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ABSTRACT
◥

Tipifarnib is a potent and highly selective inhibitor of farne-
syltransferase (FTase). FTase catalyzes the posttranslational
attachment of farnesyl groups to signaling proteins that are
required for localization to cell membranes. Although all RAS
isoforms are FTase substrates, only HRAS is exclusively depen-
dent upon farnesylation, raising the possibility that HRAS-
mutant tumors might be susceptible to tipifarnib-mediated inhi-
bition of FTase. Here, we report the characterization of tipifarnib
activity in a wide panel of HRAS-mutant and wild-type head and
neck squamous cell carcinoma (HNSCC) xenograft models.
Tipifarnib treatment displaced both mutant and wild-type HRAS
from membranes but only inhibited proliferation, survival, and
spheroid formation of HRAS-mutant cells. In vivo, tipifarnib

treatment induced tumor stasis or regression in all six HRAS-
mutant xenografts tested but displayed no activity in six HRAS
wild-type patient-derived xenograft (PDX) models. Mechanisti-
cally, drug treatment resulted in the reduction of MAPK pathway
signaling, inhibition of proliferation, induction of apoptosis, and
robust abrogation of neovascularization, apparently via effects on
both tumor cells and endothelial cells. Bioinformatics and quan-
titative image analysis further revealed that FTase inhibition
induces progressive squamous cell differentiation in tipifarnib-
treated HNSCC PDXs. These preclinical findings support that
HRAS represents a druggable oncogene in HNSCC through
FTase inhibition by tipifarnib, thereby identifying a precision
therapeutic option for HNSCCs harboring HRAS mutations.

Introduction
Squamous cell carcinoma of the head and neck (HNSCC) is the

sixth most common cancer worldwide, with an estimated annual
incidence of 600,000 patients. In the United States, 55,000 new cases
are diagnosed each year, leading to nearly 13,000 deaths annual-
ly (1). Early-stage HNSCC disease is treated relatively well with
single-modality therapy (either surgery or radiation), but nearly
66% of patients present with advanced disease and fewer than 30%
of these patients are cured. Few drugs have proven effective in
HNSCC therapy. Systemic, platinum-based chemotherapy is the
mainstay of first-line treatment, and combination with 5-FU and
the anti-EGFR antibody cetuximab has been shown to extend
overall survival in the metastatic setting (2). However, despite

significant advances in the understanding of the molecular under-
pinnings of this group of tumors, cetuximab was the only molec-
ularly targeted drug approved for HNSCC until the arrival of anti–
PD-1 antibodies in 2016, and checkpoint inhibitors only produce
durable responses in a minority (<15%–20%) of patients (3). Thus,
identification and exploitation of novel druggable oncogenes in
HNSCC is urgently needed to improve patient outcomes.

Farnesyltransferase (FTase) is a cytosolic metalloenzyme that cat-
alyzes the transfer of a 15-carbon farnesyl lipid moiety to a group of
cellular proteins characterized by a C-terminal CAAX motif (4).
Farnesylation is required for cellular membrane insertion and subse-
quent activity of certain signaling proteins associated with cancer
progression (5), spurring the development of several FTase inhibitors
(FTI) in the late 1990s and early 2000s. The first selective FTI to enter
clinical studies was tipifarnib (R115777), a heterocyclic nonpeptido-
mimetic drug that inhibits farnesylation of the canonical FTase
substrate lamin A with subnanomolar potency (6). The clinical
development of tipifarnib began in 1997 and consisted of more than
70 clinical oncology and hematology studies. Many RAS family
proteins are farnesylated at steady state, so FTIs were originally
conceived as KRAS inhibitors and tested in high-prevalence KRAS-
driven tumors. However, it was subsequently discovered that certain
farnesylated proteins, including KRAS andNRAS, can be rescued from
membrane displacement in the presence of FTIs by an alternative
prenylation pathway mediated by the enzyme geranylgeranyl trans-
ferase, so clinical activity of tipifarnib and other FTIs in KRAS- and
NRAS-driven cancer was modest. In contrast, the third family mem-
ber, HRAS, is not a substrate for the geranylgeranylated transferase,
and its membrane localization and cellular function are suppressed by
FTIs (7).

HRAS was originally identified as an oncogene in chemical carci-
nogenesis studies of skin squamous cell carcinoma (SCC), and recent
genomic analyses reveal that it is the predominant mutated RAS
isoform in SCCs of several types, including HNSCC (8). The Cancer
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GenomeAtlas (TCGA) reports thatHRAS ismutated in 6%ofHNSCC
at initial diagnosis (9), and higher frequencies have been reported in
some demographic groups associated with exposure to specific oral
carcinogens (10). In addition, HRASmutations have been reported in
15% of patients during acquisition of resistance to cetuximab
therapy (11).

