use this lemma very often in the
rest of the text.

Lemma 1.1.2 Let A be a graded mixed cdga and assume that the canonical morphism

Sym A(0)(A(1)) −→ A

is a quasi-isomorphism of graded cdga’s. Then, the canonical morphism of graded
mixed cdga’s

A −→ |DRint (A(0)/A)|

is a quasi-isomorphism.

Proof Let B = A(0) and E = A(1). The internal cotangent complex of B relative
to Sym B(E) is identified with E[1]. The internal de Rham algebra DR(B/A) is then
equivalent to Sym B(E[2]). We are interested in realizing the internal graded mixed
structure coming from the one of A. As E is pure ofweight 1, the induced gradedmixed
structure on E is trivial. The same is true for Sym p(E[2]), and we thus conclude that
the internal graded mixed structure on Sym B(E[2]) is trivial. Since we are realizing
internally, we have to realize each graded piece individually. But the realization of a
graded mixed complex M which is pure of weight p is simply M[−2p]. Therefore,
the realization of the internal de Rham algebra is tautologically given by

|DRint (B/A)| � ⊕p≥0|Sym p(E[2])| = ⊕p≥0Sym p(E).

�
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1.2 Derived algebraic foliations as gradedmixed cdga’s

In this section we present a very general notion of derived foliations over general
derived stacks. Though later in this paper, we will only be dealing with derived foli-
ations over smooth varieties, we have decided to give a general definition for further
record and applications.

Definition 1.2.1 An affine derived foliation is a graded mixed cdga A satisfying the
following extra conditions.

(1) (Connectivity) The underlying cdga A(0) is cohomologically concentrated in non-
positive degrees and is finitely presented over C.

(2) (Perfectness) The A(0)-dg-module A(1)[−1] is perfect and connective.
(3) (Quasi-freeness) The natural morphism of graded cdga’s

Sym A(0)(A(1)) −→ A

is a quasi-isomorphism of graded cdga’s.

For a derived foliation A as above, the derived affine scheme X = Spec A(0) is
called the underlying derived scheme of the foliation, and we will say that the foliation
is given over X . The perfect complex on X determined by A(1)[−1] is called the
cotangent complex of the foliation.

Example 1.2.2 Let X = Spec R be a smooth affine C-scheme, T X its tangent bundle,
andV ⊆ T X a sub-bundlewhose local sections are closed under theLie bracket canon-
ically defined on local vector fields (i.e. on local sections of T X/X ). It is well known
that ifV∨ denotes the R-module of local sections of the dual vector bundle V ∨, then the
Lie bracket on local sections of V induces a differential on A := Sym R(V∨[1]). This
gives A the structure of a derived foliation over X . Therefore, an algebraic foliation
in the usual sense can be seen as a derived foliation.

More general examples of derived foliations will be given later in this Section.
Affine derived foliations form an ∞-category as follows. Consider the ∞-category

(ε − cdgagr )op, opposite to the ∞-category of graded mixed cdga’s. The ∞-category
of affine derived foliations is defined to be the full sub-∞-category of (ε − cdgagr )op

consisting of the graded mixed cdga’s satisfying the conditions of Definition 1.2.1.
This ∞-category will be denoted by dAffF .

We have a canonical ∞-functor

dAffF −→ dAff

sending an affine derived foliation A to the derived affine scheme Spec (A(0)).

Proposition 1.2.3 The above ∞-functor is fibered in the sense of [23, §2.3]. Moreover,
the corresponding ∞-functor

Fol : dAffop −→ Cat∞

is a stack for the étale topology.
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Proof By construction, the ∞-category Fol(Spec A) is equivalent to the opposite
∞-category of graded mixed cdga’s C satisfying the conditions of Definition 1.2.1
and equipped with a cdga quasi-isomorphism C(0) � A. The ∞-category has two
distinguishedobjects, thefinal and initial objects. Thefinal object is A itself, considered
as a graded mixed cdga’s purely in weight 0 with zero graded mixed structure. On the
other hand, the initial object is DR(A).

Let now f : X = Spec A −→ Y = Spec B be a morphism of derived affine
schemes corresponding to a morphism of cdga’s B −→ A. The pull-back ∞-functor

f ∗ : Fol(Y ) −→ Fol(X)

can be understood as follows. LetF ∈ Fol(Y ) be an object corresponding to a graded
mixed cdga C satisfying the conditions of Definition 1.2.1 and equipped with a quasi-
isomorphism C(0) � B. Associated to F is a natural diagram of graded mixed cdgas

DR(B) C

DR(A).

The pull-back foliation f ∗(F) ∈ Fol(X) is then given by the graded mixed cdga
C ⊗DR(B) DR(A). This indeed satisfies the conditions of Definition 1.2.1 since it
is equivalent, as a graded cdga, to Sym A(E), where E is the following push-out in
B-dg-modules

B(1) C(1)

A(1) E

where A(1) is viewed as a B-dg-module via the map B → A. This proves the first
statement in the proposition, and moreover provides an explicit description of pull-
back ∞-functors. This description in turns easily implies that the ∞-functor Fol is a
stack for the étale topology, as this reduces to the fact that quasi-coherent modules is
a stack for the étale topology. �

The above proposition can be used, by Kan extension along dAffop → dStop, in
order to define derived foliations over any base derived stack.

Definition 1.2.4 Let X ∈ dSt. The ∞-category

Fol(X) := lim
Spec A→F

Fol(Spec A)

is called the ∞-category of derived foliations over X .
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We note here that when X is a derived DM-stack, then Fol(X) can be described
as the limit limU Fol(U ), where U runs over all derived affine schemes étale over X .
By the explicit description of pull-backs given in the proof of Proposition 1.2.3, we
see that an object in this limit can be simply represented by a sheaf of graded mixed
cdga’sA over the small étale site X ét of X , together with an equivalenceA(0) � OX ,
and satisfying the following two conditions.

• The sheaf of OX -dg-modules A(1)[−1] is perfect and connective.
• The natural morphism of sheaves of graded cdgas

SymOX (A(1)) −→ A

is a quasi-isomorphism.

This simple description in terms of sheaves of cdga’s is not valid anymore for
derived foliation over more general derived stacks, such as derived Artin stacks for
instance. We will quickly restrict ourselves to derived foliations over smooth.

We introduce the following notations.

Definition 1.2.5 Let X be a derived DM-stack andF ∈ Fol(X) be a derived foliation
over X .

• The sheaf of graded mixed cdga’s A over X corresponding to F is called the de
Rham algebra along F . It is denoted by DR(F).

• The perfect complex DR(F)(1)[−1] over X is called the cotangent complex of
F and is denoted by LF . We thus have a quasi-isomorphism of quasi-coherent
sheaves of graded cdga’s over X

DR(F) � SymOX (LF [1]).

Before giving some examples of derived foliations, we fix the following terminol-
ogy.

Definition 1.2.6 Let X be a derived DM-stack, F ∈ Fol(X) be a derived foliation
over X and LF ∈ QCoh(X) is cotangent complex.

• We say that the foliationF is smooth if LF is quasi-isomorphic to a vector bundle
on X sitting in degree 0.

• We say that the foliation F is quasi-smooth if LF is quasi-isomorphic to perfect
complex of amplitude contained in cohomological degrees [−1, 0].

• We say that the foliation F is rigid if the induced morphism of coherent sheaves

H0(LX ) −→ H0(LF )

is surjective.

Remark 1.2.7 Definition 1.2.4 above can be extended to more general settings. To start
with, wemay allow X being any derived Artin stack, and wemay furthermore drop the
connectivity assumption on LF in order to define non-connective derived foliations.
These are useful for instance in the setting of shifted symplectic and Poisson structures
(see e.g. [3, 15]), but will not be considered in the present work.
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To finish this section, we describe a more geometric interpretation of derived folia-
tions in terms of derived loop spaces and their natural circle action. This point of view
will not be used further in the present paper, but has the advantage of being useful in
some contexts, and comes handy. Moreover, using the graded circle of [13] instead of
the formal circle, makes it possible to extend the notions of derived foliations outside
of the characteristic zero context.

We consider the formal additive group Ĝa , as well as its classifying stack Ŝ1 :=
BĜa ∈ dSt. The group Gm acts on the formal group Ĝa and thus on the formal circle
Ŝ1. The stack Ŝ1 is itself a group stack and thus acts on itself by translation. These two
actions combine into an action of the group stackH := Ŝ1

�Gm . As explained in [17,
Prop. 1.3] the symmetric monoidal ∞-category QCoh(BH) is naturally equivalent to
the symmetric monoidal ∞-category of graded mixed complexes.

For a derived DM-stack X ∈ dSt, its formal derived loop stack is defined by

L f X := Map(Ŝ1, X).

It comes equipped with a canonical action of H. By the equivalence recalled above,
betweenQCoh(BH) and gradedmixed complexes, we see that a derived foliation over
X is the exact same thing as a a derived stack F over L f X , together with anH-action
onF covering the canonical action onL f X and such thatF is relatively affine over X
and of the form SpecOX (LF [1]) (compatibly with the grading where LF is of weight
one) for LF a connective perfect complex over X . As a result,Fol(X) can be realized
as a full sub-∞-category of (dSt/L

f X)H, ofH-equivariant derived stacks over L
f X .

The above interpretation of derived foliations makes pull-back of foliations more
natural. For a morphism of derived DM-stacks f : X −→ Y , there is an induced H-
equivariant morphism L f X −→ L f Y . For a derived foliation F ∈ Fol(Y ), realized
as an H-equivariant derived stack F −→ Y , the pull-back f ∗(F) simply is realized
by the pull-back of derived stacks

f ∗(F) � F ×L f Y L f X ,

equipped with its natural projection down to L f X .

Remark 1.2.8 In [8], D. Gaitsgory and N. Rozenblyum define a notion of formal mod-
uli problem under X . It is beyond the scope of this paper to make a precise comparison
between derived foliations and this notion of formal moduli problems. However, we
thank the referee for the following suggestion. For a nice enough stack X , it is rea-
sonable to expect that relative de Rham cohomology yields a conservative (possibly
fully-faithful) functor going from formal moduli problems X → Y under X , with
perfect and co-connective relative tangent complex, to derived foliations on X .

1.3 Examples

We finish this Section by giving some classes of examples of derived foliations.
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1.3.1 Lie algebroids

Let us now assume that X is a smooth DM stack. Its tangent sheaf TX is a sheaf of
Lie-algebras on the small étale site Xet where the Lie bracket is the usual bracket of
vector fields. Recall from [14] that a Lie algebroid on X consists of a vector bundle T
on X , together two additional structures:

(1) a C-linear Lie bracket [−,−] on T .
(2) an OX -linear morphism a : T −→ TX .

These data are required to satisfy the following compatibility relation: for any local
sections s, t of T , and any function f on X

[s, f t] = f [s, t] + a(s)( f )t .

We can associate to a Lie algebroid on X a natural derived foliation on X as follows.
We consider the graded OX -cdga SymOX (T ∗[1]), where T ∗ is the OX -linear dual to
T . The bracket on T induces a C-linear differential d : T ∗ −→ T ∗ ∧OX T ∗, which
endows SymOX (T ∗[1]) with the structure of graded mixed cdga. This is an object in
Fol(X). The cotangent complex of this derived foliation is T ∗ by construction, and
this the above derived foliation is obviously smooth. However, it is rigid only when
a : T −→ TX identifies T with a subbundle of TX .

