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Abstract We construct two minimal Cheeger sets in the Euclidean plane, i.e., unique min-
imizers of the ratio “perimeter over area” among their own measurable subsets. The first
one gives a counterexample to the so-called weak regularity property of Cheeger sets, as
its perimeter does not coincide with the 1-dimensional Hausdorff measure of its topological
boundary. The second one is a kind of porous set, whose boundary is not locally a graph at
many of its points, yet it is a weakly regular open set admitting a unique (up to vertical trans-
lations) nonparametric solution to the prescribed mean curvature equation, in the extremal
case corresponding to the capillarity for perfectly wetting fluids in zero gravity.
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Introduction

Given � ⊂ R
n open and bounded, its Cheeger constant is defined as

h(�) := inf
E⊂�

P(E)

|E | , (1)
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where P(E) and |E | denote, respectively, the De Giorgi’s perimeter and the n-dimensional
Lebesgue measure of E . The variational problem associated with the definition of h(�) first
appeared in [5,30] limitedly to convex subsets of the Euclidean plane; see also [10,29]. A
more general formulation is due to Cheeger, who proved in [7] that the first eigenvalue of the
Laplace–Beltrami operator on a compact Riemannian manifold M is bounded from below by
h2(M)/4. Since then, the problem in the Euclidean setting has commonly been known as the
Cheeger problem. A nice, as well as quite surprising, feature of the Cheeger problem is that
it naturally appears in many different contexts such as image processing [1,4,6], landslide
modeling [15–17], and fracture mechanics [19]. For further discussion and applications, the
reader could refer to the surveys [20,26].

In particular, the Cheeger problem is closely related to the theory of existence and unique-
ness of graph of prescribed mean curvature [12,14,23] which is the cornerstone of the theory
of capillary surfaces (a comprehensive treatise is available in [13]). We recall that for an
open, bounded and connected set � ⊂ R

n , a function u : � → R is a classical solution to
the prescribed mean curvature equation if

div

(
∇u(x)√

1 + |∇u(x)|2
)

= H(x), ∀x ∈ �, (PMC)

for a given Lipschitz function H defined on �. Under the assumption of C2 regularity of ∂�

(or piece-wise C1 up to a Hn−1-negligible set, see [13, Chapter 6]), the conditions∣∣∣∣
∫
A
H dx

∣∣∣∣ < P(A) ∀A � �,

∣∣∣∣
∫

�

H dx

∣∣∣∣ = P(�) (2)

were proved to be necessary and sufficient to existence and uniqueness (up to vertical transla-
tions) by Giusti [14]. Then, whenever H is a positive constant, these necessary and sufficient
conditions read equivalently as

� is a minimal Cheeger set, (MC)

that is, � is the unique minimizer of (1), and H = h(�).
In [23], we have extended Giusti’s results on the existence of solutions to (PMC) and on

the characterization of the extremality condition (2) to the class of weakly regular sets �.
These sets are defined as open bounded sets with finite perimeter such that

P(�) = Hn−1(∂�) (PH)

and
min {P(E; ∂�), P(�\E; ∂�)} ≤ kP(E;�) , (3)

for some k = k(�) > 0 and for all measurable E ⊂ �. We notice that any minimal Cheeger
set �, for which the intersection ∂�∩�(1) (where �(1) denotes the set of points of density 1
for�) hasHn−1-null measure, is weakly regular. This observation, which has been proved by
the second author in [27], provides a sufficient condition for the weak regularity, which can
be more easily checked whenever the domain� is a minimal Cheeger set. As a consequence,
for any � satisfying (MC) andHn−1(�(1) ∩ ∂�) = 0, the constant mean curvature problem
on �, for the “extremal” value of the prescribed mean curvature H = h(�), admits a unique
solution up to vertical translations. We remark that this extremal situation corresponds to the
physical case of capillarity for perfectly wetting fluids in zero gravity.

It is then natural to ask whether the weak regularity assumption is optimal with respect
to the results proved in [23] on the prescribed mean curvature equation. Related to this
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Two examples of minimal Cheeger sets in the plane 1513

question is the following one: does (MC) imply Hn−1(�(1) ∩ ∂�) = 0? In the affirmative
case, any minimal Cheeger set would be automatically weakly regular. However, in Sect. 2,
we negatively answer this question by exhibiting a minimal Cheeger set �ε in the plane
(with ε a suitably small parameter) for which (PH) does not hold. Of course this set needs
to be such that �

(1)
ε ∩ ∂�ε has positive H1-measure. This is ensured by the presence of a

fat Cantor set contained in ∂�ε , which is negligible for the perimeter measure. This lack of
regularity prevents �ε from being approximated in measure and perimeter by a sequence of
smooth sets that are compactly contained in�ε (see [28]) and from admitting a trace operator
from BV (�ε) to L1(∂�ε) (see [24, Chapter 9]). Indeed, this approximation property and the
existence of a suitable trace operator represent two crucial tools used in [23]. However, one
might expect that such solutions exist and are unique up to vertical translations, for each one
of the two possible values of H that correspond to counting or not theH1-measure of the fat
Cantor set. At the same time, both solutions will become vertical at the reduced boundary of
�ε . In conclusion, this example shows that it is not possible to extend the characterization of
existence and uniqueness of solutions to (PMC) given in [23, Theorem 4.1] by dropping the
assumption of weak regularity of the domain (see the discussion after the proof of Theorem
2.4).

Then, in Sect. 3 we build a set �0 that turns out to be a minimal Cheeger satisfying
H1(�

(1)
0 ∩ ∂�0) = 0, even though its boundary is not regular at all. More precisely, there is

a set of positive H1-measure consisting of points of the reduced boundary of �0, at which
∂�0 is not locally a graph. This example is constructed starting from the unitary disk B1

and removing smaller and smaller disks accumulating toward ∂B1, so that the resulting set
displays a kind of “porosity”. This example is of interest for two reasons. First, �0 is weakly
regular, so that the results of [23] apply (while the previous results due to Giusti and Finn do
not) and one deduces the existence and uniqueness up to vertical translations of the solution
to (PMC) in the extremal case of H(x) = h(�0). Second, this example shows the following,
quite remarkable fact. On the one hand, a generic small and smooth perturbation of the
disk typically produces a dramatic change of the corresponding capillary solution, possibly
leading even to a non-existence scenario. On the other hand, the construction of �0 shows
that one can produce non-smooth perturbations of a disk that, instead, preserve existence and
stability of the capillary solution. Indeed, from this ancestor set, one can build an increasing
sequence of minimal Cheeger sets �k converging to the unitary disk both in volume and
perimeter, in such a way that the stability result [23, Proposition 4.4] holds.

