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1. Introduction  
 

 

 

 

 

 

 

Molecular magnetism is a rapidly developing field of research aiming to use molecular 

building blocks to obtain new types of magnets, whose properties are different from those of  

the classical magnets based on metallic or ionic lattices. The initial development tried to 

accept the challenge of synthesizing molecular magnets characterized by spontaneous 

magnetization at temperatures higher than room temperature. This resulted in two classes of 

materials[1,2] ordering as bulk ferrimagnets above 300 K. Later the interest shifted back to 

magnetic molecules themselves understood as zero dimensional magnetic materials. In this 

case the challenge was that of making magnetic molecules as large as possible in order to 

investigate the fascinating area of mesoscopic matter. A beautiful example of where 

chemical ingenuity can lead is a quasi spherical cluster comprising thirty iron(III) ions 

which was reported by Muller et al..[3,4] But finite size molecules, as opposed to one-, two- 

and three-dimensional structures are also of interest as test tubes in which to experiment the 

best conditions for designing molecular materials with expected magnetic properties. I will 

refer to this class of molecules as spin clusters, defined as molecular systems made up of 

more than one center bearing unpaired electrons and whose magnetic properties are largely 

determined by the interactions between the spin carriers. As a consequence the resulting 

magnetic properties of these systems are different from the simple sum of those of the single 

centers, either open-shell organic molecules or paramagnetic metal ions. The use of the 

techniques of molecular and supramolecular chemistry to fine tune these properties has been 

one of the key idea at the basis of the rapid development of molecular magnetism.[5] Indeed 

the implementation of appropriate strategies to assemble spin carriers in molecular systems 

may lead to obtain magnetic molecular materials with predetermined properties. Using this 

approach, molecules which shows magnetic behavior usually associated with solid state 

extended systems have been synthesized,[6-8] and it has been possible to observe for the 

first time phenomena which have long been theoretically debated.[9-10] The main 
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advantage in using the molecular approach for the synthesis of magnetic materials is the 

possibility of obtaining crystalline materials in which the magnetic systems have identical 

and well defined properties and orientation, and are much easier to vary. Furthermore, it 

appears promising in order to obtain materials showing properties usually not associated 

with magnetism, like solubility in organic solvents or optical transparency to the light and to 

develop materials showing novel association of physical properties.[11]  

To achieve these goals it is necessary to have available different building blocks 

through which arranging supramolecular architecture with desired magnetic properties: 

among these, molecules which are characterized by high spin states are obviously 

particularly appealing. These includes polyradical molecules with intramolecular 

ferromagnetic coupling between the spins: the use of such ligands coordinated to transition 

metal ions may result in the assembling of extended structures, and if coupling of suitable 

intensity is obtained between the radicals two or three dimensional structures with enhanced 

magnetic features may be obtained. In fact, the exploitation of the coordination properties of 

open shell ligands to induce large direct exchange interactions between these and the 

transition metal ions and to obtain the desired supramolecular architecture proved 

particularly successful. Among the radicals employed, nitronyl-nitroxides were intensively 

investigated but to obtain larger exchange coupling to the metal ion the use of more 

powerful donor ligands it is necessary and on this respect the use of semiquinone and poly-

semiquinone ligands seems very promising.  

It is clear that for a clever design of magnetic molecular materials it is necessary to 

have simple models available which can be used by the synthetic chemists to decide to use 

one metal ion or another, or a bridging ligand rather than another, in order to induce ferro- 

or antiferro-magnetic coupling between the spin carriers. On this respect the role of the 

Kahn’s model,[12] which translated in the molecular orbital oriented language of the 80’s 

the Goodenough-Kanamori rules[13-15] cannot be underestimated. More recently it has 

become possible also to quantitatively calculate the coupling constants using DFT 

approaches,[16-18] with an accuracy that only few years ago was unthinkable of. We may 

be now then safely state that the control of the sign of the magnetic interaction between the 

building blocks of molecular materials is a solved problem, at least at the isotropic level. 

The control of the sign and the intensity of the magnetic interaction is however not 

sufficient if the magnetic properties of the materials must be efficiently designed. In fact the 

other important aspect which must be taken into consideration is magnetic anisotropy. This 
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is well known to affect important properties like the hysteresis cycle,[19] thus determining 

whether a material must be considered as a soft or a hard magnet. In recent years some 

attempts have been made to introduce large anisotropy in molecular materials, and hard 

magnets have been obtained.[20,21] Recently, anisotropy has been shown to play a major 

role in determining the peculiar magnetic properties of some transition metal ion clusters, 

which behave like superparamagnets and show hysteresis of the magnetization cycle at low 

temperature. For these systems, which have been collectively termed Single Molecule 

Magnets,[6] the origin of the slow relaxation of the magnetization is purely molecular and it 

is related to the presence of an anisotropy barrier due to the zero field splitting of the ground 

S multiplet. For a pure easy-axis molecular nanomagnet with integer spin state the barrier to 

the reorientation of the magnetization is given, at the simplest level of approximation, by 

DS2, which is the energy difference between the highest |MS| value and MS=0.§ This 

situation is usually represented by a double well potential (Figure 1.1), with MS>0 (spin 

down) states on the left side and MS<0 (spin up) on the right one. When the thermal energy 

is larger than the barrier the magnetization freely fluctuates while below a given temperature 

the magnetization is frozen in one of the two minima. The magnetization relaxation process 

is then thermally driven and the relaxation time follows an Arrhenius law τ=τ0exp(-∆E/kT), 

where ∆E is the height of the anisotropy barrier. It is then clear that to obtain a longer 

relaxation time it is necessary to get higher spin molecules with large easy-axis anisotropy. 

Up to now the highest blocking temperature is retained by the first ever discovered single 

molecule magnet, Mn12O12(CH3COO)16(H2O)4, hereafter Mn12, characterized by a ground 

spin state S=10 and by D≈-0.5 cm-1. Provided that some mixing between the initial and the 

final states is achieved, i.e. that some degree of transverse anisotropy is present, the 

magnetization can also relax via underbarrier quantum tunnelling. Macroscopic Quantum 

Tunnelling of the magnetization was first reported in 1996 for Mn12[22,23] in the thermally 

activated regime (i.e. tunneling was occurring between higher lying |MS| states) and soon 

after for an octanuclear iron cluster Fe8O2(OH)12(tacn)6 (where tacn= triazacyclononane) 

hereafter Fe8,[24] for which the pure quantum tunneling regime was first attained. The 

different magnetic behaviour for the two clusters was readily traced back to the lower height 

of the barrier in Fe8 with respect to Mn12 and to its pronounced biaxial character, 

demonstrated both by HF-EPR and INS measurements.[25,26] Indeed, off-diagonal terms in 

the spin hamiltonian both at second and fourth order mix the multiplets on the two sides of 

                                                 
§ For semi-integer ground spin state the barrier height is given by ∆E=D(S2-1/4) 
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the barrier and eventually lead Ms not being anymore a good quantum number; this is 

especially true for small |Ms| values. A recent study on a derivative of Fe8 with larger 

transverse anisotropy than the parent original system confirmed this interpretation showing 

that the tunneling rate for this system is larger than in standard Fe8.[27] 

Figure 1.1 A schematic picture of the magnetization relaxation process in Single Molecule Magnets. 
The vertical arrows represent the relaxation in the Arrhenius regime, while the horizontal one 
represents the thermally  activated quantum tunneling process. 

 

It is clear from these brief remarks that in order to successfully design and synthesize 

new single molecule magnets and/or molecular systems showing peculiar quantum 

phenomena it is absolutely necessary to accurately define the factors that determine the axial 

and transverse magnetic anisotropy in a spin cluster. The first step to fulfill this requirement 

is obviously an accurate measurement of the anisotropy parameters. This means not only the 

determination of their quantitative values - which is by no means a trivial task - but also - 

when possible - the determination of their orientation with respect to the molecular frame, 

which requires measuring single crystals. The necessity of developing measurement 

techniques capable of resolving the large anisotropies of these systems without loosing in 

sensitivity is then evident.[28] In this sense, the recently developed techniques of Cantilever 

Torque Magnetometry[29] and micro-SQUID magnetometry[30] and the advances in HF-

EPR spectroscopy played a major role in increasing our knowledge of these systems. The 

latter technique proved particularly powerful for gathering detailed information on the 

M=-SM=+S

M=-S+1M=S-1

M=-S+2

M=-S+3

∆E
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magnetic parameters, and then about the factors governing the low temperature spin 

dynamics of different single molecule magnets. 

Once that the experimental characterization of the anisotropy in spin clusters has been 

achieved it is absolutely necessary to develop suitable models for the interpretation of the 

results, which may help to design new systems with expected characteristics. Unfortunately 

inclusion of anisotropy in DFT based calculations is still far from the required level of 

accuracy and the rationalization of anisotropy in magnetic molecular materials is then still 

mainly based on the use of simple considerations about the corresponding anisotropy of the 

building blocks. Ligand field theories, which have long been used for the rationalization of 

anisotropic properties of transition metal ions,[31] may then in principle provide a useful 

way to get also a quantitative estimate of the resulting anisotropy in molecular clusters. 

While earlier applications of ligand field theory were using perturbative approaches and 

idealized symmetries due to the inherent limitation of computing facilities of that time, the 

current availability of computer programs which accomplish the complete diagonalization 

of the ligand field matrix considering the real structure of the molecule can help one in 

rationalizing the anisotropy of single ions in term of their electronic structures. To further 

investigate the limits and the potentialities of this approach new experimental data on simple 

mononuclear systems are absolutely necessary: on this respect, the possibility opened by 

HF-EPR spectroscopy of addressing non-Kramers ion systems with large anisotropy - 

usually silent at conventional EPR frequencies - may provide us with a new testing ground. 

[32-34] 

Up to now, the situation is much less advanced for what concerns our knowledge of the 

key factors affecting the magnetic properties of systems containing orbitally degenerate 

magnetic centers, like rare-earth ions. For these ions it has not been possible to work out 

simple relations which may help in the design of molecules with predetermined exchange 

interactions. This is an unfortunate situation because rare earth ions, with their large and 

anisotropic magnetic moments, are appealing building blocks in the molecular approach to 

magnetic materials.[19] Indeed, they have long been exploited in solid state physics to vary 

the compensation temperature of permanent magnets and to affect the magnetic properties 

of extended lattices. On this respect the analysis of the magnetic behavior of simple 

molecular systems containing rare-earth ions exchange coupled to isotropic spin carriers is 

of fundamental importance to develop suitable models for the rationalization of the 

exchange interactions in these systems. 
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This thesis is organized as follows: Chapter 2 is dedicated to a brief survey of the main 

features of HF-EPR, while in Chapter 3 calculation models of spin hamiltonian mainly 

based on ligand field theories will be covered. Particular attention will be paid to the 

Angular Overlap Model, which we have employed with some success in the rationalization 

of anisotropic properties of both isolated transition metal ions and of spin clusters. In 

Chapter 4 the results of a thorough multitechnique approach to characterize anisotropic 

properties and spin dynamics of description of the properties a new SMM of apparent 

structural simplicity will be presented. Finally the metal-radical approach is faced in 

Chapter 5 and 6 by magnetically characterizing several systems containing semiquinones 

radical ligands. In the former chapter the use of polyradical ligands as suitable building 

blocks to create new extended lattices is investigated whereas in the latter the structural and 

magnetic properties of a simple series of rare-earths containing complexes will be 

investigated with the aim of obtaining some useful hints for the rationalization of the 

magnetic coupling in these systems. 
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2. High field/High frequency EPR: an overview 
 

 

 

 

 

 

 

Throughout this thesis, high frequency/high field EPR spectroscopy (hereafter HF-

EPR) has been extensively employed to gain fundamental information concerning the 

anisotropy of the investigated systems. HF-EPR is defined as EPR performed with a 

spectrometer working at a frequency significantly higher than Q-Band (35 GHz) 

corresponding to resonant fields for the free electrons significantly higher than those 

generated by conventional electromagnets.[1] It is now well accepted that the lower 

frequency limit to properly speak of HF-EPR is 95 GHz (W-Band), for which the g=2 

resonant field is around 3.3 T.[2] The increasing interest toward this technique is mainly due 

to recent technological developments that made possible to overcome the technical 

difficulties that are connected with working at high frequencies and high field. In this 

chapter we will briefly review the peculiar features of HF-EPR, the advantages and 

disadvantages that it presents when compared to conventional EPR spectroscopy, and some 

of the experimental setups which have been proposed in the literature. Finally, we will 

present the main feature of the HF-EPR spectrometer operating in Pisa where much of the 

HF-EPR spectra presented in this thesis have been recorded. 

 

 

2.1 Comparison with conventional EPR 

 

The most obvious advantage concerning the use of HF-EPR is the increase in resolution 

of the g-factor, which - following resonance condition hν=gµBB - directly scales with 

frequency. This allows simplification of spectra of quite complex systems that have many 

overlapping transitions at low frequency and often allows direct measurements of g factors 

from powder spectra. This may provide very important information for studying 

biomolecules: indeed, in the course of electron transfer processes several radical species are 
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often generated.[3] To distinguish them by the small differences in their g-factor and 

hyperfine interactions, high fields are required. This argument also holds for separating 

different sites of different cofactor orientations in biomolecules. As an example, the g-tensor 

anisotropy of tyrosyl radical in PSII is completely resolved at High Frequency and this 

provides very important information on their orientation in the cell membranes.[4] Even in 

simpler coordination complex systems, the use of high field and high frequency may be 

helpful in resolving g-factor which due to exchange or dipolar broadening [5] and/or 

overlapping of the lines resulting from anisotropic hyperfine coupling,[6] give very complex 

patterns at conventional frequency.  

The other peculiar feature of HF-EPR, which is much more important for the scope of 

this thesis, is the possibility of completely resolving the fine structure of a spin multiplet, 

thus giving access to the determination of zero field splitting parameters even when these 

are quite large. This is obviously important not only for studying anisotropic characteristics 

of molecular complexes, but also for the study of the active sites of metallo-proteins.[7-11] 

It is worth mentioning here, as an example, the determination of the large ZFS of Iron(III)-

hemoglobin (D about 10 cm-1), one of the first multifrequency HF-EPR studies dating back 

to the early 70s.[12] The use of multifrequency spectrometers allows to separate field-

dependent contribution from field independent ones in the spin hamiltonian, with the former 

being increasingly relevant on increasing field and frequency. The interplay between field 

dependent and field independent terms may have two effects, which we will examine in 

details in the following. Given our special interest toward high-spin transition metal ion 

containing systems we will consider the Zero Field Splitting terms as the only field 

independent contribution to the spin hamiltonian, neglecting nuclear spin involving 

interactions: 

 

SDSSgBH ⋅⋅+⋅⋅= Bµ               (2.1.1) 

 

where we have neglected, for the sake of simplicity, higher order Zero Field Splitting 

contributions (see Chapter 3). At low field the S·D·S term is often larger than the Zeeman 

one and this results in complex spectral patterns which are often impossible to correctly 

assign. Increasing the frequency, and then the field of investigation, results in such cases in 

a strong simplification of the spectra, as the field independent part will act only as a minor 

perturbation effect over the dominating Zeeman term. This is the effect which is exploited in 
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the analysis of high spin clusters with relatively high anisotropy, where the use of high field 

leads to a dramatic simplification of the spectra. This often allows straightforward 

qualitative interpretation of the spectra. If one considers as an example an axial system in 

the high field limit - µBgB>>D - 2S allowed transitions (∆Ms=±1) are expected whose 

resonance field are given by : 

 





 ++=

2
')12()( 0

DMB
g
g

MB s
e

sr             (2.1.2) 

 

Here D'=(3cos2θ -1)D/geµB and θ is the angle of the magnetic field with respect to the 

unique axis. This yield transitions separated by 2D' for magnetic field parallel to the unique 

axis and by D' for field perpendicular to the unique axis, thus providing the value of the 

Zero Field Splitting by simple inspection of the spectra (see Figure 2.1). Effects of higher 

order axial terms of the Spin Hamiltonian may also be easily identified as they lead to 

irregularity in the spacing of the lines. 

 

Figure 2.1 The four graphs show the different situations which may be encountered in the high field 
limit for an axial system (S=3, |D|=0.5 cm-1), allowing to readily assign sign and magnitude of the 
ZFS. Adapted from ref. [13] 
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Furthermore, using HF-EPR results in a Zeeman energy which is comparable to kT at 

low temperature (at 245 GHz, geµBB0 corresponds to ca. 12 K) and thus in stronger 

depopulation effects with respect to conventional EPR. As an example at infinite 

temperature - where transition probabilities are computed on the assumption of equal 

population of the various spin levels - the six allowed transitions for an S=3 ground state are 

expected to show a relative intensity pattern 6:10:12:12:10:6, while at room temperature, 

assuming an exciting frequency of 245 GHz, the relative intensity pattern will be 

6:9.6:11.1:10.7:8.6:5.[13] Finally, at 5 K the relative intensities will follow the completely 

different pattern 6:0.95:0.1:0.01:0.00082:0.000047, thus displaying a spectacular population 

effect. The temperature dependence of the relative intensities of the signals may then 

directly provide the sign of zero field splitting: indeed it is clear that at low enough 

temperature only the lowest Ms state is populated and only one transition will then be 

observable. The parallel one will then occur at low field and the perpendicular one at high 

field for D<0, while the reverse will hold for D>0. On increasing temperature the spectral 

intensity will move toward the center of the spectrum, and if all the transitions are observed 

the spin state may be unequivocally determined simply by counting the number of 

transitions.  

Figure 2.2 The evolution of calculated HF-EPR spectra (ν=245 GHz, T=5 K) for an S=3 
system with D=-0.3 cm-1 when passing from axial (brown spectrum) to completely rhombic 
symmetry (blue spectrum), is shown in the figure. The parallel region at low field remains 
unchanged on increasing E (step of 0.02 cm-1) whereas the perpendicular transitions split in two 
inequivalent directions, x and y. The different behavior of parallel and perpendicular transitions is 
evidenced by black lines only for -3  -2 and -2 -1 transitions for the sake of simplicity. 

 

Switching on a transverse anisotropy term, E, leads to identify two principal directions, 

says x and y, in the formerly isotropic perpendicular plane. While this obviously does not 

0.7x105 0.8x105 0.9x105 1.0x105

H (G)
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affect the parallel type transitions, it has a large effect over the perpendicular ones. Thus, an 

increasing splitting of the perpendicular transitions into two distinct sets of lines is observed 

on increasing E (see Figure 2.2).  

Finally, in the limit of a completely rhombic system (i.e. E/D=1/3), a peculiar EPR 

spectrum is expected in the high field region. Indeed, as D tensor is a traceless one, E/D=1/3 

means that Dxx=0, Dyy=-Dzz and the sign of D in this limit becomes meaningless. This results 

in a spectrum which simultaneously shows the features expected for axial D<0 and D>0 

systems and is then symmetric with respect to g=2. Thus two sets of lines at high- and low 

field, corresponding to transitions in y and z direction respectively, with line-line separation 

of 2D are observed, together with a feature at g=2 which may be labeled as x. Lowering 

temperature will result in this case in an enhancement of the intensity of both the highest 

and lowest field feature, and of the g=2 one, corresponding to the transitions from the 

ground Ms state in the three directions x, y, z 

When at low field the field independent part of the spin hamiltonian is dominating, e.g 

when systems with large Zero Field Splitting are investigated, a completely different 

situation is encountered. In general at low frequency the EPR spectrum is either defined in 

terms of effective g values, as it is the case for Kramers ions such as Co(II), Fe(III) etc. or - 

for some limiting case - e.g. non-Kramers ions with a ZFS much larger than the microwave 

quantum, no EPR spectrum is observed at conventional frequencies. Indeed, either the 

microwave energy is not enough to achieve resonance, or the resonance would appear at 

magnetic fields far exceeding those available in standard EPR spectrometers. 

Notwithstanding this, integer spin systems with large ZFS are not always “EPR-silent” at 

conventional fields and frequencies: if one consider, e.g. an S=2 system, when the symmetry 

is lower than axial transitions within the |MS|= 2 doublet are partially allowed due to state-

mixing introduced by transverse anisotropy and become EPR-visible,[14] particularly when 

parallel mode detection is used.[15,16] Both for Kramers and non-Kramers ions however, 

while at low frequency the spectra are simple and quite uniformative from a chemical point 

of view, drastically increasing the frequency result in much more complicated spectra, 

which contain a lot of information on the spin hamiltonian parameters. In such cases, the use 

of a so-called broadband approach,[17] i.e. an investigation at several different frequencies, 

allowing to analyze very different spectral regions, is strongly advised, yielding the 

possibility of observing complete EPR spectra even from systems formerly known to be 

EPR silent (see Chapter 3 for detailed references to this subject).  
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For systems with a large negative axial anisotropy, it is sometimes convenient to record 

spectra on loose powders; the high magnetic field employed in HF-EPR will then orient the 

crystallites with the easy axis along the field, thus yielding pseudo single crystal spectra 

which may be easily interpreted.[18,19]  

Among others advantages the use of HF-EPR may provide, it is worth mentioning the 

extension of the time range over which spectral line shapes are sensitive to the molecular 

motions of spin labels. For 250 GHz EPR, a sensitivity to reorientational correlation times 

as short as 1 ps is possible. On this respect HF-EPR of spin labeled biopolymers is expected 

to be an important technique for linking the structure of biopolymers to their dynamics and 

function. Additional benefits also include extra sensitivity to rotational diffusion processes 

and the ability to study line-broadening mechanisms as part of multifrequency 

measurements. 

Recently it has become possible to perform also pulsed HF-EPR experiments. However, 

as this has not been a subject of this thesis, we will only give here a brief account - based on 

ref. [2]- of the peculiar advantages of this technique over conventional pulsed EPR, which 

are especially exploited in the study of biological processes. Pulsed HF-EPR in the form of 

two-dimensional field-swept electron spin echo spectroscopy gives real-time access to 

specific cofactor–protein slow motions on the ns time-scale, and even to their spatial 

anisotropy that is generated by anisotropic weak interactions within the binding site. 

Furthermore ENDOR at high Zeeman fields takes additional advantage of the 

magnetoselection of molecular subensembles in powder or frozen-solution samples. 

Thereby, even in the case of small g-anisotropies, ENDOR can provide single-crystal-like 

information about hyperfine interactions, including anisotropic hydrogen bonding to the 

protein. Finally, by properly adjusting the Zeeman field in multifrequency pulsed EPR 

experiments, weakly and strongly interacting nuclei in the cofactor–protein system can be 

differentiated by their ESEEM and ENDOR spectra. 

 

 

2.2 Experimental Setup  

 

2.2.1 Microwave sources 

A HF-EPR spectrometer may differ from a conventional EPR one in various or all of its 

components. The first difference lies in the microwave source. Two different kinds of 



Overview of HF-EPR 

 

15

 

sources are usually employed in HF-EPR, namely solid state diode with frequency 

multiplicator and FIR-laser. The former are now being increasingly employed even in the 

X-Band spectrometers, in place of the formerly used Klystron. The advantage of solid state 

diode lies mainly in the large stability of the source and in the easy use; on the contrary the 

main problem is that they present a large power loss when using high-order multiplicator; 

practically, over 450 GHz the power output is so small that the use of these devices is not 

feasible. In such cases the only practical microwave source of reasonable output power at 

very high frequency (ν>450 GHz) are FIR lasers, which may provide a large number of 

discrete frequencies by just using different lasing gas or different laser transitions for the 

same lasing gas. The main drawbacks in using FIR lasers is that they are more unstable and 

more complex to operate and maintain with respect to solid state sources.  

Other sources available for intermediate range of some hundred GHz, which are 

however much less diffuse than the former ones, are carcinotrons and gyrotrons. In detail 

the former have been employed in one of the first studies in HF-EPR,[12] while the latter 

have been recently proposed as a valid microwave source for FTEPR.[20] The main 

advantages of gyrotrons lie mainly in the fact that the frequency of the emitted radiation is 

determined by the strength of a static magnetic field. This allows production of high power 

at high frequency without the generation of damagingly large energy densities from slow 

wave structures. Presently these microwave generators and amplifiers developed by various 

research laboratories and industrial firms deliver 103 –105 W in the CW mode of operation, 

106 W in 1 s pulses and 107 W in pulses of 10 s duration.[21,22] The magnetic fields 

necessary to generate frequencies in the range of 10–30 GHz are produced with the use of 

permanent magnets and water cooled solenoids. However to provide radiation of millimeter 

and submillimeter wavelength from strongly oversized interaction spaces superconducting 

magnets which produce homogeneous static magnetic fields up to 10–15 T in volumes of 10 

cm diameter are needed.[22] This makes the use of gyrotrons as microwave source very 

expensive, thus strongly limiting their diffusion.  

 

 

2.2.2 Magnets 

The other main difference between HF-EPR and EPR spectrometers obviously concerns 

the magnetic field source: with the high frequency employed the free electron resonates at 

fields which are most conveniently produced by superconducting magnets (see Table 2.1): 
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the relatively easy availability of this kind magnets has surely been one of the key technical 

achievement responsible for the recent development of HF-EPR. Notwithstanding this, the 

building of superconducting magnets suitable for HF-EPR is not an easy task, given the high 

stability and high homogeneity required in sweeping mode for this kind of measurements. 

This is particularly true when the whole spectrum, from zero to maximum field, of a high 

spin or highly anisotropic system is needed, as it is the case for the system discussed in this 

thesis. On the contrary, it can be simply overcome in the case of narrow-range spectra, like 

those of radicals and defect centers, which may be recorded by operating a superconducting 

magnet in persistent mode combined with a sweeping coil.  

 

ν /GHz  λ /mm E /cm-1 Hr(g=2) /T 

9.5  (X-band) 30 0.32 0.34 

24   (K-band) 12.5 0.8 0.86 

35   (Q-band) 8.5 1.2 1.25 

95   (W-band) 3 3.2 3.4 

130 (D-band) 2.3 4.3 4.6 

190 1.6 6.3 6.8 

245 1.2 8.2 8.75 

330 0.91 1.1 11.8 

570 0.52 19 20.4 

1000 0.3 33.4 35.7 

 
Table 2.1 Representative EPR microwave frequencies with associated wavelengths, energies and 
magnetic fields for resonance at g=2 
 

For very high frequency even superconducting magnets, producing fields not larger 

than 18 T, are not enough powerful. Indeed, as it is clear from Table 2.1, a free electron 

resonates at fields larger than 18 T for frequency above 500 GHz. The solution in this case 

is given by the use of resistive magnets, that can reach fields up to 30 T. Even if their field 

homogeneity and reproducibility are not as good as for superconducting magnets this is 

usually not a problem, as very high field are employed for analysis of high-spin, highly 

anisotropic species containing transition metal ions, with fairly broad EPR transitions. The 

main problem connected with the use of resistive magnets is the need for huge electric 

power supplies (typically 107 W) which make them available for specialized laboratories 
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only. Hybrid magnets, concentrical combinations of resistive magnet inside a 

superconducting one, may also be employed in this field region, and can reach Higher 

fields, up to 40 T: however, they are even less diffuse than resistive ones and are available 

only in a few laboratories all over the world. Ultra high fields, larger than 40 T, are also 

available by use of pulsed magnetic fields but their use in EPR would require major 

adaptation to the spectrometer and has not yet been reported.  

 

 

2.2.3 Probeheads 

Most of the efforts for the development of HF-EPR are aimed at the extension at 

millimeter and sub-millimeter waves of the general design of the conventional microwave 

bridge used up to Q-Band. The main problem along this path is the availability and/or the 

design and realization of devices able to carry on the function of the low-frequency 

analogue. In conventional EPR the propagation of the radiation is made by using mono- 

modal metallic rectangular waveguides, metallic cavities and the other devices present in a 

typical microwave bridge. The technical development allowed to actually transfer the 

standard microwave techniques to spectrometers employing frequency up to 150 GHz: a 

commercial W-Band spectrometer employing resonant cavity, designed to allow single 

crystal study,[9,10,23-25] has been recently commercialized by Bruker (see Chapter 7 for a 

description of this instrumental setup). A remarkable feature of this kind of spectrometer is 

the increase of the absolute sensitivity - which theoretically scales up as much as f7/2 in some 

systems[26] - with respect to conventional EPR. This is due both to the increased filling 

factor η, which is a result of the smaller dimension of resonators at high frequency (for W-

Band the cavity volume is about 1/1000 of those of X-Band) and to the increased population 

difference between the different spin levels.  

Above 150 GHz diffraction losses increase dramatically, as spurious standing waves 

build up more easily on mechanical imperfections of the waveguides. Furthermore as the 

dimension of the cavity in the fundamental mode of resonating is equal to the microwave 

wavelength, it become increasingly difficult to build up a rectangular or cylindrical cavity 

on which operating at high frequency (see Table 2.1). 

The simplest way to overcome these problems is the use of oversized single pass probe, 

without any resonating structure. Setups of this kind, which have been widely used for 

measurements discussed in this thesis, allow ultra wide band investigation and are very easy 
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both to use and to build. On the other hand, they are obviously low sensitive (typically 

1011spin G-1 Hz-1) and thus a quite large amount of sample is needed to detect a signal. 

Furthermore the control on the phase and shape of the signal is poor and propagation effects 

may complicate the interpretation of the spectra.  

Quasi- optical methods were first suggested by the Cornell group[27] to try to solve 

some of these problems and have been implemented by others groups.[6,28] Indeed when 

the wavelength is comparable to the devices used, as is the case in HF-EPR, geometrical 

optics, which ignores the wave like nature of the radiation is inappropriate. On the contrary, 

in quasi-optic, which identifies both a formalism and a technique, the radiation waves are 

described by a Gaussian beam which is a modified plane wave whose amplitude decreases 

not- monotonically as one moves radially from the optical axis.[1] In this experimental 

setup the microwaves are propagated as a single-mode free-space Gaussian beam outside 

the cryostat and in a corrugated pipe structure inside the cryostat. The first part of this path 

is achieved using a number of high-performance, broadband quasi-optical components 

which should provide a low-loss transmission line system. In these systems, the aim is to 

transmit a single mode and reduce coupling to higher order modes to a minimum. The 

resonating structure used is usually an open Fabry-Perot one: this consists of a quartz 

concave mirror coated with a micronic layer of silver or gold and a planar metallic mesh 

supported on a thin quartz sheet that acts as a partially transmitting planar mirror. Even if 

the use of an open resonator typically reduces the absolute sensitivity by a factor between 10 

and 100 with respect to the best performance of single-mode resonator, the concentration 

sensitivity, which is often the important factor, may be comparable in the two cases. It is 

obviously possible to use different setups, like non-resonating structure, a solution which is 

usually preferred for systems with large linewidth. 

Another possible solution has been recently proposed by Mola et al.[29], who 

developed a non-modulated high-frequency resonant perturbation detection technique. This 

may be employed when the radiation wavelength is large compared to the sample 

dimensions: due to the high Q-factor (which may range form 5000 to 20000) of the 

resonance small changes in the sample lead to large changes in the electromagnetic field 

response and thus to extremely enhanced sensitivity, which is a critical factor for very small 

samples with corresponding weak signals.[30] To monitor the phase and amplitude of 

millimeter-wave radiation transmitted through the cavity containing the sample under 

investigation a Millimeter Vector Network Analyzer was used. This device, which employs 
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purely solid-state electronics, allows measurements over an extended frequency range from 

8–350 GHz. The MVNA operates at high frequency by using a Schottky diode to multiply 

and then modulate the frequency of a sweepable centimeter source, S1 - an YIG whose 

output is in the range 8 – 18 GHz - by integer multiples. Detection is then achieved by 

mixing the mm-wave signal with the signal from a second cm source S2 , at a second 

Schottky diode harmonic mixer 2HM. It is thus possible to generate frequencies in the range 

N(8-18 GHz) - where N is an integer from 1 to 20 - i.e to 8 to 350 GHz, by excitation of the 

desired harmonic N. 

 

 
Figure 2.3 Schematic drawing of the probe using the WGMDR. After ref. [33] 

 

A different approach has been carried out by the Pisa group, by developing a 

Whispering Gallery Mode Dielectric Resonator.[31-34] This peculiar type of resonating 

structure proved to be very effective in supporting a very large frequency range with 

attractive Q values and an extremely simple and cheap fabrication. In this experimental 

setup (Figure 2.3), at the end of the metallic waveguide an adapter connects the radiation to 

a fused quartz dielectric circular waveguide. The dielectric waveguide is curved at a right 

angle with a bending radius sufficient to avoid irradiation losses outside the guide. The 

horizontal part of the guide is tapered up to very small diameters useful for good coupling of 

the radiation at frequencies of interest to the resonator flanking the guide. This is just made 

of two similar polyethylene disks placed parallel to each other, and the space separating the 

disks is filled with the sample of interest. The termination of the dielectric waveguide, a 

very sharp and regular tip, is employed as a very efficient dielectric antenna irradiating with 

good directivity. The emitted radiation is recovered by inserting the antenna in a metallic 
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conducting waveguide with a small diameter. After a right angle path obtained by means of 

a 45° aluminum mirror the radiation is then sent to the return metallic waveguide which 

finally convoys it to the detector. 

 

 

2.2.4 Detection systems 

Finally, the detection system in HF-EPR is usually constituted by helium cooled InSb 

bolometer which has a response in the range of microseconds and is sensitive enough in a 

fairly broad frequency range, from GHz to THz. If faster detection is needed, Schottky 

diodes can be used at the expense of the sensitivity, which may fall by two orders of 

magnitude. 

 

 

2.3 The italian HF-EPR spectrometer in Pisa 

 

In Figure 2.4 a general block scheme of the HF-EPR spectrometer developed at IFAM-

CNR in Pisa, which can be adapted to different configurations, is reported.  

 

 
Figure 2.4 General setup of the HF-EPR spectrometer in Pisa.  
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The superconducting magnet is made up by the combination of a main coil that can 

reach a maximum field of 12 Tesla with a maximum sweep rate of 0.21 Tesla/min and a 

sweep coil that can be swept 0.2 T keeping the Main coil persistent at a fixed field. The use 

of the sweep coil reduces the liquid helium boil off and is useful for the study of signals not 

broader than 0.1 T ca., i.e. for analysis of radicals, defect centers, etc. The Field stability 

when the magnet is made persistent is of 1 mT/hour.  

The sources employed in Pisa include a home built CO2 pumped Millimetre Laser 

emitting a number of lines between 148 and 316 GHz (148 - 240- 240- 245 - 316) using 

different lasing gases and a Gunn diode emitting at 95 GHz equipped with a doubler and a 

tripler offering the 190 GHz and 285 GHz frequencies. The detector is a fast InSb hot 

electron bolometer cooled to liquid helium temperature. The probe employed for the spectra 

recorded for this thesis is working in traveling wave configuration without resonating 

structures: this gives an absolute sensitivity of 1012spin/Gauss Hz at room temperature. As 

we have seen in the previous paragraphs, resonators based on the use of Dielectric 

Resonators working in the Whispering Gallery Modes are also developed in the laboratory 

but have not been used for the spectra presented in this thesis. 

Finally, the temperature control is achieved through a PID system which regulates the 

liquid helium flux and the heating in a continuous flow cryostat which achieve a 

temperature stability of 0.01 K at 4.2 K  

 

 

2.4 Quantitative analysis of the results 

 

As we have seen in the previous paragraphs, one of the main advantages when using 

HF-EPR with S>1/2 spin systems is the possibility of often considering the situation of 

high-field limit achieved: this makes the use of perturbation theory to simulate the spectra 

possible. However, when the Zeeman energy cannot be considered to be large compared to 

the zero field splitting, it is necessary to diagonalize the complete matrix. This situation is 

encountered both for the above mentioned EPR silent ions, which have large Zero-Field 

splitting, and for system with large ground spin state.  

Simulation procedures have been developed during past years which generally make 

use either of a full diagonalization combined with an interpolation technique to search for 

the transition fields or of the eigenfields and related methods which directly give the 
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transition fields.[35,36] In any case the main problem, beyond the order of the matrices that 

need to be diagonalized, is the reconstruction of the polycrystalline powder spectrum by 

accumulation of single-crystal spectra.[37] The number of single-crystal spectra that need to 

be calculated depends on the interplay of the two main factors which determine the whole 

spread of the spectrum: the experimental microwave frequency and the anisotropy of the 

system (g anisotropy and ZFS). Different strategies have been designed for that purpose 

which are adapted to the simulation of a high-spin system with large ZFS.[38,39]  

We have however found that, for the systems which were object of study during this 

thesis the best suited and more flexible approach to simulation of both HF-EPR and X-Band 

EPR is the program developed by Weihe,[39] which has been successfully tested by various 

groups working in the field during past years.[24,40-46] The simulation procedure carried 

on by using this program may be intuitively divided into three separate steps: 

(1) Definition of the model. The hamiltonian modeling the system under study is 

defined by the researcher. In principle any conventional spin-Hamiltonians can be used, as 

well as ligand field matrices and one is completely free to define the model: throughout this 

thesis, we employed the Spin Hamiltonian defined in (2.1.1), where the principal values of 

D tensor were parameterized according to D=3/2Dzz, E=1/2(Dxx-Dyy). In some cases higher 

order Zero Field Splitting terms proved to be necessary to obtain a satisfactory simulation. 

As we will see in the following chapters, determination of higher order term in spin 

hamiltonian may be of paramount importance when dealing with problem concerning 

quantum effect in molecular nanomagnet. The matrix representations of the Hamiltonian 

(2.1.1) is then used as input for the following step of the simulation. Obviously, this is not a 

specific step for the employed program package, since any analysis of EPR spectra would 

involve a definition of the model. 

(2) Calculation of the resonance magnetic fields and calculations of the 

corresponding transition probabilities for all the different orientations of the paramagnetic 

species with respect to the magnetic field. Energies are calculated by means of matrix 

diagonalizations, without use of any perturbation theory; forbidden transitions are also 

considered (|∆Ms|>1). This step is obviously the time consuming part of the whole 

simulation procedure; however, with a normal PC (PIII, 450 MHz) it takes just 530 seconds 

to calculate this for a powder (1200 orientations, 150 fields interval) of an S=6 system. 

(3) Finally, the last step, which is computationally much cheaper, is the folding in of 

a band-shape function for each transition: different bandshape functions are available and 
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distribution of value of the Spin Hamiltonian parameters (g-strain, D-strain) may be taken 

into account. This step is separated from (2) in order to make it possible to use several 

bandwidths for each set of line positions calculated in step (2).  
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3. Calculation of Spin Hamiltonian parameters 
 

 

 

 

 

 

 

3.1 Introduction  

 

 Even if the theoretical background for rationalizing the magnetic anisotropy in 

molecular materials is well developed, in this field quanto-mechanical calculation models 

based on Density Functional Theory have not yet been pushed to the required level of 

sophistication. However ligand field models have long been used to describe the low 

symmetry properties of paramagnetic species,[1] and they can provide an excellent basis for 

the description of the magnetic anisotropy of molecular magnets. In this chapter we wish to 

resume some fundamental aspect concerning magnetic anisotropy and show with some 

example how it is possible to rationalize it. We will first recall some basic aspects of crystal 

field and ligand field theory, with a specific section  being devoted to the description of the 

Angular Overlap Model. We will then outline the main features of the spin hamiltonian 

approach, focusing our attention on Zero Field Splitting terms. A recently developed 

computer program which allows for the calculation of spin hamiltonian parameters starting 

from electronic parameters within the framework of the Angular Overlap Model will then be 

presented and the results obtained with this program discussed. The starting point will be an 

overview of the results recently obtained through HF-EPR spectra of some so called EPR 

silent ions.[2-13] These are ground state integer spin complexes with high zero field 

splitting, which -apart for some exceptions - usually do not show any EPR signal at 

conventional frequencies (see Chapter 2). For the interpretation of HF-EPR spectra of these 

systems, ligand field techniques have been mainly used. This is an approach which has been 

widely used for the interpretation of the EPR spectra of well behaved paramagnetic ions 

[14,15] but the availability of spectra for EPR silent ions now requires a critical evaluation 

of the validity of ligand field theory especially concerning the possibility to calculate the 

zero field splitting. Finally, we will focus on the origin of the anisotropy in single molecule 
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magnets, starting from the analysis of simple model system to end with the real building 

blocks of the SMM.  

 

 

3.2 Crystal Field Theory[1,16,17]  

 

3.2.1 Fundamentals of Crystal Field Theory 

The main terms of the non-relativistic hamiltonian for  free many-electron atoms are: 
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the first term is the sum of hydrogen-like terms for single electrons, the second one is the 

sum of the single electron spin orbit interaction, while the third sum contains the 

interelectronic repulsion. The hydrogen-like part is common to all electron configurations 

and therefore only shifts the energies without affecting the relative differences; conversely 

both the second and the third term will contribute to the energy differences in many electron 

configuration, as we will see in the following. 

We may neglect, as a first step, the two-electron part of (3.2.1) and the spin-orbit 

interaction and consider each single electron moving in an average field due to the nucleus 

and to the remaining electrons and that this average field is spherically symmetric. Within 

this assumption, the solution of the hydrogen-like part of the Schrödinger equation of (3.2.1) 

for a free metal ion yields the five degenerate d orbitals, which are the product of a radial 

function Rnl defined by the quantum numbers n and l and of a spherical harmonic Yl
m, 

depending on the quantum number m: 
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When an ion is placed in a ligand environment with symmetry lower than spherical, the 

energies of its partly filled d- orbitals (and to a lesser extent f-orbitals for lanthanides) are 
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split by the electrostatic field of the ligand. This is an immediate consequence of the 

lowering of the symmetry as, even in the regular octahedral geometry, group theory tells us 

that the highest dimension of irreducible representation is three. 

This is the basis of Crystal Field Theory, whose deeply symmetry based formalism was 

developed by Bethe in 1929.[18] Crystal Field Theory is a purely electrostatic, non-bonding 

approach, where the metal ion is placed in a field due to its ligands, which are approximated 

by negative point charges and thus assumed to be fixed and unpolarizable. An interesting 

point is that while the theory treats the electron of the metal center quantum mechanically 

those of the surrounding medium are treated classically.  