It is easy to show that this construction produces a fully faithful ∞-functor

LieAlgbd/X −→ Fol(X)

where LieAlgbd/X is the category of Lie algebroids over X . The essential image of this
∞-functor can be shown to coincide with the full∞-subcategory consisting of smooth
derived foliations over X (Definition 1.2.6). To be more precise, for any vector bundle
V on X , the classifying space of graded mixed structures on the sheaf of graded cgda
SymOX (V [1]) turns out to be discrete and in bijection with Lie algebroid structures
on V ∗. In particular, we get that the ∞-category of smooth derived foliations over
Spec C is equivalent to the usual category of finite dimensional complex Lie algebras.

There is also a relation between derived foliations and dg-Lie algebroids as con-
sidered in [5, 14]. To a dg-Lie algebroid T over an affine variety X = Spec A, we can
associate its Chevalley-Eilenberg cochain complex C∗(T ) := Sym A(T ∗[1]), consid-
ered as a graded mixed cdga using the Lie bracket as mixed structure. Though this
will not be relevant in this paper, we think that this construction produces a fully faith-
ful ∞-functor from the full ∞-subcategory consisting of dg-Lie algebroids that are
perfect over A and of amplitude in [0,∞), to derived foliations over X .

1.3.2 Initial and final foliations

The ∞-category Fol(X) possesses two important distinguished objects, namely the
initial and final objects. The initial object is called the punctual derived foliation,
or the trivial derived foliation, and is denoted by 0X ∈ Fol(X). The corresponding
graded mixed cdga DR(F) is OX endowed with the trivial graded mixed structure
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(concentrated in weight and cohomological degree 0). When X is smooth, 0X can also
be represented by the 0 Lie algebroids on X and intuitively corresponds to the foliation
on X whose leaves are the points of X .

The final object in Fol(X) is called the tautological derived foliation, or the de
Rham derived foliation. It corresponds to the graded mixed cdga DR(X) which is the
derived de Rham algebra of X . when X is smooth, it can also be represented by the
tautological Lie algebroid TX itself, and intuitively is the foliation for which X is its
only leaf.

1.3.3 Algebraically integrable derived foliations

Suppose that we are given a morphism of derived DM-stacks f : X −→ Y that is
locally of finite presentation. The relative de Rham algebra of X over Y defines a
sheaf of graded mixed cdga DR(X/Y ) on the small étale site of X , which is a derived
foliation over X . Its underlying sheaf of graded cdga’s simply is SymOX (LX/Y [1]),
where LX/Y is the relative cotangent complex of X over Y . This is called the derived
foliation induced by the morphism f . We will use the notation

F f := DR(X/Y ) ∈ Fol(X)

for this foliation. Note thatF f can also be understood as the pull-back f ∗(0Y ), where
0Y is the punctual foliation described above.

We set the following definition, and use the expression d-integrable to avoid con-
fusions with the usual notions of integrability of singular underived foliations that we
will meet later on (see Sect. 1.3.4).

Definition 1.3.1 Let X be a derived DM stack. A derived foliation F on X (locally)
equivalent to one of the form F f = f ∗(0Y ), for a (locally defined) morphism f :
X → Y locally of finite presentation between derived DM stacks, will be called
algebraically (locally) d-integrable.

The reason for this name is that the derived foliation F f corresponds intuitively
to the foliation on X whose leaves on are the derived fibers of the map f . See also
Remark 1.3.4. It is obvious to see that F f is quasi-smooth (resp. smooth) if and only
if f is quasi-smooth (resp. smooth). Also, F f is automatically rigid.

1.3.4 Pfaffian systems as quasi-smooth and rigid derived foliations

Let X be a smooth algebraic variety. Assume that we are given differential forms
wi ∈ �(X ,�1

X ), for i = 1, . . . , n, such that the graded ideal (w1, . . . , wk) ⊂
�(X , SymOX (�1

X [1])) is stable by the de Rham differential. We chose differential
forms wi j ∈ �(X ,�1

X ) such that for all i we have

d(wi ) =
∑

j

wi j ∧ w j .
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We assume furthermore that the k × k matrix of forms W = (wi j )i j satisfy the
following integrability condition

d(W ) + W ∧ W = 0.

Out of these data wi and W as above, we construct a sheaf of graded mixed cdga’s on
X by considering SymOX (L[1]) where L is the two terms perfect complex

L :=
(
Ok

X
w∗

�1
X

)
.

The graded mixed structure on SymOX (L[1]) is itself determined by a morphism of
complexes of sheaves of C-vector spaces

L −→ ∧2
OX

L

compatible with the de Rham differential on �1
X . Such a morphism is obtained for

instance by specifying amorphismOk
X −→ Ok

X ⊗OX �1
X which is a flat connection on

the vector bundleOk
X . Therefore, the matrix W defines such a graded mixed structure,

and therefore a derived foliation on X .
The derived foliations defined above depends not only on the wi ’s, but also on the

choice of the matrix W . It is clear that such derived foliations are quasi-smooth and
rigid. We call such derived foliations Pfaffian derived foliations for obvious reasons.
Derived foliations which are algebraically d-integrable are always locally, for the
Zariski topology, equivalent to Pfaffian derived foliations.

1.3.5 Pull-backs of smooth and rigid foliations

Let f : X −→ Y be a morphism of smooth algebraic varieties and F ∈ Fol(Y ). We
have seen that there is a pull-back f ∗(F) ∈ Fol(X). It is easy to see that when F is
smooth, then f ∗(F) is always quasi-smooth. IfF is moreover rigid, then so is f ∗(F).
We will see later that, at least if one admits Y to be a formal scheme, all rigid and
quasi-smooth derived foliations are locally of this form (see Proposition 1.5.1). This
follows from an important property of pull-backs, namely the existence of a homotopy
push-out of cotangent complexes

f ∗(�1
Y ) �1

X

f ∗(LF ) L f ∗(F).

The intuition behind this is that the leaves of f ∗(F) are obtained by derived pull-back
along f of the leaves of F . The defect of transversality of f with respect to the leaves
of F implies that the leaves of f ∗(F) can be singular, but are always quasi-smooth.



Algebraic foliations and derived... Page 15 of 47 5

1.3.6 Derived foliations, truncations and singular algebraic foliations

Our derived foliations bear an important relationwith the singular foliations classically
considered in the algebraic and holomorphic contexts. There are several possible defi-
nitions of singular foliations in the literature. In [2, Definition 1.11] they are defined as
full coherent differential ideals of the sheaf of differential 1-forms. For our purposes,
the property of being full will be irrelevant, and will simply define a singular foliation
(on a smooth variety X ) as a coherent subsheaf D ⊂ �1

X satisfying the condition

d(D) ⊂ D ∧ �1
X ⊂ �2

X ,

where d : �1
X −→ �2

X is the de Rham differential. This is equivalent to [1, Definition
6.1.1].

Let now F ∈ Fol(X) be a derived foliation on a smooth variety X . We consider
the anchor map a : �1

X −→ LF and its induced morphism �1
X −→ H0(LF ). We

let D ⊂ �1
X be the kernel of the above map, which is a coherent subsheaf of �1

X .
As a comes from a morphism DR(X) −→ SymOX (LF [1]) of graded mixed cdga’s
over X , it follows that the ideal in �∗

X generated by D is in fact a differential ideal
(d(D) ⊂ D ∧ �1

X ), i.e. D is an underived singular foliation on X .

Definition 1.3.2 The kernel D of H0(a) : �1
X −→ H0(LF ) is a singular foliation on

X called the truncation of F , and denoted by τ0(F).

This produces an ∞-functor τ0 from Fol(X) to the category of singular foliations on
X . However, we will see later that not all singular foliation arise this way, and the
existence of a derived enhancement of a singular foliation is a sublte question related
to local integrability. This question will be studied in details for quasi-smooth and
rigid derived foliation (see Corollary 2.3.3).

Conversely, let D ⊂ �1
X be a singular foliation on X . We can construct a graded

algebra

DR(D) :=
⊕

p

(
�

p
X/ < D >

) [p],

which is the (underived) quotient of the algebra of differential forms�∗
X by the graded

ideal generated by D. As D is a differential ideal, the de Rham differential induces a
graded mixed structure on DR(D) in such a way that the canonical morphism

DR(X) −→ DR(D)

becomes a morphism of graded mixed cdga’s. Note that however, DR(D) does not
satisfy the condition of definition 1.2.1, as Sym(�1

X/D[1]) involves derived wedge
powers of the coherent sheaf �1

X/D[1], and might differ from (�p/ < D >)[p].
Therefore,DR(D) does not define a derived foliation in our sense. To bemore precise,
the underlying graded algebraDR(D) is of the form Symu

OX
(�1

X/D[1]), where Symu

is the underived symmetric algebra functor. The construction D �→ DR(D) is easily
seen to be an equivalence of categories, from singular foliations on X to graded mixed
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algebras of the form Symu
OX

(M[1]) such that �1
X −→ M is a coherent quotient. This

however does not define a functor from singular foliations to derived foliations.
Finally, the truncation ∞-functor τ0 enjoys a certain universal property described

as follows. The derived foliation F has a realization |DR(F)|, and in the same way,
the truncation τ0(F) has an underived de Rham complex (�∗

X/ < D >) where the
differential is the de Rham differential. There is an induced canonical morphism

|DR(F)| −→ (�∗
X/ < D >).

This morphism is far from being an isomorphism in general, although it is an isomor-
phism in low degrees under appropriate conditions (see Proposition 3.1.5).

Note that there is a notion of pullback of singular foliation along an map f : X →
Y , with X and Y smooth. For simplicity we state it in the algebraic case, but the
analytic and formal versions are alike. If D ⊂ �1

Y is an algebraic singular foliation
on Y , then it’s pullback is, by definition, the subsheaf image of the composite map
f ∗(D) → f ∗(�1

Y ) → �1
X . Using this notion we give the following definition.

Definition 1.3.3 An algebraic (resp. formal, resp. analytic) singular foliation on a
smooth algebraic variety (resp. formallly smooth formal scheme, resp. smooth analytic
space) X is locally integrable if locally in the Zariski topology (resp. locally formally,
resp. locally in the analytic topology) at each point of X there exists a morphism
f : X → Y such that D equals is the pull-back by f of the punctual foliation on Y .
Equivalently, D is the image of f ∗(�1

Y ) → �1
X .

Clearly, if a derived foliation F is d-integrable in the sense of Sect. 1.3.1, then its
truncation τ0(F) is integrable in the sense above.

Remark 1.3.4 In the literature, a (locally) integrable singular foliation is also some-
times called (locally) completely integrable. We note here that the notion of
integrability of Definition 1.3.3 only coincides with the notion of [12, §3] if one fur-
ther assume that f is generically smooth on X (this is condition b) at p. 73 of loc.cit).
Therefore, to distinguish between the two,wewill refer toMalgrange’s stronger notion
as local strong integrability.

1.4 Foliations over formal completions

Let X be a smooth affine variety and Y ⊂ X be a closed subvariety. For simplicity we
assume that the ideal of Y in X is generated by a regular sequence ( f1, . . . , fk). We
denote by ÔY the ring of functions on the formal completion of X along Y .

Recall that we have a module �̂1
Y of differential forms on the formal completion of

X along Y , defined as the formal completion of �1
X along (the ideal defining) Y . This

is a locally free ÔY -module of rank the dimension of X . Moreover, it comes equipped
with a canonical derivation d : ÔY −→ �̂1

Y which extends to a full structure of

graded mixed cdga D̂R(Y ) on the graded cdga SymÔY
(�̂1

Y [1]). We can then consider
the ∞-category of graded mixed cdga’s A endowed with a morphism

u : D̂R(Y ) −→ A
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and satisfying the following conditions.