Proving a set to be a minimal Cheeger is not an immediate fact. There are results allowing
to infer whether a set is a Cheeger set or not and whether it is minimal or not but they apply
only in limited circumstances (and limitedly to the plane), as for instance in the case of convex
sets [5,18] or simply connected sets with “no bottlenecks” [21]. Given a Cheeger set E in
�, it is well known that ∂E ∩ � is an analytic hyper-surface (up to a closed singular set of
Hausdorff dimension at least n − 8). Then, our proof of (MC) is achieved by showing that
any Cheeger sets E of � satisfies ∂E ∩ � = ∅, which in turns says that the only Cheeger set
can be � itself.

1 Preliminaries

We first introduce some basic notations. We fix n ≥ 2 and denote by R
n the Euclidean n-

space. Let E ⊂ R
n , then we denote by χE the characteristic function of E . For any x ∈ R

n

and r > 0, we denote by Br (x) the Euclidean open ball of center x and radius r . Whenever
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x = 0, we shall write Br instead of Br (0). Given two sets E, F , we denote their symmetric
difference by E�F = (E\F) ∪ (F\E). In order to deal with rescaled sets, we introduce
the notation Ex,r = r−1(E − x), where E ⊂ R

n , x ∈ R
n , and r > 0. Given an open set

� ⊂ R
n , we write E ⊂⊂ � whenever E ⊂ R

n is such that its topological closure E is a
compact subset of �. For any measurable set E ⊂ R

n , we denote by |E | its n-dimensional
Lebesgue measure. Concerning n-dimensional (measurable) sets, we shall identify two such
sets E and F as soon as |E�F | = 0, and write E = F for the sake of brevity. Analogously,
the inclusions E ⊂ F should be understood up to null sets.

Definition 1.1 (Perimeter) Let E be a Borel set in R
n . We define the perimeter of E in an

open set � ⊂ R
n as

P(E;�) := sup

{∫
�

χE (x) div g(x) dx : g ∈ C1
c (�; R

n) , ‖g‖∞ ≤ 1

}
.

We set P(E) = P(E; R
n). If P(E;�) < ∞ we say that E is a set of finite perimeter in �.

In this case (see [2]), one has that the perimeter of E coincides with the total variation |DχE |
of the vector-valued Radon measure DχE (the distributional gradient of the characteristic
function χE ).

Definition 1.2 (P-decomposability) A set E ⊂ R
n of finite perimeter is said to be P-

decomposable if there exists a pair of disjoint Borel sets S and T , such that |S|, |T | > 0,
E = S ∪ T , and P(E) = P(S) + P(T ). Otherwise, E is said to be P-indecomposable.

Definition 1.3 (Points of density α) Let E be a Borel set in R
n , x ∈ R

n . If the limit

θ(E)(x) := lim
r→0+

|E ∩ Br (x)|
ωnrn

exists, it is called the density of E at x . We define the set of points of density α ∈ [0, 1] of
E as

E (α) := {x ∈ R
n : θ(E)(x) = α

}
.

We also define the essential boundary ∂eE := R
n\(E (0) ∪ E (1)).

Theorem 1.4 (De Giorgi Structure Theorem) Let E be a set of finite perimeter and let ∂∗E
be the reduced boundary of E defined as

∂∗E :=
{
x ∈ ∂eE : lim

r→0+
DχE (Br (x))

|DχE |(Br (x)) = −νE (x) ∈ S
n−1
}

.

Then,

(i) ∂∗E is countably Hn−1-rectifiable in the sense of Federer [11];
(ii) for all x ∈ ∂∗E, χEx,r → χHνE (x) in L1

loc(R
n) as r → 0+, where HνE (x) denotes the

half-space through 0 whose exterior normal is νE (x);
(iii) for any Borel set A, P(E; A) = Hn−1(A ∩ ∂∗E), thus in particular P(E) =

Hn−1(∂∗E);
(iv)

∫
E div g = ∫

∂∗E g · νE dHn−1 for any g ∈ C1
c (R

n; R
n).

Theorem 1.5 (Federer’s Structure Theorem) Let E be a set of finite perimeter. Then, ∂∗E ⊂
E (1/2) ⊂ ∂eE and one has

Hn−1 (∂eE\∂∗E
) = 0.
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Two examples of minimal Cheeger sets in the plane 1515

In what follows, � will always denote a domain of R
n , i.e., an open connected set coin-

ciding with its measure-theoretic interior. In other words, we assume that any point x ∈ R
n ,

for which there exists r > 0 with the property |Br (x)\E | = 0, is necessarily contained in �.
The next result combines [24, Theorem 9.6.4] and [3, Theorem 10(a)].

Theorem 1.6 Let � ⊂ R
n be a bounded domain with P(�) = Hn−1(∂�) < +∞. Then

the following are equivalent:

(i) there exists k = k(�) such that for all E ⊂ �

min
{
P
(
E;�c) , P (�\E;�c)} ≤ kP(E;�);

(ii) there exists a continuous trace operator from BV (�) to L1(∂�) with the following
property: any ϕ ∈ L1(∂�) is the trace of some � ∈ W 1,1(Rn) on ∂�.

Definition 1.7 (Cheeger constant and Cheeger set) Let � ⊂ R
n be an open, connected and

bounded set. We define the Cheeger constant of � as

h(�) := inf {P(A)/|A| : A ⊂ �, |A| > 0} . (4)

Any Borel set E ⊂ � for which P(E)/|E | = h(�) is called a Cheeger set of �.

We here report some useful results on the Cheeger problem. More details are available in
the survey papers [20,26].

Proposition 1.8 (Monotonicity of the Cheeger constant)Given any two open, connected and
bounded sets �1 ⊂ �2 one has h(�1) ≥ h(�2).

Theorem 1.9 (Existence of Cheeger sets) Let � ⊂ R
n be a bounded open set. Then the inf

in (4) is a min, therefore at least one Cheeger set E for � exists.