The effect of the ligands over the energy diagram of a metal ion is described by an 

operator V, sum of one-electron operators which are the sum over all the ligands of the 

electrostatic potentials associated with the j-th electron of the partly filled shells of the metal 

ion at a given distance (rij) from the Z-negatively charged i-th ligand: 
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The problem thus reduces to the solution of the secular determinant with matrix elements of 

the type >< kl ϕϕ || V . It is worth highlighting here that Crystal Field Theory is not 

treating each ligand separately but considers them as a whole, exploiting the total symmetry 

of the surrounding of the metal ion, whose symmetry properties are retained by V. This is 

best understood expanding each one-electron Vj in terms of spherical harmonics  

centered at the metal nucleus: 
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here r> usually refers to electron nucleus distance and r< to the nucleus-ligand distance.§ The 

first spherical harmonic, Yk
q(θi,ϕi) refers to the ligands and the second to the electron, both 

defined by their polar coordinates.  

It is evident that the use of a certain set of spherical harmonics critically depends on 

the geometry of the system. Indeed, V must obviously transform as the totally symmetric 

                                                           
§ r< and r> are in fact the shorter and longer radial vectors connecting the origin to the electron and to the 
charge; the assignment follows by reasonably assuming that the electron does not move far apart from the 
nucleus.  
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representation in the symmetry group concerned and this introduces severe limitations on 

the use of given Yk
q, thus strongly simplifying (3.2.4). It should be reminded here that the 

group theoretical transformations of the spherical harmonics are determined by their k value, 

i.e. by their angular momentum quantum number, whose rotation properties were first 

defined by Bethe [18] deriving the characters of their reducible representation in a given 

symmetry group: 

 
X(α)=sin((L+1/2)α)/sin(α/2) 

X(E)=2L+1                 (3.2.5) 

 
where α is the rotation angle for any given symmetry operation and X(E) is the 

character for the identity operator.  

The symmetry of the surroundings further contributes to simplify Eq. (3.2.4) by zeroing 

some terms; thus, if the symmetry group possess a fourfold, a threefold or a twofold axis of 

symmetry (or a symmetry plane), only terms characterized by q values multiple of 4, 3 and 

2 (including q=0) respectively, can be retained. 

Further simplification in (3.2.4) is introduced by considering that the matrix element of 

the Crystal Field operator should also behave as total symmetric representation of the group: 

this means that the orbital function coupled by V, i.e. by the different spherical harmonics, 

depends on the symmetry. 

To rule out which terms of (3.2.4) are retained it is worth considering here, as a 

preliminary step, the nature of the function <ϕl| and |ϕk> over which each Vj is operating. 

This depends on how the effect of the interelectronic repulsion term of hamiltonian (3.2.1) 

is accounted for, i.e. either according to the strong field formalism or to the weak field one. 

In the weak field scheme, the interelectronic repulsion term of the spin hamiltonian is 

considered to be dominating over the effect induced by the surrounding of the metal ion, 

which is treated as a perturbation. The functions over which the crystal field operator is 

operating are then the free ion terms, characterized by (2S+1)L. As these are many-electron 

functions while Crystal field operator is a sum of one-electron operators, free ion terms are 

decomposed in linear combinations of |l,ml> functions to evaluate the matrix element of V. 

On the other hand, if the effect of the crystal field is assumed to be dominating over the 

interelectronic repulsion term, the latter is considered as a perturbation, and thus the crystal 

field is just operating over the monoelectronic d orbitals defined in (3.2.2). In both cases 

low symmetry effects and spin-orbit coupling are introduced as a final perturbation. What is 
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more important, the one-electron functions are then of the type |l,ml>, where l=2 for d 

orbitals ad l=3 for f orbitals, and may then be expressed in terms of spherical harmonics, Yk
q. 

As both the operator and wavefunction can be expressed in terms of spherical harmonics the 

matrix element is of the form <Ya|Yb|Yc>. A very useful way to calculate this matrix element 

(and thus matrix element of V) makes use of the irreducible tensor operator Ck
q - where k is 

the tensor rank and q identifies its component - related to spherical harmonics by: 
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This allows us to derive the matrix element of V by using the Wigner-Eckart theorem, that 

states that two one-electron functions which may be expressed in terms of their general 

angular momentum |j,mj> can be coupled by a general tensor operator, Ck
q to yield: 
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here < j || Ck || j' > is a reduced matrix element of the tensor operator independent of mj, 

and the term in parenthesis is a Wigner 3-j symbols. Eq. (3.2.7) is an extremely valuable 

relation as it allows one to derive integrals of any wavefunctions coupled by an operator 

which may be written in angular momentum terms. Moreover, 3-j symbol have fundamental 

properties which reduces the number of integrals to be evaluated and simplify their 

calculation: 

1- They are equal to zero unless j + j' ≥ k ≥ | j - j '| 

2- The sum of the elements of the second row must be zero for a 3-j symbol to be 

non-zero 

3-When the second row is multiplied by -1 the value of the 3-j symbol is multiplied 

by (-1) j +  k + j' 

4- Even permutations of the column leave the value of 3-j symbols unchanged, while 

odd permutations of the column multiply the value by (-1) j +  k + j' 

 

From the first condition it immediately follows that only harmonics with k ≤ 4 can 

couple two d orbitals (for which j=j'=2) thus drastically reducing number of the terms of 

(3.2.4) to be evaluated. 
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Once this procedure is completed, the magnitude of the obtained matrix element are 

expressed in terms of radial integrals, αn, which for 3d electrons are: 
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For octahedral and tetragonal groups, the crystal field energy splitting are usually reported 

as the Ballhausen ligand field parameters, Dq, Ds, Dt:[19] 
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where a and b identify the axial and equatorial ligand, respectively. 

 

3.2.2 Crystal Field Theory: a critical evaluation  

Crystal Field Theory had a great initial success that arose from the small number of 

parameters and the fact that crystal potentials of the correct symmetry can be written down. 

Moreover, while the approximation of ligand with point charges is quite a raw one, it 

qualitatively predicts both the spectroscopic behavior of the ions depending on their site 

geometry - like number and relative energies of transitions in an electronic spectrum - and 

what kind of magnetic properties a complex of a dn ion in a given symmetry should possess.  

However, as most of the obtained results rely on the symmetry basis of the model, as 

soon as symmetry is lowered from very regular ones things are getting worse. On this 

respect, as the effect of the surrounding is considered as a whole it does not provide a basis 

to understand what happens when only some ligands are changed. Moreover, on lowering 

the symmetry, the number of radial parameters necessary to describe the electronic energy 

levels drastically increases: this is already clear from the example of tetragonal symmetry of 

Equation (3.2.9). Furthermore, the chemical significance of these integrals becomes 

increasingly difficult to work out; referring again to Eq. (3.2.9), while Dt may be related to 

the relative strength of axial and equatorial crystal fields, little or no chemical information 
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has been derived from Ds as a function of the ligand or of the metal ion in tetragonal 

complex. Moreover, radial parameters cannot be calculated from first principles, as the point 

charge approximation which is at the basis of the theory is clearly inadequate to describe 

molecular complexes. Indeed, it was early recognized that one of the main reasons of the 

poor quantitative results obtained by purely electrostatic model of Crystal Field Theory is 

the neglecting of any kind of overlap between the ligand and the metal ion, which becomes 

increasingly important on increasing covalency. This results in a failure when trying to get 

any reliable chemical information about metal-ligand bond within the framework of Crystal 

Field Theory.  

 

 

3.3 Ligand Field models 

 

The general term Ligand Field Theory is applied to any development of crystal field 

theory recognizing some covalent character of metal-ligand bond.[17] Within this 

framework, this theory provides a basis for understanding many of the wide range of 

spectroscopic observables in terms of the electronic structures of transition metal 

complexes. However, what is probably more important is that the parameters of the theory 

have some chemical significance and can be related - with some caution - to a specific 

metal-ligand interaction. Predictions can then in principle be made over electronic energies 

of species containing a specific metal-ligand interaction by transferring the obtained 

parameters from a given complex to another.  

The symmetry of the surroundings is introduced in Ligand Field Theory as a 

consequence of ligand positions and it is not at the basis of the model as it is for Crystal 

Field Theory.  

The main starting point of Ligand Field Theory is to recognize that when overlap 

between ligand and metal orbitals is admitted, the orbitals can possess σ- or π- bonding or 

antibonding character. A degree of covalency is then introduced in the model by the 

recognition of the fact that the parameters value are strictly symmetry defined for each 

specific metal-ligand interaction, and that interelectronic repulsion parameters are reduced 

with respect to the free ion (where they are well defined as they are derived from atomic 

theory). Indeed, the ability to incorporate these parameters into the bonding description of 

metal complexes is the real power of ligand field theories. We have already mentioned how 
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the effect of interelectronic repulsion term may be taken into account in the strong and in 

the weak field approaches. It is worth noting here that the difference between the two 

approaches retains mainly an historical and didactic importance nowadays. Indeed modern 

ligand field based programs exploit the performances of modern computers, which make 

diagonalization of the complete hamiltonian matrix, including spin orbit coupling and low 

symmetry effects, feasible (see paragraph 3.9).  

The usual approach is to obtain numerical values of radial parameters from the fits of 

spectra and then to interpret the resultant values in terms of bonding interactions with the 

ligands. It is well known, for example, that Dq varies with the bonding interaction of the 

ligand with the metal center, while the relative Dq values do not depend significantly on the 

metal ion. This yield the well known spectrochemical series, where the ligand are ordered 

according to increasing Dq: 

I- < Br -< CrO4
2- < S2- < N3

- < F- < OH- < CO(NH2)2 ≈ C2O4
2- ≈ O2- < H2O < SCN- < C5H5N 

≈ NH3 < H2NCH2CH2NH2 ≈ tren < NO2
- ≈ 2,2'-bpy ≈ phen < CN- < CO 

 

This behavior would be difficult to rationalize on the basis of simple Crystal Field 

Theory since ligands with small charge have high Dq values. However, it is easily 

understood if one takes into account the π-bonding ability of the ligands: indeed, good π-

acceptors have high Dq while good π-donors have low Dq values.  

In the following two sections we will see how spin-orbit coupling and interelectronic 

energy terms are also affected by taking into account covalency, and the chemical 

significance which could be assigned to them. 

 

 

3.4 Determination of interelectronic repulsion energy  

 

The evaluation of interelectronic repulsion energy mainly consists in calculating a 

series of matrix element of the type < ab |1/r12| cd >, where <ab| and |cd> are product of 

monoelectronic functions. In analogy to the expansion of the crystal field, we may expand 

this potential in terms of spherical harmonics as:  
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The calculation is then carried on by expressing spherical harmonics in terms of 

normalized Legendre functions: 
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and defining two new functions: 
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It can be demonstrated that the repulsion integral may be expressed in terms of these 

functions as:  
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Here the sum over k is reduced to k=0,2,4 for d orbitals, due to the limitation of the 

above stated triangle rule (see paragraph 3.2) 

When ab= cd two special integrals are obtained, namely Coulomb integral (J) and 

exchange integral (K), which are always positive and defined as: 
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It can be demonstrated that the energy of each Slater determinants may be written in 

terms of these two integrals as: 
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where the first term is the sum of one electron energies, which for the free ion are usually 

the shielded d orbitals, and the second and third term are the interelectronic repulsion 

contribution. The problem in evaluating the repulsion integral can then be divided in two 

steps: first, expressing a multielectronic wavefunctions in terms of a sum of two electron 

products - i.e. expanding the Slater determinants - and then to the evaluation of J and K in 

terms of the radial integrals. These are parameterized as Fk=Rk(abcd), and further 

simplification in the expression of the interelectronic repulsion energy is obtained by 

setting: F0=F0, F2= F2/49 and F4=F4/449. An alternative set of radial parameters, usually 

employed, has been developed by Racah, and they are defined as: A= F0- 49F4, B= F2- 5F4, 

C= 35F4. 

It is probably worth highlighting two aspects of the adoption of this formalism: first, 

the energy difference between states of the same configuration is not affected by A(F0), 

which has effect only on the average energy of the configuration; second, all the 

components of a given degenerate free ion terms present the same interelectronic repulsion 

energy. Moreover, it is important to bear in mind that the radial integrals are properties of 

the outer orbital and can then be strongly affected by the overlap between the orbital of the 

ligand and the d orbitals of the metal. This means that covalence between metal and ligand 

plays a major role in determining the interelectronic repulsion. Indeed, the interelectronic 

repulsion parameters are generally found to decrease on increasing covalence: this is quite 

obvious assuming a progressive expansion of the electron cloud on increasing covalence, 

which clearly leads to minor repulsive energy. This reduction is usually described in terms 

of a variation of β=Bcomplex/Bfree ion on varying the ligand, keeping fixed the C/B ratio to the 

free-ion value (about 4.00). In such a way it has been possible to define a series, on 

increasing donating power of the ligand and decreasing B, historically named nephelauxetic 

series:[20] 

 

Free ion > F- > H2O > CO(NH2)2 > NH3 > H2NCH2CH2NH2 ≈ C2O4
2- ≈ CO3

2- > NCS- > Cl- 

≈ CN- > Br - > N3
- > I- > S2- > diarsine 
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Two contributions accounts for this effect, namely central field covalency and 

symmetry restricted covalency. The former is strictly connected with the donor power of the 

ligands: indeed its lone pairs will tend to screen the d orbitals from the nucleus, thus leading 

to a lowering of the effective nuclear charge and then to an expansion of the d shell. In 

terms of the radial parameters this may be seen in a reduction of both F2 and F4 which are 

proportional to Zeff. The second contribution, which is smaller, is connected with the 

differential radial expansion of d-orbitals which is brought by σ- and π- delocalization from 

the ligand, the σ- being generally larger.[16]  

 

 

3.5 Spin-orbit coupling energy 

 

The third term of hamiltonian (3.2.1) is spin-orbit coupling, which plays a crucial role 

in determining magnetic properties and EPR behavior of transition ion complexes. The 

origin of this term, whose actual value for a free ion can be derived from Dirac relativistic 

equation, lie in the magnetic interaction between the orbital magnetic moment of the 

electron and the electric field of the nucleus.[1] It is important to note that as spin-orbit 

interaction is localized on metal-nucleus the covalency, which tends to delocalise the 

electrons on the ligands, reduces the magnitude of spin orbit coupling with respect to the 

free-ion value.  

The monoeletronic spin-orbit coupling operator is composed of three terms. ζ(r) is 

operating on the radial part of the wavefunctions, while lk and sk operate on the orbital and 

the spin part respectively. It is then possible to factor out the effect on the radial part as 

<R(r)|ζ(r)|R’(r)> as  ζ/ħ2. The lk·sk part <d|l·s|d’> can be calculated by expressing the ket 

and the bra in terms of the relevant spin and orbital components, <ml,ms| and  |ml’,ms’> and 

considering that:[17] 

 
l·s =lxsx+lysy+lzsz= ½(l+s-+l-s+) + lzsz.            (3.5.1) 
 
The matrix elements to be evaluated have then the form:  

 
<ml,ms| [½(l+s-+l-s+) + lzsz ] |ml’,ms’>           (3.5.2) 
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It easily follows that, for this term to be non-zero, ml + ms = ml' + ms', i.e. either: 

i) ml = ml' and ms = ms' (diagonal elements) 

ii) ml = ml ± 1 and ms = ms'-/+1 (off-diagonal elements) 

 

It is important to note that this analysis applies to the d orbitals expressed as complex 

functions, (3.2.2) while we are concerned with the effect over the real d orbitals, which are 

linear combinations of these. 

To evaluate the effect of spin-orbit coupling over a many electron atomic term, i.e. in 

the weak-field limit, the spin-orbit operator is written in terms of the total angular and spin 

momentum, L and S: 
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where λ is the spin orbit coupling within a given Russell-Saunders multiplet,[1] which is 

related to the spin orbit coupling constant of the ion ζ by the relation λ= ±ζ/2S. The plus 

sign applies to configuration dn with 1≤n ≤4 and the minus sign to 6≤n ≤9. For high spin d5 

ions no spin-orbit coupling is operative at first-order as they are orbital singlet states.  

If one assumes a strong-field coupling scheme the evaluation of the spin-orbit coupling 

matrix element reduces to the proper sum of (3.5.2)-like element, obtained after the 

expansion of the corresponding Slater determinants in terms of product of monoelectronic 

wavefunctions.  

As spin-orbit coupling can couple states of different spin it is necessary to solve the 

hamiltonian matrix for all the possible states and this can lead to quite large matrix (the 

largest being 252 x 252 for a d5 ion): however, as its effect depends on the magnitude of the 

coupling constant ζ and on the energy difference between the ground state and the admixed 

one it is sometimes possible in the calculation to neglect some of the higher energy states, 

thus reducing the matrix size. At any rate, as we already noticed above, this is no more an 

important issue, given the current performances of computers.  
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3.6 The Angular Overlap Model 

  

The Angular Overlap Model[21-24] is one of the first, simplest and most widely used 

approaches to include covalency. This is a particularly appealing approach to the description 

of electronic properties of transition metal ion complexes, as it allows the use of parameters 

directly related to the σ- and π- bonding ability of the ligands, which may be easily 

controlled by the synthetic chemist. Moreover, it is possible to use the real coordination 

geometry around the metal ion site, thus including effects due to the low symmetry of the 

ligand field.[25] Even if it was originally based on a particular molecular orbital framework, 

the model developed and was later popularized by Gerloch[25] and by the Florence 

group[26] as a ligand field theory for which the parameters should be assumed to be 

consistent with chemical information. The key idea underlying the model is best explained 

by looking at the three main assumptions characterizing the AOM:[24] 

(1) The energy of any l orbital El # is obtained as a perturbation.  

(2) If the l-basis is defined relative to a coordinate system XYZ then the perturbation 

matrix due to a ligand placed on Z is diagonal 

(3) Contributions from different ligands are additive. 

 

Following assumption (1) and (2) the matrix element in the angular overlap model for a 

ligand on the z axis may be expressed as:  

 
<λiHaomλ’j>= δλλ’δij eλi             (3.6.1) 
 
Here, λi= σ, πS, πC, δS, δC identifies the irreducible representation of d orbitals and their 

components in the space group C∞v, and the factor δij reflects the assumption of diagonal 

overlap for a ligand on the z axis. The chemical significance of eσ and eπ is evident in a 

molecular orbital approach, and in this framework eδS and eδC are usually assumed to be 

zero. However, the actual meaning of eλ is slightly different in the AOM approach and we 

will analyze it in more detail. The antibonding effect on a given d orbital is assumed to be 

proportional to the square of the overlap integral SML between that metal orbital and the 

ligand orbital of corresponding symmetry. This follows from two assumptions that allows 

the use of the Wolfsberg-Helmolz approximation when solving the secular determinant: 

                                                           
# While in the following we will only refer to d orbitals, AOM application for rare earth ions are also 
quite common,(see for example [78]) and were at the basis of the model development[79]  
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first, the energy of the ligand orbital interacting with the metal ion is supposed to be much 

more negative than those of the central ion and that the overlap between metal and ligand 

orbital is small. In this framework the solution of the secular equations leads to the 

following expressions for the destabilization energies over the metal l-orbitals:  

 

( ) ( )2
2

* λ
λλ

λλ

λ ML
LM

LM S
HH

HHE
−
+

=              (3.6.2) 

 
where HM and HL are the energy - prior to perturbation - of the ligand and of the metal 

orbital. As each monoelectronic d orbital is written as the product of a radial and an angular 

part, the overlap integral SML can be as well factorized as: 

 
*
MLML SS λΞ=                 (3.6.3) 

 
where Ξλ accounts for the influence of the angular function of the central ion on the overlap 

between metal and ligand orbital of λ symmetry and S*
ML is the radial overlap integral, 

which obviously depends on metal-ligand distance only. This leads to the expression: 

 
( )2*

λλλ Ξ= eE                 (3.6.4) 
 
Here eλ, which identifies the semiempirical parameters of the AOM, has been set: 

 
( )( )2*λ
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HH
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−
+

=               (3.6.5) 

 
 

In the general case where more than one ligand is interacting with the metal ion, the 

metal axis system is considered to be fixed and the problem reduces, following assumption 

(3), to sum the effects of each ligand upon the d orbitals. This is done by considering for 

each ligand a new reference system x'y'z' with the z' in the ligand-nucleus direction, 

associated with a primed set of d orbitals. The evaluation of any matrix element of the type 

< u | Hk
AOM | v> then reduces to calculate matrix element between orbitals of the primed 

system. This rotation does not affect the radial parameters eλ defined in (3.6.5) but has effect 

over Ξλ. Any d orbital of λ symmetry , which we shall call |w>, may then be written as a 

linear combination of d' by using the rotation operator F, which leads XYZ to x'y'z': 
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from which follows: 
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AOM ewHt δ>=<              (3.6.7) 

 

as we required the perturbation to be diagonal. Here et'L(K) is obviously the same as eλ for the 

given k-ligand. Within this formalism, any matrix element relative to perturbation given by 

a ligand at a general position (θk,ϕk) can then be written as: 
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Here, u and v identifies any two d orbitals in the XYZ reference system, and 1',..,5' 

identifies the orbitals in the x'y'z' framework. It has to be stressed that for symmetry lower 

than C2v the d orbitals xz, z2, x2-y2 span the same irreducible representation and then 

assumption (2) is not completely justified. This is especially true when trying to obtain 

magnetic anisotropy properties, which may be strongly affected by the mixing of orbitals 

with different spatial orientations, while neglecting of this kind of low-symmetry effect has 

usually only small effect over electronic properties. Even if some models accounting for the 

presence of off-diagonal terms have been proposed,[27] low symmetry effect are usually 

taken into account by using the real atomic coordinates of the complex as obtained by X-

Ray structure solution.  

Finally, to obtain the complete perturbation effect over a given d orbital, the sum 

over all the ligands has obviously to be performed: 
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The most appealing feature of the AOM, beside the fact that it includes overlap and 

then covalence is considered lies in the fact that the energy levels of complex molecule are 
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obtained by adding the perturbation of each ligand L upon the orbitals of the central ion 

taking into account their geometric relationship to each other. This makes the use of this 

model feasible to describe the spectromagnetic properties of molecules for which eλ, and 

thus ligands or metal-ligand distances, are different. Finally, the intuitive character of the 

model and - at least in principle- the possibility to translate its semiempirical parameters 

with some chemical significance, from one system to another may be very appealing in 

designing systems with predetermined properties. 

 

 

3.7 The spin Hamiltonian and the single ion anisotropy 

 

The concept of spin hamiltonian was first introduced by Pryce[28] and Abragam and 

Pryce[29] -in the context of Crystal Field Theory- and has been subsequently developed for 

the description of the electron paramagnetic resonance results of the ions of the iron and 

lanthanides groups and diluted in diamagnetic hosts.[30] Throughout the years this approach 

proved to be very useful as a large amount of experimental information obtained by means 

of different spectroscopies could be summarized in a simple form, without loosing in 

accuracy from the theoretical point of view. 

 The approach consists in replacing the true hamiltonian of the system with an effective 

one which operates on the spin variables of the system only. It is then an operator equivalent 

that is designed to act on spin coordinates only and give the same results as the "true" 

hamiltonian discussed in the previous sections, which may be difficult to handle. The spin 

coordinates that are used are not necessarily the true ones but may rather be fictitious: this is 

especially true in the case of systems with S>1/2. Indeed, as we have seen above, the ground 

state of a paramagnetic ion interacting with neighboring ligands often consists of a group of 

electronic levels whose separation is of the order of a few wavenumbers. The behavior of 

this group may be described through the definition of an effective spin S', such that the total 

number of levels in the group is 2S'+1: although the spin hamiltonian does not describe the 

actual eigenfunctions of the system it correctly describes the way in which they change on 

varying magnetic field. 

The spin hamiltonian is then just a parametric approach which is nevertheless very 

helpful for the interpretation of sets of experimental data, as it allows a first rationalization 

of the properties of the complexes. It is important to bear in mind that any spin hamiltonian 
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does two things: it provides a means of describing a large amount of different experimental 

results in a compact and easily comparable way, but it provides as well a starting point for a 

theoretical interpretation of the results, which may then be related with more fundamental 

properties of the system.[31] The main advantages in the use of a spin hamiltonian are the 

relatively low number of terms which are implied in the description of the experimental data 

and the possibility of easily taking into account many different interactions just by adding 

the appropriate terms to the hamiltonian. A simple form of spin hamiltonian which will be 

useful for our following interpretation of experimental results of anisotropic magnetic 

system is:  

 
∑+⋅⋅=

qk

q
k

q
kB B

,

OSgBH µ               (3.7.1) 

 
where we neglected interactions involving the nuclei (hyperfine and superhyperfine 

interactions and nuclear Zeeman effect). The first term is the Zeeman electronic effect and 

accounts for the anisotropy shown by a system in the way it responds to an external field, 

while the second one is the Zero Field Splitting term, which identifies the splitting of states 

belonging to the same S multiplet and different MS values, leading to a preferential axis (or 

plane) for the orientation of the magnetization of the molecule. The Ok
q are the so-called 

Stevens operator equivalents,[30,32] defined in Table 3.1. They were introduced by Stevens 

to determine the crystal field potentials of rare earth ions: with this formalism single ion 

anisotropy is expressed through a series expansion in terms of magnetic multipoles. 

_______________________________________________________________________ 
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Table 3.1 Explicit form of even Stevens operators up to fourth order. [A,B]⊗is used as a shorthand 
for 1/2(AB+BA). S± = Sx ± iSy (After ref.[30]) 
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The term corresponding to k=2, which describes the effect of the quadrupolar 

interaction, can be written also as:  

 
H2 = S·D·S                 (3.7.2) 
 
with D is a symmetric traceless tensor which can also be explicitly rewritten as: 

 
H2 = ( )[ ] ( )222 3/1 yxz ESSD SSS −++−             (3.7.3) 
 

where 0
23

1 BD =  and 2
2BE =  

For cubic symmetry D = E = 0. For axial symmetry E=0 and if D > 0 the anisotropy is 

of the easy-plane type while if D < 0 it is of the easy-axis type. The number of terms to be 

retained in (3.7.1) depends both on the spin value and on the symmetry of the the center. 

Only term with k ≤ 2S will be present; this leads to the conclusion that terms with k=4, 

describing hexadecupolar interactions, are present only for S ≥ 2 while for k=6 to be present 

S ≥ 3 is necessary: this is only the case of  rare-earths and actinides ions. Concerning the 

symmetry, for a system with S ≥ 2 in tetragonal symmetry only k= 0 and 4 are needed, for 

trigonal symmetry only k=0 and 3, while for orthorhombic symmetry only 0, 2 and 4. It 

should be noted here that the Ok
0 operators describe a purely axial anisotropy and do not 

mix states with different MS values, while the Ok
q operators of  equation (3.7.1), with q≠0 

introduce some degree of transverse anisotropy, coupling states differing in MS by  ± q. 

The above mentioned anisotropies, namely g-anisotropy and Zero Field Splitting can 

only occur if an orbital contribution is present in the ground state. It should however be 

considered that - with the exceptions of the ions which have an orbitally degenerate ground 

state of T type - orbital degeneracy will be removed by Jahn-Teller distortions.[33] One may 

then assume in first approximation that the ground state does not possess orbital 

contribution. At this level of approximation the system is isotropic, because it is only orbital 

component which can feel differences between different orientations. The anisotropy is 

introduced in the system by spin-orbit coupling, that admixes excited states with orbital 

contribution into the ground one. As we have previously mentioned, this phenomenon can 

be described by the hamiltonian H = ∑iζi li·si: as ζi is small for constituent atoms of organic 

radicals, the magnetic anisotropy is small in these systems, while it is much larger for 
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transition metal ions (especially for second and third row) and lanthanides, which are indeed 

well known to possess a large anisotropy.  

 

 

3.8 Magnetic Anisotropy in Polynuclear compounds 

 

The effect of the interaction between two spins, S1 and S2, is described by the 

hamiltonian H=S1J12S2, where J12 is a general tensor which may be decomposed in the sum 

of three terms, namely an isotropic, an antisymmetric and an anisotropic one: 

 
H=J12S1⋅⋅⋅⋅S2+d12 ⋅⋅⋅⋅S1xS2 + S1⋅⋅⋅⋅D12⋅⋅⋅⋅S2             (3.8.1) 

 
where J12 is a scalar, d12 is a polar vector and D12 is a symmetric traceless tensor. 

The J12 tensor may have two different origins, namely through-space and through-bond 

interactions.[34] The former contribution can be seen, at the simplest level, as arising from 

magnetic dipolar interaction between S1 and S2, while the latter originates from exchange 

coupling between the two spins. Through space contribution may be easily calculated 

assuming that the spins are localized on isolated centers, and that the separation between 

different centers is large compared to the spatial extension of the magnetic dipoles. This 

dipolar point approximation is in general good for polynuclear metal ion complexes 

characterized by low covalency, while it breaks down for polyradicals. The appropriate 

form of the tensor calculated in this approximation is: 

 

3
21212

12
))((3.

RB
gRRgggJ ⋅⋅−

= µ             (3.8.2) 

 
where g1 and g2 are the g tensors of the center 1 and 2 respectively, and R is the unitary 

vector parallel to the line connecting the two centers. For a pair of spins the dipolar 

interactions tends to align them parallel to each other, giving rise to an easy axis type 

anisotropic term, with the axis parallel to R. 

The through-bond anisotropic component arises from spin-orbit coupling mixing of 

excited states into the ground state. To evaluate this term it is customary to use the so-called 

Moriya approximation,[35] which estimates the exchange determined anisotropic 

contribution through D12 ∝ (∆g/ge)2J12 , where ∆g is the difference (g-ge), ge is the free 

electron value and J12 is the exchange coupling constant. The main drawback is that J12 
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refers to the coupling between the ground states on the two centers, while in the Moriya 

approximation the coupling between one center in the ground state and the other in the 

excited state should be used. Experimental results showed that in many cases the Moriya 

approximation may provide even the wrong sign.[34] In general it must be expected that for 

centers with g ≈ ge (like organic radicals and S-ion as Mn(II), Fe(III), Gd(III)) D12≈ 0 for the 

spin-orbit determined contribution.  

It is then clear that the appropriate spin hamiltonian to describe a system of N 

interacting spins will be a sum containing terms arising both from single ion properties, and 

from the interactions between the spin pairs: 

 

∑ ∑∑∑ ⋅⋅+⋅⋅+⋅+⋅=
<< i jiiBji jijiiiiiijiijJ SDSSDSSgBSSH µ     (3.8.3) 

 
here we have neglected the antisymmetric exchange term of (3.8.1) and only the second 

order single ion anisotropy terms of (3.7.1) have been considered for the sake of simplicity.  

Provided that the total spin strong exchange limit is achieved - i.e. Jij is larger than any 

other interaction in (3.8.3) and then S is a good quantum number, the global anisotropy of 

the system may finally be expressed by using the hamiltonian:  

 
SDSH ⋅⋅=                  (3.8.4) 

 

where S=ΣiSi. At the same time the Zeeman term of (3.8.3) may be expressed in the strong-

exchange limit as a function of the total spin number using H = µBB⋅⋅⋅⋅g⋅⋅⋅⋅S. 

In this assumption: 
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A relation relying on the same approach describes the dependence of the global g 

tensor on the individual ones: 

 

∑=
i

i
S
iS c gg                 (3.8.6) 

 
Explicit expression for coefficients ci, di  and dij may be found in ref. [34] 

 According to (3.8.5) the single ion contribution to the magnetic anisotropy of a 

polynuclear compound can be calculated as a weighted sum of individual contribution if the 
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nature of the total spin state is known. It is important to stress that both Eq. (3.8.5) and 

(3.8.6) are tensorial ones, which means that the principal directions of the various tensors 

must be taken into account. Once the individual, intermediate and total spin states are 

definite, the S
ic , S

id and S
ijd  coefficients are readily calculated by projecting the individual 

spins on the total spin.[34] The value of the coefficients can be calculated with recurrent 

formulae, easily implemented by a computer program. 

 

 

3.9 Calculation models for Spin Hamiltonian parameters 

 

Given the discussion carried on up to now the need for an appropriate model of 

calculation of spin hamiltonian parameters is evident, starting from information on 

electronic parameters and from some kind of approximation (ligand field, MO, etc.). It is 

worth mentioning here that the problem of calculating spin hamiltonian parameters in the 

general case for which no specific approximation to the non relativistic many electron 

wavefunction is assumed has been analyzed by several authors. In particular, Solomon and 

Neese recently presented a method aimed to derive equations for the calculations of Spin 

Hamiltonian parameters for the case of FeCl4
-, for which all states are well described by 

single determinantal function.[36] 

On the other hand, a very simple model to account for anisotropy is introduced as a 

simple perturbational approach to ligand field theory. If the ground state can be adequately 

described by using only the functions within a given Russell-Saunders multiplet D and E 

may be easily calculated as: 

  

( )

( )yx

yxz

ggE

gggD

−=





 +−=

λ

λ

4
1

2
1

2
1

             (3.9.1) 

 
where gi (i=x,y,z) are calculated according to the perturbative relation: 
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here |0> and |n> identify the ground and any excited states, respectively. However, for more 

accurate calculations in the ligand field limit it is necessary to completely diagonalize the 

Hamiltonian matrix. 

Among the different general and practical computational methods relating electronic 

properties to Spin Hamiltonian parameters we will focus in the following on the Angular 

Overlap approach. As we have seen, indeed, this seems to be a very well suited model to 

explain the experimental results given the chemical significance of its parameters. 

Moreover, recently different programs based on the Angular Overlap approach became 

available which starting from the energy levels calculated by electronic parameters are 

working out Spin Hamiltonian parameters [37,38] We will describe in some detail the 

working principle of the program presented in ref. [37] using which the results presented in 

the following sections have been obtained.  

The energy levels are computed as the eigenvalues of the Hamiltonian:  

 
H = HAOM + HER + HSOC              (3.9.3) 
 
here, HAOM is the ligand field Hamiltonian expressed in terms of AOM parameters, HER is 

the interelectronic repulsion term, and HSOC is the spin-orbit coupling part of the 

hamiltonian. The matrix element of Eq. (3.9.3) are calculated using all of the states arising 

from the dn configuration, and without any perturbational approximation. The employed 

basis set is |αLSJMJ>, where L and S are the usual quantum orbital and spin angular  

momentum, J is the total angular momentum operator, and α is any additional quantum 

number needed to define the state. In such a way the calculation procedure is greatly 

simplified as HSOC is diagonal on |JMJ>, while the calculation of HAOM and HER is greatly 

simplified by the use of irreducible tensor operators. From the diagonalization of the matrix 

of (3.9.3), the eigenvectors are obtained: 

 

∑ >=
k

Jkk LSJMc αψ |               (3.9.4) 

 
The obtained energy levels are further split by Zeeman interaction when a magnetic 

field is applied: 

 
)( SLBHZeem eB gk +⋅= µ              (3.9.5) 
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The program calculates the Zeeman splitting by diagonalizing the matrix built up with 

elements: 

 
>+⋅< KeBi gk ψµψ |)(| SLB              (3.9.6) 

 
As the energy involved in Zeeman interactions are usually much smaller than those of 

ligand-field only the states of ground manifold are included in (3.9.6). The energy level 

pattern calculated by this procedure, and its behavior in various magnetic fields, is then 

reproduced by the program using the spin Hamiltonian formalism and deriving the 

corresponding parameters. As we have seen in the previous paragraphs this is a very useful 

formalism to describe the behavior of a dn ion in a magnetic field. However, while in the 

case of Kramers ions the Zeeman splitting can always be interpreted in terms of ground 

doublet effective spin, and a procedure has been developed in the past which calculated the 

spectromagnetic properties of such systems (e.g Co(II) pseudooctahedral complexes) by 

treating (3.9.5) as a first-order perturbation the situation is more complicated for non 

Kramers ions and a more general approach is needed.  

The Spin Hamiltonian employed in the program for the general case of a non-

Kramers ion is of the form: 
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Here Tlm(S) are combination of the spherical tensor Tlm(S): 

 

Tl0 = Tl0 (l even)               (3.9.8A) 

Tl0 = iTl0 (l odd)               (3.9.8B) 

Tlm = [(-1)mTlm + Tl-m]/√2             (3.9.8C) 

Tl-m= i[(-1)mTlm + Tl-m]/√2             (3.9.8D) 

 

Tlm are irreducible tensor operators which may be calculated by means of Wigner-Eckart 

theorem using 3j Wigner symbols (see (3.2.7)) and then they transform in the same way as 

the spherical harmonics. They are somewhat different from the Ok
q Stevens operators 

defined in Eq. (3.7.1), but can be related to those by using simple formulas which have been 

tabulated by Rudowicz.[39] Accordingly the parameters Blm of Equation (3.9.7) and Bk
q of 

Equation (3.7.1) have different meaning, and care must be exerted when comparing data 
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obtained by using the two different formalism as literature is quite confusing on this point 

(see ref.[39]), especially for negative values of m.  

The parameters of the Hamiltonian (3.9.7) are evaluated by the program through a 

numerical fitting procedure that compares the energy levels obtained, for different magnetic 

field values and orientations through the use of Eqs.(3.9.3)-(3.9.6) (Ei
AOM(θ,φ,H)) to the 

ones obtained from the spin hamiltonian approach (Ei
SH(θ,φ,H)). The function which is 

minimized by varying the spin hamiltonian parameters is then:  
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3.10 Ligand Field based interpretation of HF-EPR spectra of "silent ions"  

 

In the following we will shortly overview some of the most significant recent report in 

HF-EPR of EPR silent ions together with the discussion of the Ligand Field models used for 

interpreting their properties.  

 

3.10.1 S= 1 Ions 
 

 a-Vanadium(III) 
 V(III) is a d2 ion, which in octahedral symmetry has a ground 3T1g state. Low symmetry 

components of the ligand field and spin orbit coupling remove the orbital degeneracy, but at 

any rate a large zero field splitting is observed. A particularly simple example is provided 

by the spectra of the aquo ion present in the vanadium doped alum CsGa(SO4)2·12H2O. The 

site symmetry of the tripositive ion is S6, splitting the ground orbital triplet in a ground 

singlet and an excited doublet. The distortion corresponds to a trigonally compressed 

octahedron. Single crystal and polycrystalline powder spectra in the range 95- 285 GHz 

were reported by Tregenna-Piggot et al.[7] which showed that the ZFS is large, D= 4.7735 

cm-1, and the g values fairly anisotropic, g||= 1.9549, g⊥= 1.8690. The experimental data 

were reproduced by using the Angular Overlap Model,[38] and the employed parameters 

were the same used for the interpretation of the UV/Vis and Raman spectra: eσ= 6950 cm-1, 

eπ⊥= 930 cm-1, eπ||= 0, with the Racah parameters B= 644 cm-1, C= 2960 cm-1. In order to 
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reproduce the zero field splitting and the g values the spin orbit coupling constant, ζ, was 

reduced to ca. 80% of the free ion value, and the orbital reduction factors were taken as: k||= 

0.910, k⊥= 0.866. Rather surprisingly the ZFS was found to be very sensitive to deuteration. 

In fact D= 4.8581 cm-1 was found for the deuterated sample: this was attributed to a slight 

distortion in the coordination sphere of Vanadium on deuteration. The use of a different 

AOM-based program, developed in our laboratory,[37] was in substantial agreement with 

these results, even if we had to employ lower reduction of the spin-orbit coupling (90% of 

the free ion value) and of the orbital reduction factor (k=0.95). These sample calculations 

showed that even very subtle distortions of the coordination sphere of Vanadium can easily 

result in quite large effect on ZFS, thus supporting the explanation of the large variation of 

Zero Field Spliting on deuteration. The extreme sensitivity of the SH parameters to small 

distortions is associated with the T1g ground state. Similar effects were previously observed 

for high spin Co(II).[40]  

 

b-Nickel(II) 

Octahedral Ni(II), d8, has an orbitally non-degenerate ground state (3A2g) and its 

complexes show quite large Zero Field Splitting, that can range from a few to tens of 

wavenumbers. Nickel is a very fortunate case for the application of ligand field theory, as a 

large amount of electronic data is available in literature, and determination of Spin 

Hamiltonian parameters has been achieved using conventional EPR for some complexes in 

the past.[15,41,42] On the other hand, HF-EPR has up to now been employed only in three 

cases to study Ni(II) complexes. These involved a macrocyclic complex 

Ni(sarcophagine)(ClO4)2,[11] a Ni doped sample of Zn(en)3(NO3)2[4] and a Zn-doped 

Haldane chain, [Ni(C2O4)(dmiz)2]n.[9] Further studies are actually in progress on different 

complexes from various laboratories and preliminary results are quite encouraging, both in 

term of spectral simulation and of correlation between ligand field and ZFS parameters.[43]  

In the case of Ni(sarc) Mrozinski et al.[11] reported an axial Zero Field Splitting 

with D=1.400 cm-1, with g||=2.125, g⊥= 2.143: a trigonal compression along a line 

connecting two C atoms of the encapsulating macrocycle was invoked to be responsible for 

the positive value of the Zero Field Splitting. The observed ZFS is quite large if compared 

to the one expected on the basis of ligand field parameters derived for similar macrocycles. 

Indeed, sample calculations employing Angular Overlap Model showed that the calculated 

anisotropy is much lower than the observed one; more importantly, calculation showed that 
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idealized trigonal compression would actually result in a negative ZFS. On the other hand, 

the observed results (D=1.87 cm-1, E=0.38 cm-1) for the [NixZn1-x(C2O4)(dmiz)2]n chain, 

where the high level of Zinc doping lead to completely isolated Nickel centers, were easily 

justified on the basis of the coordination sphere of the nickel, NiN2O4.[9] Indeed, the 

observed value for D is intermediate between the value observed through X-Band studies 

for NiO6, usually quite high, and those for NiN6, much lower, in agreement with the weaker 

ligand field of the oxygen compared to the nitrogen donor. Ligand field parameters for this 

system for both imidazole-type ligand and oxalate were readily available in literature.[16] 

Starting from those parameters and using the real structure of the complex the above 

mentioned AOM-based program yielded a quite good agreement in term of reproduction of 

experimental data: D= 1.86 cm-1, E= 0.24 cm-1.[44]  

 

3.10.2 S= 2 Ions 

 
Figure 3.1 Schematic view of the energy levels for a d4 ion. The free ion state, the splitting in a 

regular octahedral ligand field and in a tetragonally elongated octahedral environment are 
represented. In the last case the low lying triplet states are also drawn as dotted lines. The energies 
are calculated with the program of ref.[37] using standard ligand field parameters for a MnO6 
chromofore as discussed in paragraph 3.10.2. 

 

S= 2 states are observed in d4 and d6 ions. The former in octahedral symmetry have a 

ground 5Eg level, which is unstable due to Jahn-Teller effects: similar considerations hold 
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for d6 in a tetrahedral environment. In general for d4 ions the Jahn-Teller distortion is a 

tetragonal elongation which leaves the eg unpaired electron in the z2 orbital; this splits the 

ground state in a 5A1g and a 5B1g, the latter lying lowest, and yields a negative ZFS. A 

schematic picture of these levels is given in Figure 3.1. 