• The morphism u induces an isomorphism ÔY −→ A(0).
• The ÔY -dg-module A(1)[−1] is perfect and connective.
• The natural morphism of graded cdga’s

SymÔY
(A(1)) −→ A

is a quasi-isomorphism.

Let us denote by F̂ol(Ŷ ) the opposite ∞-category of the above ∞-category of
graded mixed cdga’s under D̂R(Y ). We call its objects formal derived foliations on
the formal scheme Ŷ . On the other hand, we may identify the formal scheme Ŷ with its
associated (derived) stack, and therefore we may consider its∞-category of foliations
Fol(Ŷ ), according to Definition 1.2.4.

Proposition 1.4.1 There exists a natural equivalence of ∞-categories

F̂ol(Ŷ ) � Fol(Ŷ ).

Proof The formal completion of X along Y , denoted by Ŷ , is equivalent, as an object
of dSt, to a colimit

Ŷ := colimnYn

where Yn ⊂ X is the closed sub-scheme defined by the equations ( f n
1 , . . . , f n

k ),
where ( f1, . . . , fk) is the regular sequence generating the ideal of Y in X . We thus
have Fol(Ŷ ) � limnFol(Yn). Now, the right hand side is directly related to F̂ol(Ŷ )

by the limit ∞-functor

lim : limnFol(Yn) −→ F̂ol(Ŷ ).

Note that this is well defined as limnDR(Yn) � D̂R(Y ), because �1
Ŷ

� limnLYn .

The inverse functor is defined by sending a graded mixed cgda A under D̂R(Y ) to its
families of restriction

{A ⊗D̂R(Y ) DR(Yn)}n ∈ limnFol(Yn).

The fact that these two ∞-functors are inverse to each others is an immediate conse-
quence of the fact that the natural ∞-functor

Perf(Ŷ ) −→ limnPerf(Yn)

is an equivalence. �
The following is the formal version of Definition 1.3.1.
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Definition 1.4.2 Let Ŷ (respectively, Ŷ ′)) be the formal completion of a smooth affine
scheme Y (resp. Y ′) along an ideal generated by a regular sequence. We say that a
foliation F on Ŷ is formally (locally) d-integrable if there exists a (locally defined)
morphism of formal schemes f : Ŷ → Ŷ ′ such thatF is (formally locally) equivalent
to the pullback f ∗(0Ŷ ′) of the final foliation 0Ŷ ′ on Ŷ ′ via f .

If X is a smooth variety, x ∈ X , and X̂x denotes the formal completion of X at
x , then an algebraic foliation F ∈ Fol(X) is said to be formally d-integrable at x
if its restriction F̂ to X̂x (which is a formal foliation on X̂x ) is formally d-integrable
according to the previous definition.

Note that, in the above definition, the underlying graded cdga’s of f ∗(0Ŷ ′) is
SymOX (L̂Ŷ/Ŷ ′ [1]), where L̂Ŷ/Ŷ ′ is the cotangent complex of f : Ŷ → Ŷ ′.

1.5 Formal structure of rigid quasi-smooth derived foliations

In the proposition below we let Â
n be the formal completion of A

n at 0.

Proposition 1.5.1 Let X be smooth variety and F ∈ Fol(X) be a rigid and quasi-
smooth derived foliation on X. Then, Zariski locally on X, there exists n ≥ 0 and a
smooth and rigid derived foliation F ′ on the formal scheme X × Â

n, such that F is
the pull-back of F ′ by the zero section X −→ X × Â

n.

Proof Wewill freely use thematerial and notations about internal DeRham complexes
and their realizations, recalled in Sect. 1.1. First of all, the statement being Zariski
local, we may assume that X = Spec A is a smooth affine variety. We consider
F ∈ Fol(X), a rigid and quasi-smooth derived foliation, which corresponds to a
graded mixed cdga DR(F) with an identification DR(F)(0) � A and satisfying the
conditions of Definitions 1.2.1 and 1.2.6. There is a natural morphism �1

A −→ LF ,

whose cone, by the rigidity and quasi-smooth hypothesis, must be of the form N∗[1],
for a vector bundle N∗ over X . By localizing further on X we may suppose N∗
isomorphic toOn

X for some n ≥ 0. We consider the push-out of graded mixed cdga’s

DR(F) −→ DR(F) ⊗DR(X) A.

On the underlying graded cdga’s, this morphism looks like

Sym A(LF [1]) −→ Sym A(N∗[2])

and is induced by applying the Sym construction to the boundary map LF → N∗[1].
Moreover, as N∗ is a vector bundle (and X is affine) we see that the graded mixed
structure on the graded mixed cdga Sym A(N∗[2]) must be trivial.

We now consider the induced morphism on the internal relative de Rham algebra

DRint (Sym A(N∗[2])/DR(F)) −→ DRint (A/DR(F)).
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We can then consider their internal realization, and the induced morphism on the
internal de Rham cohomology

|DRint (Sym A(N∗[2])/DR(F))| −→ |DRint (A/DR(F))|.

This is a new morphism of graded mixed cdga’s and thanks to Lemma 4.1.2, the right
hand side is canonically equivalent to DR(F), so we get a morphism

|DRint (Sym A(N∗[2])/DR(F))| −→ DR(F).

The left hand side is a graded mixed cdga, say B, whose degree zero part is
|Sym A(N∗[2])| � Ŝym A(N∗) � O(X × Â

n). Moreover, by construction, it is not
hard to see that B is free, as a graded cdga, over the B(0)-module �1

A ⊗A B(0).
Therefore, Proposition 1.4.1 tells us that B corresponds to a smooth foliation F ′ on
X × Â

n .
The morphism of graded mixed cdga’s B −→ DR(F) induces a morphism

e∗(F ′) −→ F in Fol(X), where e : X −→ X × Â
n is the zero section. This mor-

phism is furthermore an equivalence by observing the inducedmorphism on cotangent
complexes. In particular, e∗(F ′) is rigid, and this automatically implies thatF ′ is rigid
as a foliation on X × Â

n . �
Remark 1.5.2 Proposition 1.5.1 has the following conceptual refinement. First of all,
the same proof shows that there exists a globally defined pair (X′,F ′) consisting of a
formally smooth formal schemeX′ and a smooth rigid foliationF ′ onX′, together with
a map f : X → X′ such that fred is an isomorphism and there exists an equivalence
F � f ∗(F ′). This is achieved by defining

X′ := Spf(|DR(F) ⊗DR(X) A|),

and F ′ as the derived foliation on X′ defined by the graded mixed cdga on X

|DRint ((DR(F) ⊗DR(X) A)/DR(F))|.

Note that ifN ∗ is the vector bundle on X such thatN ∗[1] is the cofiber of the canonical
map �1

X −→ LF , the underlying graded cdga DR(F) ⊗DR(X) A is SymOX (N∗[2]).
However, when X is not affine the mixed structure on SymOX (N∗[2]) can possibly
be non-trivial. We note here that this mixed structure captures the difference between
the formal scheme X′ and the formal completion N̂ of the normal bundle of X in X′.
Finally, Proposition 1.5.1 boils down to the fact that, Zariski locally on X , X′ can be
chosen of the form X × Â

n (and this is simply due that N ∗ is locally free of finite
rank), and that, under this identification, f becomes identified with the zero section
map X → X × Â

n .

Remark 1.5.3 Without the rigidity assumption, but still for quasi-smooth derived foli-
ations, Proposition 1.5.1 remains true if one replaces the formal scheme X × Â

n by a
formally smooth formal Artin stack containing X as its reduced part.
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When restricting to the formal completion at a point x ∈ X , Proposition 1.5.1 has
the following important consequence.

Corollary 1.5.4 LetF ∈ Fol(X) be a derived quasi-smooth and rigid derived foliation
over a smooth algebraic variety X. Let x ∈ X and X̂x = Sp f (ÔX ,x ) be the formal
completion of X at x, and F̂ ∈ Fol(X̂x ) the restriction ofF . Then, there exists m ≥ 0,
a morphism f : X̂x −→ Â

m and an isomorphism

f ∗(0
Âm ) � F̂ .

In other words, F is formally d-integrable at each point (Definition 1.4.2).

Proof Indeed, by Proposition 1.5.1, F is, locally at x , the pull-back of a smooth and
rigid derived foliationF ′ on X × Â

n . Thus, F̂ becomes isomorphic to the pull-back of
a smooth and rigid derived foliation F̂ ′ on X̂x ×Â

n . By the formal version of Frobenius
theorem (see for instance [4, Thm. 2]), we know that F̂ ′ is formally integrable and thus
d-integrable as it is a smooth derived foliation. This implies that F̂ is d-integrable. �
Remark 1.5.5 The above corollary is also true for non-quasi-smooth derived foliation,
but Â

m must be replaced by a more general, eventually not formally smooth, derived
formal schemes. It shows in particular that not all singular foliation is the truncation
of a quasi-smooth and rigid derived foliation, not even at the formal level. Indeed,
formal integrability is not always satisfied for singular foliations.

1.6 Leaves of a derived foliation

Given a derived foliation F on a smooth variety X , and a point x ∈ X , it is possible
to define the notion of leaf of F passing through x , at least at the formal level. For
this, we start by recalling the notion of formal moduli problems in the sense of [11]
(see also [22] for an overview).

We let dgart∗ be the ∞-category of commutative, Artinian, connective, local and
augmented dg-algebras. Recall that these are cdga’s A, together with an augmentation
A −→ C, and such that the following conditions are satisfied:

• The ring H0(A) is local and artinian.
• The vector space H∗(A) is finite dimensional over C.

By definition, a formal moduli problem is an ∞-functors

F : dgart∗ −→ Top

satisfying the following two conditions:

• The space F(C) is contractible.
• For any cartesian square in dgart∗

A′ B ′

A B



Algebraic foliations and derived... Page 21 of 47 5

such that the map H0(A) −→ H0(B) is surjective, the induced commutative
diagram of spaces

F(A′) F(B ′)

F(A) F(B)

is cartesian in Top.

Graded mixed cdga’s can be used to define formal moduli problems as follows
(see also [6] for more about the relations between formal geometry and graded mixed
cdga’s). To start with, there is an ∞-functor

DR(C/−) : dgart∗ −→ ε − dggr

sending an augmented cdga A → C to DR(C/A), the de Rham algebra of C relative
to A, through the augmentation. This ∞-functor is easily seen to be fully faithful,
the artinian cdga A being recovered as the realization |DR(C/A)|. According to the
classification of formal moduli problems by dg-Lie algebras, this ∞-functor can also
be described as follows. An object A ∈ dgart∗ gives rise to a tangent dg-lie algebra
�A := TC/A, the dg-lie algebra of derived A-linear derivations onC. The gradedmixed
cdga DR(C/A) is then canonically equivalent to C∗(�A), the Chevalley complex of
the dg-Lie algebra �A, considered as a graded mixed cdga (see [22] for details).

For a given graded mixed cdga B we thus define its formal spectrum Spf B :
dgart∗ −→ Top by

(Spf B)(A) := Mapε−dggr (B,DR(C/A)).

The ∞-functor Spf B is then a formal moduli problem, called the formal spectrum of
B.

Let now F be a derived foliation on the smooth variety X , and x ∈ X . Taking an
affine chart around x we can consider X to be affine, say X = Spec A. We start by
considering the augmentation induced by the point x

DR(F) −→ A −→ C.

This is a morphism of graded mixed cdga’s and we can form the corresponding push-
out DR(Fx ) := A ⊗DR(F) C. This is a new graded mixed cdga which corresponds to
a derived foliation over Spec C, and whose cotangent complex is LF ,x [1], the shift of
the fiber at x of the cotangent complex of F . The formal spectrum of DR(Fx ) defines
a formal moduli problem

F̂x := Spf (DR(Fx )) : dgart∗ −→ Top.
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Definition 1.6.1 The formal moduli problem F̂x defined above is called the formal
leaf of F passing through x .