Proposition 1.10 (Properties of planar Cheeger sets) Let � ⊂ R
2 be an open, bounded and

connected set and E a Cheeger set for �. Then the following hold

(i) the free boundary of E, i.e., ∂E ∩ �, is analytical and has constant curvature equal to
h(�), hence ∂E ∩ � is a union of arcs of circle of radius r = h−1(�);

(ii) any arc in ∂E ∩ � can not be longer than πr;
(iii) any arc in ∂E ∩ � meets tangentially ∂� whenever they meet in a regular point of ∂�;
(iv) the volume of E is bounded from below as follows

|E | ≥ π

(
2

h(�)

)2

. (5)

Notice that if E1, E2 are Cheeger sets of �, and if E1 ∩ E2 is non-negligible, then one
can show that E1 ∩ E2 is a Cheeger set (see for instance [22, Proposition 2.5]). Coupling
this fact with Proposition 1.10(iv) one easily deduces the existence of minimal Cheeger sets
(with respect to inclusion) within any bounded open set �. If � is the unique minimizer of
h(�) we shall say it is a minimal Cheeger set.

2 A minimal Cheeger set with a fat Cantor set in its boundary

In this section, we provide an example of a minimal Cheeger set, whose perimeter is strictly
smaller than the H1-measure of its topological boundary, that is, it does not verify property
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(PH). We also note that, as a consequence of the construction, it is not possible to find
a Lebesgue-equivalent open set for which (PH) holds. Let us start noticing the following,
general fact.

Proposition 2.1 If� is aminimal Cheeger set such thatHn−1(�(1)∩∂�) = 0, then P(�) =
Hn−1(∂�).

Proof Being � a minimal Cheeger set such that Hn−1(�(1) ∩ ∂�) = 0, by [27, Theorem
3.4] the following relative isoperimetric inequality holds:

min
{
P
(
A;�c) , P (�\A;�c)} ≤ k P(A;�) ∀ A ⊂ �

which in turn implies ∂� ∩ �(0) = ∅, as proved in the same paper (see [27, Lemma 3.5]).
The thesis then follows at once by applying Theorems 1.4 and 1.5. ��

In virtue of Proposition 2.1, in order to build a minimal Cheeger set� that does not satisfy
(PH), we must ensure that the set of points of density 1 for � that are also contained in ∂�

has positive Hn−1-measure.
Consider the concentric balls B1, Bε ⊂ R

2, where the radius ε < 1 will be fixed later
on. We now define a set Fε ⊂ Bε whose topological boundary contains a “fat” Cantor set
with positiveH1-measure. Consequently, the open set � := B1\Fε will be shown to satisfy
(MC), while (PH) fails.

We consider the segment Cε
0 = [−ε, ε] × {0} ⊂ Bε and iteratively construct a decreasing

sequence Cε
i , i ∈ N, of compact subsets of Cε

0 , obtained at each step i of the construction by
removing 2i−1 open segments Sij , j = 1, . . . , 2i−1, of length

H1
(
Sij

)
= 21−2iH1 (Cε

i−1

)
, for all j,

and placed in the middle of each closed segment of Cε
i−1, so that the total loss of length at

step i equals 2−iH1(Cε
i−1). Consequently, the set C

ε = limi→∞ Cε
i satisfies

H1 (Cε
) = 2ε

∞∏
k=1

(
1 − 2−k

)
> 0.

The strict positivity of the infinite product can be easily inferred by the fact that the series∑∞
k=1 log(1 − 2−k) is convergent. Cε is a so-called “fat” Cantor set.
Let now δ > 0 be fixed. We set

fδ(x) =
{
1 −

√
1 − (|x | − δ)2 if x ∈ (−δ, δ),

0 otherwise,

and

Fδ = {(x, y) ∈ R
2 : |x | ≤ δ, |y| ≤ fδ(x)

}
,

which is depicted in Fig. 1.

Fig. 1 The shape of the planar
set Fδ

Fδ

−δ δ
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Two examples of minimal Cheeger sets in the plane 1517

Fig. 2 The set �ε

Notice that ∂Fδ is a union of four circular arcs of radius 1. For i ∈ N we set δi =
2−2iH1(Cε

i−1) and let m
i
j denote the midpoint of Sij , then define

Fε =
⋃
i∈N

2i−1⋃
j=1

Fi
j ,

where Fi
j = mi

j + Fδi . For x ∈ [−ε, ε] we define

f (x) =
∞∑
i=1

2i−1∑
j=1

fδi

(
x − μi

j

)
, (6)

where (μi
j , 0) = mi

j . We note that Fε is contained in the region bounded by the graphs of f

and − f . Since f is 1-Lipschitz, Fε is necessarily contained in Bε. We now define

�ε = B1\Fε , (7)

whose aspect can be seen in Fig. 2.

Proposition 2.2 The open set �ε defined in (7) satisfies P(�ε) < H1(∂�ε).

Proof In general, we have P(Fε) ≤ H1(∂Fε), therefore P(Fε) is finite because H1(∂Fε)

is finite by construction. According to Theorem 1.4 we only need to show that P(Fε) =
H1(∂∗Fε) < H1(∂Fε). Clearly ∂Fε = Cε ∪ (Fε)(1/2) ∪ F̂ε , where F̂ε is the set of corner
points of ∂Fε that do not belong to the segment Cε

0 . Since F̂ε is at most countable, it has
null H1-measure and therefore

H1 (∂Fε
) = H1 (Cε

)+ H1
((

Fε
)(1/2)) = H1 (Cε

)+ H1 (∂∗Fε
)
,

also owing to Theorem 1.5. The claim follows at once by recalling that H1(Cε) > 0. ��
Now we show that �ε is a minimal Cheeger set as soon as ε is small enough. The proof of

this fact will be obtained through some intermediate steps. First of all, by the boundedness
of �ε and by Theorem 1.9 we know that �ε admits at least a Cheeger set, from now on
generically denoted as E . Then we have the following, intermediate result.