Another peculiar feature of S=2 systems is the possibility of having fourth order terms 

in the crystal field Hamiltonian.[30] The magnitude of these terms, which have been shown 

to be of capital importance in promoting the Quantum Tunnelling of the magnetization on 

Mn12,[45] can now be derived by HF-EPR. 

The theory that relates the Zero Field Splitting parameters to the ligand field ones is 

well established[6] and can be employed at different levels of approximation. Using 

perturbation theory an acceptable level of approximation requires: 

 
D=D0+D1                (3.10.1) 
 
here D0 is the zero field splitting parameter estimated by considering only the contribution 

of states belonging to 5D according to Eqs. (3.9.1) and (3.9.2): obviously the + sign applies 

to d4 and the – to d6 ions. For example, the g values for a d4 ion in a rhombic distorted 

environment can be calculated as: 
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            (3.10.2) 

 
However it is now well known that (3.10.2) is not able to adequately reproduce the 

experimental ZFS parameters. Improvements can be introduced through D1 that takes into 

account the contribution of the lower spin multiplicity states which can mix into the ground 

state via spin-orbit coupling. On the basis of first-order perturbation theory D1 can then be 

calculated to be: 

 

D1= 
∆

−
4

2ζ  ),(56 2zyzxzECB →∆−+=∆    for elongated d4 ions   (3.10.3a) 

D1= 
∆

−
12

2ζ  ),(56 22 yxyzxzECB −→∆−+=∆   for compressed d4 ions   (3.10.3b) 
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Here ∆ is the energy difference between the ground state (5A1 for compressed systems and 
5B1 for elongated ones) and the first triplet excited state (3E) that mixes in it through spin-

orbit coupling (see Figure 3.1). 

As literature data dealing with Eqs. (3.10.3) are quite confusing[46] we will review 

some of the results obtained up to now by using this approach. It will be shown that even if 

it works quite correctly on a qualitative point of view, it seems to underestimate the value of 

the anisotropy, both for Cr(II) and some of the Mn(III) to date reported. To overcome these 

problems, the best approach at the Ligand Field level is given by complete diagonalization 

of the dn matrix.  

 

a-Manganese(III) 

Mn(III) complexes have been increasingly studied since the availability of high 

frequency and high fields in recent years,[2,3,6,10,12,13] and further work is currently in 

progress  to gain better insights in key factors determining magnetic anisotropy. In many 

cases reported so far the parameters obtained by simulations of HF-EPR spectra have been 

explained on the basis of simple considerations based on the foundations of ligand field 

theory outlined in the previous paragraph.  
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ated octahedral coordination environment of Mn(III) with slightly rhombic 

n excellent testing ground for the ligand field approach at the different 
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levels of approximations presented in the previous paragraph, relying on the electronic 

parameters obtained by the UV-vis spectra. Use of (3.9.1) and (3.10.2) lead to D0=-1.4 cm-1, 

and even inclusion of excited triplet states by using equation (3.10.3), lead to D1=-2.3 cm-1, 

i.e. to a global D value of -3.7 cm-1, about 20% lower than the observed value. For the sake 

of comparison, the use of the above mentioned AO program[37] neglecting all the S<2 

states yielded a largely underestimated value of D=-1.35 cm-1, in agreement with the results 

obtained by using Eqs. (3.9.1) and (3.10.2). Finally, the inclusion of all of the Russell 

Saunders states by taking into account the orthorhombic distortion leads to D=-4.55 cm-1 

and E=0.28 cm-1 in very good agreement with the experimental values obtained by the 

simulation of the spectra, D=-4.35 cm-1 and E=0.26 cm-1 with gx=gy=1.99 and gz=1.97. 

 
[Mn(dbm)3] [Mn(dbm)2(CH3OH)2]Br 

Mn-O(1) 2.109(2) Mn-O(1)’ 1.896(4) 

Mn-O(2) 1.917(2) Mn-O(2) 1.908(4) 

Mn-O(3) 2.142(2) Mn-O(3)’ 2.240(5) 

Mn-O(4) 1.931(2) Mn-O(1) 1.896(4) 

Mn-O(5) 1.935(2) Mn-O(2)’ 1.908(4) 

Mn-O(6) 1.908(2) Mn-O(3) 2.240(5) 

O(1)-Mn-O(2) 88.3(1) O(1)-Mn-O(2)' 88.3(2) 

O(1)-Mn-O(3) 175.4(1) O(1)-Mn-O(2) 91.7(2) 

O(1)-Mn-O(4) 89.5(1) O(1)-Mn-O(3) 91.4(2) 

O(1)-Mn-O(5) 90.6(1) O(1)-Mn-O(3)’ 88.6(2) 

O(1)-Mn-O(6) 93.2(1) O(2)-Mn-O(3) 89.6(2) 

O(2)-Mn-O(3) 90.2(1) O(2)-Mn-O(3)' 90.4(2) 

O(2)-Mn-O(4) 92.5(1) O(1)-Mn-O(1)’ 180.0 

O(2)-Mn-O(5) 89.1(1) O(2)-Mn-O(2)’ 180.0 

O(2)-Mn-O(6) 178.5(1) O(3)-Mn-O(3)' 180.0 

O(3)-Mn-O(4) 86.2(1) 

O(3)-Mn-O(5) 93.7(1) 

O(3)-Mn-O(6) 88.4(1) 

O(4)-Mn-O(5) 178.4(1) 

O(4)-Mn-O(6) 87.9(1) 

O(5)-Mn-O(6) 90.5(1) 

 
Table 3.2 Distances (Å) ed angles (°) in the coordination sphere of  [Mn(dbm)3] and 

[Mn(dbm)2(CH3OH)2]Br. 
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Following that approach a substituted derivative, [Mn(dbm)2(CH3OH)2]Br, has been 

synthesized and its HF-EPR spectra recorded at two different frequencies, 190 and 285 GHz 

(see Figure 3.3). The crystal structure of this complex has been recently solved:[47] for our 

purpose it is sufficient to take into account the coordination sphere of Mn(III) (see Figure 

3.2), whose relevant parameters are reported in Table 3.2 together with those of 

[Mn(dbm)3]. It is evident from the parameter of this table that the Jahn-Teller elongation of 

the Mn-Omethanol bond is very pronounced: on the basis of simple considerations  a negative 

and nearly axial ZFS can then be predicted.  

The spectra recorded at 285 GHz show two low field transitions that can be used to 

predict an initial value of D. Indeed, for an S=2 system with negative and axial anisotropy 

the lowest Ms levels are separated by 3D, thus suggesting a value of D=-3.1 cm-1. Moreover 

the splitting between the first two lines can be attributed to the presence of a small term of 

transverse anisotropy (E/D<0.1), which has been found also in [Mn(dbm)3]. With these 

starting values we performed a satisfactory simulation of the spectra recorded at 190 GHz 

and 285 GHz (see Figure 3.3, left and right respectively) with the parameters D=-3.46 cm-1, 

E=0.13 cm-1 and an isotropic g=1.99. The obtained D value is much smaller than in the 

parent original complex and the transverse anisotropy is as well reduced. 

 

 

 

 

 

 

 

 

 
Figure 3.3. Polycrystalline powder EPR spectrum of [Mn(dbm)2(CH3OH)2]Br recorded at 190 (left) 
and 285 GHz (right) and 10 K (bold line). The simulations have been obtained using the parameters 
reported in Table 3.3. 

 

A clue to explain this behavior lies in the much larger distance of the axial ligand in this 

derivative with respect to [Mn(dbm)3] , which is likely to induce a much lower ligand field. 

This results in a lower value of ∆E(xz,yz→z2) in Equation (3.10.3a) and then in a lower D1. 

At the same time, the lower transverse anisotropy can be related to a smaller variation in the 
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equatorial distances. It should be stressed that dbm and methanol can be assumed to lie in 

close position within the spectrochemical series and it is only the elongation of the Mn-

Omethanol ligands that leads to this effect.[16] The solution UV-vis spectra showed the typical 

features of a tetragonally elongated Mn(III), with fairly broad transition around 9400 cm-

1(5A1←5B1), 16400 cm-1 (5B2←5B1) and 20250 cm-1 (5E←5B1). The substitution of the 

observed UV-vis transition and of a spin-orbit coupling constant (ζ=345 cm-1) slightly 

reduced with respect to the free-ion value in Eqs.(3.9.1) and (3.9.2) gives D0=-1.34 cm-1. 

Correcting this value by D1 calculated through Eqs. (3.10.3) gives a global value of D=-3.18 

cm-1, with an underestimation of about 10%.  

Following the same approach outlined in ref [2] for an orthorhombic system, and 

assuming eπ(MeOH)=1000 cm-1 (z refers to the axial ligand, while x and y identify the 

equatorial ones) we got the following parameters to be employed in the AO calculation: 

eπ(MeOH)=1000 cm-1, eσ(MeOH)=4000 cm-1, eσ(dbm) =9370 cm-1 and eπ(dbm)=2925 cm-1. 

Neglecting the contribution from excited states with S<2 resulted again in an 

underestimated D value(D=-1.17 cm-1, about one third of the real value). Finally, including 

all the excited Russell-Saunders triplet states in the AO calculation and assuming an r-6 

dependence of the Dq [48] on the metal oxygen distance for the equatorial ligand 

(DqO1=1670 cm-1, DqO2= 1610 cm-1, eπ/eσ=0.3) lead to an almost perfect agreement with the 

experimental parameters: D=-3.45 cm-1, E=0.14 cm-1. The D and E values experimentally 

observed and those calculated with the perturbative approach and with the AOM approach 

are summarized in Table 3.3 for [Mn(dbm)3] and [Mn(dbm)2(CH3OH)2]Br.  

 
  exp Eqs. 

(3.9.1) 

(3.10.2) 

Eq. 

(3.10.3) 

AOM(a) AOM(b) 

D/cm-1 -4.35 -1.4 -3.7 -1.35 -4.55  

[Mn(dbm)3] E/cm-1 0.26 - - - 0.28 

D/cm-1 -3.46 -1.34 -3.18 -1.17 -3.45  

[Mn(dbm)2(CH3OH)2]Br E/cm-1 0.13 - - - 0.14 

 
Table 3.3. Experimental and calculated values for the spin hamiltonian parameters of two Mn(III) 
elongated octahedral Manganese(III) complexes. The calculated values are obtained by the 
perturbative treatments (Eqs. (3.9.1) and (3.10.2) and Eq. (3.10.3) in the text) and by the 
computational program based on the Angular Overlap Model[37] taking into account: a) only the 
ground quintet state for the d4 configuration; b) also the excited electronic states with lower 
multiplicity. 
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In agreement with sample calculation on model systems of Mn(III), inclusion of higher 

lying singlet states do not modify the obtained results.[2] These findings then clearly show 

that the AOM approach is very well suited for a rational and quantitative justification of the 

spin hamiltonian parameters in system for which enough spectroscopic information is 

known. 

 

b-Chromium(II) 

The aquo-ion of Cr(II) has recently been studied in frozen solution by HF-EPR.[5] The 

advantages of using frozen solutions rely on the possibility of obtaining a true powder 

pattern spectra, while the use of powder pressed in pellet often results in decrease of 

intensity due to the reflection of the microwave at the surface of the pellet and to a 

broadening of some transition which is still not well understood, but seems to be strictly 

related with the thickness of the pellet compared to the microwave.[9] Moreover the use of a 

water solution is of great interest in the perspective of performing HF-EPR on biological 

systems in this solvent.  

This system offered a good testing ground for ligand field theory, as it has been 

thoroughly studied in the past years through electronic absorption spectroscopy.[49] On the 

basis of the above stated consideration, the negative (D=-2.20) cm-1and purely axial ZFS 

was easily related to a tetragonally elongated structure. A quantitative explanation of the 

obtained results was achieved with the use of second order perturbation theory, relating ZFS 

to fundamental parameters: 

 
D=-3(ρ+λ2/∆)cos2δ               (3.10.4a) 

E=-31/2(ρ+λ2/∆)sin2δ              (3.10.4b) 
 
where ∆ is the ligand field splitting between 5B1g and the excited 5T2g, whose tetragonal 

field splitting is neglected, ρ the spin-spin coupling and λ is the spin orbit coupling constant, 

while δ accounts for orthorhombic distortion, and in this case should then be set to zero. It 

should be noted that in the framework of a spin Hamiltonian approach, spin-spin coupling is 

formally equivalent to the effects of mixing brought about by higher-order spin-orbit 

coupling terms[5,30]. 

The use of values found in literature for ∆, λ and ρ, gave a value of D=-1.98 cm-1 in 

reasonable agreement with the experimental value D=-2.20 cm-1. On the other hand, the use 

of Eqs. (3.9.1) and (3.10.3) lead to a large underestimation of D (D0= -0.77 cm-1, D1= - 0.95 
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cm-1, Dtot= -1.72 cm-1). A more accurate calculation was based on the exact diagonalisation 

at different fields of the matrix: 
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where both Ok

q and Dq, Ds, Dt have been defined in the previous paragraphs, while ρ and λ 

have the same meaning as in (3.10.4). This procedure yielded a slightly more accurate 

reproduction of the observed D value, D=-2.04 cm-1.  

 

c- High-spin tetrahedral Iron(II)  

As ferrous ion in tetrahedral environment is present in various Iron-Sulfur proteins,[50] 

it is evident the interest toward systems of this kind for future investigation of active sites of 

metalloenzymes. Recently, a study appeared on a model system of the simplest Iron-sulfur 

protein, namely rubredoxin, where a single Fe(II) atom is bound by four cysteinyl ligand in 

a nearly tetrahedral arrangement. The HF-EPR study of this model system, 

[Fe(SPh4)][PPh4]2[8] can be thought of as a first step of applying this technique to high spin 

metallo-protein sites. The obtained ZFS parameters of D=5.84 cm-1, E=1.42 cm-1 were 

interpreted on the basis of Eqs. (3.10.4), using for ρ and λ values found in literature and a 

tetrahedral ligand field splitting between 5E and 5T2 ∆=6000 cm-1, as derived from optical 

data. To get a good reproduction of the experimental values the parameter δ, which accounts 

for distortion from tetrahedral symmetry, was set to 100°, thus leading to a mainly 5A1 

ground state with a small admixture of 5B1, in agreement with the presence of a non-

negligible transverse anisotropy. Interestingly, the comparison of HF-EPR and Mössbauer 

spectra pointed out that the latter technique tends to overestimate the D value, while it 

seems to correctly evaluate the degree of rhombicity (i.e. the E/D ratio). 

 

 

3.11 Sample calculations of Single Ion anisotropy using AOM 

 

In these final paragraphs we will try to define some principles for the rationalization of 

the origin of the anisotropy in magnetic molecular materials, with a special focus to single 

molecule magnets, by using the above described program based on AOM. This may help in 
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developing suitable strategies for introducing the appropriate anisotropy in the molecules 

and thus to get Single Molecule Magnet behavior at higher temperatures. The starting point 

is obviously that of getting some clues for the control of the magnetic anisotropy in simple 

molecules. We will present in the following some sample calculation - whose results are 

summarized in Table 3.4 - on both real and model systems which are of interest as 

constituent of Single Molecule Magnets, Fe(III) and Mn(III). In particular, as both of these 

ions have S ≥ 2, their description involves the use of fourth order terms of the spin 

hamiltonian, whose calculation will be presented here. This is a very important point, as it 

has been clearly shown that O4
q
 operators with q=2,4 are of fundamental importance in 

promoting the Quantum Tunneling of the Magnetization in some Single Molecule 

Magnets.[45,45,51]  

 

3.11.1 Iron(III) mononuclear complexes 

Fe(III) is a 6S ion: nevertheless the combined effect of spin-orbit coupling and 

structural distortion is well known to give rise to appreciable Zero Field Splitting in 

coordination complexes of this ion.[15] We performed some test calculation assuming two 

kinds of distortions from octahedral geometry in an intermediate ligand field strength 

(Dq=1460 cm-1). Assuming the quite commonly encountered trigonal distortion, we found 

that a variation of θ (Figure 3.5) by 5° with respect to octahedral geometry (for which θ = 

54.73°) leads to D=0.420 cm-1 for compression and D=-0.340 cm-1 for elongation.  

 

 
Figure 3.5 Scheme of trigonal distortion. The parameter which describes the distortion is the 

angle between the two arrows (θ in the text). 
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Conversely, assuming a tetragonal distortion, with a 10% variation of Dq between 

axial and equatorial ligands, leads to D=-0.282 cm-1 for compression and D=0.308 cm-1 for 

elongation he behavior of fourth-order terms with respect to these two distortions deserves 

some comment. In D3h symmetry of the trigonal distorted octahedron both B4
3 and B4

0 

parameters are negative, and their absolute value seems not to depend much on the direction 

of the distortion. For tetragonal distortion the symmetry zeroes the B4
3 term and leads to a 

non-zero value of the B4
4. It has to be noted that, in contrast to what happens for trigonal 

distortion, in this case both B4
0 and B4

4 terms are positive for elongation and compression.  

The point which is probably of much interest in the perspective of designing new SMM 

is that several calculations showed that the combination of different distortion, and then of 

the presence of a resulting low symmetry (i.e. non regular) distortion lead to much smaller 

value of the anisotropy. 

In recent years a relatively large number of clusters containing Fe(III)-diketonate units 

bridged by alkoxo-groups has been synthesized which possess interesting magnetic 

properties that have been carefully determined by several techniques (HF-EPR, High field 

Magnetization studies, torque magnetometry).[52-58]Interestingly a series of diketonate 

complexes of FeIII was fully characterized in term of spectroscopic parameters by Fatta and 

Lintvedt in 1971,[59] thus making an analysis in term of AOM feasible. As a first step the 

validity of this approach in determining the anisotropic characteristic of this kind of systems 

was tested trying to reproduce the D and E value of the Fe(acac)3 (acac = acetylacetonate) 

and of Fe(dpm)3 (dpm = 2,2,6,6-tetramethyl-3,5-heptanedionate) complex as derived by 

simulation of EPR [60] and HF-EPR spectra [52] respectively. The results were very 

promising as, using the real geometry of the chromophore as determined from 

crystallographic structure and the parameter reported in literature, a very good agreement 

was obtained in term of D and E for both systems.[52] 

 

3.11.2 Manganese(III) model systems 

As we have already seen above in discussing the HF-EPR results on Mn(III) systems, 

this ion in a tetragonally distorted coordination geometry present a large ZFS. Indeed, test 

calculation performed in such a an environment, with Dq=1600 cm-1 ± 5% clearly evidences 

the much larger Zero Field Splitting of this system with respect to Fe(III), giving a D value 

of + 4.72 cm-1 and –4.83 cm-1 for compressed and elongated system respectively. The 

results of the calculation of fourth order terms for this ion shows that B4
4 term is quite 
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insensitive to the direction of the distortion, varying only by a factor three and maintaining 

the sign, while B4
0 term presents a much larger variation - by a factor 102 - from elongation 

to compression. Moreover, the comparison of these results with those obtained for Fe(III) 

clearly shows that no straightforward assumption can be made on the relative values of 

these terms for different ions, in contrast to what established for second-order terms.  

 
Ionsa Distortion Ligand field parameters Calculated spin hamiltonian 

parameters 

Mn (III) Tetragonal  

Elongation 

Dq(ax)= 1520 cm-1 

Dq(eq)= 1680 cm-1 

2eπ/eσ= 0.4 

 

gz= 1.96 

gx,y= 1.99 

D=-4.83 cm-1 

B4
0=-4.006*10-6 cm-1 

B4
4=6.5734*10-3 cm-1 

Mn (III) 

 

Tetragonal 

compression 

Dq(ax)= 1680 cm-1 

Dq(eq)= 1520 cm-1 

2eπ/eσ= 0.4 

 

gz= 2.000 

gx,y= 1.97 

D = 4.72 cm-1 

B4
0 = -5.9*10-4 cm-1 

B4
4 =  1.8*10-3 cm-1 

Fe(III) 

 

Tetragonal 

Elongation 

Dq(ax)= 1400 cm-1  

Dq(eq)= 1540 cm-1 

2eπ/eσ = 0.4 

 

giso= 2.000 

D = 0.308 cm-1 

B4
0 = 3.7*10-4 cm-1 

B4
4 = 1.6*10-3 cm-1 

Fe(III) 

 

Tetragonal 

Compression 

Dq(ax)= 1540 cm-1 

Dq(eq)= 1400 cm-1 

2eπ/eσ= 0.4 

giso= 2.000 

D = -0.282 cm-1 

B4
0 = 4.3*10-4 cm-1 

B4
4 = 6.6*10-3 cm-1 

Fe(III)  Trigonal 

elongation 

Dq = 1470 cm-1 

2eπ/eσ= 0.4 

θ=49.73° 

giso = 2.000 

D = -0.264 cm-1 

B4
0 = -3.7*10-4 cm-1 

B4
3 = -6.6*10-3 cm-1 

Fe(III)  Trigonal 

compression 

Dq = 1470 cm-1 

2eπ/eσ= 0.4 

θ=59.73° 

 

giso = 2.000 

D = 0.311 cm-1 

B4
0 = -4.0*10-4 cm-1 

B4
3 = -6.4*10-3 cm-1 

 

Table 3.4 Summary of the Spin Hamiltonian parameters calculated for different ions and distortions 
on model systems using AOM. Further sample calculations may be found in ref.[37] 
a The following electronic parameters were used. Mn(III): ζ = 315 cm-1 , B = 1140 cm-1, C = 3675 
cm-1. Fe(III): ζ= 450 cm-1 B= 536 cm-1, C= 3260 cm-1 
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3.12 Analysis of the global anisotropy of Polynuclear complexes through AOM 

 

Much less work has been performed, up to now, on polynuclear compounds using the 

AOM approach. This is mainly due to three problems: i) an exact description of the ground 

state of the cluster is often difficult to obtain, and then the S
id  and S

ijd  coefficients defined 

in Eq. (3.8.5) are not exactly known ii) the determination of the ligand field parameters in 

polynuclear systems is often complicated by the presence of bridging atoms, whose role has 

long been debated[27,61] iii) the number of parameters may be too large to get a meaningful 

result.  

Nevertheless, we have recently obtained some qualitatively interesting results on 

analysis of the anisotropy the relatively simple Single Molecule Magnet 

Fe4(OCH3)6(DPM)6, hereafter Fe4 (Figure 3.6),[52] and in that of Mn12[62], by mean of 

the AOM based program described in ref. [37]. 

 

 

Figure 3.6 The structure of the Fe4 cluster. The arrows indicate the spin structure arising from the 
antiferromagnetic coupling of the central iron with the external ones. A C2 axis passes through Fe1 
and Fe2 

 

3.12.1 Fe4 

The magnetic properties of Fe4 will be described in detail in Chapter 4 but we will 

rapidly summarize them here to clarify the discussion of obtained results. This relatively 

simple cluster has an S=5 ground state arising from the antiferromagnetic coupling of the 

central Fe(III) with the three external ones. The projection coefficient S
ic , S

id  and S
ijd  were 

calculated assuming a coupling scheme in which the three external iron ions are 

Fe2

Fe3 Fe3’

Fe1
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ferromagnetically coupled together and the resulting intermediate spin (S233’) is 

antiferromagnetically coupled to the central one (S1) to give the resultant S=5. Using the 

crystal structure position of the different ligands for each of the iron centers we were able to 

get the right sign of the global calculated anisotropy. However the quantitative comparison 

with the experimental results showed that the calculated value accounted only for a 30% of 

its magnitude. As we will see in Chapter 4 a single-crystal HF-EPR analysis has recently 

shown the calculated direction of the easy axis to be very near to the real one.[63] These 

experiments have shown that fourth order terms are absolutely necessary to account for a 

meaningful description of the anisotropy of the system. To work out the relations between 

local and cluster fourth order terms is by no means an easy task and at this stage we could 

not compare the calculated single-ion fourth order terms with the experimental data. To get 

deeper insights into the anisotropy of Fe(III) clusters further calculations on Ga(III)-doped 

sample[64] are currently in progress. 

 

3.12.2 Mn12  

An estimation of the contribution of single ion anisotropy up to fourth order terms in 

the ground state of Mn12 – whose structure is sketched in Figure 3.7 - was first reported by 

Villain et al. [65] on the basis of two different coupling schemes. No quantitative 

calculation of the spin levels is possible in Mn12 due to the exceedingly high number of 

states. It is however possible to make a guess of the prevailing nature of the ground state by 

choosing appropriate ways of coupling the individual spins to give the total spin S. In the 

first suggested scheme (Figure 3.8a) the eight Mn(III) of the external ring were 

ferromagnetically coupled to give an intermediate spin S’=16 and this was subsequently 

coupled to the intermediate spin S’’= 6 resulting from the ferromagnetic coupling of the 

four Mn(III), to yield the total S=10 state (Figure 3.8b). In the second coupling scheme, the 

four Mn(III) which are bridged by two oxide ions to one Mn(IV) are antiferromagnetically 

coupled to the latter (Figure 3.9a) to yield four intermediate spins S’= ½. The idea here is 

that the corresponding coupling constant must be very large. The S’= ½ intermediate spins 

are then coupled ferromagnetically to the remaining four Mn(III) to give a resultant spin of 

S=10 (Figure 3.9b). The two coupling schemes correspond to different wavefunctions, 

therefore the relative contributions of the individual spins to the ground state are different 

from each other: this means that the corresponding S
ic , S

id and S
ijd  values are different in 

the two case. In particular for the scheme depicted in Figure 3.9 the intermediate spins are 
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S’= ½, and then they do not give any contribution to the zero field splitting of the ground 

state. 

 
Figure 3.7 A picture of Mn12. The arrow evidences the Mn(III) site of Mn3 whose single ion ZFS is 
relevant to the determination of the cluster anisotropy assuming the so-called Florentine coupling. 

 

(a)                (b) 

 
Figure 3.8  (a) The eight external Mn(III) ions are ferromagnetically coupled (continuous line) to 

yield an intermediate spin S'=16; the four Mn(IV) are ferromagnetically coupled (dotted 
line) to give the intermediate spin S''= 6. 
(b) The two intermediate spins are antiferromagnetically coupled to give the total spin 
S=10 

 

In such a way only the four Mn(III) which are not coupled to give the intermediate 

spin S’ contribute to the Zero Field Splitting of the cluster. These are the ones bound by two 



 Ligand Field and Spin Hamiltonian 

 

66  

 

µ-oxo bridged oxygen, an apical water molecule and three acetate, of which two in the 

equatorial plane and one apical: one of these sites is evidenced by an arrow in Figure 3.7. 

On the other hand in the scheme depicted in Figure 3.9 all the Mn(III) spins contribute to 

the zero field splitting of the ground state. 

 

    (a)                    (b) 

 

Figure 3.9 The spins of the four  Mn(IV) and of  four of the external Mn(III) ions are  
antiferromagnetically coupled to yield the four intermediate spins S'=1/2. The four intermediate 
spins are ferromagnetically coupled to the four remaining Mn(III) to give the total spin S=10. In this 
coupling scheme only the latter Mn(III) are contributing to the Zero Field Splitting of the ground 
spin state of the cluster 

 

After calculation of the S
id  corresponding to the coupling defined by Scheme 2 

(Florentine coupling) using spin-projection techniques the axial second order term of the 

single ion anisotropy was predicted to be about –3.3 cm-1: this is a reasonable value on the 

basis of the literature data concerning the Zero Field Splitting of Mn(III). With the same 

procedure the absolute values of the single ion fourth order terms were estimated to be about 

1/1000 of the cluster fourth order terms, crucial in determining the tunneling process.[65]  

Given the widespread interest toward this molecule [66-72] we attempted a sample 

calculation using the above mentioned AOM-based program. As a first step we assumed an 

orthorhombic geometry for the Mn(III) site, thus neglecting the angular distortion, and we 

considered only the coupling scheme where only one Mn(III) contributes to the cluster ZFS. 

While the ligand field parameter concerning acetate and water were easily found in 

literature,[16] we remained with the problem of finding a good set of parameters for the two 

µ-oxo groups. We tackled this problem looking for a set of ligand field parameters which 
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could reproduce the D value of Manganese (III) doped rutile. The value of D = -3.4 cm-1 

reported in the literature[73] for this system was satisfactorily reproduced assuming a small 

tetragonal elongation, with Dq= 1560 ± 10 cm-1 and a ratio 2eπ /eσ = 0.34. The Racah 

parameters B and C and the spin-orbit coupling coefficient ζ were assumed to be that of the 

free ion, while a small degree of covalence was accounted for by the orbital reduction 

factor, k, set to 0.75. 

 

Donor atom Ligand field parameters 

O1(µ-oxo) 

 

Dq= 1570 cm-1 

2eπ/eσ= 0.34 
O2 (µ-oxo) Dq= 1570 cm-1 

2eπ/eσ= 0.34 
O4 (basal acetate) Dq= 2030 cm-1 

2eπ/eσ= 0.34 
O5 (basal acetate) 

 

Dq= 2030 cm-1 

2eπ/eσ= 0.34 
O3(apical water) Dq= 1200 cm-1 

2eπ/eσ= 0.34 
O6(apical acetate) Dq= 1700 cm-1 

2eπ/eσ= 0.34 
 

Table 3.5 Parameters for the calculation of Zero Field Splitting parameters of MnIII  in Mn12. k 
(orbital reduction factor) = 0.75, ζ = 315 cm-1 , B = 1140 cm-1, C = 3675 cm-1. Calculated Spin 
Hamiltonian parameters and further details on calculations are reported in the text. 

 

The parameter set reported in Table 3.5 was then employed to obtain Spin hamiltonian 

parameters of the Mn(III) in Mn12; this yielded D= -3.2(7) cm-1, B4
0 = -3.3* 10-6 cm-1, B4

4= 

2.2*10-3 cm-1. This approach then results in a good reproduction of the second-order 

parameters, while some more uncertainties are shown for fourth-order parameters. Indeed, 

on the basis of HF-EPR results, the value of the cluster parameters were determined to be 

D= -0.46 cm-1 B4
0=  -2.2*10-5 cm-1, B4

4= ± 4*10-5 cm-1. Thus one would expect values of the 

order of 10-2 cm-1 for the single ion values of B4
0 and B4

4. The observed underestimation of 

the calculated absolute values of fourth order terms with respect to the expected ones may 

be explained on the basis of  the approximation done in the derivation of ligand field 

parameters and in the strong simplification of the distortion of the coordination sphere of 

Mn(III). While this level of approximation seems to be quite good for derivation of second 
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order parameter, it only works at a qualitative level for higher order terms; for these last 

ones the calculated sign is correct but their absolute value is not. 

Following these encouraging results we calculated the resulting global anisotropy for 

Mn12 when assuming the ferrimagnetic coupling scheme depicted in Figure 3.8 (Scheme 

1). As we mentioned above, in this case both the Mn(III) sites (we will refer in the following 

to Mn2 for the site evidenced by an arrow in Figure 3.7 and to Mn3 for the other Mn(III) 

site) and the Mn(IV) one contribute to the global anisotropy. However, as the Mn(IV) single 

ion anisotropy is well known to be much smaller than Mn(III) one we just derived the ZFS 

parameters for the latter sites. The projection coefficient for this kind of coupling were 

calculated by Villain et al.[65] and for both the Mn(III) sites were shown to be equal to 

di=0.02845.  

 

Manganese site Ligand field parameters Calculated Spin Hamiltonian parameters 

Mn2 

 

 

O1(µ-oxo)                 Dq= 1570 cm-1

O2 (µ-oxo)                Dq= 1570 cm-1 

O4 (basal acetate)     Dq= 2030 cm-1 

O5 (basal acetate)     Dq= 2030 cm-1 

O3(apical water)       Dq= 1200 cm-1 

O6(apical acetate)     Dq= 1700 cm-1 

gx=1.996 

gy=1.996 

gz=1.978 

D =-3.19 cm-1 

E= 0.065 cm-1 

Mn3 

 

 

O1(µ-oxo)                Dq= 1570 cm-1

O2 (µ-oxo)               Dq= 1570 cm-1 

O4 (basal acetate)    Dq= 2030 cm-1 

O5 (basal acetate)    Dq= 2030 cm-1 

O3(apical acetate)    Dq= 1600 cm-1 

O6(apical acetate)    Dq= 1650 cm-1 

gx=1.996 

gy=1.995 

gz=1.977 

D=-3.65 cm-1 

E=0.15 cm-1 

 

 
Table 3.6 Parameter set employed for the two Mn(III) sites and best fit spin hamiltonian parameters. 
2eπ/eσ was kept fixed at the value of 0.34. 

 

 

To check how low symmetry effects affect the calculation we did not impose any 

fictitious symmetry for the coordination sphere of the Mn(III) ions. Angular distortion were 

taken into account by using the real coordination sphere of the two Mn(III) sites, identified 

as Mn2 and Mn3 respectively, as derived by x-ray diffractometry, while differences in bond 
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length were taken into account by assuming an exponential dependence of Dq parameters on 

metal-ligand distance. The global cluster anisotropy is then calculated by summing the 

single ion anisotropic tensor, D2 and D3 over all the Mn(III) sites and considering the 

projection coefficient: 

 



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


+⋅= ∑∑

==
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1

4

1

8
i
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i

i
i2

T
iitot d RDRRDRD        (3.12.1) 

 
here Ri are the matrix representation of the symmetry operations of the S4 axis: R1 

correspond s to the unitary matrix, R3 to a π rotation around the z crystallographic axis, R2 

and R4 to π/2 and 3π/2 rotations respectively, combined with a reflection on the plane 

perpendicular to the z axis. Thus, even if in this case the single ion anisotropies show an 

appreciable degree of transverse anisotropy (see Table 3.6) due to the distortion of Mn(III) 

coordination sphere, it vanishes when it is projected over the cluster, which maintain the 

overall tetragonal symmetry. Interestingly the introduction of low symmetry effects does not 

affect much the results obtained for the single ion anisotropy of site z, apart for the obvious 

introduction of a transverse anisotropy term. The calculated global D value (D= - 0.55 cm-

1) is in very good agreement with those obtained by spectroscopic measurements.[70,74,75]  

Finally we would like to point out here that the successful inclusion of low 

symmetry effects by simply considering the real coordination sphere of the single-ion as 

determined by X-Ray crystallography may be a very powerful tool in the study of the 

dynamics of the magnetization in single molecule magnets. In facts several authors have 

recently evidenced that a distribution of second order transverse anisotropy must be present 

in Mn12 crystals in order to justify the experimental findings [76]. Chudnovsky et al. [77] 

have developed a model where crystal dislocations are responsible of the lower symmetry of 

the spin hamiltonian. We have instead studied in more details the low temperature (83 K) X-

ray crystal structure and we have evidenced that the molecules of acetic acid of 

crystallization are involved in a hydrogen-bond with the oxygen atom of the acetate ligand 

coordinated to Mn2, as shown in Figure 3.10. As the acetic acid is disordered over two 

symmetry related position only half of the Mn2 sites are affected by the hydrogen bond. 
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Figure 3.10 Structure of the [Mn12O12(CH3COO)16(H2O)4] cluster at 83 K viewed slightly off the S4 
axis, together with the lattice water (O13) and disordered acetic acid (O14, O15, C9, C10) 
molecules (the two equivalent positions are differentiated by empty and filled backbone of the 
molecule). Thermal ellipsoids are at 50%-probability level. Hydrogen atoms on O12 and O15 are 
depicted as small spheres, while the remaining hydrogen atoms are omitted for clarity. The network 
of hydrogen bonds is shown by dashed lines. 

 

 

 
 

Figure 3.11. Coordination sphere of Mn2 and Mn3, as determined from anisotropic refinement of 
the displacement factors of C3, C4, O6 and O7 (left) and from an isotropic model with disorder 
fitting (right). Thermal ellipsoids are at 50%-probability level. Methyl hydrogen atoms are omitted 
for clarity. 
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We have modeled the observed disorder of the acetate ligand bridging Mn2 to Mn3 

with two slightly different coordination modes of the acetate as shown on the right of Figure 

3.11. Six different isomeric forms of Mn12 can thus be envisaged which differ in the 

number (n = 0,1,…,4) and arrangement of hydrogen-bound acetate ligands (Figure 3.12). 

Two of them (n = 0, 4) have axial S4 point-group symmetry, whereas isomers with n = 1 and 

3 have no symmetry element. For n = 2, two distinct arrangements of hydrogen-bond 

interactions exist, namely a “cis” isomer in which hydrogen-bound acetates lie on opposite 

sides of the molecular plane (C1-symmetry) and a “trans” isomer with hydrogen-bound 

acetates on the same side (C2-symmetry). Clearly, a strict S4 molecular symmetry of each 

cluster can be retained only in the case of a regular pattern of n = 0 and n = 4 isomers. This 

would lead to a supercell with doubled lattice  constants (a’=b’ = 2a) for which no 

experimental evidence has been found. We conclude that the average molecular symmetry 

of Mn12 is lower than axial. Assuming that the coordination type A (with H-bonded acetic 

acid) and type B (without acetic acid) are equally probable and taking into account their 

statistical distribution on the four sites of the cluster the occurrence of the six isomers is that 

reported in Table 3.7. 
 

 

Figure 3.12. The six hydrogen-bond isomers of Mn12 

 

In order to evaluate how the disorder in the acetic acid of crystallization affects the 

magnetic anisotropy of the clusters we have used the AOM approach with the parameters 

mentioned above using the structural geometries of site A and B and the results are reported 

in Table 3.8. By using Eq. (3.12.1) we evaluated the anisotropy tensor of the cluster for the 
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six isomer by replacing D2 and D3 with D2
α and D3

α , where α  can be either A or B 

depending on the type of isomer in consideration. The resulting Dtot tensor results to be axial 

and diagonal in the crystal axes reference frame only in case with n=0 and n= 4  while for 

the other four cases  non-zero off diagonal terms are present. Diagonalization of the matrices 

provided the D and E parameters, and the angle θ between the easy axis and the c 

crystallographic axis, which are reported in Table 3.7. The calculated E parameters are in 

good agreement with the values used in [76] to justify the experimental dynamics of the 

magnetization. 

 

Isomer Concentration D (cm-1) E(cm-1) θθθθ (°) 

n=0 6.25% -0.528 0 0 

n=4 6.25% -0.554 0 0 

n=1 25% -0.534 1.63x10-3 0.3 

n=2 cis 25% -0.541 1.30 x10-4 0.4 

n=2 trans 12.5% -0.541 3.27x10-3 0 

n=3 25% -0.548 1.65x10-3 0.3 

 
Table 3.7 Calculated concentration, axial and transverse second order magnetic anisotropy, and the 
angle formed by the easy axis of magnetization of each isomer with the c crystallographic axis. 

 

 

 Site D 

(cm-1) 

E (cm-1) δδδδ (°) 

Mn2A -3.42 0.28 11.6 

Mn2B -3.66 0.19 10.7 

Mn3A -3.18 0.07 37.2 

Mn3B -3.06 0.05 37.1 

 
Table 3.8. Spin hamiltonian parameters obtained for the four different coordination sites of Mn(III) 
ions found from the X-ray analysis and reported in Figure 3.11. The δ angle is defined by the easy 
axis direction of each manganese site with the c crystallographic axis. The last site correspond to 
the Mn3 with an exchange of the axis of Jahn-Teller elongation.  
 

Our results show that the magneto-crystalline anisotropy is only slightly affected by 

strong perturbations of the crystal structure as the presence of an hydrogen bond involving 

the oxygen atom coordinated to the metal ion. It seems therefore quite unreasonable that 

dislocations, even if present, can induce substantial modification of the magnetic anisotropy 
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at long distance as proposed in [77]. Dislocations can indeed be the source of a further 

broadening of the distribution of magnetic anisotropy, but the presence of disordered acetic 

acid remains  the main source of the quadratic transverse anisotropy. 

These conclusions has been achieved thanks to an estimation through AO approach 

of the magnetic anisotropy as the experimental determination of spin hamiltonian 

parameters of all the isomeric species is unfeasible either by spectroscopic technique or 

magnetic measurements.  

 

 

3.13 Conclusions 

 

Controlling the magnetic anisotropy is of fundamental importance in molecular 

magnetism, because the bulk properties of the materials dramatically depend on it. The 

understanding of the conditions determining the magnetic anisotropy however is very 

complex, depending on the nature of the individual magnetic building blocks, and on their 

relative arrangements. We feel that simple ligand field models, which parameterize the 

energy levels of individual building blocks, can contribute in first order approximation to 

help finding the appropriate metal ions and coordination geometries which can produce the 

expected magnetic anisotropy. The analysis of the data reported up to now for HF-EPR 

spectra of silent ions clearly points out that while a qualitative interpretation and prediction 

of the spectral properties can be performed on the basis of simple ligand field consideration 

for a quantitative analysis the use of the complete ligand field-spin-orbit dn matrix is 

necessary. Within this framework the use of an AOM-based approach seems to be very 

promising, both in term of quantitative reproduction of experimental data and to provide 

clues to design system with predetermined properties. On this respect the results here 

presented for the archetypal Single Molecule Magnets Mn12 suggest that even subtle 

dynamic magnetic properties may be accounted for by this simple but very powerful 

approach. 
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4. Magnetic anisotropy and low temperature spin 

dynamics in a tetranuclear Iron cluster 

 

 
 

 

 

 

 

4.1 Introduction 

 

Notwithstanding the basic comprehension of the mechanism leading to single molecule 

magnet behavior and to quantum tunneling of the magnetization,[1,2] outlined in the 

introduction to this thesis, much work has still to be done in this field. Higher blocking 

temperature for single molecule magnet behavior (i.e. system with higher spin and higher Ising-

like anisotropy) are indeed actively looked for, while the actual parameters governing the fine 

details of quantum tunneling of the magnetization are still debated.[3-12] In an effort to further 

elucidate these problems, this part of thesis has been devoted to the careful analysis of the 

magnetic properties of Fe4(OMe)6(dpm)6 (where Hdpm=dipivaloyilmethane) hereafter Fe4. 