Note that the tangent dg-Lie algebra of the formal leaf F̂x is given by TF ,x [−1],
the fiber at x of the tangent complex of the derived foliationF . In particular, amplitude
considerations tell us that F̂x is always representable by a derived formal scheme (see
[11]).

When applied to the tautological foliation, DR(F) = DR(X), we get that
DR(Fx ) = SymC(�1

X ,x [1]) with the trivial mixed structure. In this case we see

that Spf (DR(Fx )) is canonically isomorphic to X̂x , the formal completion of X at
x . Moreover, using the canonical map DR(X) −→ DR(F), the formal moduli F̂x

comes equipped with a canonical morphism

F̂x −→ X̂x

to the formal completion of X at the point x . WhenF is rigid this morphism is a closed
embedding of derived formal schemes, and thus F̂x sits inside X̂x as a closed formal
derived subscheme.

The morphism induced by F̂x −→ X̂x at the level of rings of functions, can be
described as follows. The commutative dg-algebra of functions on F̂x is |DR(Fx )|,
the realization of DR(Fx ). The natural morphism DR(X) −→ DR(Fx ) induces a
canonical morphism of cdga’s

O(X̂x ) � |SymC(�1
X ,x [1])| −→ |DR(Fx )| =: O(F̂x ),

which is the induced morphism obtained by restriction of functions along the embed-
ding F̂x ⊂ X̂x .

Note that one can define analytic and algebraic leaves as well, but of course,
contrary to the formal case, their existence is not guaranteed. We give below the
definition in the algebraic setting, the case of analytic leaves being completely similar.

We define an algebraic leaf of F on X to be a derived scheme L together with a
pointwise injective morphism of derived schemes j : L −→ X such that the following
condition is satisfied: for all point x ∈ L , there exists an equivalence of formal derived
schemes L̂ x � F̂x , that makes the diagram below commutative

L̂ x

j

∼ F̂x

X̂x .

When F is globally integrable by a morphism f : X −→ Y , then clearly the
inclusions of derived fibers f −1(y) −→ X are leaves in the sense above. As we will
see later (Corollary 2.3.4), under an appropriate codimension 2 condition, rigid and
quasi-smooth derived foliations always admit analytic leaves locally. i.e. their formal
leaves are in fact “convergent”.
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2 The analytic theory

The general notion of derived foliations has a complex analytic analogue. We will not
need the most general definition, that would require some advanced tools of derived
analytic geometry (see e.g. [16]), and we will restrict ourselves to derived foliations
over smooth complex analytic spaces, for which the basic definitions can be given
more directly.

2.1 Analytic derived foliations

Let X be a smooth complex analytic space. It has a sheaf of holomorphic 1-forms
�1

X , and a de Rham algebra DR(X) := SymOX (�1
X [1]). This is a sheaf of graded

cdga’s over X , which is equipped with a canonical graded mixed structure given by
the holomorphic de Rham differential.

Definition 2.1.1 A holomorphic or analytic derived foliation over X consists of a
sheaf A of graded mixed cdga’s over X , together with a morphism of sheaves of
graded mixed cdga’s

DR(X) −→ A

satisfying the following conditions:

(1) The induced morphism OX −→ A(0) is a quasi-isomorphism.
(2) The complex of OX -modules A(1)[−1] is perfect and connective.
(3) The natural morphism SymOX (A(1)) −→ A is a quasi-isomorphism of sheaves

of graded cdga’s.

The analytic derived foliations over a complex manifold X form an ∞-category,
denoted by Fol(X). It is a full sub-∞-category of the ∞-category of sheaves of
graded mixed DR(X)-algebras over X . For any morphism f : X −→ Y of complex
manifolds, we have a pull-back ∞-functor

f ∗ : Fol(Y ) −→ Fol(X).

It is defined as in the algebraic case. There is a natural morphism f −1(DR(Y )) −→
DR(X) of sheaves of graded mixed cgda’s on Y . For F ∈ Fol(Y ), corresponding
to a sheaf of graded mixed cdga DR(F), we define f ∗(F) ∈ Fol(X) as the derived
foliation associated to the sheaf of graded mixed cdga’s given by the base change

DR( f ∗(F)) := DR(X) ⊗ f −1(DR(Y )) f −1(DR(F)).

As in Definition 1.2.6, we have the notions of smooth, quasi-smooth, and rigid
derived foliations over a complex manifold. As in Definition 1.3.2, we have a notion
of truncation of an analytic derived foliation on a complex manifold; this truncation
is an analytic singular foliation on the same complex space.

The following is the analytic version of Definition 1.3.1.
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Definition 2.1.2 An analytic derived foliationF on a complex manifold X is (locally)
d-integrable if there exists a (locally defined) analytic map F : X → Y of complex
manifolds and a (local in the analytic topology) equivalence F � f ∗(0Y ), where 0Y

is the final derived analytic foliation on Y .

2.2 Analytification

Let X be a smooth algebraic variety and Xh be the corresponding complex analytic
space. We are going to construct an analytification ∞-functor

(−)h : Fol(X) −→ Fol(Xh).

We have a morphism of ringed spaces

u : (Xh,Oh
X ) −→ (X ,OX ).

This morphism induces a canonical isomorphism u∗(�1
X ) � �1

Xh of vector bundles

on Xh . This extends to a natural isomorphisms u∗(�∗
X ) � �∗

Xh , which is compatible
with the de Rham differential in the sense that the composed morphism

u−1(DR(X)) −→ u∗(DR(X)) � DR(Xh)

is not only a morphism of graded cdga’s but of graded mixed cdga’s.
For an algebraic derived foliation F ∈ Fol(X), corresponding to a morphism of

sheaf of graded mixed cdga’s DR(X) −→ DR(F), we consider

DR(Xh) −→ u−1(DR(F)) ⊗DR(X) DR(Xh).

This defines a derived foliationFh ∈ Fol(Xh). Obviously, the constructionF �→ Fh

is functorial and defines an ∞-functor

(−)h : Fol(X) −→ Fol(Xh).

Definition 2.2.1 The analytification ∞-functor for derived foliations is the∞-functor

(−)h : Fol(X) −→ Fol(Xh)

defined above.

The analytification ∞-functor shares the following straightforward properties.

• (Functoriality) Let f : X −→ Y be a morphism of smooth algebraic varieties and
f h : Xh −→ Y h the corresponding morphism of complex spaces. Then, we have
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a naturally commutative diagram of ∞-functors

Fol(Y )
f ∗

(−)h

Fol(X)

(−)h

Fol(Y h)
( f h)∗

Fol(Xh).

• A derived foliation F ∈ Fol(X) is smooth (resp. quasi-smooth, resp. rigid) if and
only if Fh is smooth (resp. quasi-smooth, resp. rigid).

• For any smooth variety X , the analytification ∞-functor (−)h : Fol(X) −→
Fol(Xh) is conservative.

• Exactly as done in 1.3.6 for the algebraic case, there is a truncation ∞-functor
τ0 : Fol(Y ) → SingFol(Y ) from analytic derived foliations to analytic singular
foliations over a complex manifold Y . Moreover, it is easy to check that, if X is a
smooth algebraic variety, the following diagram commutes

Fol(X)

τ0

(−)h

Fol(Xh)

τ0

SingFol(X)
(−)h

SingFol(Xh).

When X is smooth and proper GAGA implies furthermore the following statement.

Proposition 2.2.2 For a smooth and proper algebraic variety X the analytification
∞-functor

(−)h : Fol(X) −→ Fol(Xh)

is an equivalence.

Proof We let�∗
X [∗] := SymOX (�1

X [1]) be the sheaf of cdga’s on X . Its analytification
is �∗

Xh [∗] = SymOXh (�1
Xh [1]). The analytification functor produces an dg-functor

between dg-categories of dg-modules

�∗
X [∗] − Mod −→ �∗

Xh [∗] − Mod.

We restrict this ∞-functor to the full sub-dg-categories of perfect dg-modules, i.e.
sheaves of dg-modules which locally are obtained by finite limits and colimits of
�∗

X [∗] (resp. �∗
Xh [∗]), and pass to ind-completion to get

IndPerf(�∗
X [∗]) −→ IndPerf(�∗

Xh [∗]).
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By GAGA this is an equivalence. We recall here that for any graded mixed cdga A,
the dg-category of dg-modules A − Mod � IndPerf(A) has a canonical action of the
group stack H = BGa � Gm . The Gm-action is induced by the grading on A, while
the action of BGa by the mixed structure. The dg-category of fixed points by H is
moreover equivalent to the dg-category of graded mixed A-dg-modules (see [17]). By
sheafification, this implies that the groupH acts on both dg-categories IndPerf(�∗

X [∗])
and IndPerf(�∗

Xh [∗]) and the analytification dg-functor becomes anH-equivariant dg-
equivalence

IndPerf(�∗
X [∗]) � IndPerf(�∗

Xh [∗]).

We apply the fixed points construction (see [17] for details) and get this way a new
equivalence of ∞-categories

IndPerf(�∗
X [∗])hH � IndPerf(�∗

Xh [∗])hH.

The analytification functor being compatible with tensor products, the above ∞-
functor has a natural symmetricmonoidal structure and thus induces an∞-equivalence
on the level of ∞-categories of commutative algebras. The proposition follows by the
observation that Fol(X) (resp. Fol(Xh)) is a full sub-∞-category of the ∞-category
of commutative algebras in IndPerf(�∗

X [∗])hH (resp. in IndPerf(�∗
Xh [∗])hH) and that

these sub-∞-categories match by the above equivalence. �

2.3 Analytic integrability

We have seen that quasi-smooth and rigid derived foliations are always formally d-
integrable, a property which distinguishes them from the underived singular foliations.
We now study analytic d-integrability (Definition 2.1.2) of quasi-smooth and rigid
derived foliations, locally in the analytic topology. We think it is not true that analytic
d-integrability always holds for quasi-smooth and rigid derived foliations, but we
will see below (Proposition 2.3.2 and Corollary 2.3.4) that they are always locally
integrable under a rather common codimension ≥ 2 condition.

LetF ∈ Fol(X)be aquasi-smooth and rigid derived foliationona smooth algebraic
variety X and Fh ∈ Fol(Xh) its analytification. We consider the truncation τ0(F)

(Definition 1.3.2), which is an algebraic singular foliation on X , and its analytification
τ0(Fh), which is an analytic singular foliation on Xh .

The cotangent complex LFh is perfect complex of amplitude [−1, 0] on Xh .

Definition 2.3.1 With the above notations and assumptions on F , the smooth locus of
F is the Zariski open subset in X of points where LF is quasi-isomorphic to a vector
bundle sitting in degree 0. Its closed complement Sing(F) ⊂ X is called the singular
locus of F .

Equivalently, since F is supposed to be quasi-smooth and rigid, Sing(F) is the
support of the coherent sheaf H1(TF ), whereTF := L

∨
F denotes the tangent complex

of F . Note that, in particular, the smooth locus of such an F might be empty.
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The following result entails local analytic integrability of the truncation of any
quasi-smooth and rigid derived foliation as soon as we impose smoothness outside a
codimension ≥ 2 subset. More precisely, we have the following result.

Proposition 2.3.2 Let X be a smooth irreducible algebraic variety andF ∈ Fol(X) be
a quasi-smooth rigid derived foliation. We assume that the singular locus Sing(F) ⊂
X is at least of codimension 2. Then, the truncated analytic singular foliation τ0(Fh)

on Xh is locally strongly integrable in the analytic topology.