Proposition 2.3 Let ε < 1/24 and let �ε be as in (7). Then
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(i) h(�ε) ∈
(
2, 2

1−ε

]
;

(ii) if E is a Cheeger set of �ε then any connected component of ∂E ∩ �ε is a circular arc
with curvature equal to h(�ε) and length less or equal than πh(�ε)

−1;
(iii) any Cheeger set of �ε is P-indecomposable;
(iv) the minimal Cheeger set E0 of �ε is unique, connected, and 2-symmetric;

Proof By the inclusions B1\Bε ⊂ �ε ⊂ B1, (i) follows from Proposition 1.8. On the other
hand (ii) follows from Proposition 1.10(i)–(ii). The proof of (iii) is a bit more involved. By
Proposition 1.10(iv) we have the following lower bound for the volume of any Cheeger set E :

|E | ≥ π

(
2

h(�ε)

)2

≥ π(1 − ε)2 = π(1 − ε)2. (8)

We now argue by contradiction supposing that E is P-decomposable, so that there exist S
and T , both with positive measure, and such that E = S ∪ T and P(E) = P(S) + P(T ).
Then S and T are both Cheeger sets of �ε (see for instance [26]), hence they must satisfy
(8). Since ε < 1/4 we obtain |E | = |S| + |T | > 18π/16 > π = |B1|, which is clearly not
possible. In order to prove (iv) we notice that, thanks to the symmetry of �ε, the reflection
Ẽ0 of E0 with respect to one of the two coordinate axes is a Cheeger set of �ε , too. By the
lower bound on the volume one has |E0∩ Ẽ0| > 0, then by well-known properties of Cheeger
sets, such intersection is also a Cheeger set of �ε. Therefore, by minimality of E0, we infer
E0 = E0 ∩ Ẽ0 = Ẽ0, which shows the claimed symmetry of E0. Notice moreover that, by
the same argument, E0 is unique. In order to show the topological connectedness of E0, we
can suppose by contradiction, and without loss of generality, that there are just two connected
components E1, E2 of E0, and that E2 is obtained by reflecting E1 with respect to one of
the axes of symmetry of �ε . By (iii) we must have P(E0) < P(E1) + P(E2) = 2P(E1).
Moreover, the strict inequality implies that H1(∂∗E1 ∩ Cε

0) > 0, so that we obtain

2P(E1) ≤ P(E0) + 2H1 (Cε
0

) = P(E0) + 4ε. (9)

Hence, by (9) and the isoperimetric inequality, we infer

4

1 − ε
|E1| ≥ 2h(�ε)|E1| = h(�ε)|E0| = P(E0)

≥ 2P(E1) − 4ε ≥ 4
√

π |E1| 12 − 4ε = 4

√
π

2
|E0|1/2 − 4ε

≥ 4π√
2
(1 − ε) − 4ε.

Then if ε < 1/24 we find

|E0| = 2|E1| ≥ √
2π(1 − ε)2 − 2ε(1 − ε) > π,

that is, a contradiction. ��
Theorem 2.4 Let ε < 1/24. Then, �ε defined in (7) is a minimal Cheeger set.

Proof Let E0 be a minimal Cheeger set of �ε. By Proposition 2.3(iv) we know that E0

is 2-symmetric and unique. Assume now by contradiction that E0 does not coincide with
�ε . This implies that ∂E0 ∩ �ε �= ∅, thus there exists at least one connected component
of ∂E0 ∩ �ε consisting of a circular arc α of radius r = h(�ε)

−1, whose endpoints p, q
necessarily belong to ∂�ε.We now rule out all possibilities depending onwhere the endpoints
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Two examples of minimal Cheeger sets in the plane 1519

p and q are located. This will be accomplished by the discussion of the following four cases
(hereafter we adopt the same notation introduced in the proof of Proposition 2.2, i.e., we
denote by F̂ε the set of corner points of ∂Fε that do not belong to Cε

0).
Case 1: one of the endpoints of α belongs to ∂B1. Let us assume without loss of generality

that p ∈ ∂B1. In this case, we have to distinguish two subcases. First, if q ∈ ∂B1, then α must
touch ∂B1 in a tangential way at both p and q; however, the radius r is smaller than 1/2, so
that necessarily p = q , that is, α is a full circle, which is in contrast with Proposition 2.3(ii).
Second, if q ∈ ∂Fε, the arc α can be symmetric neither with respect to the x-axis nor with
respect to the y-axis. Therefore, by symmetry, ∂E0∩�ε has at least threemoreother connected
components. These components cannot touch, but in the endpoints. Then, there exist at least
two connected components of E0, which yields a contradiction with Proposition 2.3(iv).

Case 2: one of the endpoints of α belongs to ∂∗Fε. We can assume that p ∈ ∂∗Fε and
q ∈ ∂Fε . In this case, the arc α is contained in the closure of the ball of radius 1 that is
tangent to ∂∗Fε at p and does not intersect Fε (by construction of Fε there is exactly one
such ball for any p ∈ ∂∗Fε). Consequently, the only possibility is that p = q , which is not
possible as discussed in Case 1.

Case 3: p and q belong to the fat Cantor set Cε. By the assumption on ε coupled with
Proposition 2.3(i), we infer that r = h(�ε)

−1 > 2ε. Then, we observe that α is the smaller
arc cut by the chord pq on one of the two possible circles of radius r passing through both
p and q . We finally have that α ⊂ Bε and thus E0 has a connected component E ′

0 contained
in Bε , but this is not possible as by (8) and the choice of ε we have

πε2 ≥ |E ′
0| ≥ π

(
2

h(�ε)

)2

≥ π(1 − ε)2.

Case 4: one endpoint belongs to F̂ε , the other to F̂ε ∪ Cε . As before we can assume
without loss of generality that p is a corner point on the graph of f , where f is defined in (6),
and that q ∈ F̂ε ∪Cε . Notice that q must belong to the upper half-plane; otherwise, α would
cross the segment Cε

0 . This means that q belongs to the graph of f over [−ε, ε]. Moreover,
the curvature vector associated with α at p must have a positive component with respect
to the y-axis; otherwise, we would fall into the same situation of Case 3 (i.e., the presence
of a too small connected component of E0). Consequently, by comparing the graph of f
(whose generalized curvature is bounded from above by 1) with the arc α (whose curvature
is h(�ε) ≥ 2), we deduce by the maximum principle that their intersection can only contain
p, which contradicts the fact that q belongs to that intersection. This concludes the discussion
of Case 4, and thus the proof of the theorem. ��

It is natural to ask whether solutions u±
ε of (PMC) with � = �ε and H(x) = H±

ε exist,
for the two prescribed mean curvatures defined as

H−
ε = P (�ε) /|�ε| and H+

ε = H1 (∂�ε) /|�ε| = (P (�ε) + H1 (Cε
))

/|�ε|.
One can thus consider two approximating sequences of sets, {�−

ε, j } j and {�+
ε, j } j , defined

in the following way. The first sequence, {�−
ε, j } j , is monotone decreasing toward �ε and is

obtained by subsequently removing each rescaled and translated copy of Fδ from the ball B1.
The second sequence, {�+

