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Abstract: H-BIM paradigms are constituted by 3-D informative contents documenting the current
and past state of existing structures. Although the transversal vision and the multidisciplinary
interpretation have been attributed to BIM models, in the field of monumental structures, these
databases can be organized in different ways depending on the adopted protocol and classifications
for the required output of the work. In this manuscript, an H-BIM approach targeted at collecting
and providing useful information to execute seismic vulnerability analyses of monumental structures
is presented. The BIM modeling followed a protocol based on the following steps: geometrical
acquisitions, scan-to-BIM modeling, and informative data collection. The methodology has been
applied to the oldest part of Palazzo Vecchio in Florence (IT), an important monumental masonry
structure representing the political headquarter of the city since the Middle Ages. The parametric
modeling was realized classifying the information according to structural perspectives based on the
cognitive steps for the investigation of the existing structures. Finally, a seismic assessment has been
realized through a simplified procedure developed for cultural heritage buildings. The outcomes
of the evaluation are still part of the collected information of the H-BIM model, as an example of
continuous improvement of the available contents of the database.

Keywords: H-BIM; BIM; BIM protocol; digital twin; seismic assessment; cultural heritage; existing
buildings; historical monuments; Palazzo Vecchio

1. Introduction

The conservation and maintenance of Cultural Heritage Buildings (CHBs) represents
one of the main objectives of contemporary societies. Because of their documental, historical,
and artistic values, CHBs needs to be safeguarded towards the different risks affecting their
standing [1,2]. Referring to CHBs, the issues dealing with the risk mitigation go in parallel
with problems concerning the conservation and the applications of compatible non-invasive
approaches. The latter refer to: (i) the diagnostic acquisition during the investigation cam-
paigns, and (ii) the adoption of compatible, removable interventions during the retrofitting
phases [3–8]. The second step does not always represent a required next level, since the
decision is made on the level of risk affecting the asset, as to the invasiveness of the retrofitting
solutions. In the conservation of CHBs, today’s informative systems include state-of-art
models [9–11]. Although the BIM workflows applied to the historic buildings (H-BIM) are
mostly targeted at documenting the current situation of the buildings, researchers conceived
methodological flowcharts where the informative model was the receptacle of the inputs, but
also the system for the outputs required for other type of analysis [10,12–14]. In this context,
the informative model becomes central to the procedure, within input-output data man-
agement. Dealing with H-BIM approaches where the model contains heritage information,
different studies have been carried out in recent years [11,15,16].
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The so-called digital twins (DT) represent the virtual representation of a physical asset
enabled through data and simulators for real-time prediction, optimization, monitoring, con-
trolling, and improved decision making [17]. This represents the integration of the Internet
of Things (IoT) paradigms within BIM frameworks [18]. The adoption of sensor networks
and continuum monitoring allows in-time updating of building information, directed at
their assessment and maintenance [19,20]. Referring the CHBs, applications of DTs are still
limited [21–23]. Available studies mostly refer to the structural health monitoring of struc-
tures, allowing automated damage detections or accounting for thermal variations [24,25].
Concerning structural issues, due to obtaining a single centralized information model, H-
BIM can provide all the knowledge required for the application of seismic vulnerability
analysis methodologies [26]. In the BIM context, much effort is devoted to allowing an easy
interoperability between different software, environments, and expertise [27]. This aspect
becomes more complicated for existing constructions, in particular, masonry buildings. One
of the critical points is the definition of coherent levels of details in BIM and numerical
environments. In seismic assessment of buildings, depending on the adopted numerical
approaches, several simplifications can be conducted in order to guarantee an easier conver-
gence of the solutions, reduce high computational efforts, and avoid imprecise or redundant
parts that are not significant in the evaluation. Therefore, in many cases the geometrical and
structural information deposited in H-BIM models is transferred to technicians developing
ex-novo structural models for their purposes. Nonetheless, automatic procedures to export
from BIM to numerical models are under investigation. Cloud-to-BIM-to-FEM methods [28]
have found particular popularity in this field. Procedural studies investigate the possibility
of converting a historical BIM into a finite-element model suitably set up for structural
analysis [29–33]. These calculation models, more or less simplified with respect to the aims
of the research, allow for the study of structural global or local behavior if sensitive portions
need to be investigated in more detail.

The present paper describes the integration, within an H-BIM process, of the process
involving a CHB as part of the assessment of the building’s seismic vulnerability.

The acquisition of geometric and structural information is combined with non-invasive
diagnostic campaigns and historical research that constitute the starting cognitive steps.
Based on this information, the seismic assessment can be carried out thus generating
information on the structural vulnerability and state of health of the building.

The entire process of knowledge and evaluation will then be structured within a digital
workflow using BIM methodology, which will include a parametric modeling phase and
an informative enrichment of the model. The model will become a tool for analysis and
conservation applicable to CHBs; the authors intend this framework may constitute a pilot
project for further applications oriented to the realization of CH digital twins in many
different contexts.

The methodology herein conceived is applied to the oldest part of Palazzo Vecchio in
Florence, Palazzo dei Priori. This constitutes the predominant element of the main building
of the city, erected in Piazza della Signoria in the Middle Ages.

The building was the subject of an extensive diagnostic campaign aimed at understand-
ing the structural characterization of the palace. In this work, the first level of evaluation
presented in MIBACT [34] (LV1) is presented. The results of this analysis constitute a
preliminary evaluation of the structural performance of the structure, providing indications
in terms of safety range for seismic actions.

