
Citation: Gursesli, M.C.; Selek, M.E.;

Samur, M.O.; Duradoni, M.; Park, K.;

Guazzini, A.; Lanatà, A. Design of

Cloud-Based Real-Time Eye-Tracking

Monitoring and Storage System.

Algorithms 2023, 16, 355. https://

doi.org/10.3390/a16070355

Academic Editor: Frank Werner

Received: 19 June 2023

Revised: 13 July 2023

Accepted: 23 July 2023

Published: 24 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

algorithms

Article

Design of Cloud-Based Real-Time Eye-Tracking Monitoring
and Storage System
Mustafa Can Gursesli 1,2 , Mehmet Emin Selek 3, Mustafa Oktay Samur 4, Mirko Duradoni 2 ,
Kyoungju Park 5 , Andrea Guazzini 2,6 and Antonio Lanatà 1,*

1 Department of Information Engineering, University of Florence, 50139 Florence, Italy;
mustafacan.gursesli@unifi.it

2 Department of Education, Literatures, Intercultural Studies, Languages and Psychology,
University of Florence, 50135 Florence, Italy; mirko.duradoni@unifi.it (M.D.); andrea.guazzini@unifi.it (A.G.)

3 Department of Mining Engineering, Istanbul Technical University, Istanbul 34467, Turkey;
mehmeteminselek@gmail.com

4 Department of Electrical and Electronics Engineering, Bilgi University, Istanbul 34060, Turkey;
oktaysamr@gmail.com

5 Department of Computer Science and Engineering, Chung-Ang University, Seoul 06974, Republic of Korea;
kjpark@cau.ac.kr

6 Centre for the Study of Complex Dynamics, University of Florence, 50019 Sesto Fiorentino, Italy
* Correspondence: antonio.lanata@unifi.it

Abstract: The rapid development of technology has led to the implementation of data-driven systems
whose performance heavily relies on the amount and type of data. In the latest decades, in the field
of bioengineering data management, among others, eye-tracking data have become one of the most
interesting and essential components for many medical, psychological, and engineering research
applications. However, despite the large usage of eye-tracking data in many studies and applications,
a strong gap is still present in the literature regarding real-time data collection and management,
which leads to strong constraints for the reliability and accuracy of on-time results. To address
this gap, this study aims to introduce a system that enables the collection, processing, real-time
streaming, and storage of eye-tracking data. The system was developed using the Java programming
language, WebSocket protocol, and Representational State Transfer (REST), improving the efficiency
in transferring and managing eye-tracking data. The results were computed in two test conditions,
i.e., local and online scenarios, within a time window of 100 seconds. The experiments conducted
for this study were carried out by comparing the time delay between two different scenarios, even
if preliminary results showed a significantly improved performance of data management systems
in managing real-time data transfer. Overall, this system can significantly benefit the research
community by providing real-time data transfer and storing the data, enabling more extensive studies
using eye-tracking data.

Keywords: data management; cloud computing; RESTful API; eye tracking; web portal

1. Introduction

In recent decades, technology has become a crucial element of human life, leading
to various innovative and convenient advancements across numerous fields, including
health [1,2], entertainment [3,4], social media [5,6], physics [7,8], and chemistry [9,10]. While
these innovations have positively impacted human life, they also demanded several tech-
nological requirements. These requirements, including computational power [11], Internet
access [12], electricity [13], data [14], and other factors [15,16], have become increasingly
crucial in both academia and industry sectors. Data and data management, in particular, be-
came the center node for solving these technological challenges, and their relevance has been
further increased by the growth of machine learning methods and AI applications [14,17,18].

Algorithms 2023, 16, 355. https://doi.org/10.3390/a16070355 https://www.mdpi.com/journal/algorithms

https://doi.org/10.3390/a16070355
https://doi.org/10.3390/a16070355
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com
https://orcid.org/0000-0003-3387-5551
https://orcid.org/0000-0001-8272-9484
https://orcid.org/0000-0003-0198-4729
https://orcid.org/0000-0002-6540-5952
https://doi.org/10.3390/a16070355
https://www.mdpi.com/journal/algorithms
https://www.mdpi.com/article/10.3390/a16070355?type=check_update&version=2


Algorithms 2023, 16, 355 2 of 14

However, despite the need for huge data, research applications still lack suitable and ef-
fective data collection systems. Moreover, since many studies, especially those regarding
a large part of the population, moved to mobile applications, real-time data became the
strongest constraint to solve [19,20]. These conditions have led researchers to focus on
improving and creating novel data collection systems to facilitate the technological advances
in the research activity. These data collection systems are widely used in many studies on
topics as different as brain signals [21], earthquakes [22], weather conditions [23], etc.

In this context, Representational State Transfer (REST), the most widely used web-
based architecture in both the academic literature and industry, was introduced in 2000 as a
Ph.D. thesis by Roy Fielding [24] for leading the design and development of the architecture
of an Internet-scale distributed hypermedia system. It facilitates the caching of components
to reduce user-perceived latency, enforce security, and encapsulate legacy systems [24].
REST employs the Hyper Text Transfer Protocol (HTTP) to enable communication between
clients and servers. Its structure provides several advantages, including modifiability and
statelessness, which enhance interoperability [25]. These advantages bring substantial
benefits to the management of real-time data.

In addition to the solutions and limitations associated with real-time data management,
it is widely recognized that the real-time management of diverse data types presents
unique challenges due to their high density and rapid flow rates [26]. Eye-tracking data
in particular present this complexity due to their highly dynamic and rapidly changing
nature [27–29]. Furthermore, an eye-tracking pattern is an indirect measure of the complex
biological system behind it, which requires high-cost computational methods for analysis
with models, creating a major problem for the smooth real-time streaming of data.

In this regard, eye tracking is a powerful research tool for studying various topics,
such as marketing [30], attention [31], perception [32], psychopathology [33], computer
vision [34], and decision making [35,36]. Eye tracking provides insight into the neural
mechanisms at the base of exploring strategies of visual stimuli [37]. The eye-tracking
technology greatly advanced in recent years, achieving greater precision and accuracy, even
in real-world environments [34,38,39]. The history of eye tracking can be traced back to
the late 1800s, with improvements in terms of comfort, wearability, and performance for
a long-time measure of eye movements [36,40,41]. Since then, there have been important
advancements that have led to the development of increasingly sophisticated eye-tracking
systems [42–44].

Although physical eye-tracking devices have improved and become easier to use,
the real-world employment of these devices is still not widespread due to their high
cost [42–44]. This practical issue has prompted researchers to find different solutions,
and many eye-tracking models using webcams have been developed [34,39,45]. Many of
these models can be implemented locally on the user’s devices and streamed to different
platforms via Internet and web servers. Researchers integrate their models into web
platforms to reach larger audiences and collect more data. Unfortunately, there is a gap in
the literature regarding web-based streaming and storage systems that can be integrated
with real-time eye-tracking models.