ε, j } j , is monotone increasing and constructed by removing smaller

and smaller tubular neighborhoods of Fε from B1. Clearly, both sequences converge to �ε

in the L1 sense; however, only the first one converges also in the perimeter sense, as j → ∞.
It can be shown that �±

ε, j is a minimal Cheeger set, for all j large enough. Now, the idea is

123



1520 G. P. Leonardi, G. Saracco

to define

H±
ε, j = P

(
�±

ε, j

)
/

∣∣∣�±
ε, j

∣∣∣
and to solve (PMC) on �±

ε, j with H = H±
ε, j , thus obtaining two sequences of solutions u

±
ε, j

that, up to suitable vertical translations, and relying on the theory of generalized solutions as
described in [25] (see also [14]), will converge to some limit functions u±

ε . Then, u
±
ε will be

solutions of (PMC) on �ε for H = H±
ε , respectively. Notice that both u−

ε and u+
ε become

vertical at the reduced boundary of �ε . This shows that �ε provides a counterexample to the
possibility of extending the characterization of existence and uniqueness up to vertical trans-
lations, that has been proved in [23, Theorem 4.1] under the assumption of weak regularity
of the domain.

3 A minimal Cheeger set with fast-decaying porosity near its boundary

In this section, we provide an example of set �0 ⊂ R
2 that is a minimal Cheeger set, i.e., it

satisfies (MC), and whose perimeter P(�0) equals H1(∂�0). Its peculiarity is that there is
a subset A of the reduced boundary ∂∗�0 with H1(A) > 0, such that ∂�0 is not locally a
graph at any point x ∈ A.

We define the set J of pairs j = ( j1, j2) such that j1, j2 ∈ N and j2 ≤ j1, then for any
j ∈ J we set

j + 1 =
{

( j1 + 1, 1) if j2 = j1,

( j1, j2 + 1) if j2 < j1.

We fix two sequences (εj)j∈J and (rj)j∈J of positive real numbers between 0 and 1
2 , that will

be specified later, and define

ρj = 1 − εj, θj = j2 · π
2( j1+1) ,

xj = ρj
(
cos
(
θj
)
, sin

(
θj
))

, Bj = Brj
(
xj
)
,

so that in particular xj is a point of B1 = B1(0) contained in the first quadrant, for all j ∈ J .
Wewrite j � j′ (or equivalently j′ � j) if j precedes or is equal to j′ with respect to the standard
lexicographic order on J . The notion of “limit as j → ∞” is the obvious one associated with
this order relation. We require the following properties on the sequences introduced above:

(i)
∑

j rj ≤ 1/(28 + 1);
(ii) ε1 < 1/4;
(iii) εj+1 ≤ 3

10εj;
(iv) rj ≤ 2−18ε3j .

Notice that (iii) and (iv) imply that εj − 2εj+1 ≥ rj + 2rj+1. This in turn implies that the
closures of the balls Brj(xj) are pairwise disjoint. We then set

�0 := B1 \
⋃
j�0

Bj, (10)

which is an open set since the only accumulation points of the sequence of “holes” Bj are
contained in ∂B1. Sequential zoom-ups of how this set is, can be seen in Fig. 3. Once proved
that this set is a minimal Cheeger set, it is quite easy to build from it a sequence of minimal
Cheeger sets converging to the unitary ball both in volume and in perimeter by “filling” the
holes one at a time. Let indeed �k be the set defined by
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Two examples of minimal Cheeger sets in the plane 1521

Fig. 3 Close-ups of the set �0 of Sect. 3

�k := B1 \
⋃
j�k

Bj.

Clearly, �k ⊂ �h whenever k � h, and as k → ∞ the sequence �k → B1 both in
perimeter and area. It is clear that their Cheeger constants converge to that of the unit disk
B1. Therefore, one can apply the stability result for solutions of the prescribedmean curvature
equation proved in [23, Proposition 4.4] to this sequence of domains.

Before dealing with the minimality of �0, we show that the topological boundary ∂�0
coincides with the reduced boundary ∂∗�0.

Proposition 3.1 Under the above assumptions (i)–(iv) one has ∂�0 = ∂∗�0.

Proof Of course ∂∗�0 ⊆ ∂�0. In order to prove the opposite inclusion, we fix y ∈ ∂�0 and
argue as follows. If y ∈ ∂Bj for some j ∈ J , or y ∈ ∂B1\{z = (z1, z2) ∈ R

2 : z1 ≥ 0, z2 ≥
0}, then there exists a neighborhood Uy of y such that ∂�0 ∩ Uy is an arc of ∂B1 or ∂Bj,
hence trivially y ∈ ∂∗�0. Assume now that y ∈ ∂B1 with non-negative coordinates y1, y2.
It is standard to check that, in this case, y ∈ ∂∗�0 if and only if

P (�0; Bs(y)) ≤ 2s + o(s), s → 0. (11)

In order to show (11) we first set

J2( j1, s) =
{
j2 ∈ {1, . . . , j1} : |xj − y| < s + rj < 2s

}
.

Then, there exists a least index j1(s) ∈ N such that J2( j1, s) is empty whenever j1 < j1(s),
while in general we obtain

#J2( j1, s) ≤ 1 + 32( j1 + 1)s

π
when j1 ≥ j1(s). (12)

To prove this estimate on the cardinality of J2( j1, s), we observe that for j = ( j1, j2) and
j′ = ( j1, j ′2) belonging to J2( j1, s) we have

1

2

∣∣(cos θj − cos θj′ , sin θj − sin θj′
)∣∣ ≤ ∣∣xj − xj′

∣∣ ≤ ∣∣xj − y
∣∣+ ∣∣xj′ − y

∣∣ < 4s, (13)

where for the first inequality we have also used the fact that |xj| > 1
2 for all j. Then, setting

h = ∣∣θj − θj′
∣∣ =

∣∣ j ′2 − j2
∣∣π

2( j1 + 1)
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one easily obtains from (13) that

sin h ≤ ∣∣(cos θj − cos θj′ , sin θj − sin θj′
)∣∣ < 8s,

whence assuming s < 1
16 one deduces

h ≤ 16s,

which implies | j2 − j ′2| ≤ 32( j1 + 1)s/π . Then, (12) follows at once. In conclusion, we find

P (�0; Bs(y)) = 2s + o(s) + P

⎛
⎝⋃

j∈J

Bj; Bs(y)

⎞
⎠ ≤ 2s + o(s) +

∞∑
j1=1

∑
j2∈J2( j1,s)

2πrj

≤ 2s + o(s) + s
∞∑

j1= j1(s)

[2π + 64( j1 + 1)] r( j1,1) = 2s + o(s)

where the last equality relies on the fact that

kr(k,1) ≤ kε3(k,1) ≤ kε31

(
3

10

)3
(
k2−k

)
/2

which follows by (ii), (iii) and (iv). This latter says that the sum converges. ��
By Theorem 1.9, �0 admits at least one Cheeger set. We will denote by E a Cheeger set

of �0. The main goal now is to show that, necessarily, E = �0.