Proof This is in fact an easy consequence of our Corollary 1.5.4, which ensures that
the foliation F in the statement of Proposition 2.3.2 is formally d-integrable at each
point. This implies that its truncation τ0(Fh) is a singular foliation on Xh which is
formally integrable at each point. At this point, we would like to apply [12, Thm.
3.1] that proves that a formally strongly integrable singular foliation is analytically
strongly integrable if its singular locus has codimension≥ 2 (for the notion of formally
or analytically strongly integrable singular foliation, see Remark 1.3.4) to deduce that
τ0(Fh) is, a fortiori, analytically integrable locally around each point of X . But in
order to do this, we need to show that τ0(Fh) is not only formally integrable but also
formally strongly integrable (at each point). Now, by hypothesis, the smooth locus of
F is a non-empty Zariski open in X , hence dense, since X is irreducible, so our F
is a quasi-smooth rigid derived foliation which is actually smooth on an open Zariski
dense subset of X . Now, for a quasi-smooth (rigid) derived foliation F on X which
is smooth on a dense open Zariski subset of X , formal d-integrability of F at x ∈ X
implies formal strong integrability at x for its truncation τ0(F) (since, for f : X → Y
locally defined at x , the fact that the pullback derived foliation f ∗(0Y ) is generically
smooth entails generic smoothness for the map f itself1). Thus we are in a position
to apply [12, Thm. 3.1], and deduce local analytic (strong) integrability around any x
for the analytification τ0(Fh). �

An important consequence of Proposition 2.3.2 is the following statement, estab-
lishing a precise relation between underived singular foliations and quasi-smooth rigid
derived foliations.

Corollary 2.3.3 Let X be a smooth irreducible algebraic variety and D an underived
singular foliation on X whose singular locus Sing(F) ⊂ X is of codimension at least
2. Then D is locally, for the analytic topology, the truncation of a quasi-smooth and
rigid derived foliation if and only if it is formally strongly integrable at each point.

Tofinish this sectionwemention the following stronger version of Proposition 2.3.2,
though it will not be used in the rest of the paper.

Corollary 2.3.4 Let X be a smooth irreducible algebraic variety andF ∈ Fol(X) be a
quasi-smooth rigid derived foliation. We assume that the singular locus Sing(F) ⊂ X
is at least of codimension 2. ThenFh is, locally on Xh, a d-integrable derived foliation.

Proof By Proposition 2.3.2, it is enough to show that, under the codimension 2 hypoth-
esis in the statement, an analytic rigid quasi-smooth derived foliation is d-integrable
if its truncation is strongly integrable.

1 The reader may easily verify that this implication is false for underived singular foliations.
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We thus let Y be a complex smooth manifold and G a rigid and quasi-smooth
derived analytic foliation on Y . We assume that Sing(G), the locus in Y where LG
is not a vector bundle (sitting in degree 0), is of codimension at least 2. Suppose
that the truncation τ0(G) is strongly integrable by a morphism f : Y −→ S (see
Sect.1.3.4). The morphism f is therefore automatically generically smooth on Y . We
fix an isomorphism between τ0(G) and the singular foliation induced by f .

If DR(Y ) −→ DR(G) is the natural morphism of graded mixed cdga’s over Y , we
first want to construct a factorization

DR(Y ) DR(Y/S) = f ∗(0S)
v̄ DR(G).

We remind that we have a push-out square of graded mixed cdga’s on Y

DR(Y ) DR(Y/S)

f −1(DR(S)) f −1(OS).

This implies that a choice of the factorization as above is equivalent to a choice of a
factorization of the natural morphism f −1(DR(S)) −→ DR(G) as

f −1(DR(S)) f −1(OS)
v DR(G).

By the universal property of the de Rham graded mixed cdga DR(S), choosing
such a factorization is equivalent to promote the natural morphism of graded cdga’s
f −1(OS) −→ DR(G) to a morphism of graded mixed cdga’s, where the mixed struc-
ture on the left hand side is trivial.

We consider the sheaf of algebras H0(|DR(G)|). Its comes equipped with a canon-
ical morphism of sheaves of cdga’s H0(|DR(G)|) −→ |DR(G)|. Moreover, by
adjunction, there is a natural morphism of graded mixed cdga’s

|DR(G)| −→ DR(G)

where the gradedmixed structure on the left hand side is the trivial one.We thus obtain
this way a morphism of graded mixed cgda’s

u : H0(|DR(G)|) −→ DR(G).

Nowwe invokeProposition 3.1.5,which shows that H0(|DR(G)|) is also isomorphic to
the kernel of the morphismOX −→ �1

Y /D, where D is the differential ideal defining
the singular foliation τ0(G). In particular, the natural morphism f −1(OS) −→ OY

factors through this kernel, and thus produces a morphism of sheaves of algebras
f −1(OS) −→ H0(|DR(G)|). By composition with the morphism u above, we get the
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required morphism of graded mixed cdga’s v : f −1(OS) −→ DR(G). As explained
before this defines a natural morphism

v̄ : DR(Y/S) −→ DR(G).

To finish the proof of the corollary, we need to show that v̄ is, in fact, an equivalence
of derived foliations. For this, it is enough to show that it induces an equivalence on
the corresponding cotangent complexes

LY/S −→ LG .

Note that f : Y −→ S being generically smooth on Y , the natural projections

LY/S −→ �1
Y/S LG −→ �1

Y /D

are quasi-isomorphisms. Finally, by construction, the induced morphism LY/S −→
LG is the isomorphism �1

Y/S � �1
Y /D coming from the fact that f integrates the

singular τ0(G). �

3 Derived categories of algebraic foliations

In this section we define and study the derived category of crystals over a derived
foliation, both in the algebraic and in the analytic setting. In this paper wewill consider
only perfect crystals on smooth varieties. The study ofmore general derived categories
of derived foliations will appear elsewhere.

3.1 Crystals along a derived foliation

We letF ∈ Fol(X) be a derived foliation on a smooth algebraic variety X andDR(F)

the corresponding gradedmixed cdga.We considerDR(F)−ε−dggr the∞-category
of graded mixed DR(F)-dg-modules.

Definition 3.1.1 With the notations above, a perfect crystal over F is a graded mixed
DR(F)-dg-module E satisfying the following two conditions.

• The dg-module E(0) is perfect over OX � DR(F)(0).
• The natural morphism

E(0) ⊗OX DR(F) −→ E

is a quasi-isomorphism of graded DR(F)-dg-modules.

For a perfect crystal E over F , the perfect complex E(0) on X , will be referred to
as the underlying perfect complex of E . A perfect crystal E over F will be simply
called a vector bundle over F if its underlying perfect complex is quasi-isomorphic
to a vector bundle on X sitting in degree 0. The ∞-category of perfect crystals over
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F is the full sub-∞-category Perf(F) of DR(F) − ε − dggr consisting of perfect
crystals. The full sub-∞-category of Perf(F) consisting of vector bundles overF will
be denoted by Vect(F).

Since we will only be considering perfect crystals we will often omit the adjective
perfect when speaking about objects in Perf(F).

The ∞-category Perf(F) is obviously functorial in F in the following sense. Let
f : X −→ Y be a morphism of smooth algebraic varieties. Let F ′ ∈ Fol(Y ) and
F ∈ Fol(X) be derived foliations, and u : F −→ f ∗(F ′) a morphism in Fol(X).
Then, there is a base change ∞-functor

Perf(F ′) −→ Perf(F).

On affine derived foliation this base change functor is simply induced by the usual
base change DR(F) ⊗DR(F ′) (−) on graded mixed dg-modules.

Before proceeding to de Rham cohomology of crystals, let us give two specific
examples of crystals, relating this notion to more standard notions of D-modules and
more generally of representations of Lie algebroids.

Crystals and D-modules. Let E be a quasi-coherent complex of D-modules on a
smooth algebraic variety X .We can represent E as a pair consisting of a quasi-coherent
E(0) complex on X together with a flat connection∇ : E(0) −→ E(0)⊗OX �1

X . The
de Rham complex of this connection produces a graded mixed structure on DR(E) =
E(0) ⊗OX DR(X), making it into a graded mixed DR(X)-module. This construction
defines an equivalence between the ∞-category of quasi-coherent D-modules on X
and the ∞-category of graded mixed DR(X)-dg-modules which are graded-free (see
[17, Prop. 2.5]). Restricting to perfect complexes we see that perfect crystals over the
final derived foliation on X forman∞-category naturally equivalent to the∞-category
of D-modules which are perfect over X .

Crystals over smooth derived foliations. Let now F be a smooth derived foliation
over a smooth algebraic variety X .Wehave seen already (§ 1.3.1) thatF corresponds to
a Lie algebroid a : T −→ TX . A representation of this Lie algebroid is, by definition,
a pair consisting of a vector bundle V together with amorphism∇ : V −→ V ⊗OX T ∗
satisfying the obvious Leibniz rule, and ∇2 = 0. Such a representation has a de Rham
complex DR(V ) := V ⊗OX DR(X), on which ∇ defines a graded mixed structure.
This construction produces an ∞-functor from the category of representations of the
Lie algebroid T to the ∞-category Perf(F). It is easy to show that this ∞-functor is
fully faithful, and that its essential image is Vect(F).

The derived categories of crystals over derived foliations can be used in order to
define de Rham cohomology of derived foliations with coefficients in a crystal. This
de Rham cohomology is usually referred to as foliated or leafwise cohomology in the
setting of classical foliations or Lie algebroids.

Let F be a derived foliation over a smooth algebraic variety X . The ∞-category
Perf(F) can be identified with a dg-category (or, equivalently, has the structure of
a C-linear ∞-category), and we will simply denote by Hom(E, E ′) the complex of
C-vectors spaces of Hom’s from E to E ′ in this dg-category structure. Notice that
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the projection DR(F) → OX on the weight 0 part, defines a structure of a graded
mixedDR(X)-module onOX (concentrated inweight 0 and degree 0). For an arbitrary
perfect crystal E overF , we consider the complex of morphisms Hom(OX , E), from
OX to E . We denote this complex of C-vector spaces by

HDR(F; E) := Hom(OX , E)

and call it de Rham cohomology of F with coefficients in E . Note that the dg-category
Perf(F) is also endowed with a natural closed symmetric monoidal structure (equiv-
alently, has a structure of C-linear closed symmetric monoidal ∞-category) induced
by tensor products of OX -modules.

Remark 3.1.2 Though we will not need this in this paper, we mention that the symmet-
ric monoidal structure on Perf(F) implies existence natural multiplicative structure
morphisms

HDR(F; E) ⊗C HDR(F; E ′) −→ HDR(F , E ⊗OX E ′).

In particular, HDR(F;OX ) is a commutative dg-algebra, and HDR(F; E) is a dg-
module over HDR(F;OX ), for any E ∈ Perf(F).

The complexHDR(F , E) can also be described as the hypercohomology of X with
coefficients in an explicit complex of sheaves. We consider E as a sheaf of graded
mixed DR(X)-modules. We can apply the realization ∞-functor | − | : ε − dggr −→
dg, and thus get a complex of sheaves |E | of C-vector spaces on X . We then have a
natural quasi-isomorphism

HDR(F , E) � H(X , |E |).

Note that |E | is explicitly given by the complex of sheaves
∏

i≥0 E(i)[−2i] endowed
with its total differential (sum of the cohomological differential and the mixed struc-
ture). As E(i) is naturaly equivalent to E(0) ⊗OX ∧i

LF [i], HDR(F , E) may be
considered as a version of the (derived) de Rham complex of E along the foliation F .