The management of the knowledge process will be carried out using a BIM approach
designed to collect the data of the historical and diagnostic analysis phase in order to make
a global framework applicable to subsequent vulnerability checks.

The creation of a structured and dynamic database will allow the sharing of informa-
tion of the cognitive process with the various figures involved in the management and
conservation of the building.
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2. BIM-Based Approach

BIM approaches to existing buildings offer multiple opportunities to optimize mainte-
nance, protection, and management. The studies undertaken in the international research
community investigate the possibility of organizing the necessary information in a single
3D container using parametric objects. This approach is very useful in the case of data
entry of diagnostic campaigns and material degradation [15,35,36].

The choice of the BIM methodology for this case study depends on two needs:

- the need to interpret the results in close relationship with the context in which the
surveys were carried out;

- the possibility of linking a series of descriptive information to the model objects that
allows identifying elements such as the investigation, the instrument, the date of the
test, the results, etc.

In large and heterogeneous structures such as historic buildings, this approach allows
the management of the diagnostic campaign and the control of the interpretation of the
results for the material and construction definition of the building.

In this case, as in other studies carried out by the research group, the preparation of
the model constitutes the first step for the construction of an informative database that can
be completed and implemented.

The proposed H-BIM workflow is not only aimed at representing the current state
of the investigated structure, the so-called as-built model, but it is a methodology that
can include other information related to the knowledge process aimed at the study of
seismic vulnerability. The data collected during the cognitive analysis and verifications
carried out on the CHB form a structured and dynamic organization within a complete
geometric model. The model can be managed by inserting new data from research, surveys,
and interventions, implementing the database connected to the virtual representation of
the architecture. The database will be shared with the different figures involved in the
process of study, management, and protection of the artifact. The workflow of the BIM
methodology is shown in Figure 1.
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Modeling. The management of a historic building through “informative BIM models”
presents difficulties related to the processing of the survey and the modeling of very
complex and non-standard forms.

Within the proposed workflow, the modeling of the building follows the conventional
methodology of parametric object modeling: each real object corresponds to its digital
equivalent, whose parameters allow manipulation of its 3D geometric representation.
Different numerical parameters and geometric constraints allow the geometry to adapt to
different situations.

Information. For the digitization of the cognitive framework, the information compo-
nent is central and is managed using parameters.

The information is defined and classified according to the corresponding architectural
categories (walls, floors, vaults, windows, and decorative elements) and with the diagnostic
and analysis categories through textual parameters and links to documents.

The information system defines a multidisciplinary 3D database able to describe in
depth the cultural artifact and interrogate it.

Interrogation and management. The 3D model of the building is interoperable and can
be queried. The flow of data managed by the parameters is displayed through a data sheet
that can be exported using Excel tables, compiled by external users, and imported into the
model. In model views, filters can be created to display information, as well as custom
labels based on the parameter. Exporting the IFC model allows viewing and querying in
open format and managing parameters in custom presets.

2.1. The Definition of the Parametric Modeling

Concerning the geometrical part, a laser scanner survey (LSS) is used for the architectural
acquisitions. A scan-to-BIM workflow has been adopted for the realization of the parametric
model. Several applications of scan-to-BIM procedures are available in the literature [37–39].

The point clouds obtained through the LSS are faithful morphological and metrically
correct reconstructions of reality. The 3D survey of the historical architecture makes it possi-
ble to obtain files in which information on shape and size are available simultaneously. The
result of the digital survey consists of a point cloud that is brought to the BIM environment
for the construction of the parametric three-dimensional model.

The lack of regularity and standardization that characterizes the historic building
makes the modeling and parameterization phase particularly challenging. The parametric
objects, however, are an aid to the modeling phase because of the possibility of defining
those parameters several times, setting values for each case that allow the adaptation to
each specific situation. The H-BIM approach allows the creation of personalized parametric
objects characterized by a geometric component capable of providing information related to
the shape, size and positioning of the object itself in the 3D space and in relation to the other
elements, and an informative component capable of including heterogeneous information.
In the case of existing constructions, we can refer to the historical period in which the
element was originated, and apply this to data concerning the diagnostic phases and their
results, the adopted materials, the stratigraphies and the mechanical characteristics of the
elements investigated.

Within the proposed workflow, two types of objects functional to the construction of
the model can be identified: the objects belonging to the category of architectural elements
(walls, floors, vaults, windows, decorative elements), and the objects related to the insertion
of data from studies and diagnostic campaigns.

First, it is appropriate to define the level of graphic and non-graphic detail (LOD) [40]
of the objects according to their use and purposes of the model.

For architectural elements, a faithful representation of reality must be achieved, avoid-
ing the hyper-modeling of unnecessary details or into the hyper-parameterization of objects
that become unmanageable. For these elements, during the modeling phase according to a
reverse engineering process, the dimensions, morphology and materials of the building
are analyzed, and the construction techniques are investigated. In this phase, the target
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of the H-BIM modeling should be borne in mind, together with the expected outcomes
of the research once the model is obtained. The modeling of these elements is obtained
through the system families and custom families with which parameters are associated and
stratigraphies are defined, based on information from the diagnostic campaign.

The LOD of these elements is defined according to the purpose of the BIM model and
the complexity of the object.

The objects of the diagnostic phase have fewer complex geometries; in general, a symbol
or geometry is chosen that leads back to the type of investigation carried out. A simple
geometric level, however, corresponds to an articulated information level that provides for
the creation of specific parameters for the insertion of different types of information.