Theorem 3.2 Let εj and rj be such that (i)–(iv) hold. Then, �0 is a minimal Cheeger set.

The proof of Theorem 3.2 will require some preliminary results. We start by defining the
following quantity

δ = 1 +∑j rj

1 −∑j r
2
j

− 1,

which will be used later on.

Proposition 3.3 Let �0 be defined as in (10) and let E be a Cheeger set of �0. Assume that
(i)–(iv) hold. Then,

2 ≤ h(�0) ≤ 2(1 + δ), (14)

|E | ≥ π

(1 + δ)2
. (15)

Proof The first inequality in (14) follows directly from the inclusion �0 ⊂ B and from
Proposition 1.10, while the second is a consequence of h(�0) ≤ P(�0)|�0| . Then (15) follows
from (5) at once. ��

Notice that (i) implies δ < 1/27. Indeed let η =∑j rj. Then, since η >
∑

j r
2
j one has

δ = 1 +∑j rj

1 −∑j r
2
j

− 1 ≤ 1 + η

1 − η
− 1 ≤ 1

27
. (16)

Thus, by Proposition 3.3 we have

2 ≤ h(�0) ≤ 2(1 + δ) < 3. (17)
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B1

B 1
2

Γ

c

o

a

b

p0

Fig. 4 The configuration of Lemma 3.4

Lemma 3.4 Let � be an arc swept by a disk of radius r < 1/2 contained in an annulus of
inner and outer radii equal to, respectively, 1/2 and 1. Denote by o the center of the annulus
and by a, b the endpoints of �. If the region R enclosed by (the vectors) a, b and � is convex
then

|p| ≥ min{|a|, |b|} ∀ p ∈ �.

Proof The configuration described in the statement is depicted in Fig. 4. To prove the lemma,
we argue by contradiction and suppose that there exists p0 ∈ �\{a, b} such that

|p0| = min
p∈�

|p| < min{|a|, |b|}.

If we denote by c the center of the disk sweeping the arc �, by minimality of p0 we have that
p0, c, o lie on the same line. Moreover, being the region R convex by our assumption, we
infer that c and o lie on the same half-plane cut by the tangent in p0 to �. We now claim that
c lies in between o and p0. If this were not the case one would have |p0 − c| > |p0| which
in turn implies r > 1/2 against our hypotheses. Therefore we have |p0 − c|+ |c| = |p0| and
by the triangular inequality

|a| ≤ |c| + |c − a| = |c| + |p0 − c| = |p0|,
against our initial assumption. ��

Lemma 3.5 (Density estimate) Let E be a Cheeger set of A ⊂ R
2. Fix z ∈ A and r > 0

such that Br (z) ⊂ A. Then

|Br (z)\E | ≤ πr2/36 ⇒ B2r/3(z) ⊂ E . (18)
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Proof Let us set m(r) = |Br (z)\E | and define F = E ∪ Br (z) as a competitor. The mini-
mality of E implies that

P(E)

|E | ≤ P(F)

|F | =
P
(
E, R

2\Br (z)
)

+ m′(r)

|E | + m(r)

= P(E) − P (Br (z)\E) + 2m′(r)
|E | + m(r)

for almost all r > 0, hence

P(E)

|E | m(r) + P(Br (z)\E) ≤ 2m′(r).

In particular we find that P(Br (z)\E) ≤ 2m′(r), therefore by the isoperimetric inequality in
R
2 we obtain

m′(r) ≥ √
πm(r)

1
2 . (19)

If we now assume by contradiction that m(2r/3) > 0, then we can integrate the differential
inequality

m′(t)
m(t)

1
2

≥ √
π

between 2r/3 and r , thus obtaining

0 < m(2r/3)
1
2 ≤ m(r)

1
2 −

√
πr2

6
≤ 0 ,

that is a contradiction. ��
Lemma 3.6 Let �0 be constructed as before. If (i)–(iv) hold, then the disk B1/2 is contained
in any Cheeger set E of �0.

Proof By (15) and (16) we have that

|B3/4\E | ≤ |B1| − |E | ≤ π − π

(1 + δ)2
= 2 + δ

(1 + δ)2
πδ ≤ 2 + δ

1 + δ
πδ ≤ 2πδ ≤ π(3/4)2

36
,

hence we can apply Lemma 3.5 and obtain that B1/2 = B 2
3 · 34 ⊂ �0 is also contained in E . ��

Let us fix a Cheeger set E of �0 and assume that ∂E ∩�0 �= ∅. Then, we consider the (at
most countable) collection {�k}k∈N of the closures of the connected components of ∂E ∩�0.
Notice that �k is a closed circular arc of radius r = h(�0)

−1.
We observe that ∪k�k is locally compact in B1, as only a finite number of arcs can have

a nonempty intersection with Bt , for all 0 < t < 1. Then, we have the following result.

Lemma 3.7 Assume (i)–(iv) and that ∂E∩�0 �= ∅. Denote by p0 a point of∪k�k minimizing
the distance from the origin. Then, there exists k0 such that p0 is one of the endpoints of �k0 .