This study aims to introduce a system that allows the collection, processing, real-
time streaming, and storage of eye-tracking data with REST architecture implementation.
The manuscript is structured as follows: In Section 1, data necessity, REST, real-time data,
and eye tracking are explained. Section 2 presents the materials and methods, the system
design, the Representational State Transfer, the application programming interface, Web-
Socket, the database server, Docker, WebGazer.js, the hardware implementation, and the
experiment. In Section 3, the experimental results are detailed. Section 4 discusses the
achieved experimental results compared with those presented in the literature. Lastly,
Section 5 provides a conclusion of the entire study and possible future research directions.



Algorithms 2023, 16, 355 3 of 14

2. Materials and Methods

The system’s architecture consists of two software modules, i.e., the front-end and the
back-end. The former is responsible for interfacing with the user, acquiring information,
preprocessing, streaming live data, and transferring to the back-end. The latter is the
invisible part and includes applications, servers, and databases. This section will display
how our architecture articulates between these two modules. In our structure, three
different interconnected platforms are designed to collect, process, stream, and store eye
movements during an experimental session. These platforms are the experiment platform,
the real-time results platform, and the database management platform (see Figure 1). The
experiment and real-time results platforms are located in the front-end while the database
management platform is located in the back-end. The front-end and back-end communicate
through HTTP. Lastly, data gathered from this study were analyzed using Python Version
3.10.0 with Matplotlib library version 3.5.3. All details of the system and data flow are
reported in the following sections.

Figure 1. System design components: experiment platform (A), real-time results platform (B), and server (C).

2.1. System Design

The system is designed with three components under two main modules (see Figure 1).
The experimental platform (A) and the real-time results platform (B) are in the front-
end module. In the back-end module, there is a server (C) component. The front-end
development uses JavaScript, HyperText Markup Language (HTML), and Cascading Style
Sheets (CSS), which allows the creation of a user-friendly interface. This interface displays
the live data stream and the evaluation report of the eye-tracking system. HTML5 video
tags are used to display participant’s live video stream.

The front-end is specifically designed to integrate the eye-tracking model and provide
a clear presentation of its live results. Moreover, data transfer between the experiment
platform (A) and real-time results platform (B) is carried out via WebSocket. Subsequently,
these data are transmitted to the back-end server via an HTTP request and stored in the
database. The front-end is the preferred implementation location for eye-tracking mod-
els to ensure a more robust privacy strategy. Since sensitive data, such as eye-tracking
information, is processed in this system, the aim is to perform all computations exclu-
sively on the computer being used, without involving external servers or sources. This
strategic approach is motivated by the fact that various models, including eye-tracking
models found in the literature, perform computations on snapshots captured by the user’s
webcam [46,47]. Processing these images on an external server is considered to introduce
potential security vulnerabilities. Therefore, all computations are configured to take place
only on the computer running the experiment, and only the results are transferred to other
platforms and servers.



Algorithms 2023, 16, 355 4 of 14

The back-end structure was built using Spring Boot, which is a framework of the
Java language, providing a robust and scalable data processing and management platform.
At the end of data collection on the front-end side, the collected data are sent to the back-
end service by HTTP requests. The back-end service aims to process and manage data
for database storage. In addition, the back-end provides a data management API that
facilitates read and write operations to the SQL database.

Database management involves the use of an SQL database for the efficient storage
and management of data. The database provides scalability and ease of retrieval and
analysis of stored data. The back-end communicates with the database using Java Database
Connectivity (JDBC), a Java API designed to access and manage databases. This seamless
integration enables effective data handling within the system. Dockerization plays a
major role in encapsulating the various components of the system. It involves separating
the front-end, back-end, and database into separate Docker containers. Each container
can be deployed independently, allowing for easy scalability based on the application’s
needs. Dockerization also provides a secure and isolated environment for each component,
ensuring the stability and security of the overall system.

The system flow can be briefly described as follows: The experiment platform (A)
captures the eye movements and positions of the subject through an embedded model,
converts them into coordinates, and sends them to the real-time results platform (B). These
two platforms communicate with each other via WebSockets and provide a data flow by
constantly listening to exchanged messages from A to B and vice versa. The eye-tracking
model placed on the experimental platform initiates data collection and its results are
then transmitted to a real-time results platform and streamed to the back-end via HTTP
requests. Following the end of the data collection session, the eye-tracking data, streamed
instantaneously on the real-time results platform (B), are sent via HTTP request to the
Server (C), which constitutes the last stage of the data flow in the back-end (See Figure 2).

Figure 2. System flowchart.

2.2. Representational State Transfer (REST) and Application Programming Interface (API)

Representational State Transfer (REST) is designed to develop web services based
on precise standards and limitations to grant an expandable and adaptable cross-data
transaction over the Internet [24]. RESTful API (application programming interface) is an
interpretation of the REST architecture that provides access to and actions on resources
using HTTP. In a RESTful API, the server does not store data about the user between
requests; instead, each request has all the data the server needs to process it. RESTful
APIs follow a set of constraints, such as client-server architecture and a consistent interface,
among others, to ensure that they are reliable, scalable, and easy to maintain [48,49]. REST
has become popular among developers due to its simplicity and flexibility. In addition,



Algorithms 2023, 16, 355 5 of 14

RESTful APIs have evolved into a standard for web services development and are actively
used by many large companies such as Google, Twitter, etc.

2.3. WebSocket

WebSocket is a communication protocol pertaining to the application layer in the
Transmission Control Protocol/Internet Protocol model (TCP/IP) [50]. Due to the popu-
larity and prevalence of HTTP, WebSocket uses HTTP constructs for the initial connection
between a client and a server [51] and provides persistent communication so that both
the client and the server can send messages at any time. Compared to traditional real-
time web communication, the WebSocket protocol saves a lot of network bandwidth and
server resources, and the real-time performance is significantly improved [52]. It is helpful
for real-time applications such as online games, financial trading platforms, eye tracking,
and Internet of Things (IoT)-based applications that support server push technology [53,54].

2.4. Database Server (SQL)

The SQL (structured query language) is a fourth-generation declarative programming
language for relational DBMSs (database management systems) and it is used to communi-
cate with and manipulate databases [55]. The MySQL database stores and retrieves data
via the REST API. The stored procedures and functions are designed as a security layer
to perform operations that would receive queries from the API for SQL processing in the
database [56].

There are many parameters to consider when evaluating database performance. In the
next section, we will highlight the qualities that made SQL databases more suitable for this
system over NoSQL databases. In particular, NoSQL databases outperform SQL databases
regarding writing speed and scalability. NoSQL databases perform better when dealing
with large scalability requirements and facilitating rapid data updates [57]. However,
SQL databases better manage complex relationships and multiple client scenarios [57].
The characteristics of the SQL, structure, and capability to maintain data integrity make
them suitable for scenarios involving relational data tables (such as the study carried out).
Due to the anticipated availability of multiple user results and relational data in this system,
the SQL database was chosen over NoSQL.