Proposition 1.5.1 has the following extension, stating that perfect cyrstals on quasi-
smooth and rigid derived foliations are always, locally, pull-backs of perfect crystals
on a smooth and rigid foliation on a formal scheme.

Proposition 3.1.3 Let F ∈ Fol(X) be a rigid and quasi-smooth derived foliation on
a smooth algebraic variety X, and E ∈ Perf(F) be a perfect crystal on F . Then,
Zariski locally on X, there exists a smooth and rigid foliation F̂ on X × Â

n, and a
perfect crystal Ê ∈ Perf(F̂), such that

e∗(Ê) � E

where e : X ↪→ X × Â
n is the zero section.

Proof The proof is almost the same, verbatim, as that of Proposition 1.5.1. The only
changes consist in considering pairs of a gradedmixed cdga’s A together with a graded
mixed A-module M , all along the argument. We leave these details to the reader. �
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Let D ⊂ �1
X be a (underived) singular foliation on X . A coherent sheaf with flat

connection along D is defined to be a coherent sheaf E on X together with a C-linear
map

∇ : E −→ E ⊗u
OX

(�1
X/D)

satisfying the usual Leibniz rule, and being flat (that is ∇2 = 0 in the obvious sense).
In terms of underived graded mixed algebras, coherent sheaves with flat connection
along D are exactly graded mixed DR(D)-modules E such that E(0) is coherent and
E is free on E(0). If we denote by Coh(D) the category of the coherent sheaves with
flat connection along D, then, there is a truncation ∞-functor

τ0 : Vect(F) −→ Coh(τ0(F))

which sends a crystal E to E(0) endowed with the induced map

E(0) −→ E(1) −→ H0(E(1)) � E(0) ⊗u
OX

(�1
X/D).

Exactly as crystals on a derived foliation have de Rham cohomology, coherent
sheaves with flat connections along a singular foliation D have naive de Rham com-
plexes. For such an object (E,∇) ∈ Coh(D), we form its de Rham complex modulo
D

E
∇

E ⊗ (�1
X/D) . . . E ⊗ (�i

X/ < D >)

The hypercohomology of this complex on X will be denoted by

HDR,naive(D, E).

If one starts with a derived foliation F on X , and E ∈ Vect(E), then the truncation
functor induces a canonical projection

HDR(F , E) −→ HDR,naive(τ0(F), τ0(E)),

which is functorial in an obvious manner.Without further assumptions onF , this mor-
phism is not injective nor surjective in cohomology. However, we have the following
result, showing that the closer F is to be smooth, the closer this morphism is to an
equivalence.

Remark 3.1.4 If D is an analytic singular foliation on a complex manifold Y ,
the definitions of Coh(D), HDR,naive(D, E), for E ∈ Coh(D), and of the map
HDR(G, E) −→ HDR,naive(τ0(G), τ0(E)), for G an analytic derived foliation on Y
and E ∈ Perf(G), all make sense and are completely analogous to the algebraic case
treated above. And, obviously, the usual analytification functor for sheaves, induces a
functor Coh(F) → Coh(Fh), for an algebraic singular foliation F on a smooth alge-
braic variety X , where Fan is the analytification of F , which is an analytic singular
foliation on Xh .



Algebraic foliations and derived... Page 33 of 47 5

Proposition 3.1.5 Let F be a quasi-smooth, rigid and derived foliation over a smooth
algebraic variety X and E ∈ Vect(F). Assume that LF is quasi-isomorphic to a
vector bundle on a Zariski open in X whose complement is of codimension at least
d ≥ 1. Then, the morphism

H
i
DR(F , E) −→ H

i
DR,naive(τ0(F), τ0(E)))

is an isomorphism for i < d − 1 and is surjective for i = d − 1.

Proof We start by the following well known lemma.

Lemma 3.1.6 Let L := V
s

W be a complex of vector bundles on X with W
sitting in degree 0, and assume that s is a monomorphism which is a sub-bundle on
a Zariski open (X − S) with S of codimension ≥ d. Then, for all p ≥ 0, the perfect
complex∧p(L)[p] is cohomologically concentrated in degrees [inf(d−2p,−p),−p].
Proof of the lemma The complex computing E := ∧p(L) is the perfect complex
whose term in degree −i is given by Sym p−i (V ) ⊗ ∧i (W ). It is of amplitude con-
tained in [−p, 0]. By assumption its higher cohomology sheaves Hi for i < 0 are all
coherent sheaves with supports of dimension less than (dim X − d). Its dual E∗ is
a perfect complex of amplitude [0, p] with all its higher cohomology sheaves being
coherent with supports of dimension less than (dim X − d). Therefore, we get the
following vanishing for ext-sheaves

Exti (Hi (E∗),OX ) = 0 ∀ i < d.

This implies that the cohomology sheaves of the perfect complex E � (E∗)∗ are
concentrated in [inf(d − p, 0), 0] as required. �

We now consider the morphism of complexes of sheaves on X

|E | −→ H
i
DR,naive(τ0(F), τ0(E))).

The fiber of this map is the realization of the graded mixed complex K whose weight
p piece is

K (p) = τ≤−1(∧p(LF ) ⊗ E)[p],

the fiber of the natural morphism

(∧p(LF ) ⊗ E)[p] −→ (�
p
X/ < D > ⊗E)[p].

By the previous lemma, each K (p) sits in cohomological degrees [inf(d −
2p,−p),∞), and thus K (p)[−2p] sits in cohomological degrees [inf(d, p),∞).
Note also that K (p) � 0 if p ≤ d. Therefore, its realization, given by the com-
plex

∏
p>d K (p)[−2p] with the appropriate differential, lies in degrees [d,∞). This

concludes the proof of the proposition. �
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3.2 Analytification and h-nilpotent crystals

The analytification ∞-functor for derived foliation (see Sect. 2.2) has the following
variant for crystals. Let F be a derived foliation on smooth algebraic variety X , and
Fh the corresponding analytic derived foliation on Xh . We define Perf(Fh) as the
∞-category of sheaves of graded mixed DR(Fh)-modules E on Xh satisfying the
following two conditions.

• The dg-module E(0) is perfect over OXh � DR(Fh)(0).
• The natural morphism

E(0) ⊗OXh DR(Fh) −→ E

is a quasi-isomorphism of graded DR(Fh)-dg-modules.

It is easy to check that the usual analytification ∞-functor for sheaves induces an
∞-functor

(−)h : Perf(F) −→ Perf(Fh).

Before introducing h-nilpotent crystals, we note that the following GAGA result
for perfect crystals.

Proposition 3.2.1 Let X be a smooth and proper algebraic variety, andF be a derived
foliation on X. Then, the analytification ∞-functor

Perf(F) −→ Perf(Fh)

is an equivalence of ∞-categories.

Proof Similar to the proof of Proposition 2.2.2 and left to the reader. �
We now introduce the h-nilpotent crystals.

Definition 3.2.2 Let X be a smooth algebraic variety, F a derived foliation on X , and
E ∈ Perf(F) be a perfect crystal overF .We say that E is h-nilpotent if, locally on Xh ,
the sheaf of of graded mixed DR(Fh)-dg-modules corresponding to Eh , belongs to
the thick triangulated subcategory generated by the trivial crystalDR(Fh) (considered
as a graded mixed dg-module over itself).

The adjective nilpotent in Definition 3.2.2 is justified by the following observation.
Let X = Spec C andF be given by a finite dimensional Lie algebra g. A crystal onF
is nothing else than a complex of linear representations E of gwith finite dimensional
cohomologies. Such an object is a h-nilpotent crystal if and only if furthermore the
induced representation of g on Hi (E) is nilpotent for all i . This shows, in particular,
that nilpotency for crystals is a non-trivial condition. However, we will now show that
it always holds for an important class of examples.
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Theorem 3.2.3 Let F ∈ Fol(X) be a quasi-smooth and rigid derived foliation on a
smooth algebraic variety X. If Sing(F) ⊂ X is of codimension at least 2, then any
E ∈ Vect(F) is h-nilpotent.

Proof This theorem will be in fact a consequence of Proposition 2.3.2. Let E ∈
Vect(F), and S(E) the free graded mixed DR(F)-algebra generated by E , i.e.
S(E) = Sym(E), where Sym is computed inside the symmetricmonoidal∞-category
Perf(F). The graded mixed cdga S(E) defines a derived foliation FE over V , where
π : V −→ X is the total space of the vector bundle E(0)∗ on X , dual of E(0). As a
graded algebra, we have

S(E) � SymOX (E(0)) ⊗OX SymOX (LF [1]),

so that, in particular, the cotangent complex of FE is π∗(LF ), hence FE is a quasi-
smooth derived foliation on V .
Now, the natural morphism�1

V −→ π∗(LF ) is given by the derivation SymOX (E(0))
−→ SymOX (E(0)) ⊗OX LF , itself induced by the derivation �1

X → LF and by
multiplicativity from the crystal structure

E(0) −→ E(0) ⊗OX LF

of E . In particular, the induced morphism of coherent sheaves �1
V −→ π∗(LF ) �

LFE is surjective on H0 because the composite

π∗(�1
X ) −→ �1

V −→ π∗(LF )

is the pull-back by π of �1
X → LF (which is surjective on H0 by the rigidity assump-

tion on F). I.e. the derived foliation FE on V is also rigid.
The derived foliationFE onV thus satisfies both the conditions of Proposition 2.3.2,

so that its truncation τ0(Fh
E ) can be integrated locally on V h . Let f1, . . . , fk be holo-

morphic functions, defined locally around a point x ∈ Xh ⊂ V h , that integrate τ0(Fh
E ).

We fix a local trivialization of πh : V h → Xh around x , as Xh × Vx , where Vx is the
fiber of V at x , so that local parameters at x on V h are given by (z1, . . . , zn, t1, . . . , tr ),
where zi are local parameters on Xh and t j ∈ Vx form a vector space basis. Let us
consider the Taylor series expansions of the functions fi as

fi =
∑

ν=(ν1,...,νr )

ai,ν tν,

where ai,ν are functions around x on Xh .
By construction, the homogenous part of degree p of each function fi are sections

of the bundle Sym p(V ∗)h . Moreover, the fact that the fi integrate the foliation τ0(FE )

implies that these sections are in fact flat sections, i.e. they are local sections of the
sheaf H0

DR,naive(Sym p(E)h). We consider new functions at x ∈ V h by taking the
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weight one pieces

gi :=
∑

j

ai,( j)t j ,

wherer ( j) := (0, . . . , 1, . . . , 0) and 1 ≤ j ≤ r . Each function gi can be, and will
be, considered as a germ of holomorphic section at x of the vector bundle E(0), the
dual of V . These germs are flat, and thus they collectively define an analytic germ
morphisms of crystals at x

φ : Ok
Xh −→ Eh .

The above morphism φ is clearly an isomorphism ouside of the closed subset
Sing(F) ⊂ X , so φ is in particular an injective morphism of sheaves. As Sing(F) is
of codimension ≥ 2,by Hartogs theorem, we deduce that φ is in fact an isomorphism
at x .

This finishes the proof that E is h-nilpotent as required. �

4 The Riemann–Hilbert correspondence

4.1 The sheaf of flat functions

Let F ∈ Fol(X) be a derived foliation over a smooth algebraic variety X , and Fh ∈
Fol(Xh) its analytification. The realization |DR(Fh)| of DR(Fh) (see Sect. 1.1)
defines a sheaf of commutative dg-algebras on Xh .

Definition 4.1.1 With the notations above, the sheaf of cdga’s |DR(Fh)| on Xh is
called the sheaf of locally constant functions along F . It is denoted by OFh .