Proof Since ∪k�k ∩ B1 is nonempty and locally compact in B1, there exists k0 ∈ N such
that p0 ∈ �k0 . Assume now by contradiction that p0 is not one of the endpoints a0, b0 of
�k0 , then owing to Lemma 3.6, B1/2 ⊂ E . Thus, by Lemma 3.4, the region enclosed by
�k0 and the segments connecting a0 and b0 to the origin cannot be convex. Therefore, since
B1/2 ⊂ E , the segment σ0 connecting p0 to the origin must intersect the boundary of E
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at some first point q0 strictly closer than p0 to the origin. Indeed, the Cheeger set locally
lies on the convex side of �k0 near p0. To conclude we need to exclude the possibility that
q0 ∈ ∂�0\∂B1, which means that q0 ∈ ∂Bj for some j. Let now consider the shortest of the
two closed arcs of ∂Bj cut by σ0 (note that the arc could degenerate to a single point), and
call it γ . Notice that all the points of γ have a distance from the origin which is strictly less
than |p0|. Then, γ must contain at least an endpoint of some �k ; otherwise, there would exist
an open neighborhood U of γ such that U ∩ ∂E ∩ �0 = ∅, but this cannot hold as U must
contain points of E (this comes from the fact that q0 ∈ γ ) as well as points of �0\E (this
is a consequence of the fact that the connected component of σ0 ∩ �0 having an endpoint
on ∂Bj, and being the closest to p0, is made of points of �0\E). Therefore, q0 ∈ �0, hence
q0 ∈ �k for some k, which contradicts the minimality of p0. This concludes the proof. ��
Lemma 3.8 Assume (i)–(iv) and let p0 be as in Lemma 3.7. Then letting α be the angle
spanned by the half-tangent to �k0 in p0 and the segment connecting p0 to the origin, one
has

α >
π

2
+ d0

2
, (20)

where d0 = dist(p0, ∂B1).

Proof Let Bj be the ball whose boundary contains p0. Let p1 be the second endpoint of �k0
and denote by p∗ the point of �k0 minimizing the distance from ∂B1. Since p1 ∈ ∂�0, by
construction of �0 we infer that either p1 ∈ ∂B1, or p1 ∈ ∂Bj′ with j ≺ j′, therefore the
distance d∗ = dist(p∗, ∂B1) must satisfy d∗ < d0/2. Indeed this holds true if εj − 2εj+1 ≥
rj + 2rj+1, which follows from conditions (vii) and (viii). Let c be the center of the arc �k0
and consider the triangle T with vertices p0, c and the origin. Notice that |p0 −c| = r < 1/2
and |p0| = 1 − d0 while by the triangular inequality applied to the triangle T ∗ of vertices
p∗, c, o we have

|c| ≥ |p∗| − r = 1 − r − d∗ ≥ 1 − r − d0/2.

Moreover if we assume that α < π (otherwise the estimate would be trivial) then the internal
angles of T at p0 and at the origin (respectively, γ and β) are smaller than π/2. Indeed for
α < π we find that

〈p0, νj(p0)〉 < 0,

where νj(p0) denotes the outer normal to ∂Bj at p0, thus α > π/2. Then, γ = α − π/2 ∈
[0, π/2). Finally, |p0| > r , whence β < π/2 as claimed. Consequently, the orthogonal
projection z of c onto the line through the opposite side of T must lie between the origin and
p0, that is, |p0| = |z| + |p0 − z|. Then, we have

|c|2 − |z|2 = r2 − |p0 − z|2,
whence by rearranging terms

|c|2 − r2 = |z|2 − |p0 − z|2
= |p0| · (|z| − |p0 − z|)
= |p0| · (|p0| − 2|p0 − z|)
= (1 − d0) (1 − d0 − 2|p0 − z|) .

On the other hand

|c|2 − r2 ≥ (1 − r − d0/2)
2 − r2 = 1 + d20/4 − 2r − d0 + d0r,
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thus we find

2|p0 − z| ≤ 1 − d0 − 1 + d20/4 − (2 − d0)r − d0
1 − d0

.

Consequently, we have

cos γ = |p0 − z|
r

≤ 2r(1 − d0) + rd0 − d0 + 3d20/4

2r(1 − d0)

= 1 − d0(1 − r) − 3d20/4

2r(1 − d0)
< 1 − d0/4,

where the last inequality follows as soon as d0 < 1/3. Being d0 ≤ ε1 + r1, this condition is
met thanks to (ii) and (iii). Then, we have

sin2 γ = 1 − cos2 γ > 1 − (1 − d0/4)
2 = d0/2 − d20/4 > d20/4

and thus we conclude that

γ > sin γ > d0/2.

Since α = π/2 + γ , we get (20). ��

Lemma 3.9 Assume (i)–(iv) and let p0, �k0 , d0 and α be as in Lemma 3.8. Let p ∈ �k0 be
a point such that 0 < |p0 − p| < d0/12. Then, denoting by η the angle in p0 spanned by the
half-tangent to �k0 at p0 and the segment from p0 to p, one has

ξ := α − η >
π

2
+ d0

4
. (21)

Proof Let c be the center of the disk sweeping �k0 and let h be the projection of p onto the
half-tangent to �k0 at p0. Since ξ = α − η, by Lemma 3.8, it is enough to provide an upper
bound for η.

To this aim we consider the triangles T of vertices p0, ph and h and S of vertices p0, c
and m, where m is the midpoint of the segment p − p0, as in Fig. 5. It is easy to see they are
similar with angles π/2, η, and π/2 − η. Therefore, we have the proportionality relation

|p − h|
|p − p0| = |p − p0|

2r
,

whence by recalling that 0 < η < π/2 and that r > 1/3 by (14) and the condition on δ one
obtains

η

2
≤ sin(η) = |p − h|

|p − p0| = |p − p0|
2r

<
d0
24r

<
d0
8

. (22)

This upper bound on η combined with (20) yields the claim. ��

Remark 3.10 Note that Lemmas 3.8 and 3.9 hold whenever p0 is the endpoint of an arc �

such that p0 minimizes |p| among p ∈ �.
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Fig. 5 The configuration of
Lemma 3.9

Γ

o

p0

c

p

h

m

η

ξ

3.1 Proof of Theorem 3.2

We remark that it would not be too difficult to apply a compactness argument and show that,
for a suitable choice of parameters, the set �j defined as

�j := B1 \
⋃
i�j

Bi ,

is a minimal Cheeger set for all j. Then, by passing to the limit as j → ∞ and by exploiting
Theorem 2.7 of [22], we would infer that �0 is a Cheeger set as well. However, this simple
argument tells us nothing about the uniqueness of the Cheeger set of �0. In other words,
there seems to be no way of deducing that �0 = limj �

j is a minimal Cheeger set from
the minimality of �j. This is due to the lack of uniform a-priori estimates in the spirit of
the quantitative isoperimetric inequality (see in particular [8,9]). In this specific case, the
existence of a modulus of continuity ϕ independent of j, such that

P(E)/|E | − h
(
�j
)