2.2. Protocol and Classification of the Information

In Figure 2, the workflow of the research is shown. The external sources from which
the information comes are heterogeneous as they come from different disciplinary fields (2D
drawings, point clouds, images, cards, notes, etc.). Data must therefore be organized to both
to develop parametric geometric shapes and to generate information for the enrichment of
the shapes themselves.

Data flow management is just as crucial as proper database structuring. The organiza-
tion of the database should provide the definition of the structure of the “information tree”
that hierarchically allows definition of the parameters to be associated with the objects of
the model.

While for architectural and structural objects the system of families helps in the
definition and insertion of information through already organized fields, for the categories
of diagnostic campaign and seismic vulnerability the parameters have been created ad hoc
according to the specific needs of users.

Each object has been equipped with an ID that univocally identifies each entity. Hence,
single objects can be viewed through the appropriate label and within an abacus that allows
the model to be queried. The default categories proposed by written programs do not
always adapt to the needs of a CHB model, and the impossibility of creating new ones
leads using present in the best possible way.

Therefore, working on the chosen categories and using shared parameters, at the level
of family or types the parameters corresponding to characteristics common to a single type
of survey were specified. The parameters assigned to the individual object (instance) are
those that are specific to the individual survey. The choice of parameters to be inserted
followed a logic that would allow an easy reading according to the rule of “what, where,
how, when”. The investigated objects have therefore been associated with parameters that
allow the user to enter information such as the date of execution, the description, the tool
used and the results. In some types of investigations, for example GPR surveys, it was
possible to create objects hosting the diagrams resulting from the instrumental processing
in order to have a perfect correspondence between the geometry of the investigated element
and any anomalies found. The advantage of this digitization procedure lies that it allows
the exact geometric location of each investigation, permitting the identification of anomalies
or structural discontinuities in relation to the context in which the survey was carried out.

The management and insertion of information relating to the levels of the seismic
assessment can be made following the three levels of evaluations (LV1–LV2–LV3) provided
by [34]. It takes place through filing each investigated element associated with a specific
object. In addition, through the management of the phases, it is possible to visualize the
constructive evolution of the building and the subsequent interventions. In this sense, the
conceived H-BIM process integrates the variable time through a multi-layer procedure. In
the design of new buildings, the new dimensions of BIM can be extended up to 5D, 6D,
7D or 8D [41]. Although in H-BIM optics, the building process is not so relevant, since the
modeling of existing CHBs is rather oriented towards the conservation and documentation
of the buildings, so the historical evolution of the existing structures becomes crucial [42].
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Therefore, within the H-BIM process, the knowledge of the historical evolution of
the building is transferred through the organization of the model by phases. The phases
describe and modify the interventions that took place in the different historical periods
allowing a rapid visualization of the changes using filters.

2.3. Link-Oriented Procedure for Diagnostic and Seismic Assessment

During the phase of information enrichment, three types of parameters have been
identified that can be used and connected to the object:

- text parameters;
- numerical parameters;
- link parameters.

The methodology proposed for archiving data from diagnostic campaigns is therefore
based on the use of the first two categories for descriptive information or specific coefficients,
and the third category for references to external documents.

Figure 3 shows the typical information flow used in projects. From the left, the input
data define the geometries of new shapes using numerical parameters to flexibly adapt to
different contexts. At the same time, the same data flow into the numerical, textual and
link parameters, contributing to the information enrichment of the geometric shapes.
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All these aspects contribute to the composition of a 3D multidisciplinary parametric
database capable of describing the cultural artifact when interrogated both in the BIM
software environment and outside.

The approach through specific parameters allows the user to insert the main infor-
mation relating to the element to be cataloged. Generally, this information concerns the
location, the date of the test, or the type of test and instrument. The link-oriented approach,
on the other hand, allows the user to attach to objects a multiplicity of information that
would be difficult to insert within a parameter. Therefore, the possibility of drawing up
and linking the model to updatable cards is a very useful procedure.

Among the elements that provide for the insertion of a file there are mainly diagnostic
investigations for which the card is attached via URL to an external file. The assessment
of seismic vulnerability is also organized through descriptive cards of the behavior of
each considered system; e.g., for LV1 and LV3, which require a global evaluation of the
structures, the descriptive sheets are related to the classification in terms of structural units.
For LV2, as it regards the kinematic assessment, the different indexes could be directly
linked to the considered macroelements.
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URL links can also include references to pages on websites. This is the case for dynamic
monitoring data for which the resulting graphs can be plotted on a web page and displayed
in real time directly from the model.

2.4. Output and Query Management

Database consultation in BIM software can be achieved through schedules and 3D views.
The flow of managed data is displayed through schedules of elements; in the model

view it is possible to create filters to display the information, as well as customized labels
based on the parameter. Each object presented in the model, being equipped with an ID,
can be identified within an abacus that allows the model to be queried.

The data cataloged in the schedules can be exported via Excel tables, filled in by
external users and imported back into the model.

3D views are another useful element allowing the user to select objects and view their
properties. By creating color filters for some parameters that have numerical values, it is possible
to associate a color to the value that the object will assume when creating the color maps.

Interoperability and collaboration between different disciplines may be guaranteed
by exporting in IFC format, although there are current limits of this standard with respect
to the information collected in H-BIM [43]. Exporting the IFC model allows viewing and
querying in an open format. The management of the parameters in customized presets
allows consultation of the model without using the proprietary format.