Prior to a recent report of tipifarnib activity in HRAS-mutant
thyroid carcinoma (12), historical studies of FTIs in HRAS-mutant
settings have employed the bladder carcinoma line T24 (6, 13),
breast cancer lines (14), or recombinant models (6, 14, 15). Here, we
report an in-depth characterization of the antitumor activity of
tipifarnib in a series of cell line- and patient-derived HNSCC
xenograft models that capture the genomic diversity of this patient
subset. Tipifarnib displaced HRAS from cellular membranes and
selectively inhibited proliferation and survival of HRAS-mutant
HNSCC cells in vitro. In xenograft models, tipifarnib blocked tumor
growth and induced regressions in cell line- and early passage
patient-derived HNSCCs and was associated with robust inhibition
of MAPK pathway signaling downstream of activated HRAS. FTI
treatment also blocked neovascularization, in part via HRAS-
independent mechanisms, and analysis of gene expression changes
following tipifarnib treatment of HRAS-mutant patient-derived
xenograft (PDX) models confirmed a robust G1–S cell-cycle block
downstream of MAPK pathway inhibition and revealed induction
of squamous lineage differentiation in vivo.

Materials and Methods
Cell lines and tissue culture

Human head and neck cancer cell lines CAL27, DETROIT562 (HRAS
wild type), HN31, and UMSCC17B (HRAS mutant) were collected as
part of the NIDCR Oral and Pharyngeal Cancer Branch cell collection
and have been described previously (16, 17). The novel cell lines ORL48
(HRAS wild type) and ORL214 (HRAS mutant) were generously pro-
vided byDr. SokChingCheong (Cancer ResearchMalaysia, Subang Jaya,
Selangor,Malaysia). Toensure consistency in cell identity, all the cell lines
underwent DNA authentication by multiplex STR profiling (Genetica
DNA Laboratories, Inc.) prior to experiments. No Mycoplasma was
detected through Mycoplasma Detection Kit-QuickTest from Biomake.
See Supplementary Materials for additional details.

Tipifarnib
Tipifarnib was provided by Kura Oncology. See Supplementary

Materials for drug storage and preparation in vitro and in vivo.

In vivo mouse experiments and analysis
Studies on cell line–derived HNSCC xenografts were performed at

the University of California, San Diego (San Diego, CA), under
protocol ASP # S15195, approved by the Institutional Animal Care
and Use Committee (IACUC). See Supplementary Materials for
additional details. For PDX establishment, fresh surgically removed
tumor tissues were obtained by Crown Bio (Crown Bioscience SPF
facility; ref. 18) from patients diagnosed as HNSCC with approval by
the Institutional Review Boards of the hospital and informed consents
from patients, and studies were conducted in accordance with recog-
nized ethical guidelines. The protocol and any amendment(s) or
procedures involving the care and use of animals were approved by
the Institutional Animal IACUC of CrownBio prior to conduct.
During the study, the care and use of animals was conducted in
accordance with the regulations of the Association for Assessment
and Accreditation of Laboratory Animal Care.

RNAi, cell growth assays, 3D spheroids assay, immunoblot
analysis, IHC and immunofluorescence, microfluidic
vasculogenesis assay

See Supplementary Materials for additional details.

HRAS plasma membrane translocation assays
For HRAS-GFP transfection, cells were grown on mslide glass

bottom (Ibidi). Cells were transfected with HRAS-GFP and the next
daywere treatedwith tipifarnib for 48 hours, and the image acquisition
was performed by confocal microscopy.

Mouse choroidal explant assay
Male C57BL/6J mice (age P20) were euthanized and their eyes were

immediately enucleated for dissection. After removing the cornea and
lens, the peripheral choroid–scleral complex was separated from the
retina and cut into approximately 1 mm� 1 mm fragments; then, the
mouse choroidal explant assay was performed. See Supplementary
Materials for additional details.

RNA sequencing and bioinformatic analysis
HN2579 and HN3504 HNSCC PDX tumors were implanted in

groups of three animals as described above and allowed to grow to 350
to 450 mm3, treated for four days with vehicle or tipifarnib (80 mg/kg
twice daily), excised, and snap-frozen. To ensure unbiased sampling
for each tumor lesion, three fragments in different regions of the tumor
were collected by microdissection techniques. See Supplementary
Materials for RNA extraction, RNA sequencing, and analysis.

Statistical analysis
GraphPad Prism version 7 for Windows (GraphPad Software)

was used to perform data analyses, variation estimation, and
validation of test assumptions. The differences between experimen-
tal groups in tumor volume, quantification of IHC analysis were
performed with longitudinal data analysis method, independent t
tests, or ANOVA.

Results
Genomics of HRAS-mutant HNSCC subset

The recent completion of TCGA (9) has provided an unprece-
dented opportunity to perform a pancancer analysis of the genomic
alterations in HRAS. We performed a detailed analysis of genomic
information in the TCGA database focused on revealing HRAS gene
expression levels and mutational status in a broad array of cancer
types. This study showed that relatively few cancers harbor HRAS
mutations, particularly thyroid cancer, pheochromocytoma and
paraganglioma (PCPG), and HNSCC (Fig. 1A). Among them, the
latter also represents the cancer expressing the highest levels of
HRAS transcripts, together suggestive of a more prominent role for
HRAS in this particular cancer type. The TCGA analysis has also
provided a comprehensive genomic characterization of HNSCC
(Fig. 1B; ref. 9), supporting that TP53 is one the most mutated
genes (71% mutated), followed by FAT1 (23% mutated), NOTCH1
(18% mutated), CASP8 (11% mutated), CDKN2A (22% mutated)
genes, and PIK3CA (�18% mutated; ref. 19). In a prior study, we
have performed a pathway-specific analysis of the HNSCC onco-
genome, which indicated that the PI3K–mTOR signaling pathway is
mutated in the highest percentage of the HNSCC lesions (19).
Indeed, PIK3CA is the driver oncogene most frequently mutated
when considering HPV� and HPVþ HNSCC cases (16.8% and
36.1%, respectively; ref. 19). HRAS is mutated at a lower frequency
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Figure 1.