This is a recently synthesized molecular nanomagnet,[13] that thanks to its simple structure is 

of particular interest in the perspective of reaching a detailed description of the magnetic 

parameters starting from the molecular structure and the single-ion properties. Particular 

emphasis will be put in the following on the results obtained through single crystal HF-EPR[14] 

which will be discussed in connection with results recently obtained through the use of different 

spectroscopic techniques [15-17] and of MicroSQUID magnetometry at very low 

temperature.[18]  
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4.2 Description of the structure  

 

The structure of Fe4 is sketched in Figure 4.1. The molecule has a propeller shape and is 

chiral: however as the system crystallizes in the centrosymmetric space group C2/c the two 

enantiomeric species are both present in the crystal. The individual molecules have twofold 

symmetry around the b axis, passing through Fe1 and Fe2, with the four Fe(III) ions lying on the 

same plane. The normal to this plane makes an angle of 2.10 with the c direction. The inner Fe 

atom is in the center of an isosceles triangle - the Fe2-Fe3 and Fe3-Fe3' distances being 5.372 and 

5.550 Å respectively - and three bis(µ-OCH3) ligands connect it to the three peripheral ones, 

which complete their coordination by binding two dipivaloylmethanide anions. All the Fe(III) 

atoms have a highly distorted octahedral environment but different types of distortion. Indeed, 

examination of interbond angles shows that the coordination environment of Fe1 approaches 3-

fold symmetry quite closely, while the coordination geometry of Fe2 and Fe3 is somewhat more 

irregular due to the presence of both methoxide and dpm anions. In particular, the peripheral 

metal ions form shorter bonds with OMe- than with dpm ligands. 

 

Figure 4.1. The structure of the Fe4 cluster. The arrows indicate the spin structure arising from the 
antiferromagnetic coupling of the central iron with the external ones. Disordered dpm ligands on Fe3 
and Fe3' and their corresponding tert-butyl groups are shown 
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Interestingly, a random disorder was found in the co-ordination environment of Fe3, 

consisting of a 0.30 -occupancy of the dpm ligands in a different spatial arrangement with 

respect to the dominant one. To illustrate this, we refer to the overall structure of the Fe/O core, 

which comprises two parallel layers of c.p. oxygen atoms (maximum deviation: 0.26 Å), one on 

each side of the Fe4 moiety. Each of the two dpm anions can provide two oxygen donors either 

on the same (mode A) or on different oxygen layers (mode B).  

Finally, as the intermolecular distances are larger than 9Å, the intermolecular interactions 

are expected to be very weak, thus supporting the assumption that the magnetic behavior is 

deriving from the properties of the single molecule. 

 

 

4.3 Static Magnetic properties 

 

 The χT vs T plot for Fe4 is shown in Figure 4.2. χT is 11.9 emu K mol-1 at 270 K and 

decreases on lowering the temperature, going through a minimum at T=155 K (χT = 10.96 emu 

K mol-1 ), and then increases reaching the value of 14.62 emu K mol-1 at 7 K. Below this 

temperature a small decrease is observed.  

 
Figure 4.2 Temperature dependence of the χT product for Fe4. The solid line is calculated with J=21.1 
cm-1, J'=-1.1cm-1, D(S=5)=-0.2 cm-1 (see text for further details) 
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 The temperature behavior of χT is typical for antiferromagnetic coupling in a system whose 

spin topology does not allow full compensation of the magnetic moments. In the present case 

the antiferromagnetic interaction between the central iron ion and the peripheral ones, mediated 

by the methoxo bridges, leads to a ground state with S=5 and the spin structure schematized in 

Figure 4.1, where all the peripheral spins are aligned parallel to each other but antiparallel to the 

central one. The observed χT value at the maximum (14.62 emu K mol-1) is in good agreement 

with the value expected from Curie law for a completely populated S=5 with g=2, 15 emu K 

mol-1.  

 A satisfactory fit of the magnetic data was obtained by assuming a C3 symmetry for the 

exchange coupling pattern and taking into account the next-nearest neighbor interactions 

between peripheral iron ions, according to Scheme 4.1: 

 

 

 

 

 
 
 
 
 
 
 
 
 

Scheme 4.1 

 

The exchange Hamiltonian employed was then: 

 

ΗΗΗΗex =J(S1S2 + S1S3+ S1S4 )+J'(S2S3 + S3S4 + S2S4 )         (4.3.1) 

 

and the best fit parameters are g=1.97, J=21.1 cm-1 , and J′=-1.1 cm-1 . The presence of next-

nearest neighbor interactions in clusters of this spin topology has already been taken into 

account to reproduce the magnetic properties of various Cr(III) clusters [19,20] for which J'/J 
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=0.1. The first excited state is a double-degenerate S = 4 state lying ca. 60 cm-1 above the S = 5 

ground state. The degeneration arises from the 3-fold symmetry that we have assumed for the 

exchange coupling pattern. The best fit J value is in the range expected for dialkoxo-bridged 

Fe(III) complexes[21] and well agrees with the value J=22.1 cm-1 calculated by using an 

empirical relation between J and the length of the bridge established for Fe(III) oxo-bridged 

dimers.[22] The small decrease of χT observed below 7 K is not due to saturation as is observed 

also in a weak magnetic field (10 mT) and in principle might be originated either by intercluster 

antiferromagnetic interactions or by the presence of zero field splitting of the ground S= 5 spin 

multiplet. The absence of significant intermolecular contacts as well as the HF-EPR spectra, 

discussed below, are strongly in favor of the latter hypothesis.  

 

 

4.4 HF-EPR spectra: powder investigation 

 

 The HF-EPR spectra of Fe4 recorded at 245 GHz, shown in Figure 4.3, present several 

lines at fields  below the resonance of the free electron (8.75 T) and a broad band at higher field. 

The spacing of the lines at low field is roughly regular and can be attributed to a fine structure 

arising from the zero field splitting of the ground S = 5 multiplet. While at low temperature the 

most intense line of the regular pattern is the one at lowest field, on increasing the temperature 

the intensity moves toward the center of the spectrum. A similar trend is observed on the high-

field feature even if the fine structure is not resolved. On increasing temperature a set of narrow 

signals at g = 2 also gains intensity, suggesting that it can be attributed to excited spin 

multiplets. They are marked with an asterisk in Figure 4.3. As we have seen in Chapter 3 in the 

limit of strong field an S = 5 spin multiplet with uniaxial magnetic anisotropy should give a 

spectrum with 10 lines, for each principal direction of g. In a powder averaged spectrum 10 

lines arise from the crystallites with the unique axis parallel to the field, which are separated by 

2D/gµB. The g factor of Fe(III), a 6S ion, is close to the free electron value and can be 

considered as quasi isotropic.[23] The crystallites with the unique axis perpendicular to the 

magnetic field give also 10 lines with a separation which is half of the previous one, while the 

contribution of intermediate orientations is averaged to zero in the first-derivative spectrum by 
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the integration over the powder distribution. In the high magnetic field used in HF-EPR 

experiments, the most negative MS states of the S = 5 multiplet are selectively populated at low 

temperature, and therefore the lines relative to the transition -5  -4 are the most intense and 

occur at H = (ge/g)H0+9D/gµB when the field is parallel and at H = (ge/g)H0-(9/2)D/gµB when 

the field is perpendicular to the unique axis. The fact that the low-field parallel transition is 

enhanced on decreasing temperature is an unambiguous indication that D is negative. This 

implies an Ising-type magnetic anisotropy with the unique axis corresponding to the preferential 

direction of magnetization. Simulated spectra are also shown in Figure 4.3. The simulations 

have been obtained by using a perturbative approach, with D = -0.20 cm-1 , g||= 2.003, and 

g⊥=2.023.  

 

Figure 4.3 HF-EPR spectra at 245 GHz and three different temperatures of a polycrystalline sample of 
Fe4 pressed in a pellet (lower spectra) and simulated curve with S=5, D=-0.2 cm-1. The bands marked 
with an asterisk were first assigned to an excited multiplet S=4 
 

The number and the positions of the features and their temperature dependencies are correctly 

reproduced. The features marked with an asterisk were initially assigned to transitions within 

excited S = 4 multiplets with much smaller ZFS, and they were independently fit; we will 

however see in the following that this assignment is wrong and we will then not discuss further 

about this here. The introduction of a rhombic term in the spin Hamiltonian gave no significant 
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improvement to the simulation. The successful simulation of the spectra using a single spin 

Hamiltonian suggests that intercluster interactions are very weak as expected for the presence of 

the bulky tert-butyl groups on the ligands. The experimentally determined zero field splitting of 

the ground S = 5 spin multiplet can reproduce the small decrease in the χT product at low 

temperature, as shown in Figure 4.2, where the solid line is the χT value calculated for a powder 

average using S =5 and D =-0.20 cm-1. Given that the height of the barrier for the reorientation 

of the magnetization is calculated as ∆=DSz
2=7.2 K slow magnetic relaxation is expected at low 

temperatures. 

 

 

4.5 Single crystal W-Band EPR spectra of Fe4: results and discussion  

 

 In order to push further the characterization of the magnetic ground state of Fe4 we decided 

to perform a single crystal HF-EPR study on this system. The values of the ZFS parameters 

determined from the HF-EPR powder spectra suggested the possibility to carry on this 

investigation in W- band (95 GHz), where all the features of the spectrum are shown. A well 

defined advantage of W- band spectrometers is their sensitivity which, due to the presence of a 

resonant cavity, is much higher than that currently available at higher frequencies . This allows 

the use of tiny single crystals, 0.4×0.4×0.4 mm3 (see Figure 4.4) 

 

 

Figure 4.4. Fe4 single crystals mounted for W-band measurements in the (bc) plane (on the bottom of 
the tube) and (a*c) plane (on the side), respectively. The tube's outer diameter is 0.9mm.  
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 The single crystal analysis provided evidence for the principal directions of the ZFS tensor 

and it confirmed the presence of three disordered sites in the unit cell. As we have seen above, 

these had been previously observed in the X-Ray structure analysis [13], but the EPR data 

provide direct access to the spin Hamiltonian parameters of the three disordered sites. We will 

see in the following that these data may be important for the interpretation of some anomalies in 

the relaxation of the magnetization of Fe4 at low temperatures.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
      (a)         (b) 
Figure 4.5. Angular variation of the Fe4 W-band EPR single crystal spectra at 25K in the (a*c) plane 
(a) and the (bc) plane (b). The solid lines are the calculated angular dependence using the parameters 
for center AA from Table 4.1. 
 

As a consequence of the molecular symmetry, b is necessarily one of the magnetic axes and 

the analysis of the spectra recorded in the (a*c) plane directly leads to the identification of the 

two remaining magnetic axes. The maximum width of the W-band EPR spectrum in both 

planes (see Figures 4.5) has been clearly observed close to the c direction while it is minimum 

along a* and b.  

Due to the experimental errors it was not possible to distinguish the crystallographic c 

axis from the normal to the plane defined by the four Fe(III) ions. We may conclude that, within 

experimental errors, the crystallographic c axis is the easy axis of the magnetization, while a* is 

the third magnetic axis. It should be noted that these results are essentially in agreement with 

the predictions obtained through the Angular Overlap approach described in Chapter 3. The 

angular variation of the spectra measured at T=25K in the (a*c) and (bc) planes (see Figure 4.5a 
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and b) clearly shows the characteristic features of a quasi-axial S = 5 center: ten approximately 

equidistant transitions along the c direction (θ=0°) are nearly collapsing to one line upon 

rotation to the magic angle (54.74°) and yield a pattern of near-equidistant lines with half the 

splitting in the a* and b directions (θ=90°). 

Figure 4.6 W- band EPR single crystal spectra at 5K along the parallel (~ c axis) and a perpendicular 
directions (b axis), respectively. 

 

The negative sign of D obtained from the powder HF-EPR study[13] is confirmed by the 

observation of the effects due to population distribution, with higher intensities for the low-field 

lines in the parallel spectra relative to the high field ones, and the opposite effect in the 

perpendicular spectrum. This becomes even more obvious in the T=5 K spectra (see Figure 

4.6), in which the high-field lines are vanishing for the parallel direction, as well as the low-

field lines in the perpendicular orientation. The observed line-line separations are consistent 

with the above reported value of D=-0.2 cm-1. Another feature is most clearly observed in the 

low-temperature spectrum with the field parallel to c (Figure 4.6), but also at higher 

temperatures: each of the EPR lines is composite and consists of three transitions – two of 

nearly equal intensity and a weaker one– which we attribute to the three different paramagnetic 

centers with similar properties, but slightly different D-values. 

The observation of three centers can be directly related to the three isomers known to occur 

for the studied compound. Since the co-ordination sphere of Fe2 is not disordered, we can 

conclude on the basis of the occupancy factor (see paragraph 4.2) that the crystal is essentially a 
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mixture of three isomers corresponding to AA, AB and BB combinations on the Fe3 and Fe3' 

sites (see Figure 4.7). On the basis of the occupancy factor of the disordered dpm ligands the 

relative abundance of the three isomers may be calculated to be, by a simple statistic 

consideration, 0.49, 0.42 and 0.09, respectively.  

 

Figure 4.7.A schematic drawing of the three isomers (from left to right: AA, AB, BB), showing the 
different binding modes of the dpm anions on Fe3 and Fe3’. 

 

In Figure 4.8a, it is shown that the spectrum recorded at 25 K with the magnetic field parallel to 

c is quite well simulated using these ratios for the intensities of the three spectra. By passing 

from the AA to the AB centre contribution a reduction (nearly 8%) in D is observed (see Table 

4.1). This is about doubled (to 15%) when both sites are in the B-mode. 

A clear identification of the transition fields belonging to different centers was possible 

only along the parallel direction (Figures 4.6 and 4.8a). The distances between neighboring lines 

are not equal to each other, increasing from the center of the spectrum to the extremes. This 

suggests that contributions from higher order terms in the crystal field interactions are of non-

negligible importance. We then employed for simulations a complete fourth order Hamiltonian: 

 

H= µBS·g·B + DSz
2+E(Sx

2-Sy
2)+B4

0O4
0 + B4

2O4
2 + B4

4O4
4       (4.5.1) 

 

where O4
0 O4

2 an O4
4 are the operators listed in Table 2.1.[24] The parameters gz, D and B4

0, 

which essentially determine the line positions in the parallel spectrum, could be accurately 

determined for all three centers (see Table 4.1).  
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Figure 4.8 (upper) W- band EPR spectrum along the c axis at 25K; simulated spectra for the three 
isomers using the parameters from Table 4.1 and the intensity ratios 0.49:0.42:0.09. The upper line is 
the sum of the three calculated spectra. (lower) W- band EPR spectra along the a* and b axes, 
respectively, at 25K, together with the simulated spectra for centre AA (red and blue lines, respectively) 
using the parameters from Table 4.1. 
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Parameter Centre  AA Centre  AB Centre  BB 

gx 1.995 ± 0.005 - - 

gy 1.997 ± 0.005 - - 

gz 2.009 ± 0.005 2.009 ± 0.005 2.009 ± 0.005 

D (cm-1) -0.206 ± 0.001 -0.190 ± 0.002 -0.175 ± 0.002 

E (cm-1) -0.010 ± 0.003 - - 

B4
0 (cm-1) (-1.1 ± 0.2) x 10-5 (-1.6 ± 0.2) x 10-5 (-1.6 ± 0.2) x 10-5 

B4
2 (cm-1) (-0.8 ± 0.3) x 10-4 - - 

B4
4 (cm-1) (-0.4 ± 0.3) x 10-4 - - 

 

Table 4.1. Spin-Hamiltonian parameters for the three different isomers occurring in Fe4 

 

The lines are quite broad and the linewidths (peak-to-peak of the derivative) increase from 

about 50 mT to 120 mT from the center towards the outermost peaks of the spectra, i.e. from 

small to large Ms values of the S = 5 states involved (Figures 4.6 and 4.8). 

This suggests a distribution in the D-values resulting from a local strain induced effect. A 

similar M dependence of the linewidth was previously observed in the single crystal HF-EPR 

spectra of another SMM, namely Fe8.[2] The linewidth broadening could be reasonably well 

simulated by considering a distribution in the values of the zero field splitting parameters D and 

E around their average value, while the intensities ratio in the spectrum could be well 

reproduced by considering a Boltzmann factor with T = 25K (see Figure 4.8a). The line 

broadening was simulated considering broadening factors f1 = f2 = 1.1 × 10-5 cm-1/T : 

 

Γ = Γ0 (1 + f1|dBi/dD| + f2|dBi/dE|)              (4.5.2) 

 

where Γ0 is the linewidth in the absence of the broadening effect, Γ is the broadened linewidth 

and Bi is the resonance magnetic field for a specific resonance.[25] 

Within experimental accuracy, the maximum extent for all three spectra appeared along the 

same direction (the c direction). The calculated angular variation in Figure 4.5 is obtained from 
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the refined spin-Hamiltonian parameters of the dominant center AA. However, an angular 

variation in the perpendicular plane (a*b) reveals a slight in-plane anisotropy (Figure 4.8b). 

Because of the overlap between lines and the large linewidths, the transitions could not be 

univocally assigned to the three different centers. Approximate values could be determined for 

the orthorhombic parameters of the dominant isomer (see Table 4.1), assuming the three centers 

to be co-axial. This assumption cannot be expected to be entirely correct, as the only local 

symmetry element for the clusters is the b-axis. In fact, only the centers characterized by AA 

and BB combinations hold this symmetry axis, while for the AB type centers even this 

symmetry is not valid anymore. Consequently, the different isomers, and in particular the AB-

type centers, would have different principal axes of the interaction tensors, which would 

certainly add to the difficulty of the spin-Hamiltonian analysis. 

 Attempts were made also to record the X-band spectra of single crystals. In fact, the spectra 

and their angular variation could be measured, and were visible up to 90K above which they 

became too broad and disappeared. Even at low temperature the lines are quite broad, from 185 

G along the c direction up to 500 G along the b axis. Moreover, three overlapping spectra from 

the three isomers are expected. Probably for these reasons, the analysis was not feasible even 

starting from the parameters derived from the W-band spectra, and no valuable information 

about the spin-Hamiltonian parameters could be extracted. This is again a confirmation of the 

important role of high frequency EPR in the characterization of SMM. 

With increasing temperature excited multiplets begin to be populated, since two S=4 states 

are lying only 60 cm-1 above the ground S=5 states, as we mentioned previously. In principle 

additional spectra corresponding to these states might be observed. However, this is not the case 

in the single crystal W-Band spectra shown in Figure 4.9a. In fact with increasing temperature 

the lines become broader and the separation between the transition fields decreases, until above 

200 K only a single broad line is observed at g ≈ 2 (see figure 4.9a). Figure 4.9b displays the 

temperature dependence of the distance between the two central lines, which results from the 

superposition of the lines belonging to the three centers. A similar temperature dependence of 

the resonance field positions has been reported for a family of Cu(II) trimers.[26] 

This behavior was attributed to the presence in the observed signal of contribution from 

different states in fast thermal equilibrium. In this framework the decreasing of the line-line 
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separation with increasing temperature for Fe4 could be attributed to the increasing contribution 

of higher spin states whose fast relaxation times, due to the large number of multiplets arising 

from the coupling of the four Iron (III) ions, does not permit the observation of a spectrum. In 

agreement with the fast relaxation time of the excited multiplets no signal was found in the 

single-crystal spectra, both in W- and X-band, which could originate from a thermally 

populated excited spin manifold, in spite of careful temperature dependent measurements. A 

different explanation had then to be searched for the central features in the high-frequency 

powder spectra, and for a specific X-band spectrum showing an excited-state-like temperature 

dependence,[13] (see Figure S4.1) which were earlier justified on the basis of a signal coming 

from the S=4 state. 

 

Figure 4.9  (a) The variation of the single crystal spectrum along the c axis with temperature. 
(b) The variation of the separation between the central transitions ∆Bc with temperature. 
The dotted line is a guide for the eye. 

 

The new powder X-Band spectra (see Figure 4.10), whose features are in agreement with what 

expected from the determined spin-Hamiltonian parameters, could not reproduce the earlier 

result (Figure S4.1), which seems then to have originated from the presence of impurities like 

the dimer Fe2(OMe)2(dpm)2, a secondary product of the synthesis. 
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Figure 4.10 Temperature dependence of powder X-Band EPR spectra, and spectrum simulated at 4K 
using parameters reported in table 4.1.  

 

 On the other hand, new high-frequency (230 GHz) powder spectra again showed an 

enhanced intensity of the central feature on increasing temperature (See Figure 4.11). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.11 New HF-EPR powder spectra (230 GHz)  
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 The central feature is outstanding in the powder spectra at higher temperatures because of 

different reasons: the narrower width of the central transitions, the increasing population of the 

low |M| states and the extremes in the angular variation occurring in this region close to the 

magic angle (see Figure 4.5). Even in the single-crystal W-band spectra the central lines have an 

unexpectedly high amplitude due to the first two of these effects.  

 

 

4.6 Inelastic Neutron Scattering  

 

 The value of spin hamiltonian parameters up to fourth order have been recently determined, 

using Inelastic Neutron Scattering, both for Mn12 and Fe8.[27-29] This is indeed another very 

powerful technique in giving information concerning the Zero Field Splitting of the ground 

multiplet of high-spin molecule which may be seen as complementary to HF-EPR. To further 

clarify the energy level pattern of Fe4, INS experiments have then recently been performed[15] 

using the high-energy resolution spectrometer IN5 at the ILL in Grenoble. The INS spectra were 

consistent with what expected for a S=5 ground state presenting an easy- axis type anisotropy 

oriented along the pseudo C3 symmetry axis perpendicular to the Iron plane and a small 

rhombic contribution in the plane due to the lack of exact C3 symmetry. It should be noted that 

the spectrum itself does not reveal clearly, in this case, the presence of three different species. 

However, following the results of single crystal HF-EPR, three different sets of parameters for 

the three different isomers showing different population were taken into account during the 

simulation process of INS spectra. The obtained results were essentially in agreement with the 

above discussed ones of single crystal HF-EPR analysis. However, while the obtained values 

for D were in quite good agreement between HF-EPR and INS for all the isomers, the 

comparison of the best fit parameters for the transverse anisotropy revealed a large discrepancy 

between the two experiments. Indeed, as may be easily seen in Table 4.2, the E value obtained 

by simulation of INS spectra was the double of that obtained by HF-EPR analysis of AA.  

 The possibility of this difference being due to alteration of the ZFS parameters following 

deuteration of the sample, necessary for INS experiment, was ruled out by recording a HF-EPR 
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spectra which was superimposable with that of the non-deuterated sample in the same 

condition. (Figure 4.12). 

 

  Isomer AA Isomer AB Isomer BB 

D  (INS) -0.204 ± 0.002 -0.191 ± 0.002 -0.175 

D  (EPR) -0.206 ± 0.001 -0.190 ± 0.002 -0.175 ± 0.002 

E (INS) -0.021 ± 0.001 -0.009 ± 0.001 - 

E  (EPR) -0.010 ± 0.003 - - 

B4
0 x105 (INS) -1.2 ± 0.2 -2.7 ± 0.2 -1.6 

B4
0 x105 (EPR) -1.1 ± 0.2 -1.6 ± 0.2 -1.6 ± 0.2 

B4
2 x104 (INS) - - - 

B4
2 x104 (EPR) -0.8 ± 0.3 - - 

B4
4 x104 (INS) - - - 

B4
2 x104 (EPR) -0.4 ± 0.3 - - 

 

Table 4.2 Comparison of best fit parameters obtained by single crystal HF-EPR and INS for the three 
different Fe4 isomers, AA, AB and BB. The ratio between the three isomers has been assumed to be the 
same for INS and HF-EPR. Values are expressed in cm-1. Adapted from ref. [15] 
 

  

Figure 4.12 Comparison between single crystal HF-EPR spectra recorded at 5 K with field parallel to 
the easy axis for deuterated (upper) and non-deuterated(lower) sample 
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 Quite large differences between transverse anisotropy parameter obtained by single crystal 

HF-EPR spectra and INS experiment have been already reported for Fe8.[2,29] The origin of 

this discrepancy may be attributed to the differences between the two spectroscopies: in 

particular, while INS is a Zero-field technique, HF-EPR employs high magnetic fields. As a 

consequence in EPR measurements the ZFS terms in the Spin Hamiltonian are deduced from 

their effect on the level scheme in the presence of a strong magnetic field, and the data 

interpretation requires complementary assumptions on the parameters defining the Zeeman term 

while Inelastic neutron scattering (INS) can in principle give a detailed picture of the low lying 

energy levels from a straightforward analysis of spectra taken with zero magnetic field. 

Therefore the fitting of the obtained results may be more sensitive to some terms at zero field 

and to different ones at higher fields, thus yielding different values of the parameters in the two 

cases. Finally, it should be noted that some variation of the relative population of the three 

isomers has been revealed by HF-EPR spectra depending on the crystal, and this is probably a 

factor which may affect the simulation of INS spectra, for which the three signals are not 

resolved and it is then not possible to estimate their relative intensity.  

 Concerning the off-diagonal fourth order parameter the sensitivity of the INS experiment 

was not sufficient to determine them: however, simulations performed using the HF-EPR 

determined parameters gave no improvements of the quality of the simulation of INS spectra. 

Higher-resolution and lower energy transfer INS experiments are planned in the next future to 

have an independent estimate of these parameters.  

 

4.7 Dynamic Magnetic Properties. 

  

 4.7.1 Ac susceptibility 

 The dynamic magnetic susceptibility of Fe4 at very low temperature is shown in Figure 

4.13. The real component, χ', increases on lowering temperature, as expected for a paramagnet, 

down to ca. 1 K. Below this temperature it goes through a maximum, whose position strongly 

depends on the frequency of the oscillating field. In the same temperature range the imaginary 

component, χ'', becomes different from zero and shows a frequency-dependent maximum, 
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which is observed at lower temperatures compared to χ'. Below 0.2 K a further increase in χ'' is 

observed, with a sharp maximum at frequencies lower than 100 Hz.  

 

 

 
Figure 4.13 Temperature dependence of the real (top) and imaginary (bottom) components of the Ac 
susceptibility of Fe4 measured at seven frequencies. The inset shows the temperature dependence of the 
relaxation time evaluated from the maximum in χ''. The line corresponds to the best fit of Arrhenius 
behavior. 

 

 While the anomalies observed in the 0.5-1.0 K range agree with the typical behavior of 

super-paramagnets and slow relaxing magnetic molecular clusters,[30-36] the very low 

temperature behavior might be due either to long-range ordering of the magnetic moments or to 

the presence of minority fast relaxing species.[37,38] This latter hypothesis seems to be quite 

reasonable on the basis of the results of both single crystal HF-EPR and INS which showed the 

axial Spin Hamiltonian parameters for the three isomers to consistently differ between them.  
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 The maxima in the out-of-phase component of the susceptibility provide the relaxation 

time of the magnetization, which is given in an Arrhenius plot in the inset of Figure 4.13. The 

few available points agree with a thermally activated behavior, with τ0=1.1*10-6 s and ∆=3.5 K. 

The pre-exponential factor compares well with the values observed in other slow relaxing 

clusters,[30,31,39] while the height of the barrier is much lower than that obtained by the above 

described spectroscopic techniques. The underestimation of the barrier height determined by 

extrapolation of AC measurements has been previously observed in other slow relaxing 

molecular nanomagnets [30,40] and it has been attributed to the effect of thermally activated 

quantum tunneling which opens a new channel of relaxation thus resulting in a faster process. 

 

 4.7.2 NMR 
 Spin dynamics on a polycrystalline sample of Fe4 was recently studied also by mean of 

NMR.[17] 1H NMR linewidth and 1H NMR spin-lattice relaxation rate, 1/T1, as a function of 

temperature (0.5-295 K) and external magnetic field (0.3-7.2 T) were measured. 1/T1 was 

obtained as weighted average over all the protons of the system, and given the large number of 

inequivalent nuclei the spectrum is inhomogenously broadened by the distribution of 

paramagnetic shifts. The linewidth was shown to be proportional to the susceptibility down to 

50 K, which is the lowest temperature at which the NMR spectra could be detected, while the 

width of the spectrum increased linearly with increasing magnetic field. This behavior of the 

NMR linewidth is typical of a paramagnetic system whereby the proton inhomogeneous 

broadening was ascribed to the dipolar interaction of the nuclei with the Iron(III) magnetic 

moments. At 0.5K, the lowest temperature investigated, the proton spectrum covered a range of 

about 3MHz. This is of the order of magnitude of the main splitting of the proton spectrum in 

Mn12[41,42] and Fe8[43] at low temperature, where the molecules are in their high spin 

ground state. It was then concluded that the width of the spectrum at 0.5K in Fe4 arises from 

the distribution of local hyperfine fields at the proton sites due to the frozen Fe(III) spin 

configuration in the S=5 ground state. This experimental observation gave an independent 

confirmation of the frozen state of the magnetization in Fe4 on the time-scale of the hyperfine 

interaction (≈106-107 Hz). This is consistent with the results of the AC susceptibility 

measurements shown in the previous paragraph which yielded τ-1≈103 Hz at T=0.5 K. 
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 4.7.3 Mössbauer 

 Mössbauer spectroscopy is a suitable technique for the investigation of spin dynamics of 

Fe-containing slow relaxing clusters. Indeed, the shape of Mössbauer spectra is determined both 

by the static interactions between electrons and nuclei of 57Fe and by the dynamics of the spins 

which produces fluctuations in the hyperfine fields. These fluctuations originate both from the 

interactions with the vibrational coordinates of the cluster and from QTM, which produces an 

inversion of the hyperfine field.  

The first Mössbauer study concerning Fe4 - appeared in 1999[44] - showed the onset of 

superparamagnetic like behavior on Mössbauer time scale under 35 K. Recently a more detailed 

work on this cluster has been carried on,[16] whose main findings are summarized and 

discussed here. While in the former study only thermal motion of the spins was studied in the 

10-60 K range, the new analysis took into account the effect of tunneling processes M -M at a 

frequency νm; furthermore, spectra were collected at temperatures down to 1.38 K. At this 

temperature, the relaxation effects on the spectrum are supposedly small and the spectrum 

contains maximum information about hyperfine parameters which were then determined with 

quite good accuracy. The obtained values are summarized in Table 4.3. Fittings of the spectra at 

low temperature allowed also to extract a rough estimate of the second-order Spin hamiltonian 

parameters: while the obtained value of D was reduced of about 20/30 % with respect to INS 

and EPR values the E/D ratio was smaller by an order of magnitude. However, given the large 

number of parameters employed in the fitting, one should consider these latter values only as 

indicative of the order of magnitude of D and of the presence of only a small degree of 

transverse anisotropy.  

 

 Fe1 Fe2 Fe3/Fe3' 

∆Q (mm s-1) -0.55 ± 0.3 0.11 ± 0.1 -0.32 ± 0.06 

IS  (mm s-1) 0.38± 0.05 0.37± 0.07 0.42± 0.04 

 

Table 4.3 Hyperfine parameters of the three Fe(III) sites in Fe4 obtained from the fitting of lowest 
temperature Mössbauer spectrum for Fe4. After ref. [16] 
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Interesting results were obtained by the fitting of the spectra at different temperatures, 

which yielded the dependence of the transition probability M  M-1 as a function of the 

temperature. The obtained trend has been fitted by an exponential function, W(T)=8600exp(-

160/T), and then attributed to an Orbach mechanism involving an excited state with energy of 

about 160 K.  

The most interesting results of Mössbauer was probably the observation that the decay rate 

ττττ -evaluated from the magnetization correlation function <I(0)I(t)> ∝ exp(-t/τ) - as temperature 

increases was not reproducible on the basis of a simple Arrhenius behavior. Indeed, while for 

T>>∆, τ should be equal to τ0 and then constant, it has been clearly shown that a certain 

temperature dependence was maintained. This has been reproduced by incorporating a 

temperature dependent term in τ0: 
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At low enough temperature (T<15 K) the second term in square brackets could be disregarded 

and the usual Arrhenius behavior, with a barrier ∆ is obtained. The best fit values for parameters 

of Eq. (4.7.1) are summarized in Table 4.4: it is worth pointing out that the value of ∆ is in quite 

good agreement with what obtained by HF-EPR and INS measurement. 

 
Parameter Best fit value 

τ0
-1 (1.9 ± 0.4) x 107 s-1 

A (1.6 ± 0.5) x 1010 s-1 

B (138 ± 13) K 

∆ (6.4 ± 0.5) K 

 
Table 4.4 Best fit parameters of Mössbauer data to Equation (4.7.1). After ref. [16] 

 

 On the other hand for T>>∆, τ-1=[τ0
-1+aexp(-b/T)] and thus on the basis of the obtained 

values, the trend of τ-1 vs T at high temperature is very similar to that of W(T), the transition 

probability. 
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4.8 Quantum effects in molecular nanomagnets 

 

A large number of evidences now exist for occurrence of quantum tunneling of the 

magnetization - both in the purely quantum regime and in the thermally activated one - in 

various molecular nanomagnets.[3,45-49] When Quantum Tunneling occurs in the thermally 

activated regime thermal processes, principally phonons, promote the molecules up to high 

levels of the anisotropy barrier with small MS, not far below the top of the barrier and the 

molecules then tunnel to the other side. In this region, much of the relaxation is accomplished 

through a thermal transition and as a consequence magnetization relaxation time is strongly 

temperature dependent. Conversely, in the low temperature region, phonon-mediated relaxation 

is very long and can be neglected and thus a purely quantum regime is attained. In this limit the 

MS=±S states are coupled by a tunneling matrix element ∆tunnel, which is a direct consequence of 

the presence of a transverse term in the spin hamiltonian. In order for the tunnel between these 

two states to occur, it would however be necessary for the local magnetic field to be smaller 

than the tunnel splitting. Considering that the tunnel splitting is usually very small, of the order 

of 10-3, 10-4 G, any additional field, like the dipolar field generated by the surrounding clusters 

in the lattice, should bring the two levels off-resonance. Prokof'ev and Stamp[50] proposed a 

model which considers that rapidly changing hyperfine fields due to dynamic nuclear 

fluctuations can broaden the resonance and allow relaxation of the magnetization of molecules 

for which dipolar fields are lower than hyperfine fields. Even if the number of clusters that 

relaxes is small, each time the magnetization of a cluster relaxes it modifies the local dipolar 

fields and brings other clusters which were formerly close to the resonance condition into 

resonance, thus allowing a continuous relaxation.  

An interesting consequence of this theory is the prediction that at a given longitudinal 

applied field the magnetization should relax with a square root- time dependence at short times: 

 

[ ] tMHMMtHM Hsqrtineqin ⋅Γ−+= )()(),( ξ           (4.8.1) 
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here Min is the initial magnetization at time t=0 and Meq(H) is the equilibrium magnetization. 

The rate function Γsqrt(ξH) is proportional to the normalized distribution of energy bias P(ξH) in 

the sample: 
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=Γ               (4.8.2) 

 
where ħ is Planck's constant and c is a constant of the order of unity which depends on the 

sample shape. 

Thus measurements of short time relaxation as a function of applied field H may be 

exploited to measure P(ξH). Furthermore Equation (4.8.2) clearly indicates that the ratio of Γsqrt 

with the gaussian half-width of P(ξH) should be a constant directly related to ∆tunnel. This gives a 

powerful method to measure ∆tunnel in a way which does not depend on the parameter obtained 

from spectroscopic measurements, provided that a suitable measurement technique is available. 

Indeed, much of the work in this field has been made possible by the developing a Micro-

SQUID magnetometer [51] (see Chapter 7), whose fast response and high sensitivity allow 

short-time measurements down to 1 ms and measurements on tiny single crystal, respectively.  

A more direct method to accurately measure ∆tunnel by Micro-SQUID magnetometry has 

been recently developed by Wernsdorfer et al.[3] based on the Landau-Zener model of 

tunneling.[4,52,53] Within this picture the spin hamiltonian terms containing Sx or Sy operators 

cause an admixture of the levels and determine an avoided crossing. A spin S is then in 

resonance between the two states Ms and Ms' when the local longitudinal field is close to ∆tunnel. 

The tunneling probability is proportional to the square of the tunnel splitting and inversely 

proportional to the sweeping rate of the longitudinal field. This allows to calculate the tunnel 

splitting according to the Landau-Zener relation which gives the tunneling probability P when 

sweeping the longitudinal field Hz at a constant rate over the energy level anticrossing:  
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here, dH/dt is the constant field sweeping rate, g≈2, and ħ is Planck’s constant, while Ms and 

Ms' obviously refer to the quantum number of the avoided energy level crossing under 

investigation.  

To use the Landau-Zener formula for measuring ∆tunnel the sample should be first saturated 

along the easy axis; following this, the applied field is swept at a constant rate over one of the 

resonance transitions and the fraction of molecules that reversed their spin is measured. This 

procedure yields the tunneling rate PMs,Ms' and thus directly yields a measurement of the tunnel 

splitting. This method is particularly well suited for molecular clusters because it works even in 

the presence of dipolar and hyperfine fields, which spread the resonance transition provided that 

the field sweeping rate is not too small and the magnetization relaxation rate is not too fast with 

respect to the instrumental response. 

As tunnel splitting is critically affected by transverse terms of the spin hamiltonian, the 

application of a field along an axis different from the easy one gives rise to very interesting 

phenomena. Indeed periodical quenches of the tunnel splitting are expected when applying a 

field parallel to the hard axis, whose period of oscillation are related to the second order zero 

field splitting parameters by: 
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 In a semiclassical description these oscillations are due to constructive or destructive 

interference of quantum spin phases of two tunnel paths. Furthermore, the opposite phase for 

the oscillation of quenching period for tunnel splitting of transitions between Ms=-S and Ms=(S-

n) with n odd or even is expected. These behaviors have indeed been observed for the first time 

on Fe8: periodical oscillations of the tunnel splitting on varying the applied transverse field 

have been measured, together with a remarkable parity effect for n= 0 to 4 which is analogous 

to the predicted tunnel suppression for half integer spins.[3] 

Both Landau-Zener method and measurement of the square root relaxation time have been 

recently employed to nicely demonstrate the role of the hyperfine fields in the quantum 

tunneling process by comparing the results obtained on standard Fe8 (stFe8) and on 2H-enriched 
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(DFe8) and 57Fe-enriched samples (57Fe8).[18,54] Relaxation measurements in the pure 

quantum regime (T<0.36 K) showed a striking dependence on the isotopic substitution, with the 

relaxation rate varying in the order 57Fe8 > stFe8 > DFe8. The same trend was shown by the 

hyperfine level broadening measured on the three samples, thus nicely confirming that 

hyperfine interactions dramatically affect the tunneling rate. It is here important to stress that as 

the mass is increased in both the isotopically modified sample while the effect on the dynamics 

is the opposite, the possibility of the observed effects being due to the mass was discarded. 

 

 

4.9 Quantum effects in Fe4 

 

As AC susceptibility measurements, NMR and Mössbauer evidenced on different 

timescales a super-paramagnetic like behavior of Fe4 at low temperature, which was indeed 

expected on the basis of the Spin Hamiltonian parameters derived by HF-EPR and INS spectra, 

we decided to investigate further its low temperature dynamics. In particular, the finding that a 

non-negligible transverse term is present in the spin hamiltonian suggested the possibility that at 

low enough temperature, quantum tunneling of the magnetization could be visible.  

 

Figure 4.14 Hysteresis loop measurements of a single crystal of Fe4 at several temperatures. The field 
sweeping rate was 0.014 T/s 
 

Magnetic measurements were performed on single crystals by using Micro-squid arrays 

with magnetic field applied along the easy axis direction, as derived by single crystal HF-EPR 
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analysis. It was readily seen that below a given temperature (ca. 0.3 K) the magnetization curve 

of Fe4 shows hysteresis. The hysteresis loops - plotted in Figure 4.14 - show the typical stepped 

behavior due to resonant quantum tunneling and the position of the steps well agree with the 

zero-field energy pattern of the ground multiplet derived by HF-EPR and INS. Below 0.1 K the 

hysteresis loops become almost temperature independent, suggesting that the relaxation occurs 

through a direct ground state tunneling process between the M = ±5 states. This finding is 

confirmed by the temperature dependence of the relaxation time needed to relax 90 % of the 

remanent magnetization, which levels around 0.2 K. These were the first evidences of Quantum 

Tunneling of the Magnetization in Fe4. 

Following this result the measure of the tunnel splitting as a function of transverse field 

was attempted. As we have seen above, the tunneling probability P may be in principle 

measured by using a method which makes use of Landau-Zener relation (Equation (4.8.3)). 

Unfortunately the magnetization relaxation rate is too fast for Fe4 and it proved not possible to 

apply directly this method. Therefore, we plotted (Figure 4.15) the reversed magnetization after 

one field sweep over the zero field resonance. A clear dependence on the direction of the 

transverse field is observed, together with a kink at about 0.15 T, which might be connected 

with the first quench of the tunnel splitting. 

 

Figure 4.15 Reversed magnetization after sweeping the field over the zero field resonance as a function 
of transverse field with the field applied at two azimuth angles, ϕ=0° and 40°. The kink around 0.2 T 
may be connected with the first quench of the tunnel splitting 
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 If one considers for the sake of simplicity only the isomer AA, the first quench of tunnel 

splitting calculated through Eq. (4.8.4) occurs at 700 G when using HF-EPR parameters and 

around 1000 G when using INS ones, in agreement with the larger value of E obtained through 

the latter technique. This large discrepancy with respect to the observed result is however much 

reduced when including the effect of B4
4 parameters, which were demonstrated to strongly 

affect both the period of oscillations and the tunnel splitting. Indeed, considering for B4
4 the 

value reported in Table 4.1, the first quench of tunnel splitting is obtained at a field value of H= 

1250 G (Figure 4.16) and value up to H=1450 G may be explained on considering the higher 

limit values of D, E and B4
4. 

 The partial agreement between micro-SQUID results and theoretical expectations based on 

spectroscopic measurements should however be considered with much caution as the 

determination of the field responsible for the quenching of tunnel splitting is not as direct as it 

was in Fe8.  

 

Figure 4.16 Calculated tunnel splitting oscillations for isomer AA of Fe4 when transverse field is 
applied along the hard axis. Upper and lower curve are calculated with and without inclusion of B4

4, 
respectively.  
 

 Despite its anisotropy barrier being significantly smaller than Fe8 and Mn12, the 

observation of quantum tunneling of the magnetization Fe4 made this cluster extremely 

appealing for the study of isotopic substitution on the low temperature magnetization dynamics. 

On this respect, it presented in principle several advantages when compared to larger clusters: 
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its relatively simple structure allowed, as we have seen in previous paragraphs, an accurate 

quantitative analysis of the magnetic coupling; moreover, an almost total deuteration of the 

molecule is possible, while for Fe8 this was not possible; finally, it does not contain nitrogen 

atoms, which carry a nuclear spin and cannot be replaced and thus may hide the effect of the 

isotopically modified nuclei. 