3. “Palazzo dei Priori” in Palazzo Vecchio: An Historical Case

Palazzo Vecchio is one of the most famous monuments of Firenze (Italy). It is located
in Piazza della Signoria, an historical area located at the southern boundary of the first
Roman city in the territory. The site where Palazzo Vecchio stands is an extremely rich
place from historical-archaeological perspective; the present-day street datum is about
6 m above the Roman street datum [44–46]. During the Roman period, when the city of
Florence was founded, the area of Palazzo Vecchio was located outside the town walls,
close to the south-west corner of the original castrum [47]. Here, a Roman theater existed
for several centuries, and its traces are still visible in the underground level of Palazzo
Vecchio. The building founds its origins in the early fourteenth century, when the famous
architect Arnolfo di Cambio built the first nucleus of the palace as the seat of the city
government. Through different historical moments and political successions, the building
has maintained its political vocation over the centuries. Palazzo Vecchio is actually the
seat of the Municipality of Florence, which counts over 382,000 inhabitants and it is the
administrative center of a metropolitan area of 1 million citizens. For its history and unicity,
Palazzo Vecchio is included within the CHBs of the city; as the entire historic center of
Firenze, the structure has been under UNESCO patronage since 1982. Many authors dealt
with the historical evolution of Palazzo Vecchio, which is constituted by several structural
units erected during the centuries [48–58]. A view of the main façade of the palace and an
urban overview are shown in Figure 4.

3.1. The Cognitive Framework

The Arnolfo’s Tower, as the other part of Palazzo Vecchio, are part of a protocol signed
between the Municipality of Florence and the University of Florence for the seismic risk
assessment of the monument. For this reason, several investigations have been carried
out. The knowledge path recommended by national and international standards has been
applied; it included a research study on the modifications and alterations of the building
through the centuries, a laser scanner survey, and the execution of non-destructive (ND)
and minor destructive campaigns (MD).
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3.1.1. Historical Evolution

Palazzo dei Priori predominates as the oldest building within the urban aggregate
of Palazzo Vecchio. Its design is attributed to the medieval architect Arnolfo di Cambio,
who worked on it from 1299 to 1302. The building was built over ancient Roman traces
and incorporated medieval buildings. The palace was built to host the main politic and
administrative figures of the Republic. The construction of Palagio dei Priori during the
Florentine Republic represents the starting point of a period of many urban and building
activities. According to Frey [49], the area occupied by Palazzo Vecchio in the fourteenth
century represented an articulated and complex urban reality, subdivided within three
different medieval streets: via di Bellanda, via dei Manieri, and via dei Guardingo (Figure 5).
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The building conceived by Arnolfo Di Cambio was divided in two main parts. In
the northern area were the major rooms: the Armory at the ground floor (Sala D’Armi),
the Salone dei Dugento on the first floor and the Sala Grande on the second floor. In
the southern area, the administrative spaces were located around an inner courtyard, the
so-called Cortile di Michelozzo, incorporating the pre-existing Torre dei Foraboschi within
the building façade. Regarding the Torre dei Foraboschi, the basement of this structure was
used to realize the new termination of the actual Torre di Arnolfo, overwhelming the palace.
According to Vasari, the lower levels of the Foraboschi tower were filled with construction
materials to provide a solid basement for the new elevation. The Tower surmounted the
roof of the palace and became the tallest tower in Florence and the second highest building
after the Brunelleschi’s Cupola.

Further interventions occurred during the Duca di Atene period, with the building
of the adjacent structures reconnecting Palagio dei Priori with the structures facing via dei
Manieri. Between 1300 and 1356, the Florentine Republic bought a series of properties in
the areas encompassing the Palazzo Vecchio. These buildings were initially annexed to the
administrative structures without major interventions, preserving the existing structures.
Later, a series of renovations targeted at significant alterations of the state of the building
started with the Duca di Atene period. The current Palazzo Vecchio the sum of a series of
architectural renovations that continued during the Signoria of Cosimo I and his successors,
the Grand Dukes Francesco and Ferdinando until the alterations during the nineteenth
century when Florence was selected as the capital of Italy. Important architects worked at the
renovations of Palazzo Vecchio during the centuries. Regarding the oldest parts, significant
interventions were planned during the Cosimo dei Medici period under the supervision
of the architect Michelozzo. They involved alterations to different parts, such as the inner
staircases and the pillars of the courtyard. Other changes to the Palagio dei Priori occurred
in 1472, when the Sala Grande over the Salone de Dugento was divided by a massive wall.
Although the panel was laid over a wooden structure, the architect Giuliano da Maiano
conceived a structural system hiding an arch inside the walls, connecting it with the beams
under the wall through iron tie rods [60]. In the sixteenth century Giorgio Vasari was called
on to renovate inner parts of the palace. In 1561 he finished the project of the stairwells
connecting the Cortile della Dogana with the Sala Grande of Palazzo dei Priori. Then, he
continued to design new quarters inside the palace, such as the rooms of the Eleonora. From
the seventeenth century, the building stopped hosting the residential functions of the court,
as they were relocated to the Palazzo Pitti. During the following centuries, different political
realities alternated their supremacy. In the beginning of the nineteenth century, several
restorations were carried out, promoted by different architects (Giuseppe Del Rosso and
Giuseppe Martelli). During the time Florence was the capital of Italy, other renovations
were designed by the engineer Carlo Falconieri. The palace became officially the city hall of
Florence in 1872. During the twentieth century the palace underwent different restorations
involving different parts of the complex. A recent intervention has been finally completed
in the beginning of the twenty-first century following the design of Sisto Mastrodicasa. He
devised a way to strengthen the upper part of the Palazzo dei Priori, involving the upper
gallery and the merlon of the medieval structure.