Genomics ofHRAS-mutant HNSCC subset.A, Pan-cancer analysis of the TCGA database focused on HRAS gene expression andmutations. Expression level ofHRAS
indicated as log2 TPM (transcript count per million) and mutation frequency of HRAS (green) across different cancer types in TCGA dataset are represented.
B, Percentage of samples with one or more mutations in the major driver signaling pathways, including HRAS, in HNSCC (TCGA dataset, n ¼ 523). Percentage of
samples with mutations is indicated, as well as the corresponding statistical significance (q value). C, Cooccurrence and mutual exclusivity of HRAS mutations in
HNSCC (TCGA dataset, n ¼ 523). D, Mutational plot representing the analysis of cancer-associated HRAS mutations from TCGA for HNSCC. The frequency of
mutations is depicted by the height of the lollipop.
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(6.1%), but only in the HPV� HNSCC group (9), which is often
associated with tobacco use and exhibit worse prognosis (9, 20).

HPV infection has been recently recognized as a viral etiologic agent
responsible for HNSCC, more specifically in the oropharynx (21, 22).
The absence of anyHRASmutations inHPVþHNSCCprompted us to
explore whether there are other significantly altered genomic altera-
tions concomitant with HRAS that may help define better the land-
scape of HRAS-mutant HNSCC. Indeed, aligned with a prior
report (23), we found that HRAS mutations define a unique subset
of HNSCC, characterized, in most of the cases, by coincident loss of
function mutations in caspase-8 (q value 3.74 e�9) and enrichment
for absence (nearly mutually exclusive) of TP53 mutations (q value,
9.936 e�3; Fig. 1C). In this regard, HRAS-mutant HNSCC cases also

exhibit a low overall mutational burden that is associated with poor
response to immuno-oncology agents (9), and hence may instead
benefit from the development of targeted options disruption HRAS
oncogenic signaling. As with the other RAS isoforms, HRAS exhibits
mutational hotspots in exons 2 (G12, G13), 3 (Q61), and 4 (K117 and
A146), butQ61mutations aremore common than inKRAS andNRAS
mutants, where G12 mutations predominate (Fig. 1D).

Tipifarnib inhibits HRAS farnesylation and displaces it from
cellular membranes

RAS proteins are synthesized in the cytosol and subsequent post-
translational modifications enable their stable association with intra-
cellular membranes, which is required for GTP hydrolysis and RAS
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Tipifarnib inhibits HRAS farnesylation
and displaces it from cellular mem-
branes. A, Mechanism of action of tipi-
farnib. RAS proteins are synthesized
in the cytosol, and subsequent post-
translational modifications enable their
stable association with intracellular
membranes, which is required for
GTP hydrolysis and RAS signaling.
HRAS is only dependent on farnesyla-
tion for its membrane localization.
The rate-limiting modification is far-
nesylation of the cysteine 186, medi-
ated by farnesyltransferase. Tipifarnib
displaced HRAS from cellular mem-
branes and selectively inhibited pro-
liferation and survival of HRAS-mutant
HNSCC cells. B, Western blot analysis
of signaling events in HNSCC cells
UMSCC17B, ORL214 (HRAS mut), and
CAL27 (HRAS WT). Cells were cul-
tured in 6-well plates and treated
with tipifarnib (200 nmol/L) or DMSO
(0.2 %) as a control for 48 hours.West-
ern blot analysis was performed in an
18% gel showing that the HRAS pre-
nylation shift has been abolished by
tipifarnib treatment. C, Western blot
showing HRAS-GFP expression after
transfection. D, HRAS recruitment to
the plasma membrane using cells
transfected with HRAS-GFP. Trans-
fected cells were treated with tipifar-
nib (200 nmol/L) for 48 hours, and
single plan imaging in the center of
the cells was performed by confocal
microscope allowing fluorescent pro-
tein localization.
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signaling (4, 5). The rate-limiting modification is farnesylation of the
cysteine 186, mediated by farnesyltransferase (Fig. 2A; ref. 24).
Because the linkage of a farnesyl moiety to target proteins subtly alters
their molecular weight, the so called “farnesylation shift”, we used a
high concentration gel (18%) to show that tipifarnib treatment depre-
nylated HRAS in both mutant and WT cell lines (Fig. 2B). To
determine whether this defarnesylation altered the intracellular traf-
ficking of HRAS protein, we expressed GFP-tagged HRAS in 293 cells
(Fig. 2C) to be able to follow its localizationwith andwithout tipifarnib
treatment. HRAS localized to the plasma and nuclear membranes and
membranous organelles in control samples as described previous-
ly (25), while tipifarnib-treated cells displayed a more cytosolic
localization of the protein (Fig. 2D).