2.5. Docker

Docker is a technology that enables container virtualization, which can be compared to
a highly efficient virtual machine due to its lightweight nature [58,59]. It is characterized by
a modular architecture comprising multiple integral components that interact harmoniously
to facilitate the process of “Containerization”. These components are articulated as follows:
At the core of Docker is the Docker Engine, which provides the runtime environment
for containers [59]. Docker Images, read-only templates that serve as container building
blocks, utilize a layered file system and copy-on-write mechanism for efficient image
management [59]. When a Docker Image is instantiated, it becomes a Docker Container,
which offers a lightweight and secure execution environment [59]. Docker Containers can be
easily created, started, stopped, and deleted, providing flexibility in managing application
instances [60]. To facilitate image sharing and distribution, Docker Registries, such as
Docker Hub, host a vast collection of prebuilt images [61]. Additionally, organizations can
establish private registries tailored to their specific image requirements [61]. The modular
architecture of Docker, along with its components, enables scalable and flexible application
deployment across various environments.

2.6. WebGazer.js

WebGazer.js is a JavaScript-based eye-tracking algorithm. This algorithm allows the
real-time display of eye-gaze locations on the web using webcams on notebooks and mobile
phones [39,62]. This tool aims to utilize eye-tracking systems, which are currently only used
in controlled environments and experiments, to enable people to use them in their daily



Algorithms 2023, 16, 355 6 of 14

lives [39,62]. WebGazer.js consists of two core elements. These are a pupil detector and a
gaze estimator. The pupil detector detects the position of the eye and pupil through the
webcam. At the same time, the gaze estimator uses regression analysis to estimate where
the individual is looking on the screen [39,62]. The gaze estimator applies a regression
analysis through a calibration based on mouse clicks and mouse movements. Moreover,
the pseudocode of WebGazer.js shows the algorithm details (See in Appendix A.1).

2.7. Hardware Implementation

In the system, three Docker virtual environments were used to perform experiments,
stream real-time eye movements, and store data. In order to carry out online experiments,
two separate physical AMD Central Processing Units (CPUs), 1 GB of Random Access
Memory (RAM), and 25 GB of Solid State Disk (SSD) hardware were used for the front-end
where the eye-tracking model runs and for live feed eye-tracking data. Furthermore, to store
the data and manage the back-end, 2 physical Intel CPUs, 2 GB of RAM, and 25 GB of SSD
hardware were used. The locations of the servers where the Dockers are used are located
in Frankfurt, Germany for online experiments. The local experiments were conducted
with Intel i5 8600k CPUs and 16 GB of RAM. Lastly, in both systems, eye-tracking data
are collected in X and Y coordinates, while the data for time in seconds are stored in
Year:Month:Day:Hour:Minute:Second:Millisecond.

2.8. Memory Management

Low-level programming languages, such as C, incorporate manual memory man-
agement features like malloc() and free() [63]. Conversely, JavaScript handles memory
allocation automatically during object creation and frees it when those objects are no longer
in use, through a process known as garbage collection. “Garbage Collection” in JavaScript
plays a crucial role in determining which objects are necessary and which ones can be
discarded [64]. It follows a cycle of memory release, where JavaScript identifies and marks
objects that are no longer needed [65]. Specifically, within the predictWebcam function and
the objects created within it, memory is allocated as required during each function call.
Once the function produces an output, JavaScript performs the important task of marking
and sweeping all the memory that will no longer be utilized, ensuring efficient memory
management. In this system, we follow the garbage collection strategy.

2.9. Experiments

Experimental sessions were carried out to assess the reliability of the proposed system
architecture, comparing two different scenarios: local implementation (LI) and online
implementation (OI). The local scenario involved configuring the system on the local
computer, while the online scenario consisted of configuring the system on the online server.

In order to measure the time delay of both scenarios (LI and OI), the timestamps
of each platform were collected during a 100 s time window. The delay was calculated
by subtracting the timestamp value of the experiment platform (A) from the timestamp
received on the real-time results platform (B) (B-A), (i.e., arrival time–starting time). It is of
note that platform (A) sends data to platform (B) at the frequency of 1 HZ (see Figure 1). The
Console.log() function was used to visualize data in the experiment. Specifically, Console.log()
is a function that allows the data given into the function to be seen outside the code
environment. This function allowed us to capture the precise timestamps indicating the
arrival and starting time of data effectively.

Moreover, for the second experiment, 15 min of data were collected from the system
at one-second intervals to understand how the system affects memory usage and how it
changes over time while the eye-tracking model is performing real-life computations in the
experiment platform. A logMemoryUsage() function was used to record the memory usage
measurements in real-time. Specifically, the logMemoryUsage() function can be used for
several purposes, such as analyzing the change in memory usage over time and detecting
memory leaks or performance problems.



Algorithms 2023, 16, 355 7 of 14

3. Results

In this study, a series of statistical analyses have been performed to evaluate the
difference between the delays of LI and OI. In order to perform the analyses correctly,
firstly, the Shapiro–Wilk test was applied to determine whether the delay data were
normally distributed. According to the results of the Shapiro–Wilk test, both the LI delay
data (Shapiro–Wilk test statistic = 0.370, p < 0.05) and the OI delay data (Shapiro–Wilk test
statistic = 0.322, p < 0.05) did not fit a normal distribution. Time difference distributions are
shown in Figure 3.

Figure 3. Comparison of time differences between the online and local systems.

Based on these results, it was concluded that parametric statistical tests could not be
used and the Mann–Whitney U test, a non-parametric test, was preferred. The results of
the Mann–Whitney U test showed a statistically significant difference between local and
online latency (U = 794.0, p < 0.05). Table 1 shows the Mann–Whitney U test results.

Table 1. Mann-Whitney U test results regarding the local and online conditions.

Condition U-Statistic p-Value

Local vs. online 794.0 3.317643 × 10−25

According to descriptive statistics, the MAD value for the LI delay was 0.004, the me-
dian value was 0.064, the minimum value was 0.020, and the maximum value was 0.660.
Similarly, the MAD value for the OI delay was 0.006, the median value was 0.244, the mini-
mum value was 0.101, and the maximum value was 1.123. All the results of the descriptive
statistics are shown in Table 2.

Table 2. Descriptive statistics.

Condition MAD Median Min Max

Local 0.004 0.064 0.020 0.660
Online 0.006 0.244 0.101 1.123

These findings indicate that there is a statistically significant difference between LI
and OI delays and that there is a significant difference in their performance.