3.1.2. The Geometrical Survey

The 3D geometry of the complex has been realized on the base of a recent LSS. The LSS
was carried out over several days with contemporary different scanners. It allowed the com-
plete geometrical characterization of the building, from the underground level (where traces
of the Roman amphitheater are still visible) up to the top of the Arnolfo’s Tower. In Figure 6,
a representation of the different structural units considered for Palazzo Vecchio is shown.
The structural classification has been made on the basis of the architectural and structural
characteristics of the building, also accounting for previous historical research [58].
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Figure 6. Overview of Palazzo Vecchio with the division of the different structural units. From left, in
red, grey and orange the three units composing Palazzo dei Priori (Sala D’Armi unit, Arnolfo’s Tower
and Michelozzo’s Courtyard respectively); in blue, the Dogana unit, in green, the Salone unit, in dark
orange, the Third Courtyard unit.

The LSS was executed to acquire the morphological and architectural aspects of the
whole urban aggregate (Figure 7). The procedure was divided into two main phases: the
acquisition of the geometrical information and the elaboration of data and their restitution.
The survey used a number of relevant instruments, often at the same time through the
work of several operators. Because of the exceptional dimensions of the palace, the survey
started in July 2019 and ending only in 2021. The complete number of scans is of the order
of 5500 registrations. Table 1 lists the different instruments adopted for the campaign,
together with their main characteristics [61].

Table 1. Information of the instruments adopted during the geometrical survey.

Instrument Range [m] Range Accuracy
[mm @ 10 m]

Field of Vision
[◦]

Measurement’s
Technology

Cam2 FARO Focus S70 0.6–70 1 300 V
360 H Phase Shift

Cam2 FARO X330 0.6–330 2 300 V
360 H Phase Shift

Leica Geosystem BLK360 0.6–60 6 300 V
360 H Phase Shift

Leica Geosystem RTC360 0.5–130 2 300 V
360 H Time of Flight

Zoller + Fröhlich IMAGER 5006 0.4–79 1 310 V
360 H Time of Flight

Zoller + Fröhlich IMAGER 5016 0.3–365 1 320 V
360 H Phase Shift
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Later, the point cloud generated from the different scans was processed in Autodesk
ReCap Pro. The point cloud was adopted to elaborate graphic 2Dand 3D contents. Further-
more, it represented the basis for the following parametric modeling.

As part of the LSS phase, a survey of the crack patterns of the building was executed.
This phase was targeted at pointing out possible damage in the building, and to identify
disconnections within the different structural units of the complex. Although some histori-
cal cases of subsidence of the underlaying soils caused movements in the past centuries,
the current results showed physiological crack patterns that are coherent with the historical
developments of the construction.

3.1.3. The Diagnostic Campaign

The diagnostic campaign involved ND and MD destructive techniques. The combina-
tion of the different results then created information on the mechanical characteristics of
the materials able to reconnect masonry walls to the classification provided [62]. In this
work, a hierarchical procedure has been followed, targeted at classifying the structural
features of the palace while limiting the effects due to the execution of the diagnostic
campaign. Initially, ND tests were conducted extensively in order to identify the structural
consistency of the building in the elevation with reference to the horizontal elements. Then,
MD tests (such as drilling tests and endoscopy investigations of the inner parts of masonry
structures) were conducted to validate the hypotheses made (Figure 8).
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Figure 8. From the building to the BIM model: ND inspections (GPR, thermography, endoscopy
tests).

The adopted non-destructive techniques used were:

- thermography campaign, targeted at the identification of the masonry textures and
the individuation of non-homogeneous parts;

- GPR surveys, able to detect discontinuities within the investigated materials (subsoil
and structures);

- sonic tests, adopted to analyze the density of the masonry and the presence of holes
as qualitative judgments on the mortar state and the constructive elements.

The MD techniques were:

- Plaster removal for the evaluation of the masonry texture; in the case of Palazzo dei
Priori the research took advantage of restoration interventions that were ongoing
during the diagnostic campaign acquisitions;

- Drilling campaigns with video endoscopy targeted at investigating the internal com-
position and the state of conservation of the constituent materials; this research was
carried out limiting the number of holes to the existing structure by extending the
validation of the visual test according to the classifications carried out implementing
the ND phases.

If other ND tests are available (such as penetration tests on the mortar or sclerometric
tests for the definition of the compressive strength of the resistant elements of the masonry
walls), they could be implemented in the H-BIM procedure as well. The application of
investigation techniques from the first category has made it possible to obtain information
on construction techniques, masonry textures, the presence of hidden elements, and initial
estimates of the resistance of the elements. The execution of second category investigations
in a second phase made it possible to calibrate the results of the non-invasive investigations,
arriving at a qualitative judgment on the various elements of the structural system. A
comprehensive description of the test carried out can be found in [63].
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In addition to these experimental surveys, dynamic monitoring of the building has
begun through the structural health monitoring of the Arnolfo’s Tower [64]. This has
been executed through the disposition of tri-axial velocimeters along the height of the
construction. The structural monitoring has firstly obtained the main frequency of the con-
struction, together with highlighting the variability from environmental factors. Although
the monitoring will come under further research (e.g., calibration of numerical models for
more refined seismic analysis) the outcomes of the work have been implemented in the
H-BIM as the collector of the different investigations on the building.