≥ ϕ
(∣∣∣�j\E

∣∣∣)
for all j and all measurable E ⊂ �j, would be needed. By an application of the selection
principle introduced in [8] we could obtain ϕ = ϕj; however, it is not clear how to exclude
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a possible degeneracy of the sequence {ϕj}j, as j → ∞. Therefore, we choose to follow
what reveals to be a much more involved and technically complex path leading to a direct
proof of uniqueness. Indeed, by combining the various, intermediate lemmas proved before
we ultimately show that any Cheeger set E of �0 must necessarily satisfy ∂E ∩ �0 = ∅.
Owing to the connectedness of �0 and the fact that B1/2 ⊂ E , this is sufficient to conclude
that E = �0. Before delving into the proof, we remark that there are four different kinds of
arcs inside ∂E ∩ �0, depending on where their endpoints lie:

(a) arcs � with both endpoints on ∂B1;
(b) arcs � with both endpoints on ∂Bj for some j;
(c) arcs � with an endpoint of ∂B1 and one of ∂Bj for some j;
(d) arcs � with an endpoint on ∂Bj and one on ∂Bi with j �= i.

While cases (a) and (b) can be easily excluded by property (ii) of Proposition 1.10, cases (c)
and (d) are much trickier. For these latter two cases, the argument is actually the same: we
will build a competitor that has a smaller Cheeger ratio, thus contradicting the minimality of
E . In order to do so, we will also employ Lemma 3.9.

Proof of Theorem 3.2 Argue by contradiction and suppose ∂E ∩ �0 �= ∅.
Step 1 We start by showing that cases (a) and (b) cannot happen. Let � be the arc with

endpoints p, q ∈ ∂Bj. Being these points regular, by Proposition 1.10(iii) the arc � must be
tangent to Bj in both points. By Proposition 3.3 and the choice of rj, the curvature of Bj is
strictly greater than the curvature of �. Therefore one necessarily has that points p and q
coincide which implies that � is a full circle which contradicts property (ii) of Proposition
1.10. An analog reasoning holds for an arc � with endpoints p, q ∈ ∂B1.

Step 2 We now show that cases (c) and (d) cannot happen. We will exhibit a competitor
to E that has a better Cheeger ratio against the minimality of E . Pick the point p0 provided
by Lemma 3.7 and consider the arc �p0 with endpoint p0. There exists a pair j such that
p0 ∈ ∂Bj. Trivially, there exists at least another point q0 on the boundary of Bj from which
another arc of ∂E ∩ �0 departs. Let z ∈ ∂Bj be the “north pole”, i.e., the closest point to the
origin. Note that there is only a finite number of arcs of ∂E ∩ �0 touching ∂Bj. Moreover,
since |p0| > r we find that |p0| > |z| (otherwise we would have p0 = z and this would
contradict the fact that p0 minimizes the distance of points of �p0 from the origin). This
shows that z is contained in a connected component ψ of ∂Bj\Ej, where Ej denotes the
(finite) set of endpoints of arcs of ∂E ∩ �0 that lie on ∂Bj. One of the endpoints of ψ is, of
course, p0. Let q0 denote the other endpoint belonging to the arc �q0 .

From now on we shall assume thatψ is smaller than a half-circle, otherwise, the construc-
tion of the competitor would be even easier.

Since p0 minimizes the distance of ∂E ∩ �0 from the origin, we have that

dq0 := dist(q0, ∂B1) ≤ dist(p0, ∂B1) =: dp0 .
We now fix two points q ∈ �q0 and p ∈ �p0 such that

|p − p0| = |q − q0| = dq0
16

. (23)

We can apply Lemma 3.9 to the couples of points p, p0 and q, q0 obtaining the estimate
from below of the angles ξq and ξp (that correspond to ξ in Lemma 3.9):

ξq , ξp >
π

2
+ dq0

4
. (24)
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Fig. 6 The way the competitor is
build

o

q0
p0

q
p

We now modify the Cheeger set E into Ẽ by adding the region delimited by ∂Bj, �q0 , �p0
and the segment p − q . To contradict the minimality of E , it is enough to show that δP =
P(Ẽ) − P(E) < 0 for ε small enough. It is straightforward that

δP ≤ 2πrj − |p − p0| − |q − q0| + |p − q| = 2πrj − 2|p − p0| + |p − q|. (25)

Therefore, we need to estimate |p − q| from above. In order to do so, we will employ the
angles of the isosceles trapezoid with vertices p0, q0, q, p (and, respectively, angles γ0 and
γ ) and the triangle T of vertices o, p0, q0 (and, respectively, angles σ, α, β), denoted as in
Fig. 6. We then have ⎧⎨

⎩
γ0 + γ = π (26a)

α + β + ξq + ξp + 2γ0 = 4π (26b)

α + β + σ = π (26c)

where (26a) denotes the (half of the) sum of interior angles of the trapezoid, (26b) the sum
of the angles in p0 and in q0, and (26c) the sum of the interior angles of the triangle T .

Subtracting (26c) to (26b), and combining the resulting equality with (24) we find

2γ0 < 2π + σ − dq0
2

which coupled with (26a) gives

γ >
dq0
4

− σ

2
.

We now estimate σ from above as follows. First notice that its sine is small

sin(σ ) = |p0 − q0|
1 − dq0

sin(α) ≤ 4rj ≤ 2−4εj ,

where the last inequality is guaranteed by (viii). Thus σ itself is small, i.e.,

σ

2
≤ σ − σ 3

6
≤ sin σ ≤ 2−4εj ≤ 2−3dq0 ,

eventually getting the lower bound

γ >
dq0
8

.
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Since |p − q| > |p0 − q0|, the angle γ is smaller than π/2, thus

0 ≤ cos γ ≤ cos

(
dq0
8

)
≤ 1 − d2q0

27
+ d4q0

3 · 215 ≤ 1 − d2q0
28

. (27)

From (23), (25) and (27) it follows that

δP ≤ 2πrj − 2|p − p0| + |p − q|
≤ 2πrj − 2|p − p0| + 2|p − p0| cos γ + 2rj

≤ 2rj(π + 1) + dq0
23

(cos(γ ) − 1) ≤ 2rj(π + 1) − d3q0
211

Since by (viii) we have rj ≤ 2−18ε3j and dq0 ≥ εj/2, we obtain

d3q0
211

≥ ε3j

214
≥ 16rj > 2rj(π + 1) ,

thus δP < 0, a contradiction. This concludes the proof of the theorem. ��
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