In addition, analysis of the memory usage data revealed interesting results (see Table 3).
The average increase between seconds was measured as 0.0037 MB. The average memory
usage during the session was measured as 72.62 MB with a minimum of 63.74 MB, and
the maximum memory usage was 83.62. The standard deviation of memory usage was
calculated at 3.48 MB.



Algorithms 2023, 16, 355 8 of 14

Table 3. Memory usage statistics.

Conditions Memory (Megabyte (MB))

Average increase between seconds 0.0037
Average memory usage 72.62

Minimum memory usage 63.74
Maximum memory usage 83.62

Standard deviation 3.48

Figure 4 shows an initial low level of memory usage that increases over time, with a
steady increase over a period of time. Although there are occasional fluctuations, the av-
erage memory usage (red dashed line) is generally above the curve and shows a steadily
increasing trend. These results show that the memory usage of the system varies over time
and reaches a stable level over a period of time.

Figure 4. Diagram of memory usage: blue line, memory usage dynamic; red dotted line, memory
usage average. Time axis is expressed in minutes.

4. Discussion

The demand for data has seen a substantial increase in recent years due to factors
such as rapid technological advancements, growing interest in AI from both the private
sector and researchers, and the proliferation of diverse research in the literature [66–69].
However, it is widely acknowledged that data collection systems, expected to keep up with
these demands, are facing limitations. This study aims to develop a system that facilitates
the data collection process for various studies, particularly in the academic domain, while
simultaneously enabling the real-time observation and streaming of the collected data.

Presently, REST is extensively employed in academic research across various fields, in-
cluding case generation [70], methodologies [71], biological data [72], machine learning [73],
etc. Furthermore, prominent companies, like Google, Amazon, Twitter, and Reddit, also
utilize this architecture. As part of this study, REST enables the instantaneous streaming
of the collected data. However, to avoid restricting researchers solely to Internet-based
usage, the system incorporates the Dockerization technique, allowing for local implementa-
tion. Consequently, tests were conducted in local and online (server-based) configurations.
A significant difference was found between the time it took for the eye-tracking model
data to reach the results page in the locally configured system compared to the same sys-
tem configured online. Numerous performance bottlenecks, such as Internet latency [74],
computer configuration [75], and server location [76], present considerable challenges that
are difficult to mitigate. Although the latency experienced online is significantly higher
than that of the local configuration, it is believed that the experimental online latency is not
substantial enough for users to discern [77] (the delay values are shown in Figure 3).



Algorithms 2023, 16, 355 9 of 14

The system presented in this study, which is based on several different techniques,
serves the purpose of the real-time streaming and storage of eye-tracking data. However,
it is crucial to highlight the flexibility of the proposed system, which can be adapted for
collecting and analyzing other data types in different experimental settings. Several studies
in the literature use Docker technology to build cloud platforms and integrate them into
a variety of experiments, similar to the approach used in this current study. The use
of Docker technology allows for the integratation of AI and various models in studies.
The system demonstrates a well-suited structure for numerous AI models in the literature.
In particular, Shanti et al. (2022) successfully implemented facial emotion recognition using
Convolutional Neural Networks [78]. In addition, Barillaro et al. (2022) presented a Deep
Learning-based ECG signal classification model [79]. Similarly, Vryzas et al. (2020) focused
on the task of speech emotion recognition, employing neural networks [80]. All these
studies use models that are implemented using Docker technology and have substructures
that can work in compatibility with the introduced system. Simultaneously, the system
allows the real-time tracking of users’ eye movements, enabling streaming over the Internet
without being limited to a single task.

The memory consumption of the experimental system should also be highlighted.
During the experiment, the memory consumption of the system slowly increased, putting a
certain load on the computer used for the experiment. However, it is important to stress that
this load is approximately 0.0037 MB per second and therefore does not have a noticeable
impact on the overall performance. Nevertheless, in a scenario where the duration of the
experiment is significantly longer, the potential load on the system should be carefully
considered and the experiment should be structured to take this into account.

Furthermore, future studies need to examine a larger pool of participants and adopt
more efficient memory management techniques. These improvements will contribute to a
more thorough analysis of the system’s capabilities and limitations, helping researchers
to gain deeper findings and more reliable systems. Lastly, researchers should test the
compatibility of the presented system with other structures and models, not only AI models
(e.g., physiological data [81,82], and psychological tests [83,84]). In addition, the proposed
architecture fosters strong collaboration between researchers adopting similar platforms,
enabling an incredibly flexible data exchange and sharing. Data storage via the Internet is
also expected to increase accessibility, thereby encouraging further research and discovery
in various fields. However, it is important to recognize that for future implementations
of this system, additional actions can be taken to increase the security of data storage.
Examples of such actions include the integration of multi-factor authentication, one-time
passwords, and other relevant security protocols [85,86].

5. Conclusions

This study reported on an approach to data collection and experimentation that demon-
strates the intricacies of a multi-purpose system for both online and local applications. This
study highlights the fundamental importance of data in scientific endeavors and calls for
further exploration of alternative data collection techniques.

Author Contributions: Conceptualization, M.E.S., M.O.S., A.L., A.G., M.C.G., K.P. and M.D.; method-
ology, A.L. and M.C.G.; investigation, M.E.S., M.O.S., A.L. and M.C.G.; data curation, M.E.S., M.O.S.
and M.C.G.; writing—original draft preparation, M.C.G., M.O.S., M.E.S. and M.D.; writing—review
and editing, A.G., M.C.G., M.O.S., K.P. and A.L.; supervision, A.G., A.L., M.D., K.P., A.G. and A.L.
are equally responsible for this study. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author, [A.L.], upon reasonable request.

Acknowledgments: Thanks to DigitalOcean (https://www.digitalocean.com/, accessed on 19 June 2023)
and Oliver Mensah for providing us with servers for tests and various other experiments.

https://www.digitalocean.com/


Algorithms 2023, 16, 355 10 of 14

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Appendix A.1. Pseudocode of WebGazer.js

Algorithm A1: Starting WebGazer

1 Function startWebGazer:
2 Load WebGazer library;
3 Set up video and canvas elements on the webpage;

Algorithm A2: Starting Calibration

1 Function startCalibration:
2 Call initializeCalibration(), captureCalibrationData(), saveCalibrationData();
3 Display calibration instructions to the user;
4 Wait for the user to initiate the calibration process;
5 Call saveCalibrationData() # Set and save calibration process;

Algorithm A3: Capturing Calibration Data

1 Function captureCalibrationData:
2 Loop for a specified number of calibration points:;
3 Display a calibration point on the screen;
4 Wait for the user to focus their gaze on the calibration point;
5 Store the recorded gaze data for the calibration point;