The results were compared with the evidence coming from the historical analysis and
the geometric survey, in order to identify the structures belonging to the various eras. The
research was targeted at classifying the structural elements according to listed typologies.
The slabs and vaults have been listed according to their structural consistency. The masonry
walls have been classified following two distinct tables, the regional one provided by [65]
and the national one provided by [62]. The final typology identification combines the two
tables. Specifically, each masonry typology has been related to an alphanumerical ID. For
each masonry typologies, the following relationships have been derived:

A1—Masonry with an inner nucleus and two external leaves built with variable stones, badly
disposed and without a connection between the two sides of the panel/Rubble stone masonry;

C2—Rough stone masonry with irregularities/Rough-block masonry with non-homogeneous
thickness of the external faces;

B3—Masonry with an inner nucleus and two external leaves built with stones of regular
dimensions, well-disposed and with connections between the two sides of the panel, horizontal layers
of chiseled stones or clay bricks/Split stones masonry with good texture disposition;

L-7—Full or semi-full clay masonry/Clay bricks and lime mortar masonry;
G5—One-leaf masonry made by blocks of tuff of chiseled stones with constant dimensions/Regular

block masonry made of soft stone (tuff, calcarenite, etc.)
where the first definition refers to [65] and the second one to [62]. A more comprehen-

sive description of the cross relationships used to determine the masonry typologies of the
bearing walls based on ND and MD campaigns can be found in [63]. Hence, the structural
characterization of the model can be obtained. This information has been adopted to
produce thematic maps of the building, then, the different classifications have been listed
within the H-BIM database.

3.1.4. The Geology Investigation

Florence is built on an alluvial plane, whose subsoil has been intensely studied in the
last twenty years [66,67]. In the area of Palazzo Vecchio there are three drill-holes that, in
connection to the archaeological excavation data [44–46], clarify the subsoil setting in the
area surrounding the Arnolfo’s Tower.

The shale bedrock lies about 10–14 m below the present-day street datum; over the
bedrock there are about 8 m of poorly sorted gravels (GP) and above that, a couple of
meters of well sorted sands (SW). The archaeological layer (Ar) is around 6 m.

Foundation data are available from archaeological surveys in the surrounding area
and due to the exploration deep underground adjacent to the tower, which reaches the
Roman datum 6 m below the present-day street datum, clearly shows that the Foraboschi
tower is rooted onto Roman walls. In turn, the Roman edifices have the base of their
foundations about 2 m below, rooted into the gravel. Geotechnical and wave velocity (Vp
and Vs) data are available by down-hole, lab analysis and by [67] (Table 2).

Although this information is not directly referred to the building, it has been con-
sidered in the research framework in order to account for the soil stratigraphies of the
building. These data are used in the definition of the seismic hazard of the area, and they
are still the basis of further phases of the work considering settlement or soil-structure
interactions [68–70].
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Table 2. Site geotechnical data for subsoil of the Arnolfo’s Tower.

Unit Archaeological Layer Gravels Bedrock (Shales)

gnat volume weight in natural conditions kN/m3 18.50 18.00 26.00

gsat volume weight in saturated conditions kN/m3 18.63 19.00 27.00

f’ Friction angle ◦ 25.9 31.5 17.1

c cohesion kPa 0 0 633.0

su undrained shear strength kPa 45.6 0 -

E Young’s modulus MPa 10,680 28,310 -

Eoed edometric modulus MPa 3150 5720 6000

Vs shear wave velocity m/s 121 500 800

Vp compression wave velocity m/s 600 1400 2800

3.2. H-BIM Modeling and Database

The BIM model of the Palagio dei Priori was created starting from the point cloud
which in Autodesk Revit is used as a morphological-dimensional guide, and from informa-
tion from history and diagnostics.

In the modeling environment, the simultaneous use of different views (plans, sections
and elevation sections) allows the user to have control and work from the point cloud. The
architectural objects were modeled using system families (walls, slabs, roofs) or loadable
families for decorative elements, while specific custom families were created for the diag-
nostic and seismic vulnerability object categories. Furthermore, the use of adaptive families
has allowed the overcoming of geometric difficulties linked to the presence of unique and
irregular shapes.

The results can be framed in a LOD 300: the elements are represented in terms of size,
morphology, correct position, and orientation, and it is possible to connect non-graphical
data (Figure 9). The geometric data are directly measurable on the model, which can be
interrogated and has the capacity to contain a large amount of information.
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The creation of the information content starts with the information of the historical-
critical analysis, the geometric-structural survey, the crack pattern, and the diagnostic
test campaign. As already seen in Figure 10, this information was partially used during
the modeling phase for a structurally coherent construction of the model. Through BIM
methodology, the considerable amount of data coming from the knowledge path can have
been precisely organized and managed.
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The information content included in the model can be classified as follows:

- Historical data;
- Data from the structural survey: construction characteristics of the structures, crack

pattern, etc.;
- Diagnostic campaign data: non-destructive or minor partial destructive investigations,

data from dynamic monitoring;
- Data about geological structure of the area;
- Results of seismic vulnerability analyses.

In general, an intelligent object was created for each category and parameterized with
dimensional rules for correct adaptation to local needs. These families have been equipped
with shared parameters that are used to generate schedules in which the information
content is entered and filtered as needed, thus speeding up the modification process. For
system families, information can be entered using the default fields (example: “Comments”)
or by creating new ones.