 To investigate the effect of isotope substitution on spin dynamics of Fe4 at low 

temperature, microsquid measurements were recently performed both on completely deuterated 

and 57Fe substituted samples of Fe4. Unfortunately, a rationalization of these experimental 

results was not straightforward, as different samples of the same species gave different and not 

reproducible results, notwithstanding a careful checking of all the steps of the synthesis.[55] 

The problem looks likely to be due to the presence, in all of the samples, of a fast relaxing 

fraction of clusters in zero field. These plays the same role of hyperfine field, bringing nearby 

clusters in resonance and thus accelerating the relaxation process. As a consequence, a detailed 

analysis of the dynamic processes in function of the isotope modification is hampered. This fast 

relaxing fraction was tentatively identified with the isomer having the lower D value, whose 

anisotropy barrier is low enough to be overcome by thermal activation even at low temperature. 

Efforts to synthesize a Fe4 derivative with ligand different from dpm are currently in progress: 

this would hopefully yield a molecule with the same low temperature properties of standard Fe4 

not showing the three-isomer disorder . 

 

 

4.10 Conclusions 
 
 The careful structural and magnetic characterization of Fe4 showed that this molecule 

behaves as a molecular nanomagnet with slow magnetic relaxation at very low temperature. 

Notwithstanding its apparent structural and magnetic simplicity, several problems were 

encountered. The presence of three isomers - which are present in the crystal as a consequence 

of ligand disorder for two of the peripheral iron - complicates the analysis of the spectroscopic 

results as a larger number of parameters has to be determined. However, the single crystal W-

band EPR spectra of Fe4 showed that the zfs of the ground S=5 state is quasi-axial, the unique 

axis being approximately perpendicular to the plane of the four Fe(III) ions. While the 
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qualitative analysis of the spectra have been essentially confirmed by the simulations, these 

showed unequivocally that the assumption of a line broadening process probably due to a D-

strain is absolutely necessary to quantitatively reproduce the linewidth of the spectrum along the 

easy direction. This is then an additional parameter to be considered when interpreting HF-EPR 

spectra of SMM. Different values for the spin-Hamiltonian parameters of the three isomers 

could also be determined. This may explain why simple calculations performed on averaged 

structure allowed to reconstruct only about 30% of the experimental D value.[13] Presumably 

the differences in the ZFS parameters may give rise to different blocking temperatures, as 

evidenced by the presence of different maxima in the χ’ vs T plots. The presence of minority 

species is now seen to be rather common in molecular clusters. In fact, by increasing the 

complexity of the molecular species it is increasingly possible to accommodate slightly different 

variants in the same lattice. Similar effects were previously observed by EPR in the case of 

isolated dimers[56] and now have been observed in the lattice of the archetypical SMM, 

Mn12:[57] on this respect EPR, being a technique based on local probing, is extremely useful 

for monitoring the different structures.  

Discrepancies were encountered in the value of transverse anisotropy parameters 

determined by INS and HF-EPR. Further study are planned in the near future, including 

Cantilever Torque Magnetometer which may yield an independent determination of the 

orientation of the anisotropy axis and of the parameters of the spin hamiltonian by use of a 

single crystal technique. 

Results concerning dynamics of the magnetization at low temperatures were also discussed, 

all confirming superparamagnetic like behavior at low temperature. Moreover, the observation 

of a non-negligible transverse term anisotropy in the spin hamiltonian suggested us to look for 

resonant quantum tunneling of the magnetization at low temperature, which was indeed 

observed on single crystal of Fe4 by means of MicroSQUID magnetometry. The observation of 

quantum effects in this molecule suggested this to be suitable for careful investigation of 

isotope effect over spin dynamics, given its simplicity: however, the presence of fast relaxing 

minority species have up to now hampered this analysis.  

We believe that this study clearly elucidates the problems which may be encountered when 

investigating very subtle effects even when an apparently simple molecule like Fe4 is 
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concerned. It also stresses the usefulness of a multitechnique approach when analyzing static 

and dynamic properties of molecular nanomagnet. Finally, it points out that accurate control of 

the synthesis is absolutely necessary to obtain a complete characterization of these systems. On 

this respect, synthetic efforts to obtain a molecule with the same properties of Fe4 but 

crystallizing in only one isomeric form are currently in progress: on this respect a promising 

system has been recently synthesized by Saalfrank et al. [58] 
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5. The metal-radical approach to magnetic 

molecular materials: complexes of poly-dioxolene 

ligands 
 

 

 

 

 

 

 

5.1 Introduction 

 

 One of the possible approach to prepare molecule-based magnetic materials is the so-

called metal-radical approach, i.e. the design of an extended lattice containing paramagnetic 

metal ions whose mutual magnetic interactions are determined by appropriate bridging 

radical ligands. An important step for a rational design of a multidimensional collection of 

mutually interacting molecular systems having desirable properties is obviously the 

synthesis and the characterization of small molecules which may act as suitable building 

blocks for higher dimensional systems. Indeed, the study of discrete metal-radical 

complexes led to comprehension of the basic features governing of the exchange coupling 

between ligand and metal, thus yielding the possibility of designing systems with 

predictable interactions. More importantly, radicals capable of bridging two or more metal 

centers have led to a rich array of one-, two-, and three-dimensional coordination polymers, 

some of which exhibit cooperative magnetic behavior.  

 The families of paramagnetic ligands (see Figure 5.1) which have been studied within 

this approach can be divided into two broad classes: charged and neutral radicals. In 

particular, charged radicals include radical anions of nitrogen heterocycles,[1] 

semiquinones, [2-4] and cyanocarbons such as TCNE- (tetracyanoethylene anion),[5,6] 

TCNQ (tetracyanoquinodimethane anion),[7] and related species [8] for which applications 

of this strategy proved particularly successful. On the other hand, example of neutral 
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radicals are the most heavily studied nitronyl nitroxides,[9,10] imino nitroxides,[11,12] di- 

and trinitroxide ligands,[13,14] and -more recently- verdazyls radicals.[15-17] 

 

 

Figure 5.1 Upper: TCNQ and TCNE in their non-radical forms and an example of semqiuinone 
radical. Lower: a verdazyl, an imino-nitroxide and a nitronyl-nitroxide  
 

 In this part of thesis we will analyze the properties of a series of complexes containing 

poly-radical ligands coupled to paramagnetic metal ions. In particular our approach exploits 

the peculiar electronic and magnetic properties of metal-semiquinone complexes that will be 

summarized in the following paragraph. The detailed analysis of the properties of such 

molecules was aimed at the final goal of designing a tridimensional network of 

paramagnetic centers with predictable magnetic properties. This work is the result of a 

collaboration with the group of Prof. D. A. Shultz, North Carolina State University, where 

the synthesis and preliminary physical characterization of the ligands has been carried out.  

 

 

5.2 Metal-Semiquinones complexes: magnetic and electronic properties 

 

 Initial interest toward the coordination chemistry of dioxolene ligands arose mainly 

because of their peculiar redox properties[1,3,18] these ligands may in fact coordinate to 

metal ions in three different electronic states, as shown in Figure 5.2. The charge localized 

description of dioxolene ligands which is sketched there follows from the experimental 
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evidences of charge delocalization within metal-quinone chelate ring not being much 

significant, in opposition to what has been observed for complexes of similar ligands as 1,2 

dithiolene and diimine ligands.[3] 

 

 

Figure 5.1 Different oxidation states of dioxolene ligands. From left to right: cathecholate, 

semiquinone, quinone 

 

 Interestingly, the partially reduced radical species, semiquinone, is stabilized upon 

coordination to metal ion: this makes these ligands potential candidates to be considered in 

the search for new magnetic molecular materials following the metal-radical approach. 

 

 

 5.2.1 Magnetic coupling in metal-semiquinone complexes 

 The magnetic properties of metal-semiquinonate complexes can be understood 

rationalizing the exchange coupling between the metal ion and the radical through a very 

simple model.[2] Indeed, the sign and intensity of the direct exchange coupling interaction 

between the two spins are governed by the overlap between the magnetic orbitals – i.e. the 

orbitals containing unpaired electrons - of the two centers. According to well established 

model[19,20] antiferromagnetic coupling is expected when the magnetic orbitals of the two 

centers have a non-zero overlap, S, the coupling constant J being proportional to S2. On the 

other hand if no overlap occurs, i.e. the magnetic orbitals are orthogonal to each other, the 

expected coupling is ferromagnetic. In this latter situation global zero overlap usually results 

from overlapping region with different signs of overlap and the magnitude of the coupling 

depends on the overlap density in these regions. On this respect, the strong donor ability of 

semiquinone ligand was correctly expected to give rise to large magnetic coupling with 

metal ions.  

 From what we have said it follows that  the magnetic properties of transition metal 

complexes with semiquinones can be easily analyzed on the basis of simple symmetry 

considerations about the magnetic orbitals. Indeed, the magnetic orbital of the radical is the 
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antibonding π-orbital depicted in Figure 5.3, while those of the metal ions are, to a good 

approximation, the 3d orbitals.  

 

Figure 5.3 The magnetic π*-orbital of semiquinone 

 

 If we consider, for the sake of simplicity, octahedral coordination, then x2-y2 and z2 

orbitals are eg orbitals, thus of σ- type, while xz, yz, xy are t2g and then of π- type. 

Obviously, while eg orbitals will be orthogonal to magnetic orbital of semiquinones, thus 

leading to ferromagnetic coupling, t2g will have a large non-zero overlap leading to 

antiferromagnetic coupling. Thus sign and magnitude of exchange coupling may be 

predicted on the basis of the electronic configuration of the metal ion. In agreement with 

this interpretation strong antiferromagnetic coupling (J >500 cm-1) has been observed in 

Chromium(III), Iron(III), and Manganese(III) complexes while quite strong ferromagnetic 

coupling has been observed for Copper(II) and Nickel(II) derivatives.[2] It is worth 

stressing here that while a strong antiferromagnetic coupling indicates that interaction 

between unpaired electrons of metal ion and ligand is very strong leading to an antiparallel 

alignment the spins, this does not result in a direct bond between the dioxolene ligand and 

the metal ion. Indeed, crystal structures of semiquinonate complexes show that bond lengths 

and angles of the ligand fall in an intermediate region with respect to those found for 

quinone and cathecholate complexes.[3,18] As a consequence of this peculiar property the 

charge distribution of metal-dioxolene complexes can be assigned unambiguously on the 

basis of X-Ray structure solution. 

 

 

 5.2.2 Valence tautomerism in metal-semiquinone complexes 

 A crucial point in the characterization of metal-dioxolene complexes lies in the 

determination of relative charge distribution between metal and ligand. In particular, when 

metal orbital energy is high with respect to HOMO π- quinonoid levels the ligand bonds as 
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cathecolate to an oxidized form of the metal, whereas if the reverse is true the charge resides 

on metal localized levels the ligand being coordinated as partially reduced semiquinones. 

However, the most interesting situation is encountered when the electronic levels of quinone 

and metal ions lie close in energy. This leads to the possibility of observing an 

intramolecular electron transfer process between redox isomers differing in charge 

distribution under equilibrium conditions, a process which has been termed valence 

tautomerism (see Scheme 5.1). 

 

Scheme 5.1  
 

 Such an equilibrium has been reported for several transition metal ions [21-24] but 

among these cobalt-dioxolene complexes[21,25-34] are the most attractive from a magnetic 

point of view and in the following we will focus on them.  

 The valence tautomeric interconversion in this complexes involves an intramolecular 

electron transfer between a six-coordinate diamagnetic Co(III) metal ion and a coordinated 

catecholate ligand yielding a Co(II)-semiquinone species,[3,35] the metal ion being in the 

high-spin electronic configuration: hsCo(III)-Cat  lsCo(II)-SQ. Thus, as a 

consequence of the VT process a change of spin state occurs both at the metal center and on 

the ligand on varying the external conditions:[21,28,29,34] 

 

Figure 5.4. Schematized view of the Valence-tautomeric transformation which has been shown to 
occur in the cobalt complexes under the influence of temperature (T), pressure (P),and light(hν) 
 

 The occurrence of this process may be explained by considering an oversimplified MO 

description of these complexes. In this framework the metal t2g orbitals are of the correct 
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symmetry to interact with the dioxolene π* orbitals depicted in Figure 5.3. As dioxolene π* 

orbitals are slightly higher in energy than t2g a MO of π symmetry with bonding character is 

obtained which is mainly metal based, while the antibonding one is mainly ligand based. On 

the other hand, the σ* orbitals of the dioxolene ligand are very low lying in energy and thus 

the obtained σ* MO are mainly metal based (see Figure 5.5). The relatively small 

interaction between metal and ligand orbitals results in a close pattern of frontier orbital 

energies which allows the occurrence of interelectronic energy transfer. 

 

Metal-based π-bonding

Ligand-based π-antibonding

Metal-based σ-antibonding

 
 

Figure 5.5 Relative frontier orbital energies in metal-dioxolene complexes. The close spacing in 
energy allows the occurrence of interelectronic energy transfer. 
 

 The main thermodynamic features of the process directly follows from this description 

leading to the conclusion that VT is entropy driven, while enthalpy variation is of the order 

of thermal energy, both tautomer being accessible on varying temperature. Indeed, while in 

lsCo(III)-Cat complexes only π-bonding metal based orbitals are occupied, in hsCo(II)-SQ 

species σ* orbitals are occupied. This results in longer Co-O distances, which are 

accompanied  by a  higher density  of vibrational levels  in the  high spin state. Thus a large 

increase of vibrational entropy is expected to occur during the interconversion process. On 

the other hand the increase in electronic entropy, mainly due to the high-spin metal ion 

configuration for Co(II), may be estimated to be smaller by an order of magnitude or even 

more. Even if this view has been mainly confirmed by DFT-based calculations on a system 

exhibiting Valence Tautomerism[36] the microscopic details of changes that occur at the 

electronic level during the interconversion process are still debated, and are currently 

actively investigated both from a theoretical point of view and by means of femtosecond 

pulsed laser photolysis.[37-39] 
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 From what we have said it follows that complexes undergoing Valence Tautomer 

equilibrium are an interesting class of electronically labile materials, inherently bistable 

systems whose electronic structures are a function of an external stimulus as T, P, light 

irradiation etc. The main parameter defining this kind of processes is T1/2 which is the 

temperature for which the fraction of the two electronic states, says A and B, are the same. 

The possible occurrence of hysteresis with respect to the external stimulus - identified as 

differences in T1/2 concerning the process occurring in the A  B direction with respect to 

that concerning the B  A one - makes these molecules appealing as basis for molecular 

devices. A necessary prerequisite for this to occur is the cooperativity of the process: this 

means that intermolecular interactions between the molecules in the two phase, A and B 

should be different. On this respect, the attractiveness of such a class of compounds is due 

to the fact that their properties, and then the relative intermolecular interactions, can be 

tuned by means of molecular chemistry techniques: this is a well established approach for 

spin-crossover complexes.[40]  

 Notwithstanding this, up to date the potential application of Valence Tautomer systems 

has been limited by the paucity of materials exhibiting thermal hysteresis. Indeed a small 

hysteresis width (5 K) was found to be associated to the tautomeric interconversion showed 

by the CoIII(phen)(DBSQ)(DBCat)·C6H5CH3 complex,[21] while a rather large effect was 

detected for CoIII(3,6-DBCat)(3,6-DBSQ)(py2O) and CoII(3,6-DBSQ)2(py2O) valence 

tautomeric pair.[31] However in the latter system the observed behavior has been attributed 

to the planar/folded change in conformation due to the steric requirements of the ancillary 

diazine ligand. In this sense the observed magnetic behavior of this molecular system must 

be considered as a very interesting exception, but, because of its pure molecular origin, it 

cannot provide the basis for the development of a class of magnetic materials. Since the 

fundamental origin of valence tautomerism is molecular and the cobalt(III)-catecholate and 

cobalt(II)-semiquinone species involved in the interconversion are dimensionally different, 

a thermal hysteresis and then a memory effect must be associated with the existence of a 

strong cooperativity between the cobalt centers. On this respect either the use of ancillary 

ligands or of suitable dioxolene ligands capable to favor the formation of polymeric 

structure can be advised. 
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5.3 Design of polydioxolene ligands with predetermined magnetic properties 

 

 Design of high spin organic molecule, i.e polyradical molecules with intramolecular 

ferromagnetic coupling between the spins, plays a very important role in the research of new 

magnetic molecular materials with enhanced properties. The use of this kind of ligands may 

result in the assembling of extended structures, and if suitable coupling within the ligands 

and between ligand and metal is achieved new magnetic molecular materials may be 

obtained. Thus, in an effort to design multispin subunits with well defined magnetic and 

electronic properties, the obvious step following the characterization of simple dioxolene 

ligand complexes is the synthesis and characterization of linked dioxolene ligands. Indeed, 

as we have seen that strong magnetic-ligand coupling may be easily achieved and its nature 

predicted following simple criteria, metal-o-semiquinones are potential building blocks to 

obtain magnetic solids provided that an appropriate strategy for designing linked 

semiquinone ligands with suitable exchange coupling between the radical moieties is used.  

 On this respect the most common high-spin organic molecule design is to attach 

paramagnetic functional groups to a π-system acting as a coupler which is known to force 

ferromagnetic coupling between the attached positions. Thus high-spin dioxolene type 

ligands are to be expected whenever semiquinone rings will be linked through a suitable 

"ferromagnetic coupler". 

 The topology required for the π-system to favor ferromagnetic coupling may be easily 

understood considering biradicals systems, extension to polyradicals following on the same 

basis. If we consider a non-Kekule' hydrocarbons, with n-1 bonding and antibonding 

orbitals and 2n non-bonding orbitals, Hund's rule forces the electron in the non-bonding 

orbitals to be unpaired. Whenever the two singly occupied molecular (or atomic) orbitals are 

orthogonal to each other and the zero overlap between them results from the opposite 

contribution of two overlap regions - of in-phase and out-of-phase overlap, respectively - 

ferromagnetic coupling is expected. Using these simple rules trimethylenemethane and 

meta-xylylene, depicted in the Figure 5.6, have been employed as suitable ferromagnetic 

coupler in a multitude of diradical systems to force a triplet ground state. Following the 

same reasoning it is expected that a suitable precursor for any triradical may be the 1,3,5-

trimethylenebenzene molecule. Indeed, trimethylenebenzene is a non-Kekulé alternant 

hydrocarbon in which three electrons occupy three nonbonding molecular orbitals and has 

been predicted to be characterized by a quartet ground-state.[41] Thus, suitable high-spin 
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dioxolene type ligands are to be expected whenever semiquinone linked through m-xylilene, 

trimethylenemethane and 1,3,5 trimethylenebenzene would be synthesized. 

 

 
 
Figure 5.6 Ferromagnetic couplers trimethylenemethane, m-xylilene and 1,3,5-trimethylenebenzene. 
with pictorial representations of their molecular orbitals in case of ferromagnetic coupling 
 
 
 Concerning the electronic properties, redox activity characterizing linked dioxolenes 

makes them even more interesting than simple dioxolene ligands. Indeed, as shown in 

Figure 5.7 for one of the simplest of this molecule which may be thought of, namely the 

4,4'-bis(1,2-benzoquinone (Q-Q), this is part of a five-membered redox chain (hereafter Q- 

Q, Q-SQ, SQ-SQ, SQ-Cat, Cat-Cat) in which all the members are able to act as bis-bidentate  

ligands.[42,43] While  there is experimental  evidence indicating that the SQ-SQ species is 

diamagnetic,[44] it is still unclear whether the electronic ground-state of this molecule is 

sensitive to the dihedral angle between the dioxolene planes and may therefore change from 

singlet to triplet. Such a change in ground state spin multiplicity might be expected for 

torsion angles between dioxolene planes near 90°.[45] The Q-SQ and  SQ-Cat members are 

also paramagnetic and the Q-SQ and SQ-Cat compounds can be classified as class II or 

class III mixed-valence systems.[20,46] In the former case the ligands could serve as 

molecular switches, in accordance to the existence of two different electronic structures for 

the two halves of the molecule. On the other hand if the ligands are characterized  by 

delocalized electronic structures, their application for the synthesis of extended molecule-

based magnetic materials or molecular wires seems more appropriate. It should indeed be 

noted that as far as metal complexes are concerned, much is known about mixed-valence 

systems formed by metal ions in different oxidation states, but by comparison, little is 
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known about systems containing linked coordinated ligands in different oxidation states.[47-

51]  
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Figure 5.7 Redox chain of bis dioxolene ligand. Species SQ-Cat, which may be considered as a 
mixed valent one, is evidenced. 
 

 

5.4 Dinuclear complexes of a delocalized radical bis-bidentate ligand: a combined 

spectroscopic and DFT study[52] 

 

 Since linked o-dioxolene ligands might behave differently according to different 

dihedral angles between the dioxolene planes we felt this subject worthy of an experimental 

and theoretical investigation. With this in mind, the ligand 5,5’-di-tert-butyl-3,3’,4,4’-

tetrahydroxy-biphenyl was synthesized, and used for preparing dinuclear cobalt(III) and 

chromium(III) metal complexes bridged by the paramagnetic SQ-Cat derivative, (1). As the 

classification of mixed-valent systems is not always univocal from experimental data, it was 

decided to integrate the experimental characterization with quantum-chemical techniques, in 

the framework of the Density Functional Theory (DFT), to describe the electronic and 

magnetic structure of the free SQ-Cat ligand and of its complexes. Indeed, it has been 

recently found that quantum-chemical calculations are able to describe the ground state 

potential energy surfaces of a number of mixed-valent complexes and therefore they appear 

a valuable tool for the characterization of this class of compounds,[53-55]. Finally, since no 
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crystals suitable for X-ray analysis have been obtained, structure of the complexes were 

calculated by optimization of their geometries by using DFT calculations.  

 

 

5.4.1 Experimental characterization 

 Complexes of formula M2(CTH)2(Cat-Cat)(PF6)2 (M =  Co, Cr) were obtained as 

microcrystalline powders from the reaction between the M(CTH)2+ cations and the Cat-Cat 

ligand in alkaline methanol under inert atmosphere, followed by oxidation of the metals 

with air and addition of an aqueous solution of KPF6. These complexes can be formulated as 

Cr(III) and Co(III) derivatives on the basis of their magnetic properties and electronic 

spectra, which are closely related to those of the previously described mononuclear 

M(CTH)(DBCat)PF6 metal complexes.[56,57] The chromium derivative is characterized by 

χT = 3.7 emu K mol-1 at room temperature, in agreement with the presence of two non 

interacting Cr(III) metal ions, whereas the cobalt complex is obviously diamagnetic. The 

spectrum of the chromium derivative showed a band at 15300 cm-1 (ε = 180) (d-d transition) 

with a shoulder at 26.000 cm-1, whereas the cobalt compound shows transitions at 14500 (ε 

= 2100) and 23800 cm-1 (ε = 3150) (both LMCT in origin) with a shoulder at 19500 cm-1 (d-

d transition). Therefore it was postulated that these complexes contain dinuclear cations in 

which the metal ions are bridged by the bis-bidentate tetranegative bis-catecholato ligand 

anion. The remaining coordination sites are occupied by the macrocyclic ligand that 

assumes a folded conformation. 

 Cyclic voltammetry experiments in 1,2-dichloroethane solutions of the chromium 

complex showed that it undergoes two sequential reversible redox processes at –0.38 and 

+0.12 V vs. ferricinium/ferrocene couple (Fc+/Fc). Both of these processes involve a single 

electron, as supported by coulometry experiments, and are assigned to redox processes 

involving the tetraoxolene coordinated ligand. The more negative process is therefore 

assigned to SQ-Cat/Cat-Cat couple and the more positive to the SQ-SQ/SQ-Cat one. The 

observed values are consistent with those reported for a dinuclear Ru(II) complex formed by 

a similar bis(o-dioxolene) ligand.[43] The more positive values observed for the chromium 

derivative can be easily explained by considering the higher oxidation state of the metal ion 

with respect to that of the ruthenium complex. 

 The cyclic voltammogram of the cobalt complex is similar: two sequential one-electron, 

reversible waves at –0.47 and +0.02 V with respect to Fc+/Fc, which can be assigned as in 
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the chromium complex. A further quasi-reversible redox process is observed at –1.25 V 

which, in analogy with the electrochemical behavior of mononuclear cobalt dioxolene 

complexes, can be attributed to the Co(III)/Co(II) couple.[57] It is worth mentioning that the 

difference between the two ligand-centered redox couples is the same in the two complexes 

(0.49 and 0.50 V, respectively) and its high value indicates a strong stabilization of the 

mixed-valence form of the tetroxolene ligand. From these data in fact the 

comproportionation constant for the equilibrium [M2(SQ-SQ)]2+ + [M2(Cat-Cat )]4+  2 

[M2(SQ-Cat)]3+ is ca. 108. It is therefore possible to isolate the mixed valence species 

without significant presence of the other species. Following this consideration, solid 

complexes of formula M2(CTH)2(SQ-Cat)(PF6)3 (M = Co, Cr) were prepared from the 

above described bis bis-catecholato complexes using ferricinium hexafluorophosphate as 

oxidizing reagent in dichloromethane and then precipitated as microcrystalline powders by 

addition of pentane. 

 The electronic spectrum of the cobalt derivative is rather similar to that of the 

chromium complex, thus indicating that the internal SQ-Cat ligand transitions involving the 

internal π and π* levels strongly contribute to the spectra. However, the assignment of 

charge transfer transition bands is not straightforward. In terms of the usual mixed-valence 

approach, the pattern of bands appearing in the infrared region of the spectrum could be 

tentatively assigned to an intramolecular ligand-to-ligand-charge transfer in agreement with 

the assignment made by Lever et al. for a similar transition occurring in the spectrum of a 

dinuclear Ru(II) complex formed by a mixed-valence form of the bis(quinonediimine) 

ligand.[58] Following these authors, the existence of this transition shifting toward lower 

energies on increasing the donor power of the solvents (the absorption maximum shifts from 

7200 cm-1 in dicloroethane to 6950 cm-1 in dimethylsulfoxide) could suggest a class II 

character to the present metal bridging SQ-Cat ligand. In order to understand the spectral 

properties a DFT investigation has been carried out, as it will be discussed below.  

 The electronic spectrum of the chromium derivative shows, in addition to the internal 

ligand transitions, a band at 20000 cm-1 which can be reasonably assigned to a MLCT 

transition, in analogy with the assignment made for mononuclear Cr(CTH)SQ2+ 

chromophores.[57] The typical sharp transition around 14500 cm-1 characterizing all the 

reported mononuclear Cr(III)-semiquinonato derivatives is not observed, because of its 

overlapping with the internal ligand transitions. 
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 The X-Band EPR spectra of the two M2(CTH)2(SQ-Cat)(PF6)3 (M = Cr, Co) complexes 

are shown in Figures 5.8a and 5.8b, respectively.  

 

   (a)          (b) 

 

Figure 5.8 EPR spectra of M2(CTH)2(Sq-Cat)(PF6)3 (M=Cr, Co): a) the 4.2 polycrystalline powder 
spectrum of the Cr derivative; b) the fluid 1,2-dichloroethane solution spectrum of the Co(III) 
derivative (upper spectrum is simulated and lower is experimental). 
 

 The 4.2 K polycrystalline powder spectrum of the chromium derivative (Figure 5.8a) 

shows three transitions at 850 G, 1450 G, and 1550 G, the last one being a shoulder of the 

second. These spectral features compare well with what reported in the literature for an S = 

5/2 spin system split by a large Zero Field Splitting (D > 1 cm-1) and almost complete 

rhombicity (E/D ~ 0.3).[59] The ESR solution spectrum of the cobalt complex (Figure 5.8b) 

shows 17 lines almost equivalently spaced. We attributed this spectral appearance to the 

hyperfine coupling of the completely delocalized unpaired electron of SQCat3- with two 

equivalent 59Co (ICo=7/2) nuclei and with two equivalent 1H nuclei (I=1/2). The expected 45 

lines, (2nHIH+1)(2nCoICo+1), collapse to 17 due to a linewidth which is comparable with the 

hyperfine coupling constant of the electronic spin with the two equivalent protons. The 

simulation of the spectrum was performed using WIN-EPR SimFonia, a program based on a 

second-order perturbative solution of the Spin Hamiltonian.[60] The simulated spectrum, 

plotted in Figure 5.8b (top), was computed with a hyperfine coupling constant for 59Co, aCo 

= 4.20 G and for 1H, aH = 2.60 G using a Gaussian line shape with linewidth of 2.70 G and 

giso = 2.0. These results have to be compared with what obserevd for a mononuclear Co(III)-

DTBSQ adduct, for which the hyperfine coupling constant for 59Co was found to be 9.50 G 

and that for 1H, aH = 2.00 G.[57] The value of the hyperfine coupling constant to 59Co is 
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then in good agreement with what expected, if one considers that in this case the unpaired 

electron spends only half of its time on each Co(III) center, and then a value of aCo=9.50 

G/2=4.75 G was expected, whereas the observed coupling to the proton is much larger is in 

this case.  

 The temperature dependence of the magnetic susceptibility of the chromium complex is 

shown in Figure 5.9. The solid line represent the fitting of the magnetic data using the three 

center exchange spin Hamiltonian: 

 

313221 ')( SSSSSSH ⋅+⋅+⋅= JJ             (5.4.1) 

 

where S1 and S3 are the spin operators of the Chromium(III) centers, S1=S3= 3/2, and S2 is 

the spin of the unpaired electron of the radical ligand. The data were fit by minimizing the 

sum of the squares of the deviation of the computed χT values from the experimental 

values, ∑ − Tco
2)( χχ , using a Simplex minimization procedure. It is worth mentioning 

here that the use of a sizeable J' i.e. of an interaction between the Cr(III) centers proved to 

be necessary to obtain a reliable fit of the curve. The parameters used in the fit, besides J 

and J' of Equation (5.4.1), were the effective isotropic g value and Jint, i.e. the effective 

intermolecular exchange coupling parameter, which accounts for the observed decrease of 

χT at low temperature. It should be noted that in principle the decrease observed at low 

temperature may be due also to Zero Field Splitting of the ground state, and both the effects 

are considered by using the Weiss molecular field approximation using the equation:[61] 
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              (5.4.2) 

 
here χ is the molar susceptibility computed in the absence of the interaction and Jint  = zj is 

the effective exchange interaction z being the number of nearest neighbors coupled by the j 

coupling constant. The best fit curve to the experimental data was obtained with the 

following parameters g = 1.97(3), J = 743(3) cm-1, J'/J = 0.12(2), Jint = -0.14(6) cm-1. It 

should however be stressed that given the rather large correlation between the parameters 

the range of values for which the fit is satisfactory is quite large. Almost equivalent fits can 

indeed be obtained for the following range of values: g = 1.975±0.01, Jint = -0.14 ± 0.01, 

500 cm-1 < J < 800 cm-1, 0.126 < J’/J < 0.096.  
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Figure 5.9 Temperature dependence of the magnetic susceptibility of Cr2(CTH)2(Sq-Cat)(PF6)3. 
Solid line represent the best fit  described in the text. 
 

 It can be however concluded that the two equivalent Cr(III) paramagnetic centers are 

strongly antiferromagnetically coupled to the bridging radical ligand, in a similar way to 

that previously reported for the Cr2(CTH)2(DHBQ)Y3 complexes.[62] This gives rise to a 

sextet ground state and - within all the range of variation – the first excited state is a quartet 

and the second one is a doublet, lying 100 ± 11 cm-1 and 275 ± 15 cm-1 above the ground 

state respectively. 

 

 5.4.2 Overview of results of DFT calculations 

 The calculations presented in this paragraph have been performed by Prof. A. Bencini 

in collaboration with the group of Prof. C. A. Daul at the University of Freibourg. For 

further details concerning this part of the characterization see ref. [52]. 

 
 a-Electronic and Geometrical Structure of the Ligand Radical SQ-Cat3-  

 The calculated optimized geometry of a model radical SQ-Cat3- showed that the two 

aromatic rings are not co-planar, their optimized dihedral angle, τ, being 9° (Figure 5.10). 

The total energy of SQ-Cat was found to significantly depend on the τ angle, and two nearly 

degenerate minima in the energy profiles were computed for τ = 9° and 167° at which 

electronic structure and calculated properties were very close each other. The 

interconversion energy barrier between the two minima was calculated to be of 7.8 kcal/mol 

which should be high enough to prevent a fluctional behavior of the radical in solution. The 

calculated SOMO is a linear combination of mainly pz orbitals of carbon and oxygen, while 
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the LUMO region is formed by two accidentally degenerate antibonding orbitals, one 

mainly localized on the methyl groups, and the other having π* character.  

 

 

 
 

Figure 5.10 The optimized  structure of the model radical Sq-Cat3- with relevant geometrical 
parameters 

 

The 1H and 13C-hyperfine coupling constants (Hfcc) were computed using non-relativistic 

unrestricted calculations and Gaussian98 for sake of comparison. As usually found in 

cathecholate radicals,[63,64] the largest 1H-hyperfine coupling constant is computed on the 

proton in ortho to the methyl group. Furthermore, spin polarization effects is evident due to 

the negative densities computed on some carbon and hydrogen atoms, but, since these 

values are rather small, spin polarization should not have much relevance in the spin 

delocalization mechanism. 

 

b-Electronic and Geometrical Structure of [Co(NH3)4(SQ-Cat)Co(NH3)4]3+  

The optimized geometry of the model complex [Co(NH3)4(SQ-Cat)Co(NH3)4]3+ is 

shown in Figure 5.11 where relevant geometrical parameters are also indicated. The two 

dioxolene rings are significantly non-coplanar, their dihedral angle τ being 47°. The average 

value of the Co-O bond distance (1.88 Å) is intermediate between the values observed in 

Co(III)-semiquinonato and Co(III)-catecholato complexes,[3,18] 1.90 Å and 1.87 Å, 

respectively, in agreement with the delocalized nature of the unpaired electron. Also the 

average C-O and the C-C distances (1.34 Å and 1.42 Å) are close to the average of the 

values observed in semiquinonato and catecholato complexes, i.e. 1.90 Å and 1.87 Å for C-

O and 1.45 Å and 1.40 Å for C-C, respectively.[18] The cobalt ion is in a cis-distorted 

octahedral coordination with a N2O2 basal plane. The unpaired electron is delocalized in the 
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SOMO orbital, which is close to the SOMO of the free ligand with a small anti-bonding 

contribution from out-of-plane π-3d orbitals of the metals. This metallic contribution to the 

SOMO was evidenced in the ESR spectrum of the complex in the fluid solution. 

 

 
Figure 5.11 The optimized geometrical structure of the model complex [Co(NH3)4(Sq-
Cat)Co(NH3)4]3+ with relevant geometrical parameters. 

 

It should be stressed that the ring linking C-C bond is calculated to be significantly 

shorter (1.46 Å) than expected for a single bond. This result is in good agreement with what 

has been observed by Pierpont et al. for a SQ-SQ derivative, where the corresponding bond 

has been found to be slightly shorter than ususally observed for biphenyl (1.49 Å) but 

considerably longer than the double-bond value that would be expected for strong 

conjugation between radical rings.[42] 

Electron paramagnetic resonance parameters can be computed within the Zero Order 

Regular Approximation[65] (ZORA) for relativistic effects when the ground state is a 

Kramers doublet. Using this approach both the g and the A tensors can be computed. The 

principal g values, which have to be computed using a spin restricted calculations are: gxx = 

2.004, gyy = 2.003 and gzz = 2.01 which gives the average value giso = 2.006, in agreement 

with the small contribution of the metal orbitals to the SOMO. In order to include spin 

polarization of the inner core s orbitals all electron spin unrestricted calculations were 

performed using both scalar relativistic ZORA and non relativistic hamiltonians. The 

computed values were aiso(59Co) = 2.12 and 1.89 Gauss respectively. The computed 

hyperfine coupling with the 1H nuclei in ortho with respect to the methyl groups were, 
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respectively, aiso(1H) = 2.12 and 2.13 Gauss. The calculations agree with the experimental 

observation of a sizeable proton hyperfine coupling but the hyperfine coupling with the 

cobalt nucleus is largely underestimated. 

 

 c- Electronic, Geometrical and Magnetic Structure of [Cr(NH3)4 (SQ-Cat)Cr(NH3)4]3+ 

 This model complex possesses several spin states arising from the magnetic coupling 

between the spin of the Cr(III) ions (SCr = 3/2) with the unpaired electron of the SQ-Cat3- 

radical ligand. The high spin state of the complex has the total spin S = 7/2 and it is 

representable by a single Slater determinant. On this state we have performed the geometry 

optimization of the model complex. The calculated molecular structure (Figure 5.12) is 

close to that of the Co(III) complex except for the angle τ which is now 38° and the Cr-N 

bond distances which are longer, as expected in Cr(III) complexes. 

 

 
 

Figure 5.12. The geometrical structure of the model complex [Cr(NH3)4(Sq-Cat)Cr(NH3)4]3+ 
optimized with relvant geometrical parameters.  
 

 The calculation of the multiplet structure of [Cr(NH3)4(SQ-Cat)Cr(NH3)4]3+ can be 

performed using the Broken Symmetry approach (BS) which has been widely applied in the 

last years.[55,66] This approach is based on a one-to-one correspondence between the SCF 

energies of appropriate single determinants representing eigenstates of Sz, and the diagonal 

elements of the spin Hamiltonian (5.4.1) in a basis set of products of single center spin 

functions. The total spin states arising from the magnetic interaction can be labeled using  

the eigenvalue  of the intermediate  spin operator S13
2=(S1+S3)2 and  of the total spin 

S2=(S13+S2)2 and Sz, i.e. with kets |S13 S MS>.  In the product basis of the three spin function 
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{|m1m2>m3>} ≡ {|s1 m1>|s2 m2>|s3 m3>} we can write the spin eigenfunction corresponding 

to the high spin state S = 7/2 and MS = 7/2, namely |3 7/2 7/2> = |3/2 1/2 3/2> and to the 

antiparallel spin state, corresponding to Ms = 5/2, namely |5/2> = |3/2 -1/2 3/2>. This last 

wavefunction is not eigenfunction of S2, but only of Sz, and it can be also called the 

antiferromagnetic, AF, state. These two spin arrangements can be associated to two single 

Slater determinants called the high spin state and the Broken Symmetry state, BS1. Since 

single determinants cannot, in the general case, represent spin eigenfunction and hence their 

energies are not the energies of the spin multiplets, their energies were associated in a first 

approach to the diagonal elements of H, or, alternatively, spin projection techniques and 

decomposition of these energies in terms of pure multiplet energies are applied. A second 

rather widely used approach assumes that the largest part of the electron correlation, both 

static and dynamic, is accounted for by the functional of the electron density and associate 

these energies to the pure state energies obtained from the diagonalization of the spin 

Hamiltonian (5.4.1).[67,68] With this last approach a better agreement with the 

experimental data is generally achieved, although it has been recently found that the 

modeling of the real system can be crucial in judging the agreement between spin 

Hamiltonian parameters calculated on model complexes and the experimental data. Both 

approaches have been followed, the relevant equations for the first and second one being 

(5.4.3-4) and (5.4.5-6), respectively.  

 Using the energy of the single determinants, E(HS) and E(BS1), obtained by 

independent SCF convergences we can calculate the J value, in the first approach, according  

to: 

 

JBSEHSE 1 3)()( =−               (5.4.3) 

 

The calculation of J' requires the evaluation of the energy of another determinant which can 

be easily set up by the spin configuration |3/2 1/2 -3/2>. This is an eigenstate of Sz with 

eigenvalue 1/2 and will be indicated as BS2. The relevant equation is: 
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The equation relevant for the calculation of J assuming that the single determinant energies 

are close to the multiplet energies, i.e. using the second approach, are: 

 

JSSEHSE
2
7)

2
5,3()( 13 ===−             (5.4.5) 

'6
2
3)

2
1,0()( 13 JJSSEHSE +===−            (5.4.6) 

 
Spin Hamiltonian parameters obtained by equation (5.4.3-4) and (5.4.5-6) represent limiting 

values, the exact values being in between these two extremes. The computed values of J for 

[Cr(NH3)4(SQ-Cat)Cr(NH3)4]3+ are J = 590 cm-1, J' = 11.4 cm-1 and J = 506 cm-1, J' = 29.6 

cm-1, using equations (5.4.2-3) and (5.4.4-5) respectively. With both set of parameters the 

ground spin multiplet is |3 5/2> with next excited states |2 3/2> and the |1 1/2> at 261 cm-1 

and 534 cm-1, and at 164 cm-1 and 360 cm-1, respectively. These findings are in nice 

qualitative agreement with the results of the fitting of the magnetic susceptibility data, 

which gave the |3 5/2> state as the ground state with the |2 3/2> and the |1 1/2> states at 98 

cm-1 and 285 cm-1, respectively.  

 

 

5.5 Magnetic properties of complexes containing a Biradical semiquinonate ligand 

 

 Following the strategy outlined in paragraph 5.3 to synthesize high spin ligands the 

synthesis of m-xylylene-type ligand 1,3-bis(3’,4’-dihydroxy-5’-tert-butylphenyl)-5-tert-

butylbenzene (m-Ph(CatH2)2, (2), see Scheme 5.2) has been reported and indeed EPR 

experiments suggest that the dianionic bis(semiquinone), m-Ph(SQ)2, is a triplet ground 

state.[69] 
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 According to the considerations about magnetic coupling in metal-semiquinone 

complexes outilined in paragraph 5.2, in the past it has been shown that Ni(CTH)(DBSQ)Y 

(CTH = dl-5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane, DBSQ = 3,5-di-

tert-butylsemiquinone, Y = ClO4, PF6) and Cu(Me3[12]N3)(DBSQ)Y (Me3[12]N3 = 2,4,4-

trimethyl-1,5,9-triazacyclododec-1-ene) complexes are characterized by quartet and triplet 

ground-states, respectively, arising from the ferromagnetic coupling of the metal ions with 

the radical ligand. [56,70,71] In a similar fashion, the Cr(CTH)(DBSQ)Y2 complex was 

shown to be a triplet ground state, arising from the antiferromagnetic coupling of the two 

magnetic centers.[72]  

 On the basis of these results the corresponding dinuclear Ni(II), Cr (III), and Cu(II) 

complexes using the above bis(semiquinone) ligand were then prepared with the aim of 

exploring the possibility of obtaining complexes characterized by septet, quintet, and quintet 

electronic states, respectively. 