4.1.1 The smooth case

In the case of smooth derived foliations the sheaf OFh is easy to understand. As a
start, let us assume that F is furthermore rigid, so that it defines an actual classical
holomorphic regular foliation on Xh . The sheaf of cdga’s OFh is then concentred
in degree zero and is isomorphic to the subsheaf of OXh of holomorphic functions
which are locally constant along the leaves. This explains the name we gave to OFh

in general. Locally on Xh , the foliation is induced by a smooth holomorphic map
f : Xh −→ C

n and the sheaf OFh is simply given by f −1(Oh
Cn ).

When F is smooth but not necessarily rigid, it corresponds to a Lie algebroid
T −→ TX on X (seeSect. 1.3.1). Its analytification is thus a holomorphicLie algebroid
T h −→ T

h
X on Xh . This Lie algebroid possesses a Chevalley-Eilenberg cohomology

complex C∗(T h), which is a sheaf of C-linear cdga’s on Xh . It is explicitely given
by SymOXh ((T ∗)h[−1]) endowed with the standard Chevalley-Eilenberg differential.
Then, the sheaf of cdga’s OFh is quasi-isomprhic to C∗(T h). Therefore, for an arbi-
trary non-rigid smooth derived foliationF ,OFh is cohomologically bounded, but not



Algebraic foliations and derived... Page 37 of 47 5

necessarily concentrated in degree 0 anymore. For instance, if the Lie algebroid T is
abelian then OFh is SymOXh ((T ∗)h[−1]) with trivial differential.

4.1.2 Local structure

The local structure of the sheaf OFh can be understood using Proposition 1.5.1 as
follows. Let x ∈ X and let A = Oh

X ,x be the ring of germs of holomorphic functions
on X at x . By Proposition 1.5.1we know that there exist a smooth and rigid foliationF ′
on B = A[[t1, . . . , tn]], i.e. k linearly independent commuting derivations ν1, . . . , νk

on A[[t1, . . . , tn]] which are holomorphic along X and formal in the variables ti ’s.
More explicitly, the derivations νi are given by expressions of the form

∑

i

ai .
∂

∂xi
+

∑

j

b j .
∂

∂t j

where ai and b j are elements of B and the xi ’s are local coordinates of X at x . The
derivations νi define a de Rham complex

B ⊕i B. ∂
∂xi

⊕ j B. ∂
∂t j

. . .

This complex is a model for the stalk of OFh at the point x .
We can say more when the derived foliation F is moreover locally d-integrable

(Definition 2.1.2).Assume thatwe are given f : X −→ Y a holomorphicmap between
complex manifolds. As we are interested in a local description we can assume that
X and Y are Stein manifolds, and will allow ourselves to restrict to open subsets in
necessary. We assume that F := f ∗(0Y ) is the induced analytic derived foliation
on X . By construction, the sheaf of cdga OF is the sheaf on X , for the analytic
topology, of relative derived de Rham cohomology: it associates to an open U ⊂ X
the cdga OF (U ) := |DR(F)| = |DR(U/Y )|. This sheaf can explicitly be computed

as follows. We let X
j

Z = X × Y
p

Y be a factorization of f as a closed
immersion followed by a smooth morphism (where j is the graph of f ). The sheaf of
rings ÔX of formal functions on Z along X , has a natural structure of a DZ -module
on Z . Therefore, we can consider the relative de Rham complex of ÔX over Y , and
obtain a sheaf |DR(ÔX/Y )| of cdga’s on Z . This sheaf is set-theoretically supported
on X , and thus can be considered as a sheaf of cdga’s over X .

Lemma 4.1.2 There exists an equivalence of sheaves of cdga’s on X

|DR(ÔX/Y )| � OF .

Proof The cotangent complex of F sits in the following exact triangle of perfect
complexes on X

N∗ �1
X LF ,
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where N∗ = f ∗(�1
Y ). We thus have a push-out of graded mixed cdga’s over X

DR(F) SymOX (N∗[2]) =: B

DR(X) OX

As X is Stein, we see that the graded mixed structure on SymOX (N∗[2]) is automat-
ically trivial. We consider the internal de Rham algebra DRint (B/DR(F)). This is a
cdga endowed with two extra gradings, and two commuting graded mixed structures.
As such, it has a total realization defined by

||DRint (B/DR(F))|| := RHom(OX ,DRint (B/DR(F)))

where OX is considered as a trivial double graded mixed complex of sheaves. This
total realization can be obtained by successive realizations of the two graded mixed
structures, and thus in two different manners depending on the orders in which these
realizations are taken. If we realize the first graded mixed structure, the one defined
by the graded mixed structure on DR(F), we get |DR(ÔX/Y )|. Realizing the second
one, gives back DR(F). We thus obtain this way the desired equivalence after taking
the second realization. �

Aconsequence of the above lemma is the following explicit description of the stalks
of OF at a given point x ∈ X . Let (x1, . . . , xk) and (y1, . . . , yn) be local coordinates
of X at x and Y at y = f (x). The ring of germs of functions on X × Y at (x, y)

can then be identified with C{x∗, y∗}, the ring of germs of holomorphic functions at
0 ∈ C

k+n , and the graph of f defines an ideal I ⊂ C
k+n . We thus have the relative

de Rham complex of C{x∗, y∗} over C{y∗}, and its completion along I

̂C{x∗, y∗} ̂C{x∗, y∗}k ∧2( ̂C{x∗, y∗}k
) . . . ∧k( ̂C{x∗, y∗}k

).

The differential in this complex is induced by the derivative relative to Y , sending a
function f to

∑
j≤k

∂ f
∂x j

.dx j . The above complex is naturaly quasi-isomorphic to the
stalk of OF at x .

4.1.3 Flat functions and singularities

In general, the complex of sheaves of flat functions OF is not cohomologically con-
centrated in degree 0, as we will show in some specific examples below. Its non-zero
cohomology sheaves contain subtle informations about the singularities ofF , that can
be sometimes expressed in terms of vanishing cohomology.

Let us have a look at the specific case of codimension one quasi-smooth derived
foliations, and the local structure of the sheafOFh . Assume that locally, in the analytic
topology, such a derived foliation is induced by a holomorphic map

f : X −→ C.
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The derived foliation on X is then f ∗(0), the pull-back of the trivial foliation on
C. If the map f is constant, say 0, then it is easy to see that OFh ) is the constant
sheaf on X with stalks C[[x]] the formal functions on C at 0. Indeed, in this case the
cotangent complex of f splits as �1

X ⊕OX [1], and the graded mixed cdga DR(X/C)

is DR(X)[u] where u is a free variable in degree 2. The realization of this graded
mixed cdga is |DR(X)|[[x]] the formal power series in the absolute de Rham complex
of X . As a sheaf on X this is quasi-isomorphic to C[[x]]. This situation generalizes
easily to the case of an arbitrary holomorphic map f : X −→ C

n having constant
rank (left to the reader).

Let us now assume that f : X −→ C is not constant. The graded mixed cdga
corresponding toF = f ∗(0) is the relative deRham algebraDR(X/C). The cotangent
complex of f is now represented by the complex

L f = OX
d f

�1
X ,

given by the differential of f . As graded cdga, DR(X/C) is then DR(X)[u], with
u in degree 2, and where the cohomological differential sends u to d f . The graded
mixed structure on DR(X)[u], at least locally on X , is simply given by the derivation
OX −→ �1

X −→ L f where the second map is the canonical map. According to this,
the realization of DR(X/C) is a version of the formal twisted de Rham complex of
[19]. To be more precise, we consider the sheaf of graded algebras on X

ŜymOX
(OX ⊕ �1

X [−1]) �
∏

p≥0

�
∗≤p
X ,

where �∗
X stands for SymOX (�1

X [−1]). We consider the differential t .dDR + ∧d f ,
where t .dDR means the de Rham differential going from the p-component to the
(p + 1)-component. This complex is naturally quasi-isomorphic to the realization of
DR(F) = DR(X/C) and thus is a model for the sheaf OFh .

Assume that f has an isolated singularity at x ∈ X , and let us restrict X so that x is
the only critical point of f . Then, lemma 3.1.6 implies that for any p the complexes
of sheaves

OX
d f

�1
X

d f
. . .

d f
�

p
X

are cohomologically concentrated in degree p and thus quasi-isomorphic to the a
p-shift of the sheaf Hp( f ) := �

p
X/d f ∧ �

p−1
X . The fiber of the truncation map

|DR(X/C)| −→ (�∗
X/d f , dDR),

where (�∗
X/d f , dDR) is the naive relative de Rham complex, is thus the realization

of the graded mixed complex whose component of weight p are zero if p ≤ Dim X
and HDim X [2p − Dim X ] if p > n. Therefore, this realization is quasi-isomorphic
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to
∏

p>Dim X Hdim X ( f )[−dim X ]. As obviously H Dim X (�∗
X/d f , dDR)) � 0, we

deduce that we have

H p(OFh ) � H p(�∗
X/d f , dDR)

for p < Dim X − 1, and we have a long exact sequence

0 H Dim X−1(OFh ) H Dim X−1(�∗
X/d f , dDR)

∏
p>Dim X−1Hdim X ( f ) H p(OFh ) 0.

In particular, we see that the top cohomology sheaf of OFh is supported at x and
contains and infinite number of copies of J ( f ), the Jacobian ring of f at x .

In the general situation, it is surely possible to relate the cohomology sheaves of
OFh to some twisted de Rham complex as described in [19], and thus to vanishing
cohomology. Note also that the complex OFh appears in a disguised form, under the
name Koszul-de Rham algebra, in [20], where it is explicitely related to the naive
relative de Rham complex and the singularities of the map f .

4.2 The Riemann–Hilbert correspondence

Let X be a smooth algebraic variety and F ∈ Fol(X) be a derived quasi-smooth
foliation on X . We first construct the Riemann–Hilbert ∞-functor for F

RH : Perf(F) −→ OFh − dg.

It is defined as the composite

Perf(F)
(−)h

Perf(Fh)
RHom(OXh ,−) OFh − dg

where RHom(OXh ,−) sends a crystal E over Fh to the complex RHom(OXh , E) of
sheaves of C-vector spaces, endowed with its natural module structure over

RHom(OXh ,OXh ) � |DR(Fh)| = OFh .

We let Perfnil(F) be the full sub-∞-category of Perf(F) consisting of h-nilpotent
crystals in the sense of Definition 3.2.2. By definition of nilpotency for crystals, the
∞-functor RH defined above restricts to

RH : Perfnil(F) −→ Perf(OFh ),

where Perf(OFh ) is the ∞-category of sheaves of perfect OFh -dg-modules on Xh .
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Theorem 4.2.1 Let F ∈ Fol(X) be a quasi-smooth derived foliation on a smooth
algebraic variety X. If X is proper, then the ∞-functor

RH : Perfnil(F) −→ Perf(OFh )

is an equivalence.

Proof By GAGA (see Proposition 3.2.1) we know that the analytification ∞-
functor induces an equivalence Perfnil(F) � Perfnil(Fh). Now, both ∞-categories
Perfnil(Fh) and Perf(OFh ) are global sections of natural stacks of triangulated ∞-
categories on Xh . Let us denote these stacks by Perfnil(Fh) and Perf(OFh ).Moreover,
the RH ∞-functor is itself obtained by taking global sections of a morphism of stacks
RH : Perfnil(Fh) −→ Perf(OFh ). By definition of nilpotency,OXh locally generates
(in the sense of triangulated ∞-categories) Perfnil(Fh), whileOFh locally generates
Perf(OFh ), and by definition RH(OXh ) � OFh . We then conclude that RH is locally
fully faithful and locally essentially surjective. It is therefore a local equivalence of
stacks, and thus a global equivalence, i.e. RH is an equivalence. �

Combining Theorem 4.2.1 with Theorem 3.2.3, we get our main result. For F ∈
Fol(X) be a quasi-smooth and rigid derived foliation on a smooth and proper algebraic
variety X , we denote by Perfv(F) ⊂ Perf(F) the full triangulated sub-∞-category
generated by objects in Vect(F).