The evolutive phases were chosen and divided based on the interventions that have
taken place over the centuries (Figure 10a). The phases are ordered from the most distant
in time (Phase 1) to the most recent (Phase n + 1). An object in a phase can exist in one of
these four states: existing, new, demolished, or temporary. In “graphic replacement” it
is decided which colour to assign to each state, and therefore to the objects that will fall
under that specific condition. The phase of creation and the phase of demolition have been
assigned to each element.

The data relating to the structural survey were entered mainly through the strati-
graphies of the objects, the geometric shape, and the materials (and in some cases with
customized families such as for the cracks). The “crack” object provides a family for the
cracks of the ceilings and floors, and one for the fractures of the vertical structures with
parameters such as level, typology and location, texts, and photographs.

In the diagnostic campaign, for each type of test, a personalized parametric family
was prepared in which the geometry of the object has the characteristics of the test itself
and which has been placed in the exact place where the investigation was performed. In
this way there is also the possibility of being able to quickly compare the results of the
different tests carried out on the same structure. In Figure 10b, an example for the GPR
investigations is shown.

All families include parameters such as the type of test, the investigation code, the
execution date, the equipment used, and the link to the data sheet.

Because of the schedules it is possible to consult the unified framework of the investi-
gations that have involved the palace and are closely connected with the model. The results
of the diagnostic survey, merged into the characterization of walls and floors and used in
the modeling phases of the main elements, are entered into the model using the parameters
made available by the software.

The insertion of geological data in a three-dimensional environment has made it possible
to instantly visualize the relationships between the subsoil structure of the area and the build-
ing. The geological stratigraphy has been modeled by assigning the relative characteristics.

The data processed during the seismic safety analysis of the Arnolfo’s Tower were
linked to the model using a customized parametric family. The parametric object allowed
access to the information collected on the evaluation of the seismic action and those deriving
from the seismic evaluation. More information on the conducted seismic analyses is given
in the following section.

3.3. Simplified Seismic Risk Analysis

For the seismic risk assessment, a simplified procedure was adopted. The Guide-
lines for the Evaluation and Reduction of Seismic Risk of Cultural Heritage [34] give the
procedures for the assessment of CHBs in the Italian territory. Herein, three different
levels of evaluations are defined. The first level (LV1) constitutes a territorial level and is
targeted at a rapid assessment of the risk affecting the building. The methodology is based
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on geometrical and structural parameters indicating vulnerability and risk classes. The
second level of evaluation (LV2) is achieved by the execution of kinematic analysis for the
assessment of the local effects that can occur in seismic events in case of poorly connected
structures. Finally, the third level (LV3) is targeted at investigating the global behavior
of the structure. In this work only the first level, based on the geometrical and structural
features of the building, has been applied. Further studies are ongoing in order to develop
in-depth investigations on the structural performance of the building.

The first level of evaluation (LV1) is based on simplified procedures. Four distinct
models are available (tower, bridge, church and palace) divided according to recurrent
structural behavior during seismic actions. In this work, the simplified approach was
realized by exporting the structural information available in the H-BIM database. Due
to the parsimonious requirements of the structural procedure, the information from the
H-BIM model was sufficient to compute the seismic performances of the structure. The
palace model has been used for two main units of the palace: the unit of the Sala D’Armi
and the one around the Michelozzo’s Courtyard; hence, the tower model has been adopted
to investigate the Arnolfo’s Tower. The two methodologies consider simplified mechanical
approaches based on the verification of performance capacities. Both models consider a
comparison in terms of accelerations between capacity and demand. For the palace model,
the capacity was computed considering the shear resistance of the building, while the tower
model involved the combined bending and axial force of the different resisting sections
of the bearing system. In both models, a confident factor FC equal to 1.15 and computed
according to [34] was used. The mechanical properties of the masonry walls were assumed
on the basis of the classification provided by [62] considering the structural classification
reported in Section 3.1.3. The seismic demand was based on the seismic hazard of the city
of Florence and a soil class B, assuming a nominal life of the existing structure equal to
50 years and a building class III.

Table 3 shows the results of the simplified approach obtained for the two units accord-
ing to the palace model. For each level, the shear resistance of the building FSLV,xi,yi with
the involved resistant area Axi,yi are reported. The comparison between the capacity of the
building, and the correspondent elastic spectrum of the seismic demand gives the safety
indexes of the units. In this case, the values of 0.35 for the Michelozzo’s Courtyard and 0.17
for the Sala D’Armi have been obtained.

Table 3. Site geotechnical data for subsoil of the Arnolfo’s Tower.

Cortile di Michelozzo

Ax [m] FSLUx [kN] Ay [m] FSLUy [kN]

L0 119.24 11,547.8 78.54 7607.56

L1 110.65 9390.24 70.67 5735.61

L2 94.36 7465.34 76.14 6078.6

L3 101.96 6839.7 85.38 5480.86

L4 99.94 5702.61 71.46 4051.49

Palazzo dei Priori

Ax [m] FSLUx [kN] Ay [m] FSLUy [kN]

L0 52.53 4005.05 66.83 5568.47

L1 27.27 2305.02 36.16 3417.86

L2 27.73 2502.73 38.47 2293.30

L3 10.14 824.78 10.70 786.82

These values highlight some critical issues regarding the performances of the two
units; although since we are referring to existing structures, the obtained values are signifi-
cantly lower than 0.60, which is the value commonly accepted for non-designed buildings.
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However, the obtained indexes are the first results of a simplified approach that assumes
listed mechanical parameters according to a national table. In the authors’ opinion, in
further analyses the mechanical values could be improved on the basis of the ND tests
executed (which proved the good quality of the masonry walls), together with the pos-
sible calibrations of numerical models conducted after the dynamic identification of the
whole building. For the Arnolfo’s Tower, the simplified calculation model proposed by the
guidelines has been adopted. The structural element tower is considered as a cantilever
subjected to a system of horizontal forces which can fail by crushing in the compressed
zone in a generic section.