 The reactions of (2) with basic solutions containing the above nickel and copper 

macrocycle acceptors under inert atmosphere were followed by aerial oxidation. This 

procedure yielded solutions containing the [Ni2(CTH)2(m-Ph(SQ)2]2+ and 

[Cu2(Me3[12]N3)2(m-Ph(SQ)2]2+ complexes which in turn were precipitated as the 

hexafluorophosphate salts. The same procedure using Cr(II)-CTH lead to the isolation of 

Cr2(CTH)2(m-Ph(Cat)2(PF6)2, which was converted to the bis(semiquinone) derivative 

[Cr2(CTH)2(m-Ph(SQ)2](PF6)4·2H2O by treatment with Ce(IV). All attempts at obtaining 

crystals suitable for structural analysis were unsuccessful. However, the bis(semiquinone) 

character of the ligand in the isolated complexes is clearly supported by the magnetic, 

electrochemical and spectral properties of the three isolated complexes, as it will be 

discussed below. Therefore it is postulated that these complexes contain dinuclear cations in 

which the metal ions are bridged by the bis-bidentate m-Ph(SQ)2 ligand. The remaining 

coordination sites are occupied by the macrocyclic ligand that assumes a folded 

conformation.  

 

 5.5.1 Electronic properties 

 The electronic spectra of acetonitrile solutions of the three isolated bis (semiquinone) 

derivatives are shown in Figure 5.13. Their features are strictly similar to those observed for 

the mononuclear DBSQ analogues.[56,70-72] The absorptions appearing in the near-UV 

region and in the red region of the electronic spectra can be assigned to π-π* and n-π* 



The metal radical approach: poly-dioxolene ligands 

 

134

internal transitions of the semiquinone ligand, respectively. The other bands appearing in 

the spectra can be reasonably attributed to metal-to-ligand charge transfer transitions. 

   

 
Figure 5.13 Room temperature electronic spectra of acetonitrile solution of Cr(III) derivative (left), 
Ni(II) derivative (center) and Cu(II) derivative (right) 

 

The cyclic voltammogram of a de-aerated acetonitrile solution of the nickel complex 

shows that it undergoes two sequential one-electron reversible redox processes at –0.73 and 

–0.64 V and one irreversible couple at ca. +0.2 V vs. ferrocinium/ferrocene couple (Fc+/Fc). 

The copper derivative shows similar behavior with two reversible couples at –0.44 V and –

0.35 V, and one irreversible couple at ca. +0.1 V vs. Fc+/Fc. Similar considerations hold for 

the chromium complex which shows two reversible redox processes at –0.17 and –0.07 V 

vs. Fc+/Fc and an irreversible couple at +0.7 V. Following the observed electrochemical 

properties of the mononuclear DBSQ derivatives,[56,71,72] it is reasonable to attribute the 

reversible processes to the semiquinone-catecholate (SQ-Cat) couples and the irreversible 

ones to the semiquinone-quinone (SQ-Q) redox processes. 

 As previously suggested,[71] the irreversible character of the latter couples can be 

ascribed to the instability of the metal(II)-Q adducts. The more positive values observed for 

the chromium derivative can be easily explained by considering the higher oxidation state of 

the metal ion with respect to the other divalent metal complexes. Furthermore, the 

difference observed for the ligand centered redox processes associated with the SQ-Cat 

couples for the Cu(II) and Ni(II) complexes can be explained taking into account the 

different coordination numbers of the two metal complexes. A stronger metal-ligand 

interaction is expected to occur in five-coordinate complexes with respect to six-coordinate 

ones with stabilization of the catecholate ligand.  
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 Finally, it should be stressed that, according to the ca. 90 mV difference observed for 

the SQ-Cat couples, the comproportionation constant for the equilibrium: [M2(m-Ph(SQ)2]2+ 

+ M2(m-Ph(Cat)2)  2[M2(m-Ph(SQ)(Cat)]+ is ca. 33. Even though there is some 

stabilization of the mixed-valent form, it is not possible to investigate this species without 

significant presence of the two reactants.   

 

 5.5.2 Magnetic properties 

 The temperature dependence of the magnetic susceptibilities of the three derivatives is 

shown in Figure 5.14. According to the postulated structure, we fit the experimental 

magnetic properties with the exchange hamiltonian H = J1(S1S2 + S3S4) + J2(S2S3), where J1 

and J2 are the exchange coupling constants depicted in Scheme 5.3: 

 
    J1                  J1
M          SQ----------SQ          M
                     J2
S1                    S2                        S3                    S4
     

Scheme 5.3 

 

 The decreasing of χT values occurring in the low temperature region for all the 

complexes was simulated using a Weiss correction for the magnetic susceptibility.[61] The 

equation used for the correction is χeff = χ/(1-θχ), with θ= -2zJinter/Ng2β2. It should be 

stressed here that this is a simple phenomenological  approach, and  that the same behavior 

may be caused by the different population of the Ms states due to zero-field splitting and 

saturation effects. 

 The temperature dependence of the magnetic susceptibility of [Ni2(CTH)2(m-

Ph(SQ)2](PF6)2 in the range 4 – 150 K is shown in Figure 5.14, top. The χT vs. T curve is 

essentially flat in the range 100 – 150 K, the value being 4.9 emu K mol-1, and increases on 

decreasing temperature, reaching a value of 6.2 emu K mol-1 at 11 K and 1.0 Tesla. This 

behavior is consistent with an incompletely populated septet electronic ground state (S = 3) 

arising from the ferromagnetic coupling of the four magnetic centers characterizing the 

complex. We wish to point out that the mononuclear [Ni(CTH)(DBSQ)](PF6) complex 

shows a χT value of 2.28 emu K mol-1 in the temperature range 4 – 300 K, as a result of a 

strong ferromagnetic interaction between the paramagnetic metal ion and the semiquinone 
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radical ligand. Thus, a value equal to 4.5 – 4.6 emu K mol-1 (2 x 2.28 emu K mol-1) was 

expected for the present dinuclear derivative if the two paramagnetic Ni(II)-SQ moieties 

were uncorrelated. The observed experimental behavior, therefore, suggests that a further 

magnetic interaction occurs leading to a ferromagnetic interaction among the four magnetic 

centers, and leads to a septet electronic ground state. Following the guidelines discussed 

above, the experimental data were fitted[73] within the assumption of isotropic coupling and 

including a weak intermolecular interaction, θ, yielding g = 2.22, J1 < - 400 cm-1, J2 = -27 

cm-1, and θ = -0.33 K. It should be noted that with these parameters, the S=2 state is lying 

only 9 cm-1 above the ground state and one S=1 and S=0 are lying only within 18 cm-1. The 

low experimental value of the χT product can then be attributed to the uncompleted 

population of the ground spin state.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.14 Temperature dependence of χT for Ni(II) derivative (top), Cu(II) derivative (center), 
Cr(III) derivative (bottom) and best fit curves obtained with the parameters reported in the text.  
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To rule out any other possibility we performed M vs. H measurement at low T (figure 

5.15). At high field the magnetization is almost completely saturated, showing a value of 6.5 

µB at 7 T and 2.1 K. This is in nice agreement with the expected saturation value of 6.6 µB 

for an S=3 with g=2.2. The magnetization curve was satisfactorily reproduced by 

considering the relative populations of the ground and first excited states and a D value of 

0.6 cm-1 for the ground state. 

 

 

 

 

 

 

 

 

 
 
Figure 5.15 M vs. H  measurement for the Nickel derivative at 2.1 K. The line is the theoretical 
curve obtained with the parameters reported in the text. 
 

 The temperature dependence of the magnetic susceptibility of copper derivative is 

shown in Figure 5.14, center. The χT vs. T curve increases on decreasing temperature 

reaching a maximum at 13 K. Fitting of the data using the above four-spin Hamiltonian 

yields best fit values of g = 2.106, J1 = -34.7 cm-1, J2 = -6.3 cm-1, and θ = -0.55 K, thus 

indicating a quintet electronic ground state with lower multiplicity levels which are still 

significantly populated at low T. As in the Ni(II) case this result arises from the 

ferromagnetic coupling of the four magnetic centers in the molecule.  

 Finally, the magnetic properties of the chromium derivative (Figure 5.14, bottom) can 

be interpreted by assuming again a quintet ground-state of the molecule. The best-fit 

parameters were g = 1.99, J1 > 400 cm-1, J2 = -32 cm-1, and θ = -0.25 K. As 

expected,[2,3,56] a strong antiferromagnetic coupling characterizes the Cr(III)-SQ 

interaction, whereas the two SQ halves experience a weaker ferromagnetic interaction 

similar to the one observed in the Ni(II) complex.  

 It should be pointed out that for the nickel and chromium complexes the J1-values are 

the same as the corresponding values observed for mononuclear metal-semiquinone 

analogues. The J1-value observed for the copper complex is rather low when compared with 
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the value of +104 cm-1 observed for the mononuclear Cu(DBSQ) analogue.  This is most 

likely due either to poorer metal-semiquinone overlap, or to the fact that the orthogonality 

between the magnetic orbitals of the paramagnetic centers is less rigorously maintained in 

this dinuclear complex. 

 The intraligand exchange coupling in m-Ph(SQ)2 is ferromagnetic, in agreement with 

the connectivity of the spin coupler. Considering the spin densities of the semiquinone 

group,[74] and the exchange parameter for meta-xylylene,[75] the expected JSQ-SQ (J2) value 

should be larger than those derived from the χT plots here presented. Based on the 

precedent for J-modulation due to bond torsions in organic biradicals,[76] we propose that 

torsions between SQ and meta-phenylene units in m-Ph(SQ)2 could be responsible for the 

small ferromagnetic J-values. If this hypothesis holds, this mechanism seems particularly 

efficient for offering an explanation of the small J2 value observed for the copper complex.  

 This finding is in agreement with the recently reported investigation on dioxolene 

bridged dimolybdenum(V) derivatives.[77] These calculations confirm the role of the 

dihedral angle between the planes of the SQ rings in determining the value of the 

ferromagnetic coupling constant.[76] In agreement with these calculations it can be 

suggested that also in the present case the ferromagnetic coupling characterizing the m-

Ph(SQ)2 ligand results essentially from a spin polarization mechanism. 

 

 

5.6 Induction of thermal hysteresis in valence tautomerism by using a bis-bidentate 

dioxolene ligand[78]  

 

 Following the simple considerations outlined in paragraph 5.2 for the design of systems 

showing thermal hysteresis of valence tautomeric interconversion we thought that efforts of 

the research must be focused towards the design of molecular assemblies with metal centers 

mutually interacting through a polymeric structure. Bearing this in mind, we have 

synthesized a 1,10-phenanthroline-cobalt adduct of the above described dioxolene ligand 

3,5-bis(3’,4’-dihydroxy-5’-tert-butyl-phenyl)-1-tert-butyl-benzene, (2).[69] 

 As we have seen in paragraph 5.5 this molecule may act as bis-bidentate ligand towards 

two different metal ions. Moreover, once coordinated it may originate by one electron 

oxidation the trinegative radical anion we indicate as SQ-Cat, which, although not 

physically characterized, can be expected to behave as a class III mixed valence radical 
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ligand, according to the results discussed in paragraph 5.4 concerning the simpler ligand (1). 

A further one electron oxidation leads to the diradical SQ-SQ species, which according to its 

topological properties, is characterized by a triplet electronic ground state. We have already 

discussed in paragraph 5.5 how the topology of this ligand may enforce the achievement of 

high multiplicity ground-states when the SQ-SQ is coordinated to two paramagnetic metal 

ions.[79] 

 The reaction of Cobalt(II) chloride, 1,10 phenanthroline and L in 1:1:1 ratio in ethanol-

dichloromethane 1:2 mixture (v/v) in the presence of  a stoichiometric amount of 

triethylamine (4:1) affords a black green powder (30% yield) of analytical formula 

Co(phen)L·1/2CH2Cl2. This compound, (3), is insoluble in common organic solvents. It is 

reasonable to believe that this compound contains six-coordinated cobalt ions like all the 

Co(N-N)(diox)2 (N-N = diazine ligand, diox = catecholate or semiquinone) previously 

described.[3,32] The main difference between this compound and previous ones is the fact 

that each dioxolene ligand is paramagnetic and coordinated to two different cobalt ions, thus 

giving rise to a polymeric structure. 

 The temperature dependent magnetic behavior of this compound is shown in Figure 

5.16. The observed magnetic behavior is consistent with the presence of a Cobalt(III)-

catecholato-semiquinonato dominant species at low temperature undergoing a thermally-

induced valence tautomeric transition to a high spin cobalt(II)-bis(semiquinonato) one 

according to the equilibrium: 

 

[(CoIII/2)SQ-Cat(CoIII/2)]n→[(CoII/2)SQ-SQ(CoII/2)]n       (5.6.1) 

 

At 310 K, the highest temperature value we measured, it can be estimated from χT value 

that both tautomers are present in equal concentration: indeed, the expected χT value for a 

Co(II) center and two SQ units would be about 3.3 emu K mol-1.[80] Using the 

nomenclature currently used for spin-crossover systems, the transition can be classified as 

gradual; nevertheless a thermal hysteresis width of about 12 K is observed (see Figure 5.17), 

though the optimum conditions for observing this phenomenon, i.e. the full conversion to 

hsCo(II), are not reached. This result was obtained in three independent measurements 

repeated on the same sample, using 30 minutes for each point to ensure sample thermal 

equilibration. These experimental data, therefore, suggest the existence of a strong 

cooperativity between the magnetic centers. A comprehensive analysis of magnetic data is 
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not straightforward due to the high complexity of the different magnetic interactions 

occurring in the present system and the orbital degeneracy of octahedral Co(II). Moreover 

the χT value characterizing the Co(II)-bis(semiquinonato) species is unknown.  

 

 

 
 
Figure 5.16 χT values vs. T for compound (3) reported for a single Co center It is evident the 
gradual transition due to a valence tautomeric process occurring above 50 K. 
 

 

 
Figure 5.17 The figure shows the difference in the measured χT when heating (empty triangles) and 
cooling (full triangles) sample of (3), respectively. The arrow evidences the maximum width of 
thermal hysteresis, about 12 K at 250 K 

 

 Powder ESR spectrum (see Figure 5.18) recorded at 4 K shows a broad transition at 

1530 G (g=4.3) and a sharper one at 3300 G (g=2). The transition at g = 2 can be assigned to 

a Co(III)-SQ species and is detected also at room temperature, whereas the transition at 

g=4.3 seems to be due to the presence of a Co(II)-SQ or Co Co(II)-(SQ)2. This  assignment  
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is supported by the fact that these absorptions disappear as the temperature rises to 40 K 

(Figure 5.18 inset), which is a typical behavior for Co(II) species. Detection of the g=2 

signal at room temperature deserves some reflections since under fast interconversion 

between the Co(III) and Co(II) centers, this transition should not be detected on the ESR 

time scale. 

 
Figure 5.18 EPR spectrum of (3) at 4 K. The inset shows the temperature evolution of the low-field 
transition at 4 K, 10 K, 20 K and 40 K, respectively. 
 

 The most important finding of the present experimental results is the strong 

cooperativity shown by the compound, a property that we were looking for in designing this 

peculiar molecular system. We feel that the observed properties can be easily manipulated 

by changing the dioxolene substituents, the diazine acceptors as well the crystallization 

solvent, in agreement with the suggestions of the previous work concerning the more simple 

molecular Co(NN)(diox)2 complexes. 

 

 

5.7 A triradical tris-bidentate semiquinonate ligand enforcing high spin state 

 

 The obvious next step following the above reported characterization of a biradical 

system has been the synthesis and the characterization of a triradical system. Following the 

consideration outlined in paragraph 5.3 concerning the design of high-spin organic molecule 

the potentially tris-bidentate ligand 1,3,5-tris(3’,4’-dihydroxy-5’-tert-butyl-phenyl)benzene 

(TBCat)3Ph, (4), see Scheme 5.4 ) was synthesized with the aim of isolating a tris-



The metal radical approach: poly-dioxolene ligands 

 

142

semiquinone (TBSQ)3Ph) derivative in which, according to its topology, directly resembling 

that of 1,3,5-trimethylenebenzene molecule, the three unpaired electrons are expected to 

couple ferromagnetically to each other. We thought that this topologically predetermined 

ferromagnetic coupling within the triradical might enforce a high-spin electronic ground 

state in certain metal complexes of paramagnetic metal ions. In order to facilitate the 

analysis of the magnetic data we have selected two paramagnetic metal ions characterized 

by non-degenerate electronic ground states. Following above cited previous studies,[71,79] 

we used as metal acceptors the Ni(II)-tetraazamacrocycle (Ni(CTH)2+, CTH = dl-

5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane), and the Mn(II)-hydrotris[3-

(4'-cumenyl)-5-methylpyrazolyl]borate (Mn(TpCum,Me)+) complexes, towards which the 

trianion (TBSQ)3Ph) was found to act as tris-bidentate ligand. The corresponding complexes 

were isolated in the solid state and their spectroscopic and magnetic characterization will be 

described in the following pages. 

 

 

Scheme 5.4 

 

 The reaction of (3) with a stoichiometric amount of Ni(CTH)(PF6)2 in basic methanol 

under argon followed by aerial oxidation gave a brown microcrystalline powder of 

analytical formula Ni3(CTH)3(tris(diox)Ph)(PF6)3•1.5H2O (5). We postulate that this 

compound contains three six-coordinate nickel(II) cations bridged by the tris-bidentate 

dioxolene ligand.  

 In a similar fashion the Mn(TpCum,Me) adduct of (4) was synthesized since it has been 

previously found that the tris(pyrazolyl)borate ligand may allow the isolation of 

manganese(II)-semiquinone adducts.[81,82] These complexes are expected to be five-

coordinated on the basis of steric constraints of the ligand and characterized by quintet 

OH
HO

t-Bu
OH

OH

OH

t-Bu

t-Bu

HO



The metal radical approach: poly-dioxolene ligands 

 

143

electronic ground-state arising from a strong antiferromagnetic coupling between the S =5/2 

metal ion and the radical ligand.[2,23] Based on previous results for ZnII, CuII, and CoII,[82] 

we believe that the Mn3(TpCum,Me)3((diox)3)Ph) (6) contains five-coordinated manganese 

cations bridged by this dioxolene ligand.  

 All attempts at obtaining crystals suitable for structural analysis were unsuccessful.  

However, the formulation of the obtained compound as metal(II)-semiquinone derivative is 

clearly indicated from its electronic spectrum, electrochemical properties, and magnetic data 

discussed below.  

 

 5.7.1 Electronic spectra and electrochemistry.  

 The features of the electronic spectrum of the nickel complex (5), which shows bands at 

12,300, 20,200 and 26,300 cm-1, are the same as those observed for the mononuclear 

Ni(CTH)(DBSQ)Y and some related complexes.[71,79] The band at 12,300 and 26,300 cm-

1 can be assigned as internal semiquinone transitions, whereas the band at 20,200 cm-1 can 

be assigned as a metal-to-ligand charge transfer transition. The cyclic voltammogram of 

deaerated 1,2-dichloroethane solution of this compound shows three sequential one electron 

reversible redox processes at -1.08, -0.97 and -0.86 V and one irreversible at +0.1 V vs 

ferrocenium/ferrocene reference couple. In agreement with the electrochemical properties of 

the mononuclear derivatives the three reversible processes can be assigned to the 

semiquinone/catecholate couples whereas the irreversible one to the quinone/semiquinone 

couples. It is rather clear from these data that the species obtained working under aerobic 

conditions is the suggested tris-semiquinonato one. As a further consideration, it is also 

clear that it is not possible to characterize species containing mixed-valent forms of the 

ligand, i.e. one catecholate and two semiquinones or two semiquinones and one catecholate, 

without a significant presence of its reduced and oxidized species. In fact the 

comproportionation constant for the equilibrium: 

 

Ni3CTH3((SQ)2(Cat)Ph)2+ + Ni3CTH3((Cat)3Ph)  → 2 Ni3CTH3((SQ)(Cat)2Ph)+  (5.7.1) 

 

is about 33, according to the electrochemical data. Similar considerations hold for the 

comproportionation constant of the formation of the second intermediate species, namely 

Ni3CTH3((SQ)2(Cat)Ph)2+. These data show that the energies of the frontier orbitals of the 
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three dioxolene fragments of the ligand are the same, taking into account the differences in 

the solvation free energy changes and statistical factors. 

 The electronic spectrum of the manganese derivative (6) shows a pattern of transitions 

in the red region of the spectrum (11,600, 12,900 and 14,200 cm-1) which are usually found 

to characterize the semiquinone ligands. The shoulder at 24,100 cm-1 could be also 

consistent with a semiquinone ligand-centered transition. A strong absorption is also 

detected at 21,300 cm-1 and can be probably assigned to a charge transfer transition. The 

feature of the spectrum therefore are consistent with the formulation of this manganese 

compound as tris-semiquinone Mn3(TpCum,Me)3((TBSQ)3Ph) derivative. 

 

 5.7.2 Magnetic properties 

 The χT vs T curve for the Mn3(TpCum,Me)3((TBSQ)3Ph) complex is shown in Figure 

5.19. At room temperature (300 K) the obtained value of χT is 9.07 emu·K·mol-1, and its 

tendency is to slowly decrease on increasing temperature. This value is much lower than 

that expected for three spins S=5/2 and three spins S=1/2 uncorrelated (χTtheor= 14.25 emu 

K mol-1), while it is in perfect agreement with what expected for three S=2 centres with 

g=2.00  (3 x 3.00 emu·K·mol-1). This is then a clear  indication that each Mn(II) is strongly 

antiferromagnetic coupled to each semiquinone radical, while the interaction between the 

radicals is not evident at this temperature. On lowering T, χT increases and at the lowest 

temperature (2 K), it reaches the value of 19.7 emu K mol-1. It should however be noted that 

the value is still growing at this temperature. This behavior suggests the existence of a 

ferromagnetic coupling between paramagnetic centers. The observed χT value is consistent 

with an S = 6 ground-state (theoretical value 21 emu K mol-1) and the low observed value 

can be again explained by assuming an incomplete population of the ground state, even at 

low temperature. 

 This interpretation is confirmed by the M vs. H curves at low T (2.5 and 4.5 K, shown 

as reduced magnetization in Figure 5.20) which at 6 T are almost saturated to the expected 

value of 12 µB. The plot of M vs. H/T clearly shows that the two curves are almost perfectly 

superimposed and this suggests that only a very small zero-field splitting exists in this 

complex. This result is in agreement with the presence in the system of very isotropic 

species, namely Mn(II) (a 6S ion) and semiquinone radicals. Interestingly, the X-Band EPR 

spectra show the presence of a fine structure due to a small Zero Field Splitting: preliminary 
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interpretation of HF-EPR spectra confirms the S=6 ground state and a value of D<0.1 cm-1 

(see Figure S5.2). 

 

 
Figure 5.19 χ·T vs T curve for complex Mn3(TpCum,Me)3(TBSQ)3 (empty triangles). The continuous 
line is the result of the best fit obtained with both the models described in the text, which yielded 
superimposable curve. Best fit parameters for the two models are reported in the text. 
 

 
Figure 5.20 Reduced magnetization data for Mn3(TpCum,Me)3(TBSQ)3, measured at 2.5 K (full 
triangle) and 4.5 K (empty squares) respectively. The presence of only a small Zero Field Splitting is 
evidenced by the almost perfect coincidence of the two curves. 
 

 Following this preliminary interpretation, two fits of the χT data were attempted. We 

assumed a C3 symmetry for the exchange interactions which, given the lack of a crystal 

structure, cannot be experimentally confirmed. However, the following discussion will show 
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that even with the use of a reduced number of parameters we could get a very reasonable 

explanation of the observed magnetic properties of the Mn3(TpCum,Me)3((TBSQ)3Ph) 

complex. 

 In the first simple model we assumed the manganese(II)-semiquinone antiferromagnetic 

coupling to be so strong to consider the system as virtually built up by three S=2 

ferromagnetically interacting spins, and we then employed only one J-value to analyze the 

data. The exchange Hamiltonian describing the system is then that of a regular triangular 

spin structure: 

 
H =J(S1S2+S2S3+S1S3)              (5.7.2) 
 
In this approach, the energy of each state is a function of total spin only: 
 

)1(
2

)( += TTT SSJSE               (5.7.3) 

 
The derivation of the analytic expression of the Van Vleck equation is then 

straightforward:[20] 
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The best fit (shown in Figure 5.19) was obtained by using a value J = - 1.12±0.05 cm-1 and 

gave an agreement factor, R= ( )
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= 6.7*10-4, where N is the 

number of experimental points and nP is the number of parameters. The error on the 

calculated coupling constant is obtained assuming a Dx=90% and an error on the 

experimental χT values equal to the square root of the mean quadratic error.[83]  

 Even if this fit was satisfactory and confirmed our qualitative analysis, it does not give 

us any indication about the value of the "real" coupling between the semiquinones. This can 

be evaluated by considering that the projection coefficient of the spin S=1/2 of each radical 

over the S=2 state of the Mn(II)-radical unit is equal to 1/6.[84] This leads to an estimate of 

JSQSQ which is 36 times the value of the effective coupling between the three spin S=2, i.e 

JSQSQ = 40 cm-1. To obtain this parameter from a fit based on a more refined model we 
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considered as variable parameters both the coupling constant between radicals and Mn(II) 

and the coupling constant between each pair of semiquinones. The Hamiltonian of the 

system is then the one describing the pattern of Scheme 5.5:  

 
H = J1(S1S2+S3S4+S5S6)+J2(S1S3+S3S5+S1S5)         (5.7.5) 
 
where S1, S3 and S5 identify the radical spins and S2, S4 and S6 the metal ion ones. 

 

Scheme 5.5 

 

 

 ∆∆∆∆E (cm-1) 

Model 1 

∆∆∆∆E (cm-1) 

Model 2 

S=6 Ground State  Ground State 

S=5-S=6 6.72 6.5 

S=4-S=5 5.6 5.7 

S=3-S=4 4.48 4.6 

S=2-S=3 3.36 3.5 

S=1-S=2 2.24 2.3 

S=0-S=1 1.12 1.15 

 
Table 5.1 The table shows the difference in energy between subsequent levels obtained by the best fit 
of χT data with Model 1 and 2, respectively  
 
 The best fit parameters gave the following results: g=2.00 (fixed) J1>350 cm-1, in 

agreement with the predicted strong antiferromagnetic coupling between Mn(II) and 
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semiquinone, and J2 =-40 cm-1, with an agreement factor R=5.7*10-4). Notwithstanding a 

certain systematic deviation from the experimental value the correlation between the 

parameters is very small and the fit is very stable. Varying J1 from 350 cm-1 to 500 cm-1 

results in a variation over J2 of less than 0.3 cm-1, without appreciable effect over the 

calculated curve. It is also interesting to note here that the two models yielded the same 

theoretical curve: indeed, a comparison of the energies of the low-lying spin levels shows a 

very good agreement between the two fitting models (see Table 5.1). 

 Finally, we introduced a lower symmetry (C2) for the exchange pattern in both the 

model employed, but this did not lead to an improvement of the fit, thus confirming that the 

assumption of a three-fold symmetry for the exchange is completely justified. 

  

 
 
Figure 5.21 χT vs T curve for complex Ni3(CTH)3((TBSQ)3Ph)(PF6)3 (empty triangles). The 
continuous line is the result of the best fit obtained with the parameters reported in the text. 
 

 Given this result, we employed the same exchange pattern of Scheme 5.5 for the 

interpretation of the magnetic data of the Ni3(CTH)3((TBSQ)3Ph)(PF6)3 complex, whose χT 

vs. T curve is shown in Figure 5.21.  The room temperature value (6.25 emu·K·mol-1) is 

higher than expected for three uncoupled Ni(II) ions and three semiquinones (theoretical 

value = 4.7 emu·K·mol-1, assuming g = 2.2 for Ni(II) ions). However, we wish to point out 

that the mononuclear [Ni(CTH)(DBSQ)]PF6] complex shows a χT value of 2.28 

emu·K·mol-1 at 300 K,[71] as a result of a strong ferromagnetic interaction between the 

paramagnetic metal ion and the radical ligand. Thus, a value equal to 6.7 – 6.8 emu K mol-1 

(3 x 2.28 emu·K·mol-1) was expected for the present trinuclear derivative if the coupling 

between metal and semiquinonato had not changed. The observed value at room 
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temperature is then suggesting that, while there is a ferromagnetic coupling between Ni(II) 

and semiquinonato which is effective even at room temperature, this is smaller than in the 

mononuclear parent derivative. On decreasing the temperature the value of χT increases, 

thus indicating that a ferromagnetic coupling is active between the three semiquinone 

radicals, as found in our Mn(II) derivative.  

 The curve passes through a maximum of 10.53 emu·K·mol-1 at 10 K, and then 

decreases. It has to be stressed that the maximum χT value is substantially lower than 

expected for a completely populated S = 9/2 state (13.6 emu·K·mol-1) but can be explained 

by population of spin states with lower multiplicity. A magnetization measurement 

performed at low temperatures yielded a value of 8.70 µB at 6.5 T and 2.5 K, where the 

sample is still unsaturated (Figure 5.22). This is again in agreement with a ground S = 9/2 

spin state and near excited state of lower spin multiplicity, whose population reduces the 

magnetization to a value lower than expected for an S = 9/2 (theoretical Msat value around 

9.6 µB assuming g = 2.15, see below). The picture emerging from the interpretation of the 

magnetic data is then consistent with our hypothesis of an S = 9/2 ground spin-state, due to 

the expected ferromagnetic coupling between nickel and semiquinone and the smaller 

ferromagnetic coupling between the three unpaired electrons of the ligand.  

 

 
Figure 5.22 Magnetization curves for Ni3(CTH)3((TBSQ)3Ph)(PF6)3 complex, measured at 2.5 
(empty squares) and 4.5 K (empty triangles) respectively. 
 

 The fitting model in this case includes a correction to account for the decrease in χT 

below 10 K, assuming intermolecular antiferromagnetic interactions as described in 

paragraph 5.5.[61] The same caveat we raised in paragraph 5.5 concerning the use of a 
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phenomenological molecular field correction θ has to be considered. Indeed even if zero-

field splitting terms were not included in the Hamiltonian they are likely to play a non-

negligible role on the low temperature part of the χT curve, given the anisotropy of Ni(II) 

ions. Unfortunately, HF-EPR spectra only showed an uninformative very broad band around 

g=2.2 (see Figure S5.3), thus not allowing the determination of the anisotropy of the system. 

It should be noted that in the case of Mn(II) derivative there was no need for intermolecular 

interaction correction because the intermolecular interactions are supposed to be reduced to 

a minimum by the bulky ancillary ligand we used and the zero-field splitting is presumably 

very small. 

 In addition to the phenomenological correction we assumed the presence of a small 

amount of paramagnetic impurity, which is expected to play a relevant role in agreement 

with the trinuclear nature of the system. The best-fit curve (Figure 5.21, continuous line) 

obtained in such a way yielded the following parameters for the spin Hamiltonian: J1 = -173 

cm-1, J2 = -26.5 cm-1 g = 2.14, θ = -0.25 K with a factor R=3.9*10-4.With these values of the 

coupling constants, the lowest excited-states are doubly degenerate S = 7/2, 12 cm-1 higher 

in energy with respect to the ground-state. The g-value of 2.14 is in agreement with what 

expected for a Ni(II) and a semiquinonato ferromagnetically coupled. Indeed, for a system 

with such a coupling scheme the global g-value may be related to the individual ones by the 

relation  g = 2/3gNi+1/3gSQ.[84] Then, if one assumes gSQ = 2.00, a global g = 2.14 implies 

gNi = 2.21, which is a well-established value for the Ni(II) ion.[85] 

 It has to be noted that the Ni(II)-semiquinonato ferromagnetic coupling is strongly 

reduced with respect to the single center systems.[71] This phenomenon is analogous to 

what we have observed for the bis-semiquinonate system described in paragraph 5.5 and 

points out that while the qualitative behavior of this metal radical interaction can be easily 

predicted, its intensity can vary largely when passing from one family to another. 

 The semiquinonato-semiquinonato coupling within the tri-radical are, as expected, 

ferromagnetic and the value of the coupling between the semiquinonato units of the radical 

is of the same order of that obtained for the homologous biradical in paragraph 5.5.[79] A 

comparison of the obtained value for the coupling between radicals in the two derivatives 

shows that this is higher in the manganese complex than in the Ni(II) one, thus suggesting 

that a variation in the dihedral angle between the plane of the semiquinone is likely to occur 

when passing from the Ni(II) complex to the Mn(II) one.[2,52,79,86] This is probably due 

to the different diamagnetic ligand employed in the two cases, which imply a penta-
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coordinated Mn(II) and an hexa-coordinated Ni(II) and then a different accommodation of 

the paramagnetic ligands as well. 

 

 

5.8 Conclusions  

 

We have shown how an appropriate strategy in designing linked o-semiquinone ligands 

can be used to fix the magnetic properties of a collection of paramagnetic centers. In 

particular, for ligand (1) the combined use of DFT and spectroscopic data allowed us to 

achieve a deep understanding of the electronic structure of the M2(CTH)2(SQ-Cat)(PF6)3 (n 

= 3; M = Cobalt(III), Chromium(III); CTH = tetraazamacrocycle) complexes. In particular, 

our results strongly suggest a fully delocalized electronic structure description for the 

trinegative radical ligand 5,5’-di-tert-butyl-3,3’,4,4’-tetraoxo-biphenyl and their 

homodinuclear metal complexes. This description is independent from the value of the 

dihedral angle between the phenyl rings, taking into account the existence of a binary 

symmetry axis within the molecule. Therefore, if the current chemical terminology is used, 

as we have done in the text, a description of the SQ-cat ligand as a class III mixed valence 

species seems appropriate. This conclusion however cannot in principle hold if the 

symmetry of the bis-dioxolene molecule is broken by introducing different ring substituents 

or by coordination to different metal ions. A more complete characterization through 

Resonance Raman spectroscopy is currently in progress in order to test the hypothesis of a 

class III behavior.  

 On the other hand we have shown that the ligand 1,3-bis(dioxolene)-benzene, (2) and 

1,3,5-tris(dioxolene)-benzene, (4) may be used to create a bis(semiquinone) and 

tris(semiquinone) ligand characterized by a triplet and a quartet ground-state, respectively. It 

should be stressed that the strategy based on the substitution of some sp2 radical carbons of 

a non Kekulè hydrocarbon with other radical groups has been in general used for obtaining 

ferromagnetically coupled biradicals.[45] We have also shown that with both these ligands 

the coordination of paramagnetic metal ions enforces high-spin ground-states in the 

resulting metal complexes. In particular the the magnetic coupling the tris-semiquinone 

ligand induces an S = 9/2 electronic ground-state in the Ni(II) complex and an S = 6 

electronic ground-state in the Mn(II) complex according to our expectations, thus showing 

how an appropriate linker between the paramagnetic centers may propagate the desired 
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magnetic interactions. At this step there is therefore the problem concerning the utility of 

these metal-polyoxolene complexes as building blocks for a network coordination polymer. 

It has been suggested that in order to achieve this goal the chemist should predetermine the 

structure of the network and in this sense simpler units to be assembled than those we 

propose should be required.[87] 

However, a first result in the direction of obtaining a polymeric structure has been 

achieved by the synthesis and characterization of the polymeric system described in 

paragraph 5.6 which is capable of undergoing a valence tautomer process. On this respect 

the most important experimental result is the strong cooperativity shown by the valence 

tautomer interconversion process, a property that we were looking for in designing this 

peculiar molecular system. Indeed, this is induced by the polymeric structure of the 

compound, which is on its turn a consequence of the peculiar bis-bidentate radical ligand. 

We feel that the observed properties can be easily manipulated by changing the dioxolene 

substituents, the diazine acceptors as well as the crystallization solvent, in agreement with 

the suggestions of the previous work concerning the more simple molecular Co(NN)(diox)2 

complexes. The extension of this approach to the tris-bidentate radical ligand (4) is actually 

in progress, in view of obtaining a more complex structure with enhanced cooperativity. 
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6. Crystal field and exchange coupling in rare 

earth-semiquinonato complexes: an experimental 

approach  
 

 

 

 

 

 

 

 

6.1 Introduction 

 

 Suitable strategies have been developed to work out new magnetic molecular 

complexes containing 3d ions with orbitally non-degenerate ground state and/or open-

shell ligands with desired properties. This is due to the possibility of controlling, to some 

extent, the factors governing the nature, antiferro- or ferromagnetic, and the intensity of 

the exchange-coupling interaction [1-3]: we have shown in Chapter 5 how it is possible 

to predict the sign of the coupling between dioxolene radicals and 3d metal ions by 

simple considerations on the symmetry of the magnetic orbitals of the two centers. We 

also suggested in Chapter 3 some useful strategies to control the magnetic anisotropy of 

polynuclear transition metal ions systems by rationalizing the magnetic anisotropy of 

their building blocks on the basis of Ligand Field arguments.  

 The control of these magnetic features is very important, as molecules which are 

characterized by high spin electronic ground states and large anisotropy are actively 

investigated as possible candidates for developing molecular based materials of 

technological interest.[2,4-10]. On this respect complexes of rare earth ions, which can 

provide both very high spin and large anisotropy are attracting increasing interest in the 

field of molecular magnetism.[11-24] Notwithstanding this interest, not much is known 

about the nature of the exchange interactions of rare earth ions between themselves and 

with other magnetic groups, because until recently few simple compounds containing 
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magnetically coupled f  ions were available. In the last few years things have changed 

because complexes of lanthanide ions with different paramagnetic ligands, ranging from 

metal complexes to organic radicals, have been reported[11-13,25-35]. However, the 

interpretation of the magnetic data of complexes containing Ln(III) ions, with the 

exclusion of Gd(III), is still a difficult task, due to the large orbital contribution of these 

ions. Furthermore, the study of the magnetic coupling in the lanthanide derivatives gives 

rise to additional difficulties, because these ions are usually involved in weak 

interactions, whose strength is comparable with that of the crystal field acting on the ion. 

As we will see in the following, it is precisely the difficulty in having a quantitative 

information of these two contributions which so far reduced the analysis of the magnetic 

properties of the anisotropic lanthanides mainly at a qualitative level, especially in 

molecular complexes.  

 In this chapter we will first review in some details current theories about magnetic 

properties of rare-earth containing systems and we will then present the results obtained 

on a series of rare-earth semiquinonato complexes which were characterized with the aim 

of obtaining some further hints on the parameters governing the exchange coupling and 

the anisotropy of these systems.  

 

6.2 Magnetic properties of isolated rare-earth ions  

 

 Rare earth ions present a largely unquenched orbital momentum as the inner 

character of 4f orbitals with respect to 3d ones prevents crystal field to be effective in the 

quenching of orbital momentum. Exceptions to this behavior are Eu(II) and Gd(III) 

which - as a consequence of their 4f7 electronic configuration - present an orbitally non-

degenerate ground state.  

 The 4fn configuration gives rise to a 2S+1L ground state, which is split by strong spin 

orbit coupling [36] to give states which are identified by total angular momentum, J: 

 

|L-S|<J<L+S          (6.2.1) 

 

The energies of each multiplet 2S+1LJ are easily calculated as the eigenvalues of the spin-

orbit coupling hamiltonian, H=λL·S (see Chapter 3): 
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E(2S+1LJ)= λ [J(J+1)-L(L+1)-S(S+1)]/2       (6.2.2) 

 

 

where λ=±ζ/2S. ζ is the spin orbit coupling constant which ranges between 600 and 

3,000 cm-1 throughout the series, the highest values corresponding to the heaviest ions. 

In analogy to what we have seen for d ions in Chapter 3, the + sign applies for n<7, the – 

sign for n> 7. The ground states for the different rare earth ions are reported in Table 6.1. 

Eq. (6.2.1) and the sign of the spin orbit coupling constant λ imply that in the ground 

state J= L-S for n< 7, and J= L+ S for n> 7. 

 The g factor of the Zeeman hamiltonian of a given J multiplet is given by: 

 

)1(2
)1()1(

2
3

+
+−++=

JJ
LLSSg J         (6.2.3) 

 

 

 For a 4fn ion the crystal field splits the J multiplets in a series of Stark sublevels, 

whose pattern depends on the site symmetry of the Ln(III) ion. For C1 symmetry of the 

crystal field, which is a situation often encountered in molecular compounds, the 

degeneracy of each J multiplet is completely removed: 2J + 1 singlets are then expected 

when the number n of 4f electrons is even and J + 1/2 doublets when n is odd. However, 

as the effect of crystal field is small all the Stark sublevels of the ground J multiplet are 

populated at room temperature and the observed magnetic moment coincide with what 

expected for the free-ion Curie behavior, provided that the ground J multiplet is well 

isolated with respect to the excited ones. It was early noticed [37] that this is not the case 

both for Eu(III) - whose first excited state 7F1 is lying only at ca 350 cm-1 above the non-

magnetic 7F0 ground state - and Sm(III), for which the first excited state 6H7/2 is lying 

about 700 cm-1 above the ground 6H5/2 state. As a consequence these two ions show a 

room temperature magnetic moment which differs from the value expected for the 

ground J multiplet. Further, they show a marked temperature dependence of the magnetic 

moment, which is increasing with temperature due to the progressive population of 

excited state which are more magnetic than the ground one. However inclusion of the 

contribution of first excited state in calculation of the magnetic moment at room 
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temperature leads to a perfect agreement with the experimental observations also in this 

case.[37] 

 

Average χχχχT  

(emu K/mol) Ion State S L J g 

Exp Calc 

Ce3+ 
2F5/2 
2F7/2 

1/2 3 5/2 6/7 6 6.43 

Pr3+ 
3H4 
3H5 

1 5 4 4/5 12 12.8 

Nd3+ 
4I9/2 

4I11/2 
3/2 6 9/2 8/11 12 13.1 

Pm3+ 
5I4 
5I5 

2 6 4 3/5  7.2 

Sm3+ 
6H5/2 
6H7/2 

5/2 5 5/2 2/7 2.4 0.71(2.5) 

Eu3+ 
7F0 
7F1 

3 3 0 0 12.6 0(12) 

Gd3+ 
8S7/2 

6P 
7/2 0 7/2 2 63 63 

Tb3+ 
7F6 
7F5 

3 3 6 3/2 92 94.5 

Dy3+ 
6H15/2 
6H13/2 

5/2 5 15/2 4/3 110 113 

Ho3+ 
5I8 
5I7 

2 6 8 5/4 110 112 

Er3+ 
4I15/2 
4I13/2 

3/2 6 15/2 6/5 90 92 

Tm3+ 
3H6 
3H5 

1 5 6 7/6 52 57 

Yb3+ 
2F7/2 
2F5/2 

1/2 3 7/2 8/7 19 20.6 

 

Table 6.1 Relevant magnetic information for free rare-earth ions. After ref. [38] 
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 The effect of the ligands surrounding lanthanides over magnetic properties becomes 

important on lowering temperature, as a depopulation of the sublevels occurs and 

consequently χLnT (where χLn is the magnetic susceptibility of the Ln(III) ion) decreases, 

thus leading to a deviation from the Curie law. This temperature dependence complicates 

the interpretation of magnetic properties of systems in which the Ln(III) ion interacts 

with another paramagnetic species. Indeed effects due to the exchange are very small - 

because the unpaired electrons are in the well shielded f orbitals - and may be hidden by 

crystal field effects at low temperature. This means that the temperature dependence of 

χT for the compound is due to both the variation of χLnT and the coupling between the 

Ln(III) ion and the second spin carrier. As a consequence information about the nature of 

the interactions between a Ln(III) ion with a first-order orbital momentum and the second 

spin carrier cannot be unambiguously deduced only from the shape of the  χT vs. T 

curve. 

 

 

6.3 Analysis of the magnetic coupling in orbitally degenerate rare earths 

 

 The main problem in evaluating the exchange coupling in systems containing 

orbitally degenerate ions lies in the fact that the usual isotropic spin hamiltonian 

approaches which have been so far employed with much success to understand and 

parameterize the magnetic interactions in compounds containing orbitally non-degenerate 

centers cannot be used.[39,40] Indeed, when systems with unquenched angular orbital 

momentum are considered, S is no longer a good quantum number, and the energies of 

the levels depend also on the value of MS value, with -S ≤ MS ≤S, i.e. there will be some 

preferential orientation of the magnetic moment even in zero field. This is the main 

reason of the peculiar difficulties arising in the analysis of the magnetic behavior of the 

lanthanides. 

 The first detailed and quantitative treatment of the interactions involving one 

orbitally non-degenerate ion, like Fe(III), and an orbitally degenerate rare earth ion was 

performed by Levy[41,42] in an attempt to rationalize the exchange interactions in 

Yb(III) containing garnets and was later employed by Yamaguchi and Kamimura to 

analyze the behavior of Ho(III) garnets.[43] Within this model, the global hamiltonian 
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acting on the system obviously takes into account both crystal field contributions and 

exchange effects: 

 

H=Hex+Hcf          (6.3.1) 

 

 The crystal field hamiltonian, which acts on the ground |LSJMJ> multiplet and splits 

it in a series of Stark sublevels may be written as:[44] 

 

∑=
tqk

t
q
k

q
k CB

,,
cf )(H          (6.3.2) 

 

where Ck
q are irreducible tensor operators of rank k, t numbers the electron of the 

configuration and Bk
q are the crystal field parameters. Both Levy and Yamaguchi 

obtained the Bk
q parameters by combined single crystal spectroscopic and magnetic 

measurements on systems where the Fe(III) was substituted by diamagnetic Y(III) thus 

allowing to extract the crystal field parameters characterizing the uncoupled lanthanide. 

On the other hand, the exchange interactions are described by an anisotropic exchange 

hamiltonian exploiting the formalism of irreducible tensor operators Tq
[k]

: 
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where l=3 for lanthanides, i indicates the i-th electron of the rare earth ion, S(TM) is the 

spin operator of the transition metal ion and αkq are the exchange coupling parameters, 

α00 being the isotropic one. It is evident that the number of adjustable parameters, Bk
q and 

αkq, is huge, especially in the low site symmetry usually characteristic for molecular 

complexes of Ln(III), and a meaningful fit of the experimental parameters becomes 

extremely difficult. Furthermore it is in principle absolutely necessary to perform 

anisotropic measurements because the Hamiltonian (6.3.1) is the sum of the two 

anisotropic hamiltonians (6.3.2) and (6.3.3). 

 The first application of this approach to a molecular complex was described in a 

series of paper by Benelli et al.[11,12] who synthesized and magnetically characterized 

different copper-lanthanides molecular complexes. The crystal field parameters were 
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obtained by an independent fit of the powder magnetic susceptibility of 

[Ln(hfac)3(H2O)2] and fixed in order to reduce the parameterization of the system. It was 

then possible to find out that the isotropic term of the coupling hamiltonian was 

antiferromagnetic while the anisotropic ones were ferromagnetic: to avoid 

overparameterization, however, only second order anisotropic parameters were used. 

 A strongly related approach has been subsequently used by different groups to get 

qualitative information on the type of interaction (ferro- or antiferromagnetic) in 

lanthanides coupled to radical or Cu(II).[32,34,35,45] Within this experimental approach 

the exchange interaction in coupled systems is made apparent by subtracting from χT of 

the complex the contribution arising from the thermal depopulation of the Stark sublevels 

of Ln(III), χLnT. As we have seen previously, the temperature dependence of χLnT is 

directly related to the local contribution of the ligand field onto the Ln(III) ion and thus 

can be obtained from an isostructural Ln(III) complex with a diamagnetic surrounding. 

Further information may be gained by the comparison of the magnetization curves for the 

two derivatives: an antiferromagnetic coupling will indeed result in a lower 

magnetization of the coupled complex with respect to the sum of the uncorrelated spins. 

A value of ∆M lower than the magnetization value for uncoupled S=1/2 is then 

expected,[35] while the reverse is true for ferromagnetic coupling.[34] This approach has 

been successfully applied to the investigation of the Ln(III)-Cu(II) interactions both in 

bimetallic and polymeric coordination compounds by replacing the paramagnetic Cu(II) 

by a diamagnetic ion, either square planar Ni(II) or Zn(II), and to the investigation of 

Ln(III)-(nitronyl-nitroxide)2 complexes, for which the molecule chosen as a diamagnetic 

equivalent of the radical ligand was a nitrone. More recently a quantitative determination 

of crystal field parameters in these latter systems has been achieved[46] through the use 

of Simple Overlap Model[47], an extension of purely electrostatic ligand field theory 

taking into account some degree of covalency. This allowed to derive the eigenfunctions 

and eigenvalues of the ground multiplet by using only three parameters[48] and the real 

structure of the complex and to subsequently evaluate the exchange interaction, in the 

assumption of isotropic coupling, which was sufficient to yield a reasonable fit of the 

powder susceptibility data.  
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6.4 Magnetic coupling in Gadolinium(III) containing complexes 

 

 Given the inherent difficulties in developing a suitable approach for the analysis of 

magnetic data of systems with largely unquenched orbital momentum, with which we 

have dealt in the previous paragraph, much of the data reported up to now are concerned 

with Gd(III) derivatives, which are orbitally non-degenerate.[26-28,31,49-51] It is then 

possible to treat coupled systems containing this ion with the usual isotropic hamiltonian: 

 

H=JSGd·S1          (6.4.1) 

 

where J is the isotropic coupling constant and S1 is the spin of the second magnetic 

center. 

 First reports  on systems containing Gd(III) coupled either to Cu(II) ions [25]or to 

radicals such as nitronyl-nitroxides[25,26] invariably showed a weak ferromagnetic 

coupling with J ranging from -0.5 to -10 cm-1, and this sign of the coupling was 

considered at first sight quite surprising. Indeed, the coupling constant J is the resulting 

of a sum of the exchange interactions between different pairs of magnetic orbitals, 

according to: 

 

∑ −=
i ofi
J

nn
J

21

1          (6.4.2) 

 

where fi indicates an f magnetic orbital of Gd(III) and o the magnetic orbital either of 

Cu(II) or of the radical; n1 is the number of unpaired electrons on gadolinium (then n1=7) 

and n2 the number of unpaired electron on the magnetic center (then n2=1 both for copper 

and mono-radical systems). The actual value of each Jfi-o is related to the overlap between 

the different magnetic orbitals: if the two orbitals on the two different centers have a non-

zero overlap then the spins will pair antiparallel to each other yielding an 

antiferromagnetic pathway, while if there is no overlap the spin will pair in a parallel 

way. We already pointed out in Chapter 5 that a zero overlap between two magnetic 

orbitals may be due either to the absence of any overlap or to opposite contribution of 

two overlap regions of different sign. In the former case the two magnetic orbitals are not 
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interacting, whereas in the latter a ferromagnetic coupling results which is roughly 

proportional to the square of overlap density.  

 For Gd(III) ions coupled to systems with only one unpaired electrons, such as Cu(II) 

or radicals, a maximum of six orthogonal pairs of orbitals - and thus a maximum of six 

ferromagnetic pathways - and only one non-zero f-o overlap, yielding an 

antiferromagnetic pathway, may be present. Thus in principle the observed overall 

ferromagnetic coupling might originate from a larger number of ferromagnetic pathways 

with respect to antiferromagnetic ones. However, if the site symmetry is low - which is 

usually the condition for molecular complexes – the number of orbital pairs which are 

orthogonal by symmetry will be considerably reduced and thus a dominating 

antiferromagnetic coupling would be expected. A similar situation was indeed observed 

for copper or radical complexes coupled to Mn(II) compounds, which yields an overall 

antiferromagnetic coupling.[2] 

 The explanation for the observed behavior cannot then lie in the interactions between 

ground state configurations. Indeed, since the f orbitals are effectively shielded from the 

ligand orbitals  the effective overlaps are very close to zero. However the overlap of the 

magnetic orbital of Cu(II) or radical is relatively larger with the empty d or s orbitals of 

Gd(III) than with the 4f orbitals. Following these considerations the Florence group first 

suggested that a fraction of unpaired electron is transferred, with the same spin it had in 

the original magnetic orbital, into the empty 6s[11] or 5d[13] orbitals, keeping the spins 

of the electrons in the f orbitals parallel according to the Hund’s rule. This may be seen 

as a generalization of the Goodenough-Kanamori rule suggesting a ferromagnetic 

pathway when a magnetic orbital of one site has non zero overlap with an empty orbital 

of the other site. An elementary semi-quantitative treatment of this mechanism was 

proposed by the group of Kahn for the copper case and yielded a value of ferromagnetic 

coupling in fair agreement with the experimental data, confirming at least the feasibility 

of the suggested ferromagnetic exchange pathway.[13] 

 Recently some exceptions to the ferromagnetic coupling have been reported both for 

Cu(II) complexes and nitronyl nitroxide radicals.[22,23,33] In particular for the latter 

antiferromagnetic coupling of 6 cm-1 was observed in a chelating nitronyl nitroxide 

triazole derivative. This suggests that the resulting coupling is actually the sum of two 

contributions, one from the direct overlap of the magnetic orbitals of the ligands with the 

f orbitals, which presumably yields an antiferromagnetic pathway, and the other from the 
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overlap to the s and d orbitals which gives a ferromagnetic pathway. The former may 

become dominant when the radical ligands become stronger donors. 

 

 

6.5 First attempt of rationalization of coupling in rare-earth complexes 

 

 Following the rationalization of ferromagnetic coupling in Gd(III)-Cu(II) and 

Gd(III)-radical systems, Kahn first proposed a very simple model for the interaction 

between orbitally degenerate Ln(III) ions and radicals or Cu(II).[13] According to this 

model, such an interaction was predicted to be antiferromagnetic for the first half of the 

lanthanide series and ferromagnetic for the second half. The basis of this prediction was 

the assumption that the above explained mechanism of spin polarization should be active 

and dominant even for the other Ln(III) ions. This would again favor a parallel alignment 

of the electronic spin momenta of the lanthanides and of the species coupled to it. Such 

an alignment of the spin momenta would then lead to antiparallel alignment of the J 

momenta of the lanthanide for the first half of the series - for which J=|L-S| - with respect 

to the spin S, that is to an overall antiferromagnetic interaction, while a parallel alignment 

of J and S, and then an overall ferromagnetic coupling, would occur one in the second 

half, for which J=L+S. This mechanism is schematized in Figure 6.1. 

 
Figure 6.1 Proposed scheme of coupling for Ln(III)-Cu(II) systems, later extended to Ln(III)-rad. 
After refs. [13]and[35] 
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 While this behavior has been recently confirmed for species containing lanthanide 

ions coupled to two nitronyl-nitroxides,[34,35] recently Kahn et al. showed, using the 

experimental approach outlined in paragraph 6.4, that for a series of chain compounds of 

general formula Ln2Cu3 such a prediction holds [45] for the whole series up to Dy but 

breaks down for Ho and the following lanthanides. A similar violation of that prediction 

was demonstrated by the group of Costes in a series of dinuclear complexes containing 

Cu(II) coupled to lanthanides for Tm(III) and Yb(III).[32] 
 

 

6.6 Antiferromagnetic coupling in a Gadolinium(III)-Semiquinonato complex.  

 

 Following the considerations developed in paragraph 6.3 according to which 

stronger donors radical ligands may give rise to some overlap with 4f orbitals, thus 

leading to enhanced contribution of the antiferromagnetic pathway to the resulting 

coupling, we decided to investigate the coupling of Gd(III) with the semiquinonato 

radical, which are well known to be stronger ligands than nitronyl-nitroxide.  

 The Gd(HBPz3)2(DTBSQ)·2CHCl3 complex, (1), (HBPz3= hydrotris pyrazolyl 

borate; DTBSQ= 3,5-di-tert-butyl-semiquinonate) was obtained by metathetical reaction 

between the parent metal-benzoato derivative[52] and 3,5-di-tert-butylcatechol in 

alkaline methanol. Recrystallization from chloroform-hexane mixtures yielded blue 

crystals of the above compound.  

 Cyclic voltammetry experiments in acetonitrile show that the complex undergoes a 

reversible one electron transfer redox process at -0.65 V and a not reversible one at +0.02 

V vs Fc+/Fc respectively. Both processes involve the coordinated dioxolene ligand, the 

reversible one being assigned to the semiquinonato-catecholato couple and the not 

reversible to the quinone-semiquinonato one. Once compared with the electrochemical 

properties of other metal-o-dioxolene complexes,[53,54]  the observed behavior is that 

expected taking into account the different charge density of the metal acceptor. As a 

further support the electronic spectrum shows a band at 12,600 cm-1 and a pattern of 

bands in the region 26,400 - 28,400 cm-1, which were suggested[54]  to be internal 

transitions of the semiquinonato ligand. 
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 6.6.1 X-Ray structure 

 Figure 6.2 shows an ORTEP view of the crystal structure of (1), determined by X-

ray crystallography. The asymmetric unit is the whole molecule, and each molecule 

crystallizes with two molecule of solvent in the orthorhombic space group Pca21. The 

coordination sphere around gadolinium comprises six nitrogen atoms from 

trispyrazolylborate ligands and two oxygen atoms from semiquinone. Gadolinium is 

eight coordinate, in a distorted square antiprism environment, O(2)N(5)N(2)N(7) lying 

approximately on one face and N(9)N(4)N(11)O(3) on the other one. The C-O bond 

distances are slightly shorter and the C19-C20 distances slightly longer than usually 

observed in semiquinonato metal complexes.[55,56].  

 

 
 
 
Figure 6.2 ORTEP view of  complex (1) (thermal ellipsoids at 50% probability); hydrogen atoms 
and solvent molecules are omitted for clarity 
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Gd1-O1 2.343  O1-Gd1-O2 67.7 

Gd1-O2 2.354   O2-Gd1-N4 81.5 

Gd1-N4  2.48  O1-Gd1-N2 73.1 

Gd1-N2  2.503   O1-Gd1-N11 88.8 

Gd1-N11 2.53   O2-Gd1-N11 73.8 

Gd1-N7 2.53  N2-Gd1-N11 72.9 

Gd1-N5 2.571   N4-Gd1-N7 79.5 

Gd1-N9 2.585  N2-Gd1-N7 78.5 

C19-C20 1.49  O1-Gd1-N5 75.6 

O1-C20 1.27   O2-Gd1-N5 78.7 

O2-C19 1.25   N4-Gd1-N5 72.3 

   N7-Gd1-N5 71.3 

   N4-Gd1-N9 75.4 

   N2-Gd1-N9 74.4 

   N11-Gd1-N9 69.3 

   N7-Gd1-N9 72.1 

 

Table 6.2 Selected bond lengths [Å] and angles [°] for complex (1)  

 

 

 6.6.2 Determination of exchange coupling in Gd(HBPz3)2(DTBSQ)·2CHCl3  

 Magnetic susceptibility of (1) was measured in the temperature range 3-260 K and 

the corresponding plot of χT vs T is reported in Figure 6.3. The χT value at high 

temperature (about 7.9 emu K mol-1 at 260 K) is a bit lower than expected for a Curie 

behavior for two uncorrelated spins 7/2 and 1/2 with g=2.00 (8.25 emu K mol-1), 

indicating that the two centers are still weakly interacting at this temperature. On 

lowering the temperature χT decreases, thus suggesting the presence of antiferromagnetic 

interactions between the two spin carriers, giving rise to an S=3 ground state and an S=4 

excited state. It is also apparent that at T<10 K the value of χT is lower than expected for 

an S=3 state (5.98 emu K mol-1): this can be attributed either to Zero Field Splitting of 

the ground state or to some weak antiferromagnetic interaction between the neighboring 

molecules. Both these effects were accounted for by using a phenomenological Weiss 
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correction.[57] The analytic expression with which we have fitted the experimental curve 

was then: 

 

θχ
χχ

−
=

1c           (6.6.1) 

 

where χc was calculated according to Van Vleck equation using the isotropic 

hamiltonian: 

 

H= JSGd·SSQ           (6.6.2) 

 

With this formalism the two possible states, S=3 and S=4, are separated in energy by 4J: 

a positive J value is obtained for an antiferromagnetic coupling and a negative one for a 

ferromagnetic coupling. The resulting expression for χc is then: 
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Figure 6.3 Temperature dependence of χT for complex (1). The red line represents the best curve 
fit for data down to 10 K without assuming any correction for the low temperature decrease. The 
black line is the best fit curve taking into account a phenomenological correction for the 
decrease of χT observed at low temperature. Best fit parameters are reported in the text. 
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 The best fit to the experimental χT curve was obtained by using  J= 13.3±0.5 cm-1, 

θ=-0.05 ± 0.01 cm-1 with a global g value of 1.995 ± 0.005. Neglecting the low 

temperature portion of the curve and not considering the Weiss correction the best fit 

curve is actually the same down to 10 K, with J= 13.8±0.5 cm-1.  

 

 

Figure 6.4 Field dependent magnetization for complex (1) at 2.15 K  and 4.5 K (upper and lower 
curve, respectively). The lines represent the Brillouin function for an S=3 state at the two 
temperatures. Inclusion of Zero Field Splitting values up to D=0.2 cm-1 does not change 
appreciably the simulated curve. 
 

These parameters indicate that the ground S=3 state is separated in energy from the 

excited one by about 80 K, thus being fully populated at low temperature, a picture which 

is confirmed by field dependent magnetization curves up to 7 T, measured at 2.15 K and 

4.5 K (see Figure 6.4). These are indeed in good agreement with calculated Brillouin 

curves for a fully populated S=3 states, thus suggesting that Zero Field Splitting effects, 

if present, should be small (D<0.2 cm-1). 

 The observed coupling confirms the prediction that stronger ligands may give rise to 

effective antiferromagnetic couplings with Gd(III). This behavior can be qualitatively 

justified assuming that the observed coupling is the sum of two contributions, one from 

the direct overlap of the magnetic orbitals of the ligands with the f orbitals of the 

lanthanide, which presumably yields an antiferromagnetic pathway, and the other from 

the overlap to the 6s and 5d orbitals which gives a ferromagnetic pathway by a spin-
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polarization mechanism. The former may become dominant when the radical ligands 

become strong donors (as semiquinones). 

 

 

6.7 Magnetic properties of Ln(HBPz3)2(3,5-DTBSQ) and Ln(HBPz3)2(tropolonato) 

 

 Following the results described in the previous paragraph for complex (1) we 

decided to synthesize the corresponding complexes of the remaining rare-earth ions, with 

the aim of investigating the different effects of exchange coupling and crystal field on 

their magnetic properties. We felt that this series might have some advantages with 

respect to similar compounds which have been studied up to now. Indeed, we have seen 

in previous paragraph that semiquinone ligands give rise to better overlap with 4f orbitals 

and this results in larger antiferromagnetic contribution. This may be very useful to 

enhance the effects of the exchange with respect to those due to crystal field. 

Furthermore, while previously reported radical-rare earth complexes always involved 

more than one radical ligand (see e.g. [26,50]), these are the first isolated 1:1 rare-earth 

radical systems. For former systems the effects of the direct exchange between radical 

and rare earth is then masked not only by crystal field effects but also by the radical-

radical exchange, whereas in the latter only the exchange interaction between rare earth 

ion and radical pathway is present. Finally, the observation of antiferromagnetic coupling 

in (1) prompted us to check if the Kahn model could successfully apply also to these 

systems: in this case a reverse pattern with respect to that described in Figure 6.1 should 

be observed. 

 As we have seen in paragraph 6.3 a quite diffuse experimental approach to separate 

the different contribution of crystal field and exchange coupling to the magnetic 

properties in rare earth-radical complexes involves the determination of magnetic 

properties of a corresponding complex in which the radical ligand is substituted by a 

diamagnetic analogue giving rise to comparable ligand field effects. For our complexes 

the diamagnetic analogue of semiquinones was found in tropolonato ligands, which 

presents comparable O-Ln-O bite angle and Ln-O distances with respect to 

semiquinonato ones.[52] The work presented in the following pages is then based on the 

comparison of magnetic properties and EPR spectra of complexes belonging to the 

homologous families Ln(HBPz3)2(3,5-DTBSQ) and Ln(HBPz3)2(Trp), where HBPz3= 
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hydrotrispyrazolylborate, 3,5-DTBSQ = 3,5-di-tert-butylsemiquinone, Trp=tropolonate 

and Ln = Sm, Eu, Gd, Tb, Dy, Ho, Er and Yb. Both the derivatives of the rare earth series 

were structurally characterized by X-Ray diffractometry. 

 

 6.7.1 X-Ray structures of Ln(HBPz3)2(3,5-DTBSQ) and Ln(HBPz3)2(Trp) 

 The synthesis of tropolonate derivative was obtained following the synthetic 

procedure described in ref. [52]. Even if the series was reported to be isostructural on the 

basis of cell isomorphism[52] X-Ray analysis pointed out that Er(III), Ho(III), Eu(III) 

and Gd(III) crystallize in the tetragonal space group P41212, whereas Sm(III), Tb(III), 

Dy(III) and Yb(III) crystallize in the expected space group P212121 with the same cell 

parameters reported in ref. [52]. We then decided to solve the structure for one of the 

systems crystallizing in tetragonal group to check for possible structural differences. As 

the Holmium derivative yielded a very good set of data (see Experimental section) we 

solved the structure for this complex, Gd(III), Eu(III), Er(III) being assumed isostructural 

on the basis of cell parameters.  

 

 
 
Figure 6.5 Ortep view of Ho(HBPz3)2(3,5-tropolonate) Thermal ellipsoids shown at 30% 
probability. Only the atoms belonging to the asymmetric units have been labeled. Hydrogen 
atoms are omitted for the sake of clarity.  
 

 The systems crystallize with 4 molecules per unit cell. A C2 symmetry axis passes 

through the lanthanide ion and one of the carbon atom of the ligand (C4 in Figure 6.5): 
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the asymmetric unit is then half of the molecule, comprising one tris-pyrazolylborato 

group and half tropolonato ligand. The coordination sphere around the lanthanide ion 

comprises six nitrogen atoms from trispyrazolylborate ligands and two oxygen atoms 

from tropolonate: the lanthanide ion is as expected eight coordinated, in a slightly 

distorted square antiprism environment, O(1)N(11)#1N(21)#1N(31) (where the symmetry 

operation corresponding to #1 is -y+1,-x+1,-z+3/2) lying approximately on one face and 

the corresponding symmetric atoms on the other one. Bond distances and angles (Table 

6.3) compare well with data reported in literature for systems crystallizing in 

orthorhombic space group P212121.[52] 
 
Ho1-O1 2.292  O1- Ho1 O1#1 68.02  

Ho1-N31 2.451  O1- Ho1- N31 136.40

Ho1-N21 2.500  O1- Ho1- N31#1 75.67

Ho1-N11 2.527  O1- Ho1- N21 76.75

  O1- Ho1- N21#1 80.73

  O1- Ho1- N11 145.40

  O1- Ho1- N11#1 122.18

  N31- Ho1- N31#1 146.58

  N31- Ho1- N21 74.31

  N31- Ho1- N21#1 113.93

  N31- Ho1- N11 75.31

  N31- Ho1- N11#1 77.50

  N21- Ho1- N21 152.77

  N21- Ho1- N11 134.95

  N21- Ho1- N11#1 71.24

  N11- Ho1- N11#1 70.27

 

Table 6.3 Selected bond lengths [Å] and angles [°] for Ho(HBPz3)2(Trp) (#1 -y+1,-x+1,-z+3/2) 

 

 By slightly changing the recrystallization conditions with respect to that described in 

previous paragraph for the synthesis of (1), the unsolvated form of the complex 

Ln(HBPz3)2(3,5-DTBSQ) is obtained for Y(III) and all the Ln (III) ions from Sm(III) to 
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Yb(III).§ Also in this case X-Ray structure solution was then necessary to check for 

possible structural differences with respect to solvated form (1) and to compare the 

structure with those of tropolonato derivative. The structure was solved and refined for 

Y(III) derivative, but the same unit cell was obtained for all the other derivatives, which 

will be then considered as isostructural with the former in the following.[58]  

 

 
Figure 6.6 Ortep view of Y(HBPz3)2(3,5-DTBSQ). Hydrogen atoms are omitted for the sake of 
clarity. Thermal ellipsoids are shown at 50% probability. 
 

 Figure 6.6 shows an ORTEP view of the crystal structure of Y(HBPz3)2(3,5-

DTBSQ) which crystallizes in the monoclinic system (P21/c), with four molecules per 

unit cell. The asymmetric unit is the whole molecule. In analogy to what observed for (1) 

and the tropolonato derivative the coordination sphere around Y(III) (or lanthanides) 

comprises six nitrogen atoms from trispyrazolylborate ligands and two oxygen atoms 

from semiquinone. The central ion is eight coordinated, in a slightly distorted square 

antiprism environment, O(2)N(4)N(2)N(12) lying approximately on one face and 

N(6)N(14)N(16)O(1) on the other one (see Figure 6.7).  

 The C-O bond distances are slightly shorter and the C19-C20 distances slightly 

longer than usually observed in semiquinonato-metal complexes (see Table 6.4), but this 

was found to be common in lanthanide-semiquinonate complexes.[59,60] Concerning the 

intermolecular contacts it should be noted that the four molecules of the unit cell present 
                                                           
§ Tm(III) derivative was not synthesized but it is expected to be easily obtained 
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parallel pairs of semiquinone planes: these are quite far (12.2 Å ) from each other. 

Finally, the smallest intermolecular distances between the magnetic centers (we actually 

suppose the spin density of the semiquinones being localized on the oxygens) are quite 

large: Ln-Ln 9.836 Å, Ln-O 8.310 Å, O-O 7.061 Å. 

 

 
Figure 6.7 Detail of the coordination environment of Y(HBPz3)2(3,5-DTBSQ), clearly showing 
the square-antiprismatic coordination sphere The same coordination is observed for 
Ho(HBPz3)2(Trp) 
 

 
        

Y-O1 2.296  O1-Y-O2 69.56  O2-Y-N2 75.79 

Y-O2 2.317  O1-Y-N12 137.52  O2-Y-N16 143.64 

Y-N12 2.456  O1-Y-N6 73.74  O2-Y-N14 79.25 

Y-N6 2.457  O1-Y-N4 142.33  N12-Y-N6 147.01 

Y-N4 2.510  O1-Y-N2 80.54  N12-Y-N4 77.50 

Y-N2 2.512  O1-Y-N16 121.19  N4-Y-N16 72.65 

Y-N16 2.528  O1-Y-N14 76.08  N4-Y-N14 138.39 

Y-N14 2.533  O2-Y-N12 75.42  N6-Y-N2 76.06 

C21-O1 1.282  O2-Y-N6 136.58  N6-Y-N16 76.42 

C21-C22 1.463  O2-Y-N4 122.13  N6-Y-N14 113.57 

C22-O2 1.282  N4-Y-N2 69.91  N2-Y-N14 150.45 

   N2-Y-N16 137.47  N16-Y-N14 71.34 

 
Table 6.4 Selected bond lengths [Å] and angles [°] for Y(HBPz3)2(3,5-DTBSQ)  
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 It should be noted that bond distances and angles of the coordination sphere (Table 

6.4) of this derivative - which are presumably the relevant one in determining ligand field 

effects - compare quite well with the homologous distances found in the tropolonate 

derivative, even if the Y-O distances for Y(HBPz3)2(3,5-DTBSQ) are somewhat longer 

than observed in the corresponding Ho-O ones in Ho(HBPz3)2(Trp) (average distances of 

2.31 Å vs 2.24 Å). This small difference may however be due to the different ionic radius 

of the two ions which we have employed for the structure solution. Interestingly, the O-

Ln-O angle turned out to be almost the same for the two families.[52] The strong 

similarity between the two structures is made evident in Figure 6.8. On the basis of 

crystal structure analysis we may then conclude that, for our purpose, the assumption of 

similar ligand field effects in the two families is completely justified.  

Figure 6.8 A comparison of molecular structure of Ln(HBPz3)2(3,5-DTBSQ) and 
Ln(HBPz3)2(Trp) evidencing the similar coordination spheres. 
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 6.7.2 Origin of the anisotropy in Gd(III) derivative 

 We begin the analysis of ligand field effect in rare-earth semiquinonato complexes 

by the simplest case, i.e. Gd(III), comparing the results obtained by EPR, both X-Band 

and HF-EPR, for tropolonate and semiquinonate derivative. It should be stressed here 

that we employed the unsolvated form of the semiquinonato adduct described in the last 

paragraph, but a check of its magnetic properties did not show any appreciable difference 

with respect to those observed for the solvated form (1) described in paragraph 6.5. 

 

 
Figure 6.9 Experimental X-Band EPR spectra of GdSQ at 4K.  
 

 The first step was aimed at the determination of the magnetic anisotropy of 

Gd(HBPz3)2(3,5-DTBSQ), hereafter GdSQ. Preliminary X-band powder investigation 

(see Figure 6.9) showed a quite complex spectrum extended up to 13000 G. 

Notwithstanding the complexity of the obtained pattern, some conclusion could be drawn 

by considering the extension of the spectrum and the two fingerprinting high-field 

transition, separated by about 900 G. Attempts of simulation (not shown) yielded the 

correct extension of the spectrum for a value of D≈0.16 cm-1 while a largely rhombic 

contribution proved necessary to get the correct splitting for the two high-field transitions 

(E/D ≈ 0.25). 

 The obtained simulation was however not very satisfactory and we then turned to 

HF-EPR to get more information. Spectra recorded by HF-EPR at different frequencies 

(95, 190 and 285 GHz) showed the typical features of a rhombic spectrum (see Chapter 

2) even if at higher frequency a large quench of the intensity of the feature around g=2.00 

is observed (see Figure 6.10). This phenomenon has been tentatively attributed to 
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propagation effects of the incident microwaves through the sample pellet: these effects 

may become important when the dimension of the sample is close to the wavelength of 

the exciting radiation and this may explain why it is observed with major importance at 

higher frequency. Several authors have evidenced these effects to be active in a number 

of solid state systems investigated through HF-EPR.[61]  

 The line-line separation between neighboring lines is consistent with a D value 

around 0.122 cm-1 and we then started our analysis by using this parameter and a ratio 

E/D=0.3. The best simulation of the whole dataset was obtained by using D= 0.122 cm-1, 

E/D= 0.287.  

 As we have seen in Chapter 3 the anisotropy of exchange coupled systems originates 

from three different contributions, namely single-ion anisotropy, through-bond and 

through-space (i.e. dipolar) interaction between the two magnetic centers. In our case the 

single ion contribution, which is due to ligand field effects, can only arise from Gd(III) 

ions, as the radical is a S=1/2 spin. Thus the global single ion contribution is DSI= dGdDGd 

, where dGd may be calculated by projection techniques[62] to be d=1.125. 

Figure 6.10 HF-EPR spectra of GdSQ recorded at 95 (lower) 190 (middle) and 295 GHz (upper) 
and 10 K, normalized on a 2 Tesla scale (g=2.00 at H=0 T). For each frequency, lower spectrum 
is the simulated and the upper is the experimental one.  
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 An estimation of DGd, and then of the contribution of ligand field in determining the 

anisotropy of GdSQ, may be obtained in this case by measuring the anisotropy of the 

corresponding tropolonato complex, hereafter GdTrp. Preliminary characterization of 

this system through magnetic measurements suggested that only a small ZFS should be 

present. Indeed, magnetization curves (Figure S6.1) are in good agreement with what 

expected for an S=7/2 system with small Zero Field Splitting, which may account also 

for the small decrease of the χT value at T< 10 K (Figure S6.2). The low temperature X-

Band EPR spectrum, shown in Figure 6.11, was a bit more clear than the corresponding 

one of GdSQ and quite good simulations were obtained by assuming |D|= 0.122 cm-1 and 

E= 0.028 cm-1. 
  

 

Figure 6.11 Central line is the experimental X-Band EPR spectrum of GdTrp at 4K. Lower curve 
is the best simulation of X-band spectra, upper is the simulated spectrum obtained by using 
parameters derived by simulations of 95 GHz spectrum (corresponding parameters are reported 
in the text) 
 
Also in this case, however, HF-EPR spectroscopy provided a strong simplification of the 

spectra and more reliable information on the anisotropy of the complex, including the 

sign of D value. The spectrum recorded at 95 GHz and 10 K is showed in Figure 6.12 

and clearly displays the features of a considerably rhombic system with negative ZFS. 

Indeed, it is slightly more extended at low field with respect to high field and large 

intensity of the g= 2.00 line is clearly observed. The spectrum could be simulated in a 

quite satisfactory way by imposing g=1.99 - which is common for Gd(III) ions [63]- D=-

0.128 cm-1 and E =0.021 cm-1, thus in quite good agreement with parameters obtained by 
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simulation of low temperature X-band EPR spectrum. A comparison of the simulation of 

the latter with the two sets of parameters is shown in Figure 6.11. 

 

 
Figure 6.12 HF-EPR spectra of GdTrp recorded at 95 GHz and 10 K.. Lower spectrum is the 
experimental one and the upper is simulated (parameters reported in the text).  
 

 By projecting the obtained value of zero field splitting parameters for GdTrp on the 

S=3 ground state of GdSQ complex the contribution of single ion anisotropy to the global 

anisotropy of the complex is calculated as DSI=0.144 cm-1, which is larger than the 

anisotropy measured through HF-EPR for GdSQ. This may be due to the fact that 

anisotropic exchange contribution, which was found to play a major role in the 

determination of the anisotropy of Cu(II)-semiquinonato adducts[64], sums up to single 

ion contribution in a way which reduces the global anisotropy.  

 

 6.7.3 Magnetic properties of orbitally degenerate Ln(III) derivatives 

 Among all the systems we have synthesized we will briefly summarize in the 

following the preliminary interpretation of the results obtained by magnetic 

measurements and EPR spectroscopy for Ln(III)= Sm, Eu, Ho, Er, Yb. Experimental 

magnetic characterization has been performed also for Dy and Tb but no analysis of the 

data concerning these two systems has been yet attempted.  
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 a-Samarium 

 The χT vs T curves of the Sm(III) derivatives are shown in Figure 6.13. As expected, 

the curve for the tropolonate derivative is markedly temperature dependent, due to the 

progressive population on increasing temperature, of the excited multiplet 6H7/2. The 

room temperature value for the tropolonate complex (full circles) is 0.28 emu K mol-1, a 

bit lower than the values reported in literature (0.3 emu K mol-1) and the theoretical value 

of 0.32 emu K mol-1 expected for this ion.[38]  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.13 χT vs. T curve for Sm(HBPz3)2(3,5-DTBSQ) (full triangles) and Sm(HBPz3)2(Trp) 
(crossed circles) and corresponding ∆χT values (full squares). 
 
 
 

 

 

 

 

 

 

 

 

 
 
Figure 6.14 M vs. H curves at 2.5 K and 4.5 K  for Sm(HBPz3)2(3,5-DTBSQ) (full triangles) and 
Sm(HBPz3)2(Trp) (crossed circles) and corresponding ∆M values (full squares)  
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 The corresponding curve for the semiquinonato complex parallels that of tropolonato 

derivative for almost the whole range of temperature, indicating that, if present, exchange 

effects should be quite small, while crystal field effects are much probably the same in 

the two complexes. At low temperature a small decrease of ∆χT is observed, which may 

suggest an antiferromagnetic coupling. This behavior seems to be confirmed by the very 

small value of ∆M obtained by comparison of the two magnetization curves at low 

temperature. It is worth pointing out at this point that the difference between the two 

experimental χT curves is however much lower than expected for an unpaired radical and 

the results we suggest should be considered with much caution.  

 

 

 

 b- Europium 

 A similar situation is encountered in the case of the two Eu(III) complexes. Indeed, 

the χT of tropolonato derivative shows a large decrease on decreasing temperature due to 

the progressive depopulation of the excited multiplet 7F1. This curve may be calculated 

according to the free ion approximation:[36]  
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Where λ is the spin orbit-coupling coefficient and χ(J) is given by: 
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and gJ was defined in (6.2.3). The best simulation of the experimental χT curve was 

obtained by using λ =290 ± 2 cm-1, which is in agreement with value obtained for other 

radical adducts.[27] 

 Also in this case the χT curves of the two derivatives are parallel in a wide range of 

temperature, thus indicating a strict similarity of crystal field effects. However, the 
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behavior of ∆χT suggest at first sight a weak ferromagnetic interaction. the same caveat 

we put forward for Sm(III) complexes remains valid here, as the value of ∆χT at room 

temperature is much smaller than expected for an uncoupled radical spin (0.375 emu K 

mol-1). Furthermore, at temperature below 10 K a decrease of ∆χT is observed and, what 

seems more important, the M vs H curve of EuSQ (Figure S6.3) yields magnetization 

value lower than expected for a simple S=1/2 spin and does not saturate, indicating that – 

at least at low temperature – an antiferromagnetic process is likely to be active. Finally, 

the EPR spectrum of the semiquinonato derivative just show the expected radical signal 

at low temperature, broadened by the interaction with Eu(III) (Figure S6.4). 

 

 

 

 

 

 

 

 

 
 
Figure 6.15 χT vs. T curve for Eu(HBPz3)2(3,5-DTBSQ) (full triangles) and Eu(HBPz3)2(Trp) 
(empty squares) and corresponding ∆χT (full squares). The continuous line is the best simulation 
curve obtained for Eu(HBPz3)2(Trp) in the free-ion approximation by considering the 
depopulation of excited level 7F1 (parameters reported in the text) on decreasing temperature  
 

c-Holmium 

The χT vs. T curves of the Ho(III) derivatives are shown in Figure 6.16.  The room 

temperature value for the tropolonate complex (full circles) is 13.44 emu K mol-1, lower 

than the values reported in literature (13.75 emu K mol-1) and the theoretical value of 

14.00 emu K mol-1 expected for this ion (see Table 6.1). Due to depopulation of the 

higher states, split by the crystal field, the χT value slowly decreases on lowering 

temperature until 90 K and then begins to drop, reaching a value of 2.40 emu K mol-1 at 

3.1 K. The room temperature χT value of the semiquinonate derivative differs from the 

tropolonato one for a value of 0.372 emu K mol-1 for Ho(III). This is in very good 

agreement with the expected 0.375 emu K mol-1 for an unpaired radical. It is also clear 

that the curves of the tropolonate derivative and of the radical derivative are almost 
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parallel in a large range of temperature, thus indicating that the crystal field effects are, in 

first approximation, the same. The deviations of the ∆χT curve from the value of 0.375 

emu K mol-1, which are becoming important at temperature lower than 100 K should then 

be attributed to exchange coupling between the rare earth ion and the radical. In detail, 

the difference curve shows that two different processes are active: at higher temperature 

(120-22 K), an antiferromagnetic coupling is dominant, reducing the χT of the HoSQ 

complex to a value lower than that of HoTrp. At temperatures lower than 22 K the 

reverse situation occurs and ∆χT increases to reach a positive value. The non-monotonic 

behavior of the ∆χT curve, which is quite surprising at a first glance, may be attributed in 

principle to two different phenomena. The first is the existence of different processes 

contributing to the coupling, i.e. the effects of higher order anisotropic terms in the 

exchange hamiltonian which are becoming more important on lowering temperature. The 

second is the possibility, which cannot be completely ruled out, of having some 

significant difference between the crystal field effects affecting the rare earth ion in the 

coupled and in the uncoupled species. These differences may become more important at 

lower temperatures, thus leading to this somewhat unexpected behavior of the ∆χT 

curves. The dominating ferromagnetic interaction is also evident in the comparison of the 

low temperature magnetization curves, which results in positive value of ∆M vs H, which 

passes through a maximum at 1 T (Figure S6.5). 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 6.16 χT vs. T curve for Ho(HBPz3)2(3,5-DTBSQ) (empty triangles) and Ho(HBPz3)2(Trp) 
(full circles), with corresponding ∆χT (empty squares) curve.  
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 The tropolonate derivative, HoTrp was found to be EPR-silent in X-Band at 4.2 K. 

This is not completely surprising, as Ho(III) (L=6, S=2, J=8) spectra have been often 

interpreted in terms of a pseudo S=1 spin, with very anisotropic g-value and a sizeable 

Zero Field Splitting term of the spin hamiltonian.[65] Actually one may then assume that 

this ZFS is too strong for a signal to be observed in X-Band EPR. The semiquinonate 

derivative (Figure 6.17) shows an interesting spectrum, with well defined features at low 

field, thus indicating that some coupling is active in modifying the magnetic 

characteristic of the system. 

 

  

 

 

 

 

 

 

 
 
 
Figure 6.17 X-Band EPR spectrum of Ho(HBPz3)2(3,5-DTBSQ) complex, recorded at 9.23 GHz 
and 4.2 K 
 
 
 Also HF-EPR were recorded for this complex, showing differnt features split by 

large hyperfine coupling with the I=7/2 nuclear spin of 165Ho [65], but their interpretation 

has not yet been accomplished.(Figure S6.6) 

 
 d-Erbium 

 Er(III) is a 4I15/2 ion and the expected χT value at room temperature is around 11.1 

emu K mol-1 (see Table 6.1). The measured value (Figure 6.17) is then in good 

agreement with this prediction and at room temperature the difference between the 

experimental chit curves of the two derivatives (∆χT=0.39 emu K mol-1) well agrees with 

the expected value for an unpaired radical. Being well established on the basis of the 

previous analysis that the crystal field effects in the two derivative should be similar the 

observed behavior of ∆χT curve as a function of temperature, which monotonically 
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decrease on lowering temperature below 100 K, reaching a value as low as -3.5 emu K 

mol-1 at 3 K should be considered a clear signature of antiferromagnetic coupling. 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.18 χT vs. T curve for Er(HBPz3)2(3,5-DTBSQ) (empty triangles) and Er(HBPz3)2(Trp) 
(full circles) and corresponding ∆χT curve (full squares). 
 

 e-Ytterbium 

 The χT curve for the tropolonato derivative, YbTrp (Figure 6.19) is only starting to 

level at the value of 2.54 emu K mol-1 at 300 K; the obtained value is in good agreement 

with the theoretical one of 2.57 emu K mol-1 (see Table 6.1). Due to depopulation of the 

higher states, split by the crystal field, the χT value of YbTrp derivative slowly decreases 

on lowering temperature until 90 K and then begins to drop, reaching a value of 2.40 emu 

K mol-1 at 3.1 K. The measured value of χT for semquinone derivative, YbSQ, differs 

from that of YbTrp for a value of 0.377 emu K mol-1, fully consistent with the difference 

being due to an unpaired radical. The value of χT for YbSQ is decreasing without abrupt 

change on lowering temperature down to 6 K and then falls down reaching a value of 

1.55 emu K mol-1 at 2.45 K. As a consequence, ∆χT value is increasing on lowering 

temperature from 100 K to 16 K, thus indicating that ferromagnetic coupling between 

radical and rare earth ion is dominant in that range of temperature. The ∆(χT) value is 

then decreasing below 16 K, reaching the quite large negative value of –0.67 emu K mol-

1 at 2.45 K. The negative value indicates that some kind of antiferromagnetic coupling is 

active in this temperature range, yielding a value for the χT of the YbSQ lower than the 

one observed for the YbTrp complex. It is not only the ∆χT which shows a completely 

reversed behavior with respect to Ho(III); indeed, the comparison of the magnetization 

-5

0

5

10

15

0 50 100 150 200 250 300
-5

0

5

10

15

T (K)

χT
 (e

m
u 

K 
m

ol
-1

)



Rare-earth semiquinonato complexes 

 

188

curves for YbTrp and YbSQ of M vs H curve evidences a larger magnetization for YbSQ 

than for YbTrp, the difference being maximum around 1 T (Figure S6.7).  

 
 

 

 

 

 

 

 

 

 

 

Figure 6.19 χT vs. T curve for Yb(HBPz3)2(3,5-DTBSQ) (empty triangles) and Yb(HBPz3)2(Trp) 
(full circles) and corresponding ∆χT curve. 
 
 

 

 

 

 

 

 

 

 
Figure 6.20 X-Band EPR spectrum of Yb(HBPz3)2(3,5-DTBSQ) upper and complex, recorded at 
9.23 GHz and 4.2 K 
 

 The X-Band EPR spectrum of the tropolonate derivative of Yb(III) is shown in 

Figure 6.20. A very intense, perpendicular type transition is observed at high field 

(g=1.01), while three parallel features are well resolved at low field (g=7.54, 5.51, 4.52, 

respectively). As Yb(III) is a system with even multiplicity in principle only one Kramers 

doublet should be populated at low temperature, but this will be a complex mixture of 

various |7/2,±M> states (neglecting in first approximation the contribution of the higher 

energy 2F5/2 state). The degree of mixing is determined by the point-group symmetry at 

the rare-earth ion. This quite complex spectrum may then be explained considering the 
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low crystal field symmetry and the admixing of some low-lying excited doublets.[65] 

The spectrum of the YbSQ, shown also in figure 6.20, is completely different, showing a 

weak transition at very low field (H = 185 G) and a narrow, intense feature centered at 

g=2.00 (H=3300 G). 

 We pointed out in the first paragraphs of this chapter that up to now the only 

qualitative model to explain the coupling between lanthanide ions and radicals was the 

extension to these systems of the model that Kahn put forward for Cu(II)-Ln(III) 

complexes. However, in our case the situation was completely different with respect to 

the preliminary assumption of Kahn model, as an antiferromagnetic coupling was 

observed for Gd(III) derivative with semiquinone. In agreement with these premises the 

purely qualitative analysis of the 5 different rare earth ions shows that the sign of the 

coupling seems not to follow any trend. In particular it has not been possible to find out 

any relation between the number of unpaired electrons and the position in the periodical 

table, i.e. whether the rare earth ion belongs to the first half or the second half of the 

lanthanide series. Indeed, both Eu(III) and Ho(III) were found to behave in a completely 

opposite way with respect to Sm(III) and Yb(III) respectively, while antiferromagnetic 

coupling is observed for Er(III).  

 

 

6.8 An asymmetric spin cluster containing two Gd(III) ions and four radical centers  

 

 In order to extend our investigation to the design and synthesis of gadolinium 

semiquinonato systems containing more than two interacting magnetic centers, we have 

attempted to obtain a mononuclear bis(semiquinonato)-gadolinium complex. 

 Following this approach, solid compounds of formula Gd(HBPz3)(DTBSQ)2 were 

obtained as different solvates. Blue microcrystalline powders of Gd(HBPz3)(DTBSQ)2 

stoichiometry precipitate when mixtures of a Gd(III) salt, potassium 

hydrotrispyrazolylborate and 3,5-di-tert-butyl-o-catechol are allowed to react in 1:1:2 

ratios in basic methanol. Charge balance considerations suggest the presence of two 

semiquinone ligands. This was confirmed by the electronic spectrum in dichloromethane 

which shows a large band at 13,000 cm-1 (ε = 1,045 M-1·cm-1), and a pattern of bands at 

higher energy, the most intense centered at 26,700 cm-1 (ε = 6,965 M-1·cm-1), another one 

at 27,900 cm-1 (ε = 6,340 M-1·cm-1) and a shoulder at 29,000 cm-1. All these bands have 
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been assigned  as internal transitions in the semiquinonato ligand, as it has already been 

reported before.[54,60]  

 Recrystallization at low temperature in a hexane/chloroform mixture allows the 

formation of blue crystals of formula Gd2(HBPz3)2(DTBSQ)4·CHCl3 (2). The formula 

was determined by X-Ray crystal structure described below. Similar solvates were 

obtained from dichloromethane and 1,2-dichloroethane. In all the solvents investigated 

we have always observed the formation of the dinuclear complex, thus suggesting that 

(2) is thermodynamically favored with respect to the mononuclear complex with the 

same Gadolinium : semiquinone ratio. Unfortunately the reactivity of this complex as 

well as its solubility properties are strongly limiting our investigation in other solvents. 

 

 6.8.1 X-Ray structure  

 Notwithstanding numerous attempts no really good crystals could be isolated from 

the solutions, and therefore the X-ray crystal structure determination is of low quality. It 

cannot be used to describe fine details, but certainly it provides a sufficient frame for the 

description of the magnetic properties. Indeed X-Ray diffraction structure determination 

showed that the correct formulation of the complex is Gd2(HBPz3)2(DTBSQ)4, (2). 

 
 
Figure 6.21 Ortep View of (2). Thermal ellipsoids are shown at 25% of probability for clarity. 
For the same reason, hydrogen atoms and tert-butyl group were omitted. 
 

 The ORTEP view of the crystal structure of (2) is shown in Figure 6.21. As 

mentioned above, the molecular unit is dinuclear. The complex is asymmetric and the 
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two metal ions exhibit two different coordination numbers. The coordination number of 

Gd(1) is eight, with a geometry which can be described as a distorted square antiprism, 

while Gd(2)  is surrounded by nine donor atoms which define a distorted tricapped 

trigonal prism. The asymmetry is associated also with the semiquinone ligands: three of 

them are bridging, with one of their oxygen atoms, the two Gd(III) ions, while the fourth 

is bound, as shown in Figure 6.22, to one metal ion.  

 

Figure 6.22 Bond scheme of semiquinones and Gadolinium ions in (2). 

 

 One of the oxygen atoms of the bridging semiquinones connects in a µ-1,2 fashion 

the two gadolinium ions, while the other oxygen is bound to only one metal ion. The 

bridging semiquinones bind with both oxygen atoms to one gadolinium, and one of them 

is bound also to the other gadolinium ion. This asymmetric way of ligating has already 

been reported for both catecholate and semiquinone complexes formed by these ligands 

with transition metal ions.[55,56] The coordination polyhedron around Gd(1) is defined 

by three nitrogen atoms and four oxygen atoms of two chelating semiquinones, and one 

oxygen atom of the third semiquinone. The coordination polyhedron of Gd(2) is defined 

by three nitrogens of hydrotrispyrazolylborate, two oxygens of the non-bridged 

semiquinone, two µ-1,2 bridging oxygens of two different semiquinones and other two 

oxygens of the third bridging semiquinone.  

 The Gd(1)-Gd(2) distance (3.755 Å) is shorter than usually observed in Gadolinium 

dimers reported in the literature,[66,67] but somewhat longer than the Gd-Gd distance 

recently reported in a dinuclear complex synthesized with phenolate ligands.[68]  
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 It is an usual procedure to derive the oxidation state of dioxolene units bound to 

metal ions from the values of the distances between the two oxygen-bound carbons and 

from C-O links. [55,56]  Interestingly, the distances found here for the chelating non-

bridging semiquinonate are in agreement with the ones reported for the analogue 1:1 Gd : 

semiquinonate mononuclear complex.[60] The C-C distances in that complex are slightly 

larger and the C-O ones slightly shorter than usually observed in transition metal ions 

semiquinonate complexes. [55,56]  For the bridging semiquinones the C-O distances 

involving the µ-1,2 bridging oxygens are long (1.30(3), 1.30 (2), 1.39 (3) Å), while the 

distances involving the non-bridging oxygens are shorter (1.24(3), 1.29(2), 1.25(3) Å). 

The corresponding C-C bonds vary from 1.40(3) to 1.54(3) Å. It is apparent that, given 

the poor quality of the structure determination and the complex nature of the molecule, 

the bond distances alone cannot provide unambiguous evidence of the nature of the 

dioxolene ligands. Additional evidence will be obtained from the analysis of the HF-EPR 

and magnetic data to be described below. Considering this, and the complexity of the 

structure of (2), with dioxolene units bridging between Gadolinium ions, attention must 

be paid in deriving the oxidation state of the bridging ligands from  the values of these 

distances. However, the investigations carried on in solid state on complex (2) to be 

discussed below remove any ambiguity about the presence of only radical ligands.  

 As far as we know, this is the first structure of a dinuclear unit involving both a rare 

earth ion and a paramagnetic ligand which is reported. A similar asymmetric structure 

has been recently described with Gd(III) ions, but this involved a diamagnetic 

hexadentate ligand.[68] According to the classical chemical view, this complex can be 

seen as a donor-acceptor self adduct of an amphiphilic molecule. It should be stressed 

however that in general these interactions lead to a symmetric di- or poly-nuclear adduct 

and not to an asymmetric one as it is observed in this case.[4] We believe that the 

asymmetric nature of this complex may therefore allow the synthesis of heterodinuclear 

derivatives as a result of a simple acid base reaction. The structure of the resulting 

products should be dictated by the different acidity properties of the two different metal 

acceptors.  

 

 6.8.2 HF-EPR 

 Due to the complexity of the X-Band EPR spectrum recorded at 4.2 K, which turned 

out to be impossible to interpret, we chose HF-EPR to get information about anisotropy 
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and ground spin state of (2). As we mentioned in Chapter 2 HF-EPR spectroscopy was 

effectively proved to be one of the most powerful techniques to gain this kind of 

information.[69-71]  

 Figure 6.23 shows the HF-EPR spectra of (2) recorded at 240 GHz and different 

temperatures ranging from 200 K to 4.2 K. At 200 K, there is essentially one broad band 

centered at g=2 as expected for a system containing Gd(III) and semiquinones. Two 

satellites are located symmetrically around the central one. On decreasing temperature 

the spectrum shows increasing features. At 10 K a fine structure progression is clearly 

resolved at low field. The spectrum at 4.2 K shows the typical simplification expected for 

a HF-EPR experiment[69] and may be interpreted in a qualitative way following the 

guidelines exposed in Chapter 2. In fact, since the Zeeman energy is larger than kT  at 

low temperature only the lowest Ms states will be populated and one transition, - S  - 

S+1, is observed. The spectrum at 4.2 K shows a feature at ca. 7.87 T and two additional 

features, at ca. 8.8 and 9.0 T,  which can be attributed to the - S  - S+1 transitions with 

the external field parallel to z, x and y  respectively. The additional features around 7.95 

T and 8.03 T correspond  to the z component of the - S+1  - S+2 and – S+2  - S+3 

transitions respectively.  

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 6.23 Temperature evolution of HF-EPR spectra of (2) recorded at 240 GHz between 200 
K and 4 K. 
 

 The fact that the z transitions are observed at low field indicates that this is the easy 

axis, thus suggesting a negative axial anisotropy zero field splitting parameter D.[69] A 
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regular fine structure is clearly observed in the parallel region of the spectrum recorded at 

10 K, with a 0.088 T separation between two successive peaks. This behavior is in favor 

of a high spin state, with the higher energy MS states which are depopulated on 

decreasing temperature. Indeed, we showed in Chapter 2 that in the strong field limit, a 

spectrum of an S ground state should show 2S transitions separated in the parallel region 

by 2D, of which S above the center of the spectrum, and S below. If we consider that the 

low field parallel region is extended for 0.66 T, and that the separation between 

neighbouring lines is about 0.088 T, a ground spin state S = 7, and a D value of -0.044 T 

(-0.047 cm-1) are clearly indicated. We then tried to simulate the spectra at 4.2 K and 10 

K starting from these parameters. The simulations were performed using the program 

written by Weihe, described in some details in Chapter 2.[72]  

 

 

 

 

 

 

 

 

 

 

Figure 6.24 Comparison of simulated (upper) and experimental (lower) HF-EPR spectra of (2) 
at 10 K (left) and 10 K (right). The corresponding Spin Hamiltonian parameters are given in the 
text. 
 

 The best simulations (Figures 6.24) were obtained using S = 7, giso = 2.00, D = -

0.0465 cm-1, E = 0.0052 cm-1, in good agreement with the parameter values which were 

estimated in the preliminary analysis of the spectra. However, the introduction of a small 

transverse anisotropy term (E/D ≅ 0.11), which affects mainly the perpendicular region 

of the spectra, is proved to be necessary to obtain correct simulations. The temperature 

evolution of the spectra, as well as the position of the lines, is well reproduced even if the 

appearing at 10 K of excited states transitions makes the simulation process incomplete. 

The presence of transitions from excited states at this rather low temperature causes the 

impossibility of reproducing the spectra at higher temperatures. The conclusion that the 
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HF-EPR allows to reach is that there is an S=7 state which is either the ground state or is 

very close to it.  

 

 

 6.8.3 Magnetic Measurements 

 The plot of χT vs T between 2.5 K and 300 K is shown in Figure 6.25. The high 

temperature value of 17.24 emu K mol-1 is in agreement with two S = 7/2 and four S = 

1/2 independent spin carriers with g = 2.00 (theoretical value 17.25 emu K mol-1), as 

expected from the crystal structure. This is a confirmation of the assignment of the 

dioxolene molecules as semiquinones. Other assignments, like two semiquinones, one 

cathecholate and one quinone would require χT=16.5 emu K mol-1. Since the overall 

coupling is antiferromagnetic as evidenced by the temperature dependence of χT to be 

described below, a high temperature limit higher than the limit for non-interacting spins 

would be impossible to justify. The decreasing of χT product on decreasing temperature 

indicates the existence of antiferromagnetic interactions between the different 

paramagnetic centres. However the quite high value at low temperature (10.97 emu K 

mol-1 at 2.5 K) as well as the slow decreasing of χT, seems to indicate an incomplete spin 

compensation.  

 

 

 

 

 

 

 

 

 

 

 
Figure 6.25 χT vs T curve measured between 2.5 K and 300 K for (2) and best fit curve. Best fit 
parameters for the two models are reported in the text. 
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 The M vs H curves measured for (2) at two temperatures are shown in figure 6.26. 

The high field value of 13.7 µB observed at 2.4 K is slightly lower than expected for an S 

= 7 ground state (14 µB). This seems to indicate that S = 7 is the ground state in a field of 

6 T. However the initial magnetization at low field is much smaller than expected for 

S=7, suggesting that other spin states of lower S values are populated at low field. The 

combined picture emerging from the analysis of the HF-EPR spectra, of the magnetic 

susceptibility and of magnetization is that in zero field there is an S=7 multiplet which is 

either the ground state or is close to the ground state. At any rate there must be several 

multiplets with S < 7 which are thermally populated at 4 K.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.26 Magnetization curves for (2), measured at 2.6 K and 4.7 K. The dashed lines are the 
best simulations obtained assuming an S=7 ground state, while the continuous line were 
obtained assuming an S=0 ground state.see text for further details. 
 

 In order to try to fit the temperature dependence of χT simplifying assumptions are 

needed. We reduced to two possible coupling scheme, shown in Figure 6.27. To reduce 

the number of parameters employed in the simulation, the three bridging semiquinonate 

ligands were taken as magnetically equivalent in the interaction with gadolinium ions and 

with the same scope, all the semiquinonate-semiquinonate interactions were taken as 

equivalent to each other. Besides this in the first scheme, we neglected the Gd-Gd 

interaction; this was justified on the basis of literature data, which show only a very small 
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value for this coupling.[66,67] The following isotropic exchange hamiltonian was then 

used to simulate the χT vs T curve:  

 

H = J1 (SGd2·SSQ4)+J2 (SGd2·SSQ1+SGd2·SSQ2+SGd2·SSQ3+SGd1·SSQ1+SGd1·SSQ2+SGd1·SSQ3) + 

+ J3 (SSQ1·SSQ2 + SSQ1·SSQ3 + SSQ1·SSQ4 + SSQ2·SSQ4 + SSQ3·SSQ4 + SSQ2·SSQ3)         

 

            (6.8.1) 

 

A Weiss correction[57] was introduced to better reproduce the low temperature values; 

the same behaviour may be explained with the introduction of a small ZFS term, as found 

from the HF-EPR spectra. As we have seen in Chapter 5 the introduction of a θ value is 

purely phenomenological and does not necessarily imply interactions between 

neighbouring dinuclear units (the shortest intermolecular Gd-Gd and Gd-O distances are 

in fact 12.6 Å). 

 

 

 

 

 

 

 

 

 

  (a)        (b) 
 

Figure 6.27 Coupling schemes for (2). In (a) no Gd-Gd interactions was taken into account and 
a phenomenological Weiss correction was applied.[57] In (b) the Gd-Gd interactions was 
considered, but no Weiss correction was applied 
 

 The best fit curve (continuous line, figure 6.25) within this model was obtained using  

the following parameters: J1 = 2.51 cm-1, J2 = -0.6 cm-1, J3 = 18.15 cm-1, and a θ = - 0.12 

K. A second fit was attempted introducing the Gd-Gd interaction, as shown in Figure 

6.25 adding a JGd1Gd2SGd1·SGd2 term to the hamiltonian (6.8.1) and neglecting θ. In fact a 

non-zero Gd-Gd interaction was needed in order to justify the highly frustrated nature of 
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the ground state in Gd-NitR radical one dimensional compound.[12,16] The best fit curve 

obtained is perfectly superimposed over the first one, and the value for the coupling 

constant are in qualitative agreement with the first fit: J1= 1.75 cm-1, J2 = 0.35 cm-1, J3 = 

12.85 cm-1, JGd1Gd2 = 0.08 cm-1. 

 With the values of the coupling constants derived from the first fit, the ground state 

is a doubly degenerated S = 7 with excited states ranging from S = 6 to S = 0 (all of them 

doubly degenerated) which are within 1.3 cm-1. Higher in energy are the S = 8 state (12.2 

cm-1 above the ground state) and the S = 9 (55 cm-1 above the ground state). On the other 

hand, the values of the coupling constants of the second fit require an S=0 ground state 

(due to the antiferromagnetic coupling between the two Gadolinium ions) and the excited 

states ranging from S=1 to S=7 are within 2.7 cm-1 in energy. Also in this case higher in 

energy are the S=8 (17.4 cm-1) and the S=9 (48.5 cm-1) states. Both of these results are in 

qualitative agreement with the interpretations of the HF-EPR spectra and of the 

magnetization data. 

 We tried to discriminate between these two results attempting a simulation of the 

magnetization curves, taking into account the population of the seven lower energy states 

- as derived from the two different fits of the susceptibility data - and Zero Field Splitting 

effects for ground and excited states. The first simulation was performed considering the 

relative energies of the spin states as derived from the first fit. Applying to the S=7 

ground state the Zero Field Splitting parameters derived from HF-EPR we were forced to 

use quite large Zero Field Splitting (D = -0.3 cm-1) for lower S spin states in order to 

obtain some agreement with the experimental curves. However, even using these values 

the quality of the simulation was not very good (Figure 6.26, dashed lines). 

 If one considers the energy levels derived from the second fit of the susceptibility 

data, a value of Zero Field Splitting for lower S spin states which is comparable (0.04 

cm-1) with the one derived from HF-EPR for S=7 is obtained for the best fit curve. It 

should be noted that in this case the quality of the simulation is good (fig.5, continuous 

line). This is then a very strong indication in favor of a spin ground state S=0, with S=7 

very near in energy.  In principle it would be possible to include a higher number of J 

parameters allowing for the low-symmetry of the compound. However we do not feel 

that a reliable determination of their values can be achieved. 

 The values of the coupling constants obtained from the susceptibility fit deserve here 

some comments. The coupling constant between Gd(2) and the chelating semiquinonate 
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is smaller than the one recently reported for a similar mononuclear complex (J = 11.15 

cm-1)[60] with 1:1 gadolinium-semiquinonate stoichiometry. The difference in the 

coupling may be attributed to different factors:  (i) the difference in coordination sphere 

around gadolinum, which is eight-coordinated in the mononuclear complex  (ii) the 

existence of interactions involving both Gd(2) and chelating semiquinonate, with the 

other paramagnetic centers of the complex. This may reduce the strength of the J1 

interaction.  

 The very low value of J2 may be explained considering that (i) each of the three 

semiquinonates are bound to the two Gd(III) ions (ii) the average bridged semiquinonate 

- gadolinium distances are larger than for the chelating radical. This strongly reduces the 

overlap between the f orbitals of the rare earth ions with the magnetic orbital of the 

radicals, which is known to be a key factor in determining the nature and the magnitude 

of magnetic interaction.[12,60,68] Finally, the quite high value of the semiquinonate-

semiquinonate coupling constant indicates that Gd(III) ions are effective in transmitting 

the antiferromagnetic interaction as it has already been noted with nitronyl-nitroxide 

radicals.[12,16,33]. 

 

 

6.9 Conclusions 

 

 The antiferromagnetic coupling we observed in a simple gadolinum-semiquinonato 

complex is the strongest so far reported for a gadolinium-radical complex, in agreement 

with the fact that semiquinonate is the strongest paramagnetic ligand so far investigated 

for magnetic interactions with Gd (III). Notwithstanding this, when it is compared with 

the couplings observed for semiquinonato with other S ions, like Fe(III), the weak nature 

of the metal to radical interaction in the rare earth is dramatically evidenced. In fact the 

reported values[73,74] of J for iron(III)-semiquinonato complexes are at least ca. 600 cm-

1, more than one order of magnitude larger and comparison with results obtained in 

Chapter 5 for poly-semquinonato ligands show the same trend. However the present 

results show that moderate couplings can be obtained between rare earth and 

semiquinonato ligands. Further study is currently in progress, ranging from DFT-based 

calculations to Polarised Neutron Diffraction (see Figure S6.8) analysis, to get further 

insight into this mechanism, but to our knowledge no definitive report is available 
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concerning systems with f orbitals. Preliminary DFT results on Gd(III)-radical 

derivatives invariably give an antiferromagnetic coupling, much larger than the 

experimental ones. In no case the calculations provided ferromagnetic coupling, even 

with the NITR radicals.[75] 

 The qualitative interpretation of some of the simple 1:1 adducts between orbitally 

degenerate rare earth ions and semiquinonato complexes has demonstrated that no simple 

general model is currently available to predict the exchange coupling in systems 

involving lanthanides, even if Kahn model may work correctly in some cases.[35] We 

feel that more experimental and theoretical work is needed in order to understand the 

mechanism of magnetic coupling involving rare-earth ions and simple S=1/2 spins. In 

particular to achieve a reliable quantitative determination of both Crystal Field and 

anisotropic exchange parameters it is absolutely necessary to perform single crystal 

analysis both for magnetic measurements and EPR spectra. For this latter technique the 

possibility of using the experimental setup working at 95 GHz, described in Chapter 2 

might prove very interesting in enhancing the resolution of the anisotropy of these 

systems.  

 Finally, we have obtained the first dinuclear complex involving Gd(III) ions and 

paramagnetic ligands. Its structure has been resolved by X-ray diffraction studies and 

shows an asymmetric unit: Gd(1) is eight-coordinated whereas Gd(2) is nine-coordinated. 

Moreover, the coordination mode between dioxolene ligands and gadolinum ions is 

double -three radicals are bridging via a single oxygen atom the rare earth ions, the last 

one is chelating the Gd(2) ion. These two ways of linking seem to be intimately 

correlated to the magnitude of the magnetic interaction between gadolinium ions and the 

radicals: the coupling is weaker for bridging semiquinonate ligands interacting with 

gadolinum ions than between the chelating radical and Gd(2) ion. The magnetic 

anisotropy of an excited state of (2) was determined through HF-EPR spectroscopy, 

while magnetization measurements were crucial to assign the ground spin state as S=0. It 

may be concluded that such a geometrical arrangement of Gadolinium and paramagnetic 

ligands is not favorable to obtain an antiferromagnetic coupling larger than the ones so 

far reported. To get better insight into this investigation, efforts to isolate the 

mononuclear analogue of (2) are currently in progress.  
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7. Experimental section  
 
 

 

 

 

 

 

Chapter 3 
 

HF-EPR spectra of a polycrystalline powder of Mn(dbm)2(CH3OH)2Br were recorded 

on a laboratory-made spectrometer [1] at the Grenoble High Magnetic Field Laboratory 

(France). The radiation source used was a solid state Gunn diode generator operating at 95 

GHz and equipped with a second and third-harmonic generator. The powder was pressed in 

pellet to avoid preferential orientation in the strong magnetic field.  

 

 

Chapter 4 

 

Prismatic single crystals of Fe4(OCH3)6(dpm)6 were prepared as described in ref. [2] 

and any possible twinning was excluded after collection of low-θ frames with a Siemens-

CCD diffractometer. The relative orientation of the crystallite facets was carefully 

determined after the collection of 25 reflections on a CAD4 Enraf Nonius four circle 

diffractometer, equipped with graphite monochromated Mo Kα radiation. 

The measurements were performed with a continuous wave W-band EPR spectrometer 

(Bruker E600) with cylindrical cavity operating at 94 GHz, equipped with a split-coil 

superconducting magnet (Oxford) mounted on a rotating base. Both the sample holder and 

the magnet could be rotated around a vertical axis. The temperature variation was achieved 

with a continuous flow cryostat (Oxford CF935 dynamic), operating from room temperature 

(RT) down to 4.2 K.  

For W-band experiments, the oriented single crystals were mounted on silica grade 

tubes with 0.9 mm outer diameter, embedded either in silicon grease or in glue, in order to 

have them well fixed and to protect them from the surrounding atmosphere. The crystals 
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were either stuck onto the flat polished bottom of the tubes or on a flat polished side, along 

the vertical axis of the tube, in order to obtain the desired orientations (see Figure 4.4). 

Orientational errors of up to 50 can occur due to the visual procedure of alignment.  

Single crystal EPR studies were performed also at X-band (9.4 GHz), in a Bruker ESP 

300E spectrometer equipped with a continuous flow cryostat (Oxford ESR910) for 

temperature variations from RT down to 2.4K. Eventually, several oriented crystals were 

mounted together on the sample holder in order to increase the signals. Correspondence of 

the resulting spectra with real single crystal measurements was checked. The same 

precautions of protecting the crystals from deterioration by covering them with silicon 

grease were taken.  

HF-EPR spectra of polycrystalline sample of Fe4 were recorded at the Grenoble High 

Magnetic Field Laboratory (France). 

Polycrystalline powder EPR spectra were measured at X-band (9.23 GHz) with a 

Varian ESR9 spectrometer, equipped with a 4He continuous flow cryostat. To avoid 

preferential orientation, ground crystallites of Fe4 were embedded in wax. 

The magnetic measurements were made on single-crystal samples by using an array of 

micro-SQUIDs which measures the magnetic field induced by the magnetization of the 

crystal. Each micro-SQUID has a very high sensitivity that can reach 10-16 electromagnetic 

units, depending on the coupling factor.[3] The time resolution of the micro-SQUIDs is 

about 1 ms, allowing short-term measurements. The magnetometer works in the temperature 

range between 35 mK and 6 K and in fields up to 1.4 T with a field stability better than 10-6 

T. The field can be applied in any direction of the micro-SQUID plane with a precision 

much better than 0.1 micron by separately driving three orthogonal coils. The array of 

micro-SQUID was fabricated by electron beam lithography in L2M, Bagneux, France. 

 

 

Chapter 5 

 

The temperature dependence of the magnetic susceptibilities of samples Cr2(CTH)2(Sq-

Cat)(PF6)3, Ni2(CTH)2(m-Ph(SQ)2(PF6)2, Cu2(Me3[12]N3(m-Ph(SQ)2 (PF6)2, Cr2(CTH)2(m-

Ph(SQ)2 (PF6)4⋅H2O,between 2.5 K and 250 K was measured using a Metronique MS02 

SQUID Magnetometer with an applied field of 1.0 T. Magnetization measurements of 

Ni2(CTH)2(m-Ph(SQ)2(PF6)2 were performed at 2.3 K with field up to 7 T using the same 
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instrument. Magnetic susceptibilities of polycrystalline powder samples of complexes (3), 

Mn3(TpCum,Me)3((TBSQ)3Ph) and Ni3(CTH)3((TBSQ)3Ph)(PF6)3 were measured between 2 

and 300 K at an applied magnetic field of 0.1 and 1 T using a Cryogenic S600 SQUID 

magnetometer. Magnetization measurements were performed on the same samples with the 

same instrument at 2.5 K and 4.5 K with field up to 6.5 T.  

Data were corrected for sample holder contribution that was determined separately in 

the same temperature range and field. The underlying diamagnetism of the samples was 

estimated from Pascal’s constants. Finally, the susceptibilities data were fit by minimizing 

the sum of the squares of the deviation of the computed χT values from the experimental 

values, using a Simplex minimization procedure. The theoretical susceptibilities were 

calculated employing CLUMAG,[4]except when stated otherwise. 

EPR spectra were recorded both for compounds Cr2(CTH)2(Sq-Cat)(PF6)3 and 

Co2(CTH)2(Sq-Cat)(PF6)3 at X-band frequency (9.23 GHz) on a Varian ESR9 spectrometer. 

EPR spectrum on the Co compound was recorded at room temperature on a 0.5 mM acetone 

solution. Polycrystalline powder EPR spectra on the Cr compound were recorded at 4.2 K 

equipping the spectrometer with a continuous flow 4He cryostat. 

 
 

Chapter 6 

 

Crystal data and structure refinement for [Gd(Hbpz3)2(dtbsq)]⋅2CHCl3. Data collection 

was made on a four circle CAD 4 ENRAF NONIUS diffractometer,with graphite 

monochromated MoKα radiation (λ= 0.71069 Å), ω-2θ scan, 293 K. Intensities were 

corrected for absorption (ψ-scan). The symmetry and systematic absences of the reciprocal 

lattice were found to be consistent with the orthorombic space groups Pca21 (29) and Pbcm 

(57). Structure could be successfully solved by direct methods (SIR97) [5] only for Pca21; 

remaining atoms were identified by successive Fourier difference syntheses using 

SHELXL97.[6] The structure was refined against F2 with full matrix least squares 

refinement using 4074 independent reflections (of which 2804 observed, I>4σ(I))), 12 

restraints and 500 parameters. Anisotropic thermal factors were used for 53 on 57 non-

hydrogen atoms. 38 Hydrogen atoms were placed in calculated positions. 

Details: Crystal dimensions: 0.15x0.35x0.30 mm. Empirical Formula: 

C34H42B2Cl6GdN12O2; Mr=1042.37; orthorombic, space group Pca21 (29), a= 19.776(5) Å, 
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b= 12.069(5) Å, c= 18.975(5) α= 90.050(5)° β= 89.990(5)° γ= 90.000(5)° V= 4529(3) Å3, 

Z=4, ρcalcd= 1.529 g/cm3, µ= 1.863 mm-1  2.66° <θ< 24.97°. F(000)  2088 GOF on F2 1.016. 

Final R index [I>4σ(I)]  R1 = 0.0635, R index (all data) R1 = 0.1215. Absolute structure 

parameter .02(3). Largest diff. peak and hole  2.145 and -1.365 e. Å-3, located near 

gadolinium ion. 

 

Crystal data and structure refinement for [Y(Hbpz3)2(dtbsq)].Data collection was made 

on a Bruker Smart diffractometer equipped with a CCD area detector, Mo Kα radiation (λ= 

.71069 Å) graphite monochromator, ϕ-ω scans, 298 K. The system was found to crystallize 

in a monoclinic lattice. Structure was successfully solved by direct methods using SHELXS-

97. The structure was refined against F2 with full matrix least squares refinement using 9151 

independent reflections (of which 3949 observed, I>2σ(I))), no restraints and 450 

parameters using SHELXL-97. Anisotropic thermal factors were used for all the non-

hydrogen atoms. All hydrogen atoms were placed in calculated positions.  

Details: Crystal size: 0.05x0.2x0.2 mm. Empirical formula: C32H38B2YN12O2; 

Mr=733.27; monoclinic, space group P21/c (14), a= 12.814(1) Å, b= 15.115(1) Å, c= 

19.663(1) β= 98.440(1)° V= 3767.2(5) Å3, Z=4, ρcalcd= 1.293 g/cm3, µ= 1.593 mm-1  1.71° 

<θ< 28.96°. F(000)  1516 GOF on F2 0.845. Final R index [I>2σ(I)]  R1 = 0.0445, R index 

(all data) R1 = 0.1510. Largest diff. peak and hole  0.246 and -0.262 eÅ-3. 

 

Crystal data and structure refinement for [Gd(Hbpz3)2(dtbsq)]2⋅CHCl3. A small 

crystal was sealed in a glass capillary containing a small amount of solvent. Data collection 

was made on a 4 circle CAD 4 ENRAF NONIUS diffractometer, Mo Kα radiation (λ= 

.71069 Å) graphite monochromator, ω-2θ scan, 293 K. Intensities were corrected for 

absorption (ψ-scan). The system was found to crystallize in a triclinic lattice. Structure was 

successfully solved by direct methods using SIR92 both for P1 and P-1. Due to the large 

number of parameters involved, refinement was performed only in P-1 space group. 

Remaining atoms were identified by successive Fourier difference syntheses using 

SHELXL93. The structure was refined against F2 with full matrix least squares refinement 

using 12179 independent reflections (of which 6222 observed, I>2σ(I))), no restraints and 

863 parameters. Anisotropic thermal factors were used for 86 on 102 non-hydrogen atoms. 

98 Hydrogen atoms were placed in calculated positions. The quite high value of the residual 

electronic density, located near gadolinium ions, may be attributed to satellite peaks. 
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As the final R value turned out to be quite high, we tried to refine the structure 

performing the absorption correction through DIFABS, after location of all non-hydrogen 

isotropic atoms. The structure refined in such a way showed only minor improvement (R 

(I>2σ) = 9.58%, maximum density peak=2.46 eÅ-3) with respect to the one obtained 

through ψ-scan correction and no significant differences in angles and distances. 

Details: Crystal size: 0.15x0.15x0.3 mm. Empirical formula: 

C75H104B2Cl3Gd2N12O8; Mr=1740.55; triclinic, space group P-1, a= 16.735(5) Å, b= 

17.705(5) Å, c= 19.553(5) α= 99.680(5)° β= 109.960(5)° γ= 107.350(5)° V= 4956.8 (24) 

Å3, Z=2, ρcalcd= 1.165 g/cm3, µ= 1.455 mm-1  2.50° <θ< 22.04°. GOF on F2 1.012. Final 

R index [I>2σ(I)] R1 = 0.0997, R index (all data) R1 = 0.2193.  
 

Crystal data and structure refinement for [Ho(Hbpz3)2(tropolone)]. Data collection 

was made on a CAD 4 four-circle ENRAF NONIUS diffractometer, with graphite 

monochromator MoKα radiation (λ= 0.71069 Å), ω-2θ scan, 293 K. Intensities were 

corrected for absorption (ψ-scan). The symmetry and systematic absences of the 

reciprocal lattice were found to be consistent with the tetragonal space groups P412121. 

Structure was solved by direct methods which gave the positions of all non-hydrogen 

atoms, using SIR97. The structure was refined against F2 with full matrix least squares 

refinement using SHELX97 and 3099 independent reflections (R(int)=0.0451) of which 

2630 observed, I>2σ(I), and 192 parameters.  

Details: Empirical formula: C12.50H12.50BHo0.50N6O; Mr=356.06; tetragonal, space 

group P412121, a= 9.417(5) Å, b= 9.414(5) Å, c= 32.226(5) V= 2857 (2) Å3, Z=8, ρcalcd= 

1.656 g/cm3, µ= 2.817 mm-1  2.25° <θ< 26.98°. GOF on F2 1.319. Final R index 

[I>2σ(I)] R1 = 0.0295, R index (all data) R1 = 0.0505.  

 

Crystallographic data (excluding structure factors) for three over four of the structures 

reported in this thesis have been deposited with the Cambridge Crystallographic Data 

Centre as supplementary pubblication no. CCDC-129619 ([Gd(Hbpz3)2(dtbsq)]⋅2CHCl3), 

CCDC-146291 (Y(Hbpz3)2(dtbsq)) CCDC-144025 ([Gd2(Hbpz3)2(dtbsq)4]⋅CHCl3). Copies 

of the data can be obtained free of charge on application to CCDC, 12 Union Road, 

Cambridge CB21EZ, UK (fax: int.code + 44 1223 336033; e-mail: 

deposit@ccdc.cam.ac.uk) 

 

mailto:deposit@ccdc.cam.ac.uk)
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Magnetic susceptibilities were measured on polycrystalline powders between 2 and 300 

K and with an applied magnetic field of 0.1 and 1 T using a Cryogenic S600 SQUID 

magnetometer. Powders were pressed in pellets to prevent preferential orientation of the 

crystallites. Data were corrected for the magnetism of the sample holder which was 

determined separately in the same temperature range and field. The diamagnetism 

correction was estimated from Pascal’s constants. Magnetization measurements were 

performed on the same samples at 2.5 and 4.5 K with field up to 6 T. 

Polycrystalline powder EPR spectra were recorded for all the compounds at X-band 

frequency (9.23 GHz) on a Varian ESR9 spectrometer equipped with a continuous flow 4He 

cryostat to work at 4.2 K. All the spectra were recorded both blocking the powder in wax 

and leaving them free. However, no difference between the spectra has been detected, thus 

excluding the possibility of orientation.  

HF-EPR spectra were recorded at the High Field High Frequency Electromagnetic 

Resonance Laboratory hosted by IFAM-CNR in Pisa whose spectrometer was described in 

paragraph 2.3. The measurements were performed with a field sweep rate of 0.2 T/min. at 

239.1 GHz (using CH3I as laser gas) on a ground microcrystalline powder pressed in pellet 

together with n-eicosane to avoid orientation of the sample. Field calibration was obtained 

using DPPH as reference. 
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8. Supplementary Material 

 
 

 

 

Figure S4.1 Earlier X-Band EPR Spectra of Fe4, formerly attributed to an excited state S=4. See 
Chapter 4 for further details 
 

 
Figure S5.1 Evolution of HF-EPR spectra (190 GHz) of Mn3(TpCum,Me)3((TBSQ)3Ph) with 
temperature. Spectra recorded on loose powder The six transition at low field identifying an S=6 
state are clearly visible 
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Figure S5.2 Evolution of HF-EPR spectra (190 GHz) of Ni3(CTH)3((TBSQ)3Ph)(PF6)3 with 
temperature. Spectra recorded on pressed pellet to avoid orientation of the crsytallites. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S6.1 Magnetization curves for Gd(HBPz3)2(Trp) measured at 2.5 K (upper) and 4.5 K 
(lower) respectively. The continuous line is the curve calculated by using the parameters of HF-EPR 
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Figure S6.2 χT vs T curve for Gd(HBPz3)2(Trp)   
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Figure S6.3 Magnetization curve at 3K for Eu(HBPz3)2(3,5-DTBSQ). The dashed line is a guide to 

the eye 
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Figure S6.4 X-Band EPR spectrum at low temperature of Eu(HBPz3)2(3,5-DTBSQ)  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S6.5 M vs. H curves at 2.5 K and 4.5 K  for Ho(HBPz3)2(3,5-DTBSQ) (full squares) and 
Ho(HBPz3)2(Trp) (full triangles) and corresponding ∆M values (crossed circles)  
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Figure S6.6 HF-EPR spectrum recorded at 245 GHz and 10 K for HoSQ. The strong hyperfine 
coupling to the I=7/2 nuclear spin of 165Ho is evident 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S6.7 M vs. H curves at 2.5 K and 4.5 K  for Yb(HBPz3)2(3,5-DTBSQ) (full squares) and 
Yb(HBPz3)2(Trp) (full triangles) and corresponding ∆M values (empty triangles) 
 

 

0 1 2 3 4 5

H (T)

-5000

0

5000

10000

0 2 4 6

H (T)

M
 (e

m
u 

m
ol

-1
)



Supplementary Material 

 

216

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure S6.8 Projection of the induced spin density in the direction perpendicular to the C22C21C25 
plane in Gd(HBPz3)2(3,5-DTBSQ) at 1.5K under 7 Tesla 
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