Algorithm A4: Saving Calibration Data

1 Function saveCalibrationData:
2 Save the captured calibration data for future use;
3 Call setCalibrationData();

Algorithm A5: Setting Calibration Data

1 Function setCalibrationData:
2 Set previously saved calibration data;

Algorithm A6: Starting Gaze Tracking

1 Function startGazeTracking:
2 Call initializeWebGazer();
3 Call getGazeData();
4 Begin real-time tracking of the user’s gaze;
5 Display the gaze position on the screen;

Algorithm A7: Stopping Gaze Tracking

1 Function stopGazeTracking:
2 Stop tracking the user’s gaze;
3 Clear the displayed gaze position on the screen;



Algorithms 2023, 16, 355 11 of 14

Algorithm A8: Getting Gaze Data

1 Function getGazeData:
2 Retrieve the current gaze position data from the WebGazer library;
3 Return the gaze data;

Algorithm A9: Example Usage

1 Function ExampleUsage:
2 initializeWebGazer();
3 startCalibration();
4 captureCalibrationData();
5 saveCalibrationData();
6 // Later...;
7 initializeWebGazer();
8 loadCalibrationData();
9 startGazeTracking();

10 // During gaze tracking...;
11 gazeData = getGazeData();
12 // Utilize the gazeData for further processing or interaction;

References
1. Chaudhry, B.; Wang, J.; Wu, S.; Maglione, M.; Mojica, W.; Roth, E.; Morton, S.C.; Shekelle, P.G. Systematic review: Impact of

health information technology on quality, efficiency, and costs of medical care. Ann. Intern. Med. 2006, 144, 742–752. [CrossRef]
[PubMed]

2. Buntin, M.B.; Burke, M.F.; Hoaglin, M.C.; Blumenthal, D. The benefits of health information technology: A review of the recent
literature shows predominantly positive results. Health Aff. 2011, 30, 464–471. [CrossRef] [PubMed]

3. Martucci, A.; Gursesli, M.C.; Duradoni, M.; Guazzini, A. Overviewing Gaming Motivation and Its Associated Psychological and
Sociodemographic Variables: A PRISMA Systematic Review. Hum. Behav. Emerg. Technol. 2023, 2023, e5640258. . [CrossRef]

4. Rauterberg, M. Positive Effects of Entertainment Technology on Human Behaviour. In Building the Information Society, Proceedings
of the International Federation for Information Processing (IFIP) 18th World Computer Congress Topical Sessions, Toulouse, France, 22–27
August 2004 ; Jacquart, R., Ed.; Springer: Boston, MA, USA, 2004; pp. 51–58. [CrossRef]

5. Duradoni, M.; Spadoni, V.; Gursesli, M.C.; Guazzini, A. Development and Validation of the Need for Online Social Feedback
(NfOSF) Scale. Hum. Behav. Emerg. Technol. 2023, 2023, e5581492.

6. Carr, C.T.; Hayes, R.A. Social media: Defining, developing, and divining. Atl. J. Commun. 2015, 23, 46–65. [CrossRef]
7. Kadish, K.M.; Ruoff, R.S. Fullerenes: Chemistry, Physics, and Technology; John Wiley & Sons: New York, NY, USA, 2000.
8. Nicollian, E.H.; Brews, J.R. MOS (Metal Oxide Semiconductor) Physics and Technology; John Wiley & Sons: New York, NY, USA, 2002.
9. Noll, W. Chemistry and Technology of Silicones; Elsevier: Amsterdam, The Netherlands, 2012.
10. Whistler, R.L.; BeMiller, J.N.; Paschall, E.F. Starch: Chemistry and Technology; Academic Press: New York, NY, USA, 2012;

Google-Books-ID: pvAzqk2pAIsC.
11. Hwang, T. Computational power and the social impact of artificial intelligence. arXiv 2018, arXiv:1803.08971.
12. Yaqoob, I.; Ahmed, E.; Hashem, I.A.T.; Ahmed, A.I.A.; Gani, A.; Imran, M.; Guizani, M. Internet of things architecture: Recent

advances, taxonomy, requirements, and open challenges. IEEE Wirel. Commun. 2017, 24, 10–16. [CrossRef]
13. SG Andrae, A. New perspectives on internet electricity use in 2030. Eng. Appl. Sci. Lett. 2020, 3, 19–31.
14. Williams, P.H.; Margules, C.R.; Hilbert, D.W. Data requirements and data sources for biodiversity priority area selection. J. Biosci.

2020, 27, 327–338. [CrossRef]
15. Navajas, J.; Barsakcioglu, D.Y.; Eftekhar, A.; Jackson, A.; Constandinou, T.G.; Quiroga, R.Q. Minimum requirements for accurate

and efficient real-time on-chip spike sorting. J. Neurosci. Methods 2014, 230, 51–64. [CrossRef]
16. Chaudhary, N.; Weissman, D.; Whitehead, K.A. mRNA vaccines for infectious diseases: Principles, delivery and clinical

translation. Nat. Rev. Drug Discov. 2021, 20, 817–838. [CrossRef]
17. Vidgen, B.; Derczynski, L. Directions in abusive language training data, a systematic review: Garbage in, garbage out. PLoS ONE

2020, 15, e0243300.
18. Raupach, M.R.; Rayner, P.J.; Barrett, D.J.; DeFries, R.S.; Heimann, M.; Ojima, D.S.; Quegan, S.; Schmullius, C.C. Model–data

synthesis in terrestrial carbon observation: Methods, data requirements and data uncertainty specifications. Glob. Chang. Biol.
2005, 11, 378–397. Available online: https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2486.2005.00917.x (accessed on
19 June 2023 ). [CrossRef]

http://doi.org/10.7326/0003-4819-144-10-200605160-00125
http://www.ncbi.nlm.nih.gov/pubmed/16702590
http://dx.doi.org/10.1377/hlthaff.2011.0178
http://www.ncbi.nlm.nih.gov/pubmed/21383365
http://dx.doi.org/10.1155/2023/5640258
http://dx.doi.org/10.1007/978-1-4020-8157-6_8
http://dx.doi.org/10.1080/15456870.2015.972282
http://dx.doi.org/10.1109/MWC.2017.1600421
http://dx.doi.org/10.1007/BF02704963
http://dx.doi.org/10.1016/j.jneumeth.2014.04.018
http://dx.doi.org/10.1038/s41573-021-00283-5
https://onlinelibrary.wiley.com/doi/pdf/10.1111/j.1365-2486.2005.00917.x
http://dx.doi.org/10.1111/j.1365-2486.2005.00917.x


Algorithms 2023, 16, 355 12 of 14

19. Farmer, A.; Gibson, O.; Hayton, P.; Bryden, K.; Dudley, C.; Neil, A.; Tarassenko, L. A real-time, mobile phone-based telemedicine
system to support young adults with type 1 diabetes. Inform. Prim. Care 2005, 13, 171–177. [CrossRef]

20. Gradl, S.; Kugler, P.; Lohmüller, C.; Eskofier, B. Real-time ECG monitoring and arrhythmia detection using Android-based mobile
devices. In Proceedings of the 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society,
San Diego, CA, USA, 28 August–1 September 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 2452–2455.

21. Teplan, M. Fundamentals of EEG measurement. Meas. Sci. Rev. 2002, 2, 1–11.
22. Boore, D.M.; Smith, C.E. Analysis of earthquake recordings obtained from the Seafloor Earthquake Measurement System (SEMS)

instruments deployed off the coast of southern California. Bull. Seismol. Soc. Am. 1999, 89, 260–274. [CrossRef]
23. Xue, M.; Wang, D.; Gao, J.; Brewster, K.; Droegemeier, K.K. The Advanced Regional Prediction System (ARPS), storm-scale

numerical weather prediction and data assimilation. Meteorol. Atmos. Phys. 2003, 82, 139–170. [CrossRef]
24. Fielding, R.T. Architectural Styles and the Design of Network-Based Software Architectures; University of California: Irvine, CA, USA, 2000.
25. Costa, B.; Pires, P.F.; Delicato, F.C.; Merson, P. Evaluating a Representational State Transfer (REST) architecture: What is the

impact of REST in my architecture? In Proceedings of the 2014 IEEE/IFIP Conference on Software Architecture, Sydney, Australia,
7–11 April 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 105–114.

26. Cho, G.Y.; Lee, S.J.; Lee, T.R. An optimized compression algorithm for real-time ECG data transmission in wireless network of
medical information systems. J. Med. Syst. 2015, 39, 1–8. [CrossRef]

27. Kroner, A.; Senden, M.; Driessens, K.; Goebel, R. Contextual encoder–decoder network for visual saliency prediction. Neural
Netw. 2020, 129, 261–270. [CrossRef]

28. Skaramagkas, V.; Giannakakis, G.; Ktistakis, E.; Manousos, D.; Karatzanis, I.; Tachos, N.S.; Tripoliti, E.; Marias, K.; Fotiadis,
D.I.; Tsiknakis, M. Review of eye tracking metrics involved in emotional and cognitive processes. IEEE Rev. Biomed. Eng. 2021,
16, 260–277. [CrossRef]

29. Black, M.H.; Chen, N.T.; Iyer, K.K.; Lipp, O.V.; Bölte, S.; Falkmer, M.; Tan, T.; Girdler, S. Mechanisms of facial emotion recognition
in autism spectrum disorders: Insights from eye tracking and electroencephalography. Neurosci. Biobehav. Rev. 2017, 80, 488–515.
[CrossRef] [PubMed]

30. Wedel, M.; Pieters, R. A review of eye-tracking research in marketing. In Review of Marketing Research; Emerald Group Publishing
Limited: Bingley, UK, 2017; pp. 123–147.

31. Srivastava, N.; Nawaz, S.; Newn, J.; Lodge, J.; Velloso, E.; Erfani, S.M.; Gasevic, D.; Bailey, J. Are you with me? Measurement of
Learners’ Video-Watching Attention with Eye Tracking. In Proceedings of the LAK21: 11th International Learning Analytics and
Knowledge Conference, Irvine, CA, USA, 12–16 April 2021; Association for Computing Machinery: New York, NY, USA, 2021;
pp. 88–98. [CrossRef]

32. Borys, M.; Plechawska-Wójcik, M. Eye-tracking metrics in perception and visual attention research. Eur. J. Med. Technol. EJMT
2017, 3, 11–23.

33. Iacono, W.G.; Lykken, D.T. Eye Tracking and Psychopathology: New Procedures Applied to a Sample of Normal Monozygotic
Twins. Arch. Gen. Psychiatry 1979, 36, 1361–1369. [CrossRef]

34. Krafka, K.; Khosla, A.; Kellnhofer, P.; Kannan, H.; Bhandarkar, S.; Matusik, W.; Torralba, A. Eye Tracking for Everyone. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016;
pp. 2176–2184.

35. Fiedler, S.; Glöckner, A. The Dynamics of Decision Making in Risky Choice: An Eye-Tracking Analysis. Front. Psychol. 2012, 3, 335.
[CrossRef] [PubMed]

36. Holmqvist, K.; Nyström, M.; Andersson, R.; Dewhurst, R.; Jarodzka, H.; Van de Weijer, J. Eye Tracking: A Comprehensive Guide to
Methods and Measures; OUP: Oxford, UK, 2011.

37. Pfeiffer, U.J.; Vogeley, K.; Schilbach, L. From gaze cueing to dual eye-tracking: Novel approaches to investigate the neural
correlates of gaze in social interaction. Neurosci. Biobehav. Rev. 2013, 37, 2516–2528. [CrossRef]

38. Duchowski, A.T. Eye Tracking Methodology: Theory and Practice; Springer: London, UK, 2017.
39. Papoutsaki, A.; Laskey, J.; Huang, J. SearchGazer: Webcam Eye Tracking for Remote Studies of Web Search. In Proceedings of the

2017 Conference on Conference Human Information Interaction and Retrieval, Oslo, Norway, 7–11 March 2017; p. 26. [CrossRef]
40. Aslin, R.N.; McMurray, B. Automated Corneal-Reflection Eye Tracking in Infancy: Methodological Developments and Applica-

tions to Cognition. Infancy 2004, 6, 155–163. Available online: https://onlinelibrary.wiley.com/doi/pdf/10.1207/s15327078in060
2_1 (accessed on 19 June 2023). [CrossRef]

41. Marino, J. Reading Screens: What Eye Tracking Tells Us about the Writing in Digital Longform Journalism. Lit. J. Stud. 2016, 8 , 138–149.
42. Niehorster, D.C.; Hessels, R.S.; Benjamins, J.S. GlassesViewer: Open-source software for viewing and analyzing data from the

Tobii Pro Glasses 2 eye tracker. Behav. Res. Methods 2020, 52, 1244–1253. [CrossRef]
43. Kortman, B.; Nicholls, K. Assessing for Unilateral Spatial Neglect Using Eye-Tracking Glasses: A Feasibility Study. Occup. Ther.

Health Care 2016, 30, 344–355.
44. Mele, M.L.; Federici, S. Gaze and eye-tracking solutions for psychological research. Cogn. Process. 2012, 13, 261–265. [CrossRef]
45. Lu, F.; Sugano, Y.; Okabe, T.; Sato, Y. Head pose-free appearance-based gaze sensing via eye image synthesis. In Proceedings of

the 21st International Conference on Pattern Recognition (ICPR2012), Tsukuba, Japan, 11–15 November 2012; pp. 1008–1011.
46. Xu, P.; Ehinger, K.A.; Zhang, Y.; Finkelstein, A.; Kulkarni, S.R.; Xiao, J. Turkergaze: Crowdsourcing saliency with webcam based

eye tracking. arXiv 2015, arXiv:1504.06755.

http://dx.doi.org/10.14236/jhi.v13i3.594
http://dx.doi.org/10.1785/BSSA0890010260
http://dx.doi.org/10.1007/s00703-001-0595-6
http://dx.doi.org/10.1007/s10916-014-0161-7
http://dx.doi.org/10.1016/j.neunet.2020.05.004
http://dx.doi.org/10.1109/RBME.2021.3066072
http://dx.doi.org/10.1016/j.neubiorev.2017.06.016
http://www.ncbi.nlm.nih.gov/pubmed/28698082
http://dx.doi.org/10.1145/3448139.3448148
http://dx.doi.org/10.1001/archpsyc.1979.01780120091011
http://dx.doi.org/10.3389/fpsyg.2012.00335
http://www.ncbi.nlm.nih.gov/pubmed/23162481
http://dx.doi.org/10.1016/j.neubiorev.2013.07.017
http://dx.doi.org/10.1145/3020165.3020170
https://onlinelibrary.wiley.com/doi/pdf/10.1207/s15327078in0602_1
https://onlinelibrary.wiley.com/doi/pdf/10.1207/s15327078in0602_1
http://dx.doi.org/10.1207/s15327078in0602_1
http://dx.doi.org/10.3758/s13428-019-01314-1
http://dx.doi.org/10.1007/s10339-012-0499-z


Algorithms 2023, 16, 355 13 of 14

47. Papoutsaki, A.; Sangkloy, P.; Laskey, J.; Daskalova, N.; Huang, J.; Hays, J. WebGazer: Scalable Webcam Eye Tracking Using
User Interactions. In Proceedings of the Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence
(IJCAI’16), New York, NY, USA, 9–15 July 2016.

48. Wang, S.; Keivanloo, I.; Zou, Y. How do developers react to restful api evolution? In Service-Oriented Computing: Proceedings
of the 12th International Conference (ICSOC 2014), Paris, France, 3–6 November 2014; Springer: Berlin/Heidelberg, Germany, 2014;
pp. 245–259.

49. Richardson, L.; Ruby, S. RESTful Web Services; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2008.
50. Berners-Lee, T.J. Information Management: A Proposal; Technical Report; CERN: Geneva, Switzerland, 1989.
51. Cassetti, O. Websockets and their integration in enterprise networks. CiteSeerX 2011 .
52. Hu, Y.; Cheng, W. Research and implementation of campus information push system based on WebSocket. In Proceedings of the

2017 12th International Conference on Intelligent Systems and Knowledge Engineering (ISKE), Nanjing, China, 24–26 November
2017; pp. 1–6. [CrossRef]

53. Soewito, B.; Christian; Gunawan, F.E.; Diana; Kusuma, I.G.P. Websocket to Support Real Time Smart Home Applications. Procedia
Comput. Sci. 2019, 157, 560–566. [CrossRef]

54. Hale, M. Eyestream: An Open WebSocket-based Middleware for Serializing and Streaming Eye Tracker Event Data from
Gazepoint GP3 HD Research Hardware. J. Open Source Softw. 2019, 4, 1620. [CrossRef]

55. Codd, E.F. A Relational Model of Data for Large Shared Data Banks. Commun. ACM 1970, 13, 377–387. [CrossRef]
56. Kern, C.; Kesavan, A.; Daswani, N. Foundations of Security: What Every Programmer Needs to Know; Apress: Berkeley, CA, USA, 2007.
57. Khan, W.; Kumar, T.; Zhang, C.; Raj, K.; Roy, A.M.; Luo, B. SQL and NoSQL Database Software Architecture Performance

Analysis and Assessments—A Systematic Literature Review. Big Data Cogn. Comput. 2023, 7, 97. [CrossRef]
58. Anderson, C. Docker [Software engineering]. IEEE Softw. 2015, 32, 102-c3. [CrossRef]
59. Martin, J.P.; Kandasamy, A.; Chandrasekaran, K. Exploring the support for high performance applications in the container

runtime environment. Hum.-Centric Comput. Inf. Sci. 2018, 8, 1–15. [CrossRef]
60. De Benedictis, M.; Lioy, A. Integrity verification of Docker containers for a lightweight cloud environment. Future Gener. Comput.

Syst. 2019, 97, 236–246. [CrossRef]
61. Chamoli, S. Docker Security: Architecture, Threat Model, and Best Practices. In Soft Computing: Theories and Applications:

Proceedings of SoCTA 2020 ; Springer: Singapore, 2021; Volume 2, pp. 253–263.
62. Slim, M.S.; Hartsuiker, R.J. Moving visual world experiments online? A web-based replication of Dijkgraaf, Hartsuiker, and

Duyck (2017) using PCIbex and WebGazer.js. Behav. Res. Methods 2022, 1–19. [CrossRef]
63. Chen, X.; Slowinska, A.; Bos, H. Who allocated my memory? Detecting custom memory allocators in C binaries. In Proceedings

of the 2013 20th Working Conference on Reverse Engineering (WCRE), Koblenz, Germany, 14–17 October 2013; IEEE: Piscataway,
NJ, USA, 2013; pp. 22–31.

64. Pienaar, J.A.; Hundt, R. JSWhiz: Static analysis for JavaScript memory leaks. In Proceedings of the 2013 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO), Montreal, QC, Canada, 25 February–1 March 2013; IEEE: Piscataway,
NJ, USA, 2013; pp. 1–11.

65. Degenbaev, U.; Eisinger, J.; Hara, K.; Hlopko, M.; Lippautz, M.; Payer, H. Cross-component garbage collection. Proc. ACM
Program. Lang. 2018, 2, 1–24. [CrossRef]

66. Das, S.; Nayak, G.K.; Saba, L.; Kalra, M.; Suri, J.S.; Saxena, S. An artificial intelligence framework and its bias for brain tumor
segmentation: A narrative review. Comput. Biol. Med. 2022, 143, 105273. [CrossRef] [PubMed]

67. Wilson, C. Public engagement and AI: A values analysis of national strategies. Gov. Inf. Q. 2022, 39, 101652. [CrossRef]
68. Lee, J.C.; Chen, X. Exploring users’ adoption intentions in the evolution of artificial intelligence mobile banking applications: The

intelligent and anthropomorphic perspectives. Int. J. Bank Mark. 2022, 40, 631–658. [CrossRef]
69. Dogan, M.E.; Goru Dogan, T.; Bozkurt, A. The use of artificial intelligence (AI) in online learning and distance education processes:

A systematic review of empirical studies. Appl. Sci. 2023, 13, 3056. [CrossRef]
70. Arcuri, A. RESTful API automated test case generation. In Proceedings of the 2017 IEEE International Conference on Software

Quality, Reliability and Security (QRS), Prague, Czech Republic, 25–29 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 9–20.
71. Ehsan, A.; Abuhaliqa, M.A.M.; Catal, C.; Mishra, D. RESTful API testing methodologies: Rationale, challenges, and solution

directions. Appl. Sci. 2022, 12, 4369. [CrossRef]
72. Miller, M.A.; Schwartz, T.; Pickett, B.E.; He, S.; Klem, E.B.; Scheuermann, R.H.; Passarotti, M.; Kaufman, S.; O’Leary, M.A. A

RESTful API for access to phylogenetic tools via the CIPRES science gateway. Evol. Bioinform. 2015, 11, 43–48. [CrossRef]
73. Gossett, E.; Toher, C.; Oses, C.; Isayev, O.; Legrain, F.; Rose, F.; Zurek, E.; Carrete, J.; Mingo, N.; Tropsha, A.; et al. AFLOW-ML: A

RESTful API for machine-learning predictions of materials properties. Comput. Mater. Sci. 2018, 152, 134–145. [CrossRef]
74. Briscoe, B.; Brunstrom, A.; Petlund, A.; Hayes, D.; Ros, D.; Tsang, J.; Gjessing, S.; Fairhurst, G.; Griwodz, C.; Welzl, M. Reducing

internet latency: A survey of techniques and their merits. IEEE Commun. Surv. Tutor. 2014, 18, 2149–2196. [CrossRef]
75. Henning, J.L. SPEC CPU2000: Measuring CPU performance in the new millennium. Computer 2000, 33, 28–35. [CrossRef]
76. Charyyev, B.; Arslan, E.; Gunes, M.H. Latency comparison of cloud datacenters and edge servers. In Proceedings of the

GLOBECOM 2020—2020 IEEE Global Communications Conference, Taipei, Taiwan, 7–11 December 2020; IEEE: Piscataway, NJ,
USA, 2020; pp. 1–6.

http://dx.doi.org/10.1109/ISKE.2017.8258720
http://dx.doi.org/10.1016/j.procs.2019.09.014
http://dx.doi.org/10.21105/joss.01620
http://dx.doi.org/10.1145/362384.362685
http://dx.doi.org/10.3390/bdcc7020097
http://dx.doi.org/10.1109/MS.2015.62
http://dx.doi.org/10.1186/s13673-017-0124-3
http://dx.doi.org/10.1016/j.future.2019.02.026
http://dx.doi.org/10.3758/s13428-022-01989-z
http://dx.doi.org/10.1145/3276521
http://dx.doi.org/10.1016/j.compbiomed.2022.105273
http://www.ncbi.nlm.nih.gov/pubmed/35228172
http://dx.doi.org/10.1016/j.giq.2021.101652
http://dx.doi.org/10.1108/IJBM-08-2021-0394
http://dx.doi.org/10.3390/app13053056
http://dx.doi.org/10.3390/app12094369
http://dx.doi.org/10.4137/EBO.S21501
http://dx.doi.org/10.1016/j.commatsci.2018.03.075
http://dx.doi.org/10.1109/COMST.2014.2375213
http://dx.doi.org/10.1109/2.869367


Algorithms 2023, 16, 355 14 of 14

77. Stetson, C.; Cui, X.; Montague, P.R.; Eagleman, D.M. Motor-sensory recalibration leads to an illusory reversal of action and
sensation. Neuron 2006, 51, 651–659. [CrossRef]

78. Shanthi, N.; Stonier, A.A.; Sherine, A.; Devaraju, T.; Abinash, S.; Ajay, R.; Arul Prasath, V.; Ganji, V. An integrated approach for
mental health assessment using emotion analysis and scales. Healthc. Technol. Lett. 2022 , 1–11. [CrossRef]

79. Barillaro, L.; Agapito, G.; Cannataro, M. Edge-based Deep Learning in Medicine: Classification of ECG signals. In Proceedings of
the 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Las Vegas, NV, USA, 6–8 December 2022;
IEEE: Piscataway, NJ, USA, 2022; pp. 2169–2174.

80. Vryzas, N.; Vrysis, L.; Matsiola, M.; Kotsakis, R.; Dimoulas, C.; Kalliris, G. Continuous speech emotion recognition with
convolutional neural networks. J. Audio Eng. Soc. 2020, 68, 14–24. [CrossRef]

81. Shu, Y.S.; Chen, Z.X.; Lin, Y.H.; Wu, S.H.; Huang, W.H.; Chiou, A.Y.C.; Huang, C.Y.; Hsieh, H.Y.; Liao, F.W.; Zou, T.F.; et al. 26.1 A
4.5 mm2 Multimodal Biosensing SoC for PPG, ECG, BIOZ and GSR Acquisition in Consumer Wearable Devices. In Proceedings
of the 2020 IEEE International Solid-State Circuits Conference-(ISSCC), San Francisco, CA, USA, 16–20 February 2020; IEEE:
Piscataway, NJ, USA, 2020; pp. 400–402.

82. Soufineyestani, M.; Dowling, D.; Khan, A. Electroencephalography (EEG) technology applications and available devices. Appl.
Sci. 2020, 10, 7453. [CrossRef]

83. Li, X.; Liu, Y.; Mao, J.; He, Z.; Zhang, M.; Ma, S. Understanding reading attention distribution during relevance judgement. In
Proceedings of the 27th ACM International Conference on Information and Knowledge Management, Torino, Italy, 22–24 October
2018; pp. 733–742.

84. Cox, W.M.; Fadardi, J.S.; Pothos, E.M. The addiction-stroop test: Theoretical considerations and procedural recommendations.
Psychol. Bull. 2006, 132, 443. [CrossRef]

85. Karie, N.M.; Kebande, V.R.; Ikuesan, R.A.; Sookhak, M.; Venter, H.S. Hardening SAML by Integrating SSO and Multi-Factor
Authentication (MFA) in the Cloud. In Proceedings of the 3rd International Conference on Networking, Information Systems &
Security, Marrakech, Morocco, 31 March–2 April 2020; pp. 1–6.

86. Bruzgiene, R.; Jurgilas, K. Securing remote access to information systems of critical infrastructure using two-factor authentication.
Electronics 2021, 10, 1819. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.neuron.2006.08.006
http://dx.doi.org/10.1049/htl2.12040
http://dx.doi.org/10.17743/jaes.2019.0043
http://dx.doi.org/10.3390/app10217453
http://dx.doi.org/10.1037/0033-2909.132.3.443
http://dx.doi.org/10.3390/electronics10151819

	Introduction
	Materials and Methods
	System Design
	Representational State Transfer (REST) and Application Programming Interface (API)
	WebSocket
	Database Server (SQL)
	Docker
	WebGazer.js
	Hardware Implementation
	Memory Management
	Experiments

	Results
	Discussion
	Conclusions
	Appendix A
	A.1

	References