Tipifarnib is selectively cytotoxic to HRAS-mutant HNSCC
in vitro

We characterized the effect of tipifarnib in HRAS-mutated andWT
human HNSCC cell lines to determine whether the drug was selec-
tively active in theHRAS-mutant subset. First, we treated the cells with
tipifarnib or knocked down HRAS by siRNA, and the effect was
verified byWestern blot analysis (Fig. 3A). Furthermore, we compared
the proliferation of HRAS-mutated HNSCC (UMSCC17B and
ORL214) with HRAS WT (CAL27) treated with siRNA or tipifarnib.
Although the inhibition of proliferation was incomplete, both tipi-
farnib and HRAS knockdown significantly reduced the growth of
HRAS-mutated cell lines, while no significant effects were detected in
HRAS WT cells (Fig. 3B). HRAS knockdown with siRNAs and
tipifarnib treatment reduced pERK and pMEK levels inHRAS-mutant
HNSCC cells, consistent with the inhibition of the HRAS–MEK–ERK
pathway, but not in HRAS WT cells, using the MEK inhibitor
trametinib, which inhibited ERK activation in all cells as a control
(Fig. 3C).

The initial experiments with tipifarnib and HRAS knockdown
were performed in monolayer culture, but as several groups have
recently reported that this format fails to capture the full potency
and selectivity of RAS inhibitors (26), we also tested tipifarnib in a
larger panel of HRAS-mutant and WT cell lines in 3D spheroid
formation assays, measuring effects on viability in terms of met-
abolic activity (Fig. 3D) and absolute number (Fig. 3E) of 3D tumor
spheroids. The broadly active HRAS nonselective drugs sunitinib
and trametinib were employed as controls. 3D assay treatment
lasting 3 weeks evidenced distinct behaviors in different conditions.
Tipifarnib displayed dose-dependent inhibition of spheroid viabil-
ity in HRAS-mutant cells only (Fig. 3D) and also selectively reduced
the absolute number of colonies (Fig. 3E), suggesting that HRAS
inhibition depletes tumor-initiating cells. In contrast, sunitinib and
trametinib were similarly active in both HRAS-mutant and WT
HNSCC lines (Fig. 3E).

Tipifarnib is highly active in HRAS-mutant HNSCC xenografts
Given that tipifarnib shows selective cytotoxicity to HRAS-mutant

HNSCC cells in vitro, we next asked whether tipifarnib is sufficient to
display tumor-suppressive effects in vivo. For these studies, we used
UMSCC17B cells exhibiting a HRAS Q61L mutation and ORL214,
which has a HRAS G12C mutation. Remarkably, we observed that
tipifarnib significantly halted tumor growth from as early as 3 days
after treatment initiation (n ¼ 6, P < 0.001; Fig. 4A–C). Tipifarnib
reduced pERK in both xenograft models (Fig. 4D). Moreover, IHC for
cleaved caspase-3 and IF for Ki67 showed that the inhibition of HRAS
by tipifarnib caused increased apoptosis and a reduction of cell
proliferation in HNSCC tumors (Fig. 4D).

Activity of tipifarnib in HRAS mutant is independent of
genotype

We next extended our analysis to include a panel of HRAS-mutant
andHRASwild-type patient-derivedHNSCC xenograft (PDX)models
(Supplementary Fig. S1A), as they may better reflect the complexity of
the HNSCC lesions and limit the genetic drift that may occur during
establishment and maintenance of HNSCC cell lines in vitro. In
addition, because widespread differences exist within individual resi-
dues and hotspot genemutations of amino acids and tumor types (27),
the expansion of the study to include PDXmodels increased the range
of hotspot mutations to include A146T (HN1420 model), G12S
(HN2579), G13R (HN2581), and K117N (HN3504; Fig. 1D). Because
tipifarnib is likely to be inhibiting the function of other farnesylated
proteins in HNSCC models in vivo, it was important to determine
whether the presence of mutant HRAS was necessary for the robust
observed antitumor activity of the drug. As shown in Fig. 5,
tipifarnib displayed selective antitumor activity in HRAS-mutant
HNSCC PDX models. The six HRAS wild-type tumors grew pro-
gressively while on tipifarnib treatment (Fig. 5A; Supplementary
S1B and S1C) but, in sharp contrast, all four HRAS-mutant tumors
were highly sensitive to tipifarnib when compared with the control-
treated groups (P < 0.01; Fig. 5A and B), demonstrating that mutant
HRAS is required for tumor control by tipifarnib in HNSCCmodels.
Consistent with our previous xenograft data, IHC for pERK
(Fig. 5C) and IF for Ki67 (Fig. 5D) showed that tipifarnib caused
a reduction of ERK activation and cell proliferation in these PDX
models. Moreover, as expected, tipifarnib drastically reduced far-
neslylated proteins (Fig. 5E), and vessel density by CD31 staining
(Fig. 5F; ref. 28).