Corollary 4.2.2 Let F ∈ Fol(X) be a quasi-smooth and rigid derived foliation on a
smooth and proper algebraic variety X. If the singular locus Sing(F) has codimension
≥ 2, then the Riemann–Hilbert correspondence

RH : Perfv(F) −→ Perfv(OFh )

is an equivalence of ∞-categories.

4.3 Examples

4.3.1 Smooth and rigid foliations

Let X be a smooth and proper algebraic variety and F be smooth and rigid derived
foliations on X . We represent F by a differential ideal D ⊂ �1

X which is furthermore
a subbundle. The category Vect(F), of vector bundle crystals along F is equivalent
to the category of vector bundles V on X endowed with a partial flat connection

∇ : V −→ V ⊗ �1
X/D

satisfying the standard properties. As already observed (see 4.1.1), the sheaf OFh is
then agenuine sheaf of commutative algebras: it is the subsheaf ofOXh , of holomorphic
functions on X , which are locally constant along the leaves, i.e. local functions f on
X such that d f ∈ D ⊂ �1

X . Locally on Xh , the foliation is given by a smooth
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holomorphic map X −→ C
p, and the sheafOFh can then be described as f −1(OCp ),

the sheafy inverse image of the sheaf of holomorphic functions on C
p.

TheRiemann–Hilbert correspondenceofTheorem4.2.1 andCorollary 4.2.2 implies
the existence of an equivalence of categories

Vect(F) � Vect(OFh )

where Vect(OFh ) is the category of sheaves ofOFh -modules on Xh which are locally
free of finite rank. When F is furthermore induced by a smooth and proper morphism
f : X −→ Y , i.e. f ∗(0Y ) � F , this equivalence is essentially the relative Riemann–
Hilbert correspondence of [7]. The extension fromvector bundles to perfect complexes
essentially states that this equivalence is also compatible with cohomology, and also
induces a quasi-isomorphism

HDR(F; V ) � HB(Xh, RH(V )),

between the algebraic de Rham cohomology of V over X to the (Betti) cohomology
of Xh with coefficients in the sheaf of OFh -modules RH(V ).

4.3.2 Lie algebroids

Let X be a smooth and proper algebraic variety and F be smooth derived foliation on
X . We have seen that such a derived foliation corresponds to a classical Lie algebroid
with anchor map a : T −→ TX (see § 1.3.1). The category Vect(F) can then be
described as representations of T in vector bundles, i.e. vector bundles V together
with a connection along F

∇ : V −→ V ⊗ T ∗

satisfying the Leibniz and flatness ∇2 = 0. In this case, the sheaf OFh is the sheaf of
cdga’s on Xh

OXh (T ∗)h ∧2(T ∗)h . . . ∧d(T ∗)h

where d is the rank of V . This is a sheaf of cdga’s not concentrated in degree 0 in
general. If the anchor map a turns out to be a subbundle on a Zariski open U ⊂ X ,
then the higher cohomology sheaves have supports on X − U .

We denote byK the kernel of the anchor map a : T −→ TX , considered as a sheaf
on the big étale site of X . As such it is representable by a Lie algebra scheme K −→ X ,
whose fiber Kx at a point x ∈ X is the kernel of the map ax : Tx −→ TX ,x , which is a
C-linear Lie algebra. For an object V ∈ Vect(F), and a point x ∈ X , the Lie algebra
Kx acts naturally on the fiber Vx . If V is h-nilpotent in the sense of Definition 3.2.2,
then for all points x ∈ X the Kx -module Vx is a nilpotent representation of the Lie
algebra Kx .
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The Riemann–Hilbert correspondence of Theorem 4.2.1 induces an equivalence of
categories

Vectnil(F) � Vect(OFh ).

The extension to perfect complexes again essentially states that this equivalence is
also compatible with the natural cohomologies on both sides, i.e. algebraic de Rham
cohomology and Betti cohomology.

4.3.3 Log vector fields

Let X be a smooth and proper algebraic variety and D ⊂ X be a divisor with simple
normal crossings. We let TX (log(D)) ⊂ TX be the subsheaf of vector fields that
stabilize D, i.e. derivations preserving the ideal defining D. This defines aLie algebroid
on X , and thus a smooth derived foliation F , to which we can apply our Riemann–
Hilbert correspondence (Theorem 4.2.1 and Corollary 4.2.2). Let us unravel the two
sides of the Riemann–Hilbert correspondence in this case. Note first that Vect(F)

consists of pairs consisting of a vector bunlde on X together with a logarithmic flat
connections along D

∇ : V −→ V ⊗ �1
X (log(D)).

The structure sheaf OFh is then the sheaf of cdga’s on Xh given by the logarithmic
de Rham complex

OXh �1
Xh (log(D)) �2

Xh (log(D)) . . . �d
Xh (log(D)).

By Grothendieck’s log-de Rham theorem, this is a resolution of the sheaf of cdga’s
j∗(C), where j : (X − D) −→ X and C is the constant sheaf (with stalks C) on
(X − D). Note that j∗(C) is not concentrated in degree 0, as its fiber at a point
x ∈ D is the cohomology algebra of an m-dimensional torus H∗((S1)m, C), if the
local equation of D at m is of the form x1. . . . .xm = 0 (for (x1, · · · , xd) a system of
local parameters at x in X , and m ≤ d).

The Lie algebroid TX (log(D)) has isotropy along D. For a point x ∈ D, in a
neigborhood of which D has equation x1. . . . .xm = 0, the kernel of the anchor map
a : TX (log(D)) → TX at x is an abelian Lie algebra of dimension m. Generators
of this Lie algebra are given by the local vector fields xi .

∂
∂xi

for 1 ≤ i ≤ m, which
are local sections of TX (log(D)) that, once evaluated at x , provide a basis for the Lie
algebra K er(ax ). As we have already remarked, if V ∈ Vect(F) is h-nilpotent, then
the actions of the Lie algebras K er(ax ) on Vx must be nilpotent. In our case, these
actions are given by the residues of the connection ∇ along the components of D, and
thus when V is h-nilpotent these residues must be nilpotent too. The converse is true:
V ∈ Vect(F) is h-nilpotent if and only if it has nilpotent residues. This follows from
the local analytic structure of flat connections with logarithmic poles along D, and the
fact that they correspond to local systems on X − D with unipotent local monodromies
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around D (see e.g. [7]). The Riemann–Hilbert correspondence of Theorem 4.2.1 then
becomes the following equivalence of categories

RH : Vectnil(F) � Vect( j∗(C)),

where Vectnil(F) can be identified with vector bundles on X endowed with flat con-
nections with logarithmic poles along D. Its extension to perfect complexes

RH : Perfnil(F) � Perf( j∗(C))

implies that the previous equivalence RH : Vectnil(F) � Vect( j∗(C)) is also compat-
iblewith cohomology theories on both sides.Note here that j∗(C) can also be described
as π∗(CXh ), where π : Xlog −→ Xh is the logarithmic homotopy type of the pair
(X , D) in the sense of [10], and that C generates, in the sense of triangulated cate-
gories, the categrory of unipotent local systems. Therefore, perfect OFh -dg-modules
can also be understood as perfect complexes of C-modules on Xlog which are rel-
atively unipotent over Xh , i.e. those which become unipotent along the fibers of π .
These statements have a straightforward generalization to the case where (X , D) is
replaced by a more general log-structure on X . The equivalences above recovers the
logarithmic Riemann–Hilbert correspondence of [10, Thm. 0.5].

4.3.4 The RH correspondence along a non-smooth morphism

Let f : X −→ Y be a morphism between smooth and proper algebraic varieties,
and F = f ∗(0Y ) ∈ Fol(X) be the derived foliation induced by f (recall that f ∗
denotes here the pull-back functor on foliations, and 0Y is the final foliation on Y ).
We associate to f the morphism between de Rham shapes (first introduced in [21])
fDR : X DR −→ YDR , where for a scheme Z the functor Z DR sends an algebra A to
Z(Ared). The relative de Rham shape is defined

(X/Y )DR := X DR ×YDR Y .

Quasi-coherent sheaves on (X/Y )DR are by definition relative crystals on X over Y .
Note that these are also the quasi-coherent sheaves on the relative infinitesimal site
(X/Y )inf of X over Y (see [9]). This site has objects commutative diagrams of the
form

Sred X

S Y ,

where Sred −→ X is a Zariski open. The topology is itself defined in the natural way.
It comes equipped with a structure sheafOX/Y ,inf sending a diagram as above toO(S).
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It is then possible to prove that there exists a natural equivalence of ∞-categories

Perf(F) � Perf(OX/Y ,inf).

Therefore, perfect crystals along the foliation F are nothing else than perfect com-
plexes on the relative infinitesimal site of X over Y .

In this situation, the sheaf OFh on Xh is the relative analytic derived de Rham
complex of Xh overY h . As explained earlier, it has a projection onto the naive deRham
complex (�∗

Xh/Y h [−∗], d R), which is the de Rham complex of relative holomorphic
differential forms

OXh �1
Xh/Y h . . . �n

Xh/Y h .

It is important to remark that the projection

OFh −→ (�∗
Xh/Y h [−∗], d R)

is far from being an equivalence in general. For example, if f : X → Y is a closed
immersion the right hand side is just the sheafOXh whereas the left hand side is ÔXh ,
the structure sheaf of the formal completion of X inside Y . Proposition 3.1.5 implies
that this morphism is an isomorphism on cohomology groups in degree less than d if
the map f is smooth outside of codimension (d + 1) closed subset.

Let us assume now that f : X −→ Y is flat with reduced fibers and of strictly
positive relative dimension. By generic smoothness f is smooth on X − S where S is
a closed subset of codimension d > 1. By Proposition 3.1.5 we have that

H0(OFh ) � H0((�∗
Xh/Y h [−∗], d R)).

The right hand side is the subsheaf of functions on Xh which are locally constant along
the fibers of f , i.e. those which are pull-backs of functions on Y h . In other words, we
have an isomorphism of sheaves of rings

H0(OFh ) � f −1(OY h ).

Therefore, OFh has a canonical structure of a sheaf of f −1(OY h )-cdga’s. Therefore,
for any point y ∈ Y , we can consider the following sheaf of cdga’s on Xh

OFh ⊗ f −1(OY h ) Cy,

where the map f −1(OY h ) −→ Cy = C is given by evaluation at y. The resulting
sheaf is the derived analytic de Rham cohomology of the fiber f −1(y), and thus it is
the constant sheaf C on that fiber. We deduce that

OFh ⊗ f −1(OY h ) Cy � (iy)∗(C)
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where iy : f −1(y) ↪→ X is the inclusion of the fiber at y.
The previous discussion prompts the following interpretation. For any E ∈

Vect(OFh ), we define its base changes Ey := E⊗ f −1(OY h )Cy which are genuine local

systems on f −1(y). Therefore, the notion of perfect complexes of OFh -dg-modules
should be understood as a notion of analytic families of perfect complexes of local sys-
tems along the fibers. With this interpretation, the Riemann–Hilbert correspondence

RH : Perf(F) � Perf(OFh )

of Theorem 4.2.1 should be actually understood as an equivalence between algebraic
families of crystals along the fibers of f , and analytic families of perfect local systems
along the fibers.
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