For very high structures of high geometric complexity, the analysis is typically very
sensitive to the strength parameters adopted. Therefore, two distinct compressive strength
values for the masonry walls of the Arnolfo’s Tower have been assumed, in order to
consider a plausible range of safety indexes in absence of more refined investigations.
The seismic verifications have been made for each different section along the height of
the Arnolfo’s Tower. Considering the most stressed sections of the element, the results
point out that the verifications are always satisfied when assuming compressive strength
values around 3.33 MPa, while some safety indexes decrease to values lower than 0.10 for
compressive strength values of 1.58 MPa. These values are the ones coming from Table
C8.5.I of [62] considering alternatively the compressive values from rough-block masonry
with non-homogeneous thickness of the external faces masonry typology or for the stone
squared-blocks masonry, assuming the maximum values of the range with the confidence
factor of the material equal to 2.4.

In Figure 11, examples of the process of cataloging data into the H-BIM of Palazzo dei
Priori are shown. The objects representing the Safety Index are editable labels. The figure
shows two parameterized texts: the first shows the name of the verification index relating
to the aforementioned assumptions on the compressive strength. The material changes
its colour based on the two conditions: Is < 1 and Is ≥ 1. The family also contains the
parameters relating to the verification direction and the chosen model. The digitalization
process is ready to be implemented with the following results coming from the kinematic
assessments or global numerical evaluations.
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As already mentioned, a dynamic identification of the palace is one of the targets
of the research. To this aim, dynamic monitoring data have already been considered in
the three-dimensional model. This was achieved by modeling the stations as loadable
parametric families to which information identifying the object, the date of placement, and
its location is linked. The images relating to the hourly average spectra and the waveforms
on the three components are also inserted via URL. The next step is a system that will
allow real-time observation of the state of the Arnolfo’s Tower. The connection to the
model will take place via a URL inserted in the specific parameter of the modeled family,
which will give access to an online environment where the vibrations recorded by the
seismographic stations will be shown instant by instant and which will therefore allow
continuous monitoring of the structure. A Risk-Based Early Warning System capable of
launching automatic alarms will also signal the cases in which certain pre-set thresholds
are exceeded [71].

4. Conclusions

In this paper a H-BIM workflow for the identification and collecting of the structural
features of historical CHB is presented. The research considers the oldest part of the
monumental aggregate of Palazzo Vecchio, in Florence.

The research conceives a H-BIM protocol oriented toward the identification and clas-
sification of existing CHBs in structural perspective. The proposed workflow takes place
within a series of contributions targeted at obtaining structural models from H-BIM mod-
els [12–14,26,29–33]. In this context, the parametric modeling is specifically focused at
determine the structural parameters of the construction, avoiding problems related to
excessive details related to different issues or too detailed models [33]. Once the parametric
objects are created, information on the executed campaigns can be listed inside the three-
dimensional database. The application to the case study shows the effort in realizing a
LOD300 model of an historical building while involving issues coming from interdisci-
plinary researches. Compared with other cases available in literature, LOD300 represents
an accurate level suitable for the structural analyses of the investigated buildings [28].
However, specific simplifications in structural perspective may be necessary depending on
the conducted structural analyses. The following points can be made:

- The realization of a global parametric model of the building permits easy transfer of
the acquired information, defining a model which is suitable during all phases of the
construction’s cycle;

- The link-oriented procedure has allowed filling the database with information coming from
different areas, guaranteeing a univocal document for the management of the monument;

- The LV1 seismic assessment has permitted a suitable and rapid transfer of the infor-
mation from BIM to spreadsheets in order to execute the computations.

If the H-BIM protocol has produced a documental database involving the architectural
and structural features of the building, it is still at the basis of the information transfer for
different needs. H-BIM environments are capable tools able to collect multidisciplinary
sources into a unique 3D environment with respect to a significant building, whose dimen-
sions are around 50,000 m3. Concerning the structural assessment, the LV1 approach has
only required the transmission of the structural information of walls and slabs together with
their geometry, however, 3-D transfer through IFC modules are expected for the following
phases of numerical analyses. The geometrical and structural information will be imported
into numerical environments following different approaches, such as finite-element and
equivalent frame [28,72]. For the different approaches, the analyses critically investigate
the level of information automatically transferred, in order to reduce errors minimizing the
human actions needed. The different analyses will allow the development of more refined
analyses, concerning both the whole palace and specific portions. The outcomes of the
dynamic monitoring of the building will help in the calibration of reliable structural models
through linear modal analysis, while the performance of the structural will be investigated
via nonlinear static and dynamic analyses.
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The H-BIM model of Palazzo Vecchio can be adopted for several purposes involving
its facility management, the proposal of strengthening interventions, the update of museal
paths, or firefighting plans [73,74]. Last but not least, these informative models can be used
not only by administrators and managers, but also for academic and didactic purposes for
citizens and tourists through virtual 3D tours and augmented reality explorations [75].
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