Tipifarnib inhibits angiogenesis and vasculogenesis
Tumors can increase their blood supply by two recognizedmechan-

isms: de novo formation of vessels by the differentiation of the
endothelial progenitor cells, known as vasculogenesis, and angiogen-
esis, the sprouting of new blood vessels from the existing vasculature.
Previous studies indicated that tipifarnib and other FTIs inhibit tumor
angiogenesis (13, 28), but antiangiogenic activity can vary between
different tumor types, so we sought to expand these observations in the
context of HRAS-mutant HNSCC. CD31 immunostaining demon-
strated that tipifarnib significantly inhibited vessel formation in both
UMSCC17B and ORL214 xenograft tumors (Fig. 6A and B). More-
over, to explore whether tipifarnib may also act on endothelial cells
directly, we performed a 3D vasculogenesis assay in a microfluidic
model. Briefly, GFP-HUVECS were grown in 3D hydrogel in micro-
fluidic channels for 48 hours with and without tipifarnib. The number
of branches was quantified, which revealed the inhibitory effect of
tipifarnib on vessel generation (Fig 6C). Choroid sprouting assay can
be used as an ex vivo model for studying microvascular angiogenesis.
We then tested tipifarnib effects using the choroid sprouting assay. As
shown in Fig. 6D, tipifarnib robustly inhibited vessel sprouting from
mouse choroid in the 3Dmatrix, suggesting that both pathological and
physiological neovascular processes are sensitive to farnesyltransferase
inhibition.

Tipifarnib induces differentiation in patient-derived tumors
To further elucidate the consequences of interfering with mutant

HRAS and other farnesylated targets in HNSCC, we performed
bioinformatics analysis of tipifarnib-induced gene expression changes
in PDXmodels. Two tipifarnib-sensitiveHRAS-mutant HNSCC PDX
models were treated with tipifarnib for 4 days, at which point the
tumors were harvested and processed for RNA sequencing. Data were
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Figure 3.

Tipifarnib is selectively cytotoxic toHRAS-mutant HNSCC in vitro.A,UMSCC17B,ORL214 (HRASmut), andCAL27 (HRASWT)were knockeddown forHRASbymeans
of siRNA SMARTpool, or treated with tipifarnib (200 nmol/L) for 48 hours. SiRNA ctrl was used in the control sample. Cell lysates after treatment were analyzed by
Western blot analysis in a 10% gel showing the HRAS expression in different experimental conditions. B, Effects of tipifarnib and HRAS siRNA in monolayer culture:
viability analysis in the condition described in Fig. 3A (� , P <0.05; �� , P <0.01; ��� , P <0.001when comparedwith the control-treated group, n¼ 3/group).C,Western
blot analysis for pMEK/MEK and pERK/ERK on HRASWT and mutated cell lines, respectively, Cal27 (WT), and UMSCC17B and ORL214 (mutant). Cells were treated
with HRAS siRNA (48 hours), and tipifarnib as above, and using trametinib as a control.D, 3D spheroids assay for the three-dimensional analyses of HRAS inhibition:
quantification of the viability of CAL27, DETROIT562, andORL48 (HRASWT) UMSCC17B, ORL214, HN31 (HRASmut) at increasing concentration of (0–1,000 nmol/L)
in 3D hydrogel culture. Cells have been treated for 3 weeks (n ¼ 3/group). E, With the same setup of the 3D spheroids assay, the stemness potential has been
measured quantifying the number of spheroids generated in a 3D controlled hydrogel by CAL27, DETROIT562, and ORL48 (HRAS WT), UMSCC17B, ORL214, HN31
(HRASmut) at increasing concentration of tipifarnib (0–1,000 nmol/L), using sunitinib and trametinib as positive controls (� , P <0.05; �� , P <0.01; ��� , P <0.001 when
compared with the control-treated group, n ¼ 3/group).
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processed and analyzed using a combination of commercial (Rosalind
by OnRamp, Advaita) and Open Source (ENRICHR) resources. As
shown in Fig. 7A and E, gene set enrichment analysis (GSEA) revealed
two prominent patterns of altered gene expression in tipifarnib-treated
tumors. When the two models were analyzed collectively, the pre-
dominant changes related to inhibition of cell cycle progression

(Fig. 7A, Supplementary Fig. S2, Supplementary Fig. S3), as expected
from RAS-MAPK biology. Advaita cell pathway analysis showed that
the expression of drivers of G2–Mprogression, such as cyclins A and B,
CDK1 and CDC25, andmitotic regulators, including BUB1 and PLK1,
was suppressed (Fig. 7B; Supplementary S2A), consistent with shut-
down of RAS-MAPK-cyclin D signaling, the dominant mitogenic
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Antitumor activity of tipifarnib in cell line–derivedHNSCCxenograftmodels.A,UMSCC17B (top) andORL214 (bottom)were transplanted into athymic nudemice and
NOD/SCIDmice, respectively, and treated with vehicle or tipifarnib (60 mg/kg twice daily) as indicated (� , P < 0.05; ��� , P < 0.001 when compared with the control-
treated group, n ¼ 6/group). Representative tumor images (B) and histologic sections (C) from each treatment group in A. D, Left, representative IHC analysis of
pERK and cleaved caspase-3, and representative immunofluorescence analysis of Ki67 in tumors from A; Right, quantification from images on the left using QuPath
software (� , P < 0.05; �� , P < 0.01; ��� , P < 0.001 when compared with the control-treated group, n ¼ 3/group).
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Antitumor activity of tipifarnib in HRAS-mutant PDX models. A, Waterfall plot of tipifarnib antitumor activity in HRAS wild-type and mutant PDX models.
The columns in the graph represent the volume change comparing before and after treatment with tipifarnib. Athymic nude mice were inoculated
subcutaneously with 2- to 3-mm tumors fragments, the PDXs were allowed to establish to 250 to 350 mm3, and then, the animals were randomized into
groups of three and treated orally with vehicle or tipifarnib (60 mg/kg twice daily) for approximately 20 days. B, PDX models containing endogenous HRAS
mutations. HN1420, HN2579, HN2581, and HN3504 fragments were transplanted into athymic nude mice, treated with vehicle or tipifarnib (60 mg/kg twice
daily) as indicated (� , P < 0.05; �� , P < 0.01; ��� , P < 0.001 when compared with the control-treated group, n ¼ 3/group). C, Representative IHC or
immunofluorescence analysis (left) and quantification using QuPath (right) of pERK (top left), Ki67 (top right), farnesylated proteins (bottom left), and CD31
(bottom right) in PDX samples (� , P < 0.05, �� , P < 0.01, ��� , P < 0.001 when compared with the control-treated group, n ¼ 3/group). The analyzed samples are
related to the HN3504 PDX models using the same treatment as in A.
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pathway in HRAS-mutant cells leading to cell cycle arrest at the G1-S
boundary.

However, when the two PDX models were analyzed individually
a second prominent transcriptional phenotype emerged in the
HN3504 model, where GSEA enriched for processes and pathways
associated with differentiation of squamous cells (Fig. 7E), includ-
ing epidermal development, skin development, epithelial differen-
tiation and cornification. Keratinocytes in stratified squamous
epithelia, such as the skin and the lining of the upper aerodigestive
tract from which HNSCC is derived, originate as proliferating
progenitor cells in the basal layer and progressively differentiate
towards specialized post-mitotic cells as they move outward (29).
This progression is associated with characteristic alterations in
patterns of cytokeratin expression and ultimately enzymatic
cross-linking of cellular proteins with barrier function, known as
cornification. As shown in the volcano and box and whisker plots of
gene expression changes induced by tipifarnib in HN3504 tumors
(Fig. 7C and D; Supplementary S2B, Supplementary Table S1), the
well-characterized squamous differentiation markers cytokeratin 4
(KRT4) and KRT13 (30), the epithelial differentiation transcription
factors ELF3 (31) and KLF4 (32), the cornified protein precursor
SPRR2A and the cross-linking enzyme transglutaminase-1 (TGM1)
were among the most strongly upregulated loci (p-Adj 6.83e-21 �

1.01e-54). By contrast, the basal cytokeratin KRT17, the ‘stemness’
markers CD44 (33) and WNT10B (34) and the HNSCC oncogene
ROS1 (35) were all strongly downregulated (p-Adj 2.49e�14 �
9.74e�22). Squamous differentiation in tipifarnib treated HN3504
tumors was confirmed histologically by robust staining for KRT4,
and by quantitative analysis of the of the immunofluorescence
results. Moreover, the presence of characteristic squamous differ-
entiation morphological features in tipifarnib-treated HN3504
tumors is shown in the H&E staining sections (Fig. 7G).

Discussion
RAS genes are the most common driver oncogenes in human

cancer, being mutated in approximately one third of cancer cases, so
considerable efforts have been made for decades to develop therapeu-
tics forRAS-driven tumors (36). Despite this significant investment, no
drugs directly targeting RAS proteins have been approved, and alter-
native strategies directed against downstream RAS pathways such as
MAPK and PI3K have also proved ineffective, primarily due to
feedback reactivation via RAS (37). Direct inhibition of RAS proteins
at the catalytic site is impractical due to their picomolar affinity for
GTP (37), but a recent breakthrough has enabled direct inhibition of
KRASG12C (26).
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Tipifarnib inhibits angiogenesis in vitro, ex vivo, and
in vivo. UMSCC17B (A) and ORL214 (B) were trans-
planted into athymic nudemice and NOD-SCID mice,
respectively, and treated with vehicle or tipifarnib
(60 mg/kg twice daily) as indicated. Representative
immunofluorescence analysis (left) and quantifica-
tion (right) of CD31 in xenograft models. C, Vascu-
logenesis assay in the microfluidic model (left) and
quantification (right) of the endothelial cells branch-
ing. GFP HUVECs were seeded through microfluidic
channels in a 3D environment and treated with tipi-
farnib 200 nmol/L for 48 hours. Number of branches
were quantified in at least 3 ROIs for each condition,
and at least 3 microfluidic devices for each condition
have been cultured (� , P < 0.05; ��, P < 0.01; ��� , P <
0.001 when compared with the control-treated
group, n ¼ 3/group). D, Mouse choroidal explant
assay: vessel outgrowth in a mouse choroid explant
model in a 3Denvironment. Representative imagesof
vessel growth after 6 days of incubation with tipi-
farnib 200 nmol/L (left) and quantification of the
sprouting area (right; � , P < 0.05; ��, P < 0.01; ��� , P <
0.001 when compared with the control-treated
group, n ¼ 3/group). no., number.
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Bioinformatics analysis of tipifarnib activity in PDXmodels.A,GSEAof top processes altered by tipifarnib treatment in the combined dataset of HN2579 andHN3504
xenografts. B, Advaita pathway diagram illustrating the roles of genes suppressed by tipifarnib treatment in G2 and M phases of the cell cycle. C, Volcano plot of
differentially expressed (DE) genes in tipifarnib-treated HN3504 tumors (n ¼ 3,794, fold change ≥ 1.5, Padj < 0.05). Green: less abundant transcripts, purple: more
abundant transcripts.D,Box andwhisker plots of representative highly DE genes in tipifarnib-treated HN3504 tumors. Upregulated genes: KRT4 (fold change, 35.33;
Padj¼ 1.01e�54), ELF3 (fold change, 6.31; Padj¼ 2.41e�37), SPRR2A (fold change, 8.97; Padj¼ 3.52e�27), TGM1 (fold change, 6.16; Padj¼ 4.37e�28). Downregulated
genes: KRT17 (fold change, �5.76; Padj, 2.75e�20), CD44 (fold change, �2.02; Padj, 2.49e�14), ROS1 (fold change, �8.86; Padj, 4.98e�21), WNT10B (fold change,
�17.10; Padj, 9.74e�22). E, GSEA of top processes altered by tipifarnib treatment in HN3504 xenografts. F, Immunofluorescence (top) and quantification analysis
using QuPath software (bottom) of KRT4 expression in control and tipifarnib-treated HN3504 PDX tumors. Red indicates KRT4 HIGH, and blue indicates KRT4
negative. G, H&E highlighting morphologic evidence of squamous differentiation in control and tipifarnib-treated HN3504 PDX tumors. BALB/c nu/nu mice were
inoculated subcutaneously with 2- to 3-mm tumors fragments, the PDXswere allowed to establish to 250 to 350mm3, and the animalswere randomized into groups
of three and treated orally with vehicle or tipifarnib (60 mg/kg twice daily) for approximately 20 days.
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The only other currently feasible way to disrupt RAS activity
directly is through preventing appropriate intracellular localization
by interfering with RAS prenylation (36). Several dozen proteins are
farnesylated under basal conditions and tipifarnib treatment blocks
their prenylation (38), but inhibition of the farnesylation of KRAS
and NRAS leads to compensatory geranylgeranylation and the
restoration of membrane localization in the presence of tipifar-
nib (7, 38). In contrast, HRAS cannot be geranylgeranylated, and its
membrane localization and cellular function may be suppressed by
FTIs (38, 39). In this study we report that mutant HRAS is a
targetable oncogene via farnesyltransferase inhibition in a molec-
ularly-defined subset of HNSCC. Tipifarnib displayed robust and
consistent antitumor activity in a series of cell line- and patient-
derived xenograft models of HNSCC but, in sharp contrast, tipi-
farnib was devoid of activity in HRAS wild type HNSCC cell lines
and PDX models in vitro and in vivo. Remarkably, tipifarnib
displayed significant inhibition of tumor growth in HRAS-mutant
xenografts harboring mutations in exon-2 (G12C, G12S, G13R),
exon-3 (Q61L) or exon-4 (K117N, A146T), suggesting that all of
these mutants are sufficiently oncogenic to drive full malignancy in
HNSCC cells, even though exon-2 and exon-3/4 KRAS mutants
have been reported to have differing GTPase activities and biologic
functions in other cellular contexts (8, 40).

HRAS protein was de-prenylated in both HRAS-mutant and
wild type HNSCC cells, as indicated by the gel shift and redistribution
from intracellular membranes, but tipifarnib only inhibited spheroid
growth of the HRAS-mutant UMSCC17B, ORL214 and HN31 cell
lines, whereas the cytotoxic multikinase inhibitor sunitinib and the
MEK inhibitor trametinib displayed similar activity in both HRAS
mutant and HRAS wild type lines. Genetic depletion of HRAS was
apparently incompletely effective at inhibiting the proliferation of
HRAS-mutant HNSCC cells, but this experiment was performed in
monolayer culture, and these growth conditions have recently been
shown to partially undermine RAS dependence (26). Tipifarnib
activity was also blunted under these conditions, underscoring the
importance of using appropriate assay formats to interpret RAS
dependence.

The expected effects on mitogenic signaling, cell cycle progres-
sion and apoptosis downstream of inhibition of oncogenic HRAS
in vivo were observed in both cell-derived xenografts and PDX
models. ERK phosphorylation was sharply reduced in UMSCC17B
and HN3504, but less so in ORL214, perhaps due to feedback
reactivation of the MAP kinase pathway. Indeed, ENRICHR anal-
ysis of upregulated gene-sets in PDX models following 4 days of
tipifarnib therapy revealed evidence of upregulation of canonical
MAPK pathway negative regulators (DUSP1, DUSP3) and activa-
tion of collateral epithelial cell oncogenic pathways including EGF/
EGFR and HER2/HER3 signaling, PIK3CA and PTPN11 (Supple-
mentary Fig. S3). Despite this, all models responded well to tipi-
farnib treatment and proliferation and apoptosis markers were
robustly altered at both early and late timepoints during tipifarnib
therapy, suggesting that continuous treatment overwhelmed innate
tumor resistance mechanisms and maintained sufficient suppres-
sion of oncogenic signaling to block tumor growth in these models.
Indeed, the antitumor activity of tipifarnib in all HRAS-mutant
HNSCC models reported here matches or exceeds that reported
with a combination of MAPK and PI3K pathway inhibitors in a
HRAS-mutant lung cancer model (41).

HRAS is among several dozen obligate farnesylated proteins in
cells (38), and analysis of treated PDX tumors indicated almost
complete disappearance of the farnesyl moiety, raising the possi-

bility that depletion of additional farnesylated target proteins could
enhance the antitumor activity of tipifarnib in HRAS-mutant
HNSCC. Tipifarnib and other FTIs have previously been shown
to possess anti-angiogenic activity (5, 28, 42) mediated by effects on
both tumor (42) and endothelial cells (28, 43), and we observed both
in this study. The farnesylated proteins involved remain to be
identified (44), but the lack of significant effects on tumor growth
observed in the panel of HRAS wild type PDX strongly suggests that
either (a) inhibition of angiogenesis does not provide sufficient
therapeutic value in HNSCC (45) or (b) some or all of the anti-
vascular effects of tipifarnib in vivo are secondary to mutant HRAS
blockade (46).

Bioinformatics analysis of tipifarnib-induced gene expression
changes in two PDX models further elucidated the multifactorial
mechanisms of antitumor activity of the drug in HRAS-mutant
HNSCC in vivo. GSEA of the combined dataset confirmed that FTI
treatment induced a robust cell-cycle block at the G1–S boundary and
also promoted squamous lineage differentiation. Malignant transfor-
mation and terminal differentiation are mutually exclusive processes
with opposing effects on cellular proliferation. Carcinogenesis in
squamous tissues is associated with impairment of differentiation
linked to HPV infection or oncogene activation (47, 48). GSEA of
HRAS-mutant HN3504 PDX tumors treated for 4 days with tipifarnib
revealed that initiation of epithelial differentiation was a prominent
early effect of farnesyl transferase inhibition in this model. HNSCC
stem cell markers such as CD44 (33) and WNT10B (34, 49) and the
basal (proliferative) layer cytokeratin KRT17 (29) were also profound-
ly suppressed. In contrast, the canonical squamous differentiation
markers KRT4 and KRT13 (30), prodifferentiation transcription
factors ELF3 (31) and KLF4 (32), and cornification markers like
SPRR2A, all of which have been reported to be downregulated in
HNSCC, were among the most strongly upregulated genes. This
suggests that oncogenicHRASmay suppress squamous differentiation
in HNSCC and that this can be reversed by tipifarnib treatment.

In the current study, we have characterized the antitumor activity
and mechanisms of action of tipifarnib in a large series of HNSCC
CDX and PDX models. Tipifarnib displayed robust and selective
activity in HRAS mutant models harboring all of the known hotspot
loci. Collectively, these data demonstrate thatmutantHRAS represents
an actionable oncogene in HNSCC that can be targeted with tipifarnib
via inhibition of proliferation and angiogenesis and induction of
apoptosis and terminal squamous cell differentiation, resulting in
consistent stasis or tumor regression in vivo.

Tipifarnib was previously studied in an extensive development
campaign consisting of more than 70 clinical trials in a variety of
tumor types in the late 1990s and early 2000s without the benefit of
methods to enrich for clinical activity such as the use of next-
generation sequencing to identify patients with specific driver muta-
tions. Although durable responses were achieved in several cancers,
response rates were insufficient to support registrational studies in
unselected patient populations. Because its reintroduction into the
clinic in 2015, several cohorts of HRAS-mutant patients have been
treated in a single-arm phase II trial (NCT02383927), with encour-
aging preliminary findings. As reported in 2018 (45, 50), among 7
evaluable patients with HNSCC, 5 (71%) achieved a confirmed partial
response with a median duration of response of 14.1 months. Impor-
tantly, no HRAS-mutant HNSCC patient experienced an objective
response on his last therapy prior to receiving tipifarnib (including
platinum, immunotherapy and cetuximab � chemotherapy regi-
mens). On the basis of these initial encouraging clinical responses,
and our current findings, an international, multicenter, open-label,
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single-arm study of tipifarnib after failure of platinum-based therapy
in recurrent or metastatic HNSCC with HRAS mutations with regis-
trational intent, AIM-HN, is currently underway (NCT03719690).
Indeed, we expect that our experimental studies in genetically defined
HNSCC systems harboring HRAS mutations may support the ratio-
nale for selectively enrolling patients with HRAS-mutant HNSCC in
future tipifarnib trials, being represented as a novel precision thera-
peutic approach for HNSCC based on their oncogenomic landscape.
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