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A SURVEY ON LOCALLY HOMOGENEOUS ALMOST-HERMITIAN SPACES

DANIELE ANGELLA AND FRANCESCO PEDICONI

Abstract. We survey the theory of locally homogeneous almost-Hermitian spaces. In particular, by using the frame-
work of varying Lie brackets, we write formulas for the curvature of all the Gauduchon connections and we provide
explicit examples of computations.

1. Introduction

In Differential Geometry, the notions of symmetries and local symmetries arise naturally and play a central role
in many geometric problems. The geometry of locally homogeneous Riemannian spaces (M, g) is well understood,
starting from the foundational paper by Nomizu [38] on local Killing vector fields, proceeding with the work by
Palais, Tricerri, and many others; we refer e.g. to [39, 55, 54]. (See [41] and the references therein for an up-to-date
account.) More precisely, their local geometry is encoded in the Lie algebra g of Killing generators, that are the pairs
(v,A) ∈ TpM ⊕ so(TpM, gp) such that

v y
(
(Dg)k+1 Rm(g)

)
p + A ·

(
(Dg)k Rm(g)

)
p = 0 for any k ∈ Z≥0 ,

where p ∈ M is a point, so(TpM, gp) acts on the tensor algebra over TpM as a derivation, Dg denotes the Levi-Civita
connection and Rm(g) is the Riemannian curvature tensor. Indeed, by the condition of locally homogeneity, the
vectors v, varying (v,A) ∈ g, span TpM . Moreover, since locally homogeneous spaces are real analytic Riemannian
manifolds (see e.g. [10, Lemma 1.1] for a modern proof), by [38] and [39], there exists a neighborhood of p which is
locally isometric to the local quotient space G/H, where G is the simply-connected Lie group with Lie algebra g, and H

is the (possibly non-closed) connected Lie subgroup of G with Lie algebra h := {(0, A) ∈ g}. Finally, two local quotient
spaces are locally equivariantly isometric if and only if the corresponding algebras of Killing generators are isomorphic
in the category of the so-called orthogonal transitive Lie algebras, see e.g. [43, Section 2].

By definition, an orthogonal transitive Lie algebra is the algebraic datum of (g = h + m, 〈 , 〉), where g is a Lie
algebra, h ⊂ g is a Lie subalgebra that does not contain any non-trivial ideal of g, m is an ad(h)-invariant complement
of h in g, and 〈 , 〉 is an ad(h)-invariant Euclidean product on m. If we denote m := dimm and q := dim h, these data
are encoded by equivalence classes of tensors

µ ∈
(
GL(q)× O(m)

)∖(
Λ2(Rq+m)∗ ⊗ R

q+m
)

satisfying appropriate conditions (compare with Definition 3.7), called abstract brackets. Following Lauret, see [29],
one can use these abstract brackets in order to parametrize the moduli space of locally homogeneous spaces, up to
local equivariant isometries.

This approach of varying Lie brackets, rather than metrics, provides a convenient setting for variational problems
[35, 29, 30, 31, 32, 27, 5]. Moreover, we stress that locally homogeneous Riemannian spaces provide a natural completion
for homogeneous Riemannian spaces with respect to various notions of convergence, see e.g. [44, 43] and so this appears
as the right framework in order to study geometric evolution equations [33, 9]. Moreover, it happens that one needs
to study this completion in order to get results on homogeneous spaces, see e.g. [10, Theorem 4].

In this note, we translate the above theory to the almost-Hermitian setting. We consider locally homogeneous
almost-Hermitian spaces, namely, almost-Hermitian manifolds (M,J, g) such that the pseudogroup of local pseudo-
holomorphic isometries acts transitively. In Lemma 3.5, we show that we can work in the real-analytic category without
loss of generality. By considering the infinitesimal action of Killing vector fields on the almost-complex structure, see
Lemma 3.3, we are lead to introduce the Lie algebra of real holomorphic Killing generators at a point p ∈ M as the
set of pairs (v,A) ∈ TpM ⊕ so(TpM, gp) such that

v y
(
(Dg)k+1J

)
p +A ·

(
(Dg)kJ

)
p = 0 , v y

(
(Dg)k+1 Rm(g)

)
p +A ·

(
(Dg)k Rm(g)

)
p = 0 for any k ∈ Z≥0 .

They correspond to infinitesimal real holomorphic Killing vector fields, that is, vector fields such that the local flow is
made by pseudo-holomorphic isometric local transformations. Following the same approach as before, one can show
that these data at the point p encode the local geometry of (M,J, g).

The moduli space of locally homogeneous almost-Hermitian spaces is then parametrized by using unitary transitive
Lie algebras, namely (g = h+m, I, 〈 , 〉), where (g = h+m, 〈 , 〉) is as before, and I is an ad(h)-invariant linear complex

2020 Mathematics Subject Classification. 53C30, 53C55, 53E30.
The authors are supported by project PRIN2017 “Real and Complex Manifolds: Topology, Geometry and holomorphic dynamics”

(code 2017JZ2SW5), and by GNSAGA of INdAM .

1

http://arxiv.org/abs/2111.14577v1


structure on m that satisfies 〈I·, I··〉 = 〈·, ··〉, see Theorem 5.2. Again, these algebraic data are encoded by equivalence
classes of tensors

µ ∈
(
GL(q)× U(m)

)∖(
Λ2(Rq+2m)∗ ⊗ R

q+2m
)

as before, satisfying a further compatibility condition with respect to the linear complex structure of Cm = R2m.

After the foundational work by Gauduchon [19], any almost-Hermitian manifold is endowed with a distinguished
one-parameter family of Hermitian connections, that are called Gauduchon connections. They include, among others,
the Chern connection and the Bismut connection, which are fundamental tool to investigate the (almost) complex
geometry of the manifold. Notice that, in the Kähler case, they all coincide with the Levi-Civita connection, which
in the general non-Kähler setting is not even adapted to the complex structure. Remarkably, by restricting to locally
homogeneous almost-Hermitian spaces, all the geometric quantities related to the Gauduchon family can be expressed
in purely algebraic terms depending on µ, see Section 5.2.

As explicit examples, we apply this approach to compute the Gauduchon curvatures of locally homogeneous (almost-
)Hermitian structures on the Iwasawa threefold, on the primary Kodaira surface, and on the almost-Kähler Kodaira-
Thurston four-manifold. We make use of the symbolic computation software SageMath [48].

As in the Riemannian case, local symmetries could be useful to understand special Hermitian metrics (see e.g.
[7, 17, 56, 1, 47, 3]) and variational problems in Hermitian and almost-Hermitian geometry, in particular, geometric
flows driven by Hermitian curvatures (see e.g. [52, 11, 57, 16, 40, 28, 45, 4, 5]) including convergence notions (see
Section 5.3).

The paper is organized as follows. In Section 2, we recall some preliminary notions and notation on complex linear
algebra and Hermitian geometry. In Section 3, we introduce locally homogeneous almost-Hermitian spaces and their
Hermitian Nomizu algebras. In Section 4, we introduce the notion of almost-Hermitian geometric models and we
show their compactness with respect to the Cheeger-Gromov convergence. In Section 5, we give a treatment of the
moduli space of locally homogeneous almost-Hermitian spaces. We also write explicit formulas for the curvatures of
Gauduchon connections. In Section 6, we investigate explicit examples of locally homogeneous (almost) Hermitian
metrics on the Iwasawa manifold, on the primary Kodaira surface, and on the almost-complex Kodaira-Thurston
manifold. Finally, in Appendix A, we collect the SageMath code for the previous examples.

Acknowledgements. This note has been written for the special volume collecting the Proceedings of the meeting
“Cohomology of Complex Manifolds and Special Structures, II” that was held in Levico Terme on July 04-09, 2021.
The authors are grateful to the Organizers of the meeting, Costantino Medori, Massimiliano Pontecorvo, Adriano
Tomassini, for the kind invitation and the fruitful atmosphere in Levico, and to CIRM-FBK for the support.

2. Preliminaries and notation

We denote by Ist, 〈 , 〉st the standard linear complex structure and the standard Euclidean inner product on R2m,
respectively, that are defined by Iste

o
2i−1 = eo2i and 〈eoi , e

o
j〉st = δij with respect to the standard basis (eo1, . . ., e

o
2m) of

R2m. We will also denote by Bst(x, r) the standard Euclidean ball in R2m centered at x ∈ R2m with radius r > 0. Any
integrable almost-complex structure will be just called complex structure. We will use the word smooth as a synonym
for of class C∞.

2.1. Complex linear algebra.
Let V = (V, J, g) be a real vector space of even dimension dimR V = 2m endowed with a linear complex structure

J and an Euclidean scalar product g such that g(J(·), J(··)) = g(·, ··). Fix a (J, g)-unitary basis (ei, Jei) for V and
consider the associated complex basis

(
εi :=

1√
2
(ei−iJei), εī :=

1√
2
(ei+iJei)

)
for the complexification V C := V ⊗RC,

which splits as a sum of J-eigenspaces V C = V 1,0⊕V 0,1. Here, we use the fact that any real tensor on V can C-linearly
extended to V C in a unique way. One can directly check that Jεi = iεi, Jεī = −iεī and εi = εī. Notice that J acts
on covectors ϑ ∈ V ∗ via (Jϑ) := ϑ ◦ J−1, so that (ei, Jei) is the dual basis of (ei, Jei) for V ∗. Analogously, it holds

that
(
εi := 1√

2
(ei + iJei), εī := 1√

2
(ei − iJei)

)
is the dual basis of (εi, εī), and Jεi = −iεi, Jεī = iεī. With respect

to such basis, we have

g = δj̄i ε
i ⊙ εj̄ , with εi ⊙ εj̄ := εi ⊗ εj̄ + εj̄ ⊗ εi .

We consider now the spaces

Sym1,1(V ) := {h ∈ End(V ) : g(h(·), ··) = g(·, h(··)) , [h, J ] = 0} ,

Skew1,1(V ) := {h̃ ∈ End(V ) : g(h̃(·), ··) = −g(·, h̃(··)) , [h̃, J ] = 0} ,

and we observe that the linear map

ΦJ : Sym1,1(V ) → Skew1,1(V ) , h 7→ h̃ = J ◦ h

is an isomorphism, with inverse given by h̃ 7→ h = −J ◦ h̃. We denote by tr : Sym(V ) → R the trace of symmetric
endomorphisms h : V → V and, on the subspace Sym1,1(V ), we set trC : Sym1,1(V ) → R to be the trace of the induced
complex endomorphism h : V 1,0 → V 1,0. Notice that tr(h) = 2 trC(h) for any h ∈ Sym1,1(V ). Finally, we consider the
space of real (1, 1)-forms

Λ1,1(V ∗) := {α ∈ Λ2(V ∗) : α(J(·), J(··)) = α(·, ··)}
2



and the projection π1,1 : Λ2(V ∗) → Λ1,1(V ∗) given by (π1,1α)(·, ··) := 1
2

(
α(·, ··) + α(J ·, J ··)

)
. Then, we observe that

the linear map

ςg : Sym1,1(V ) → Λ1,1(V ∗) , ςg(h) := g((J ◦ h) ·, ··) (2.1)

is an isomorphism and so, accordingly, we define

TrCg : Λ1,1(V ∗) → R , TrCg (α) := trC
(
ς−1
g (α)

)
.

Since any α ∈ Λ1,1(V ∗) is of the form α = αj̄i i ε
i ∧ εj̄ , with εi ∧ εj̄ := εi ⊗ εj̄ − εj̄ ⊗ εi, an easy computation shows

that TrCg (α) = δij̄αj̄i. For the sake of notation, we set TrCg (α) := TrCg (π
1,1α) for any α ∈ Λ2(V ∗).

Lastly, it will be useful to consider the decomposition of real 3-forms

Λ3V ∗ = Λ3
+V

∗ ⊕ Λ3
−V

∗ (2.2)

given by the subspaces

Λ3
+V

∗ :=
(
(Λ2(V ∗)1,0 ⊗ (V ∗)0,1)⊕ ((V ∗)1,0 ⊗ Λ2(V ∗)0,1)

)
∩ Λ3V ∗ , Λ3

−V
∗ :=

(
Λ3(V ∗)1,0 ⊕ Λ3(V ∗)0,1

)
∩ Λ3V ∗ .

According to (2.2), for any ϕ ∈ Λ3V ∗, we will write ϕ = ϕ+ + ϕ−.

2.2. Basics on Hermitian geometry.
Let (M2m, J, g) be an almost-Hermitian manifold, i.e. M is a smooth manifold of dimR M = 2m endowed with an

almost-complex structure J and a Riemannian metric g such that g(J ·, J ··) = g(·, ··). We recall that a smooth map
whose differential preserves J (resp. g) is said to be pseudo-holomorphic (resp. isometric). We denote by ω := g(J ·, ··)
its fundamental 2-form, by Dg the Levi-Civita connection of g, by Rm(g)(X,Y ) := Dg

[X,Y ]− [Dg
X , Dg

Y ] its Riemannian

curvature operator and by sec(g)(X,Y ) := g(Rm(g)(X,Y )X,Y ) its sectional curvature. For any point x ∈ M , we
denote by Exp(g)x the Riemannian exponential at x, by injx(M, g) the injectivity radius at x of the underlying
Riemannian manifold and by Bg(x, r) the Riemannian distance ball in M centered at x with radius r.

We set

NJ(X,Y ) := [JX, JY ]− [X,Y ]− J([JX, Y ] + [X, JY ])

to be the Nijenhuis tensor of J . By the foundational result of Newlander-Nirenberg, J is integrable if and only if
NJ = 0. We also set dc := J−1◦ d ◦J . In particular, in the integrable setting, it holds

d= ∂ + ∂̄ , dc = −i(∂ − ∂̄) , ddc = 2i∂∂̄ .

Remark 2.1. Let us recall that J is integrable if M admits a real-analytic structure AJ = {(Uα, ξα)}, compatible
with its smooth structure, such that

dξα(x) ◦ Jx ◦ dξα(x)
−1 = Ist for any α, for any x ∈ Uα .

Notice that J turns out to be a real-analytic tensor field, while g in general is just smooth. However, if g is real-analytic
with respect to some real-analytic structure A′ on M , then one can assume that A′ = AJ . Indeed, all the real-analytic
structures on a given smooth manifold are equivalent up to a real-analytic diffeomorphism, see e.g. [36, 22]. Also, in
the possibly non-integrable setting, we will see in Lemma 3.5 that locally homogeneous almost-Hermitian structures
are real-analytic.

A linear connection ∇ on (M,J, g) is said to be Hermitian if leaves both J, g parallel, i.e. ∇J = ∇g = 0. Among
such connections there are the so called t-Gauduchon connections, named after [19], that are defined by

g(∇t
XY, Z) := g(Dg

XY, Z)− t+1
4 (dc ω)+(X, JY, JZ)− t−1

4 (dc ω)+(X,Y, Z)

− 1
4g(X,NJ(Y, Z))− 1

2 (d
c ω)−(X,Y, Z) , (2.3)

for any t ∈ R. In particular, when J is integrable, which is equivalent to NJ = 0, then

(dc ω)+ = dc ω , (dc ω)− = 0

and therefore (2.3) reduces to

g(∇t
XY, Z) = g(Dg

XY, Z)− t+1
4 dω(JX, Y, Z)− t−1

4 dω(JX, JY, JZ) . (2.4)

The t-Gauduchon connections are Hermitian and their torsion T t = T t(J, g), that is defined by T t(X,Y ) := ∇t
XY −

∇t
Y X − [X,Y ], is given by

g(T t(X,Y ), Z) = − t+1
4 (dc ω)+(X, JY, JZ)− t+1

4 (dc ω)+(JX, Y, JZ)− t−1
2 (dc ω)+(X,Y, Z)

− (dc ω)−(X,Y, Z)− 1
4g(NJ(Y, Z), X) + 1

4g(NJ(X,Z), Y ) . (2.5)

In the case when J is integrable, the previous formula reduces to

g(T t(X,Y ), Z) = − t+1
4 dω(JX, Y, Z)− t+1

4 dω(X, JY, Z)− t−1
2 dω(JX, JY, JZ) .

Notice that there exists a 1-form ϑ = ϑ(J, g) satisfying

tr(T t(X, ·)) = t+1
2 ϑ(X) , dωm−1 = ϑ ∧ ωm−1

3



which is called Lee form, see [19, Eqn (2.5.11)], [18, Eqns (13) and (16)]. We also define the t-Gauduchon curvature
operator Ωt = Ωt(J, g) by

Ωt ∈ C∞(M,Λ2(T ∗M)⊗ Skew1,1
g (TM)) , Ωt(X,Y ) := ∇t

[X,Y ] − [∇t
X ,∇t

Y ] . (2.6)

Moreover, we call first t-Gauduchon-Ricci (1, 1)-form the tensor field

ρt,(1) = ρt,(1)(J, g) ∈ C∞(M,Λ1,1(T ∗M)) ,

ρt,(1)(X,Y ) := trC(Φ−1
J (π1,1Ωt)(X,Y )) = − 1

2 tr
C(J ◦ Ωt(X,Y ) + J ◦ Ωt(JX, JY )) .

(2.7)

Notice that, according to our notation, ρt,(1) denotes the (1, 1)-component of the 2-form obtained by tracing the
curvature Ωt with respect to the endomorphism part. Analogously, we call second t-Gauduchon-Ricci form the tensor
field

ρt,(2) = ρt,(2)(J, g) ∈ C∞(M,Λ1,1(T ∗M)) , ρt,(2)(X,Y ) := g(TrCg (Ω
t(·, ··))X,Y ) (2.8)

and t-Gauduchon scalar curvature the trace

scalt = scalt(J, g) ∈ C∞(M,R) , scalt := 2TrCg
(
ρt,(1)

)
= 2TrCg

(
ρt,(2)

)
. (2.9)

Notice that the isomorphism (2.1) allows to consider also the symmetric Ricci endomorphisms associated to (2.7) and
(2.8), see e.g. [3, Sect 2.2].

2.3. A comparison between the Gauduchon connections and the Levi-Civita connection.
Let (M,J, g) be an almost-Hermitian Riemannian manifold and consider a metric linear connection ∇ on M . Let

us denote by Ω∇ its curvature and by T∇ its torsion. Then, the difference Γ∇ := ∇−Dg is a (1, 2)-tensor field, which
is related to the torsion T∇ by the following

Lemma 2.2. The tensor fields T∇ and Γ∇ verify the following equations:

T∇(X,Y ) = Γ∇(X,Y )− Γ∇(Y,X) ,

2g
(
Γ∇(X,Y ), Z

)
= g

(
T∇(X,Y ), Z

)
− g

(
T∇(Y, Z), X

)
+ g

(
T∇(Z,X), Y

)
.

(2.10)

Proof. Firstly, since Dg is torsion free, we get

T∇(X,Y ) = ∇XY −∇Y X − [X,Y ]

= Dg
XY −Dg

Y X − [X,Y ] + Γ∇(X,Y )− Γ∇(Y,X)

= Γ∇(X,Y )− Γ∇(Y,X) .

Secondly, since ∇g = Dgg = 0, we obtain

0 = (∇Xg)(Y, Z) + (∇Y g)(X,Z)− (∇Zg)(X,Y )

= (Dg
Xg)(Y, Z)− g

(
Γ∇(X,Y ), Z

)
− g

(
Y,Γ∇(X,Z)

)
+ (DgY g)(Z,X)− g

(
Γ∇(Y, Z), X

)

− g
(
Z,Γ∇(Y,X)

)
− (Dg

Zg)(X,Y ) + g
(
Γ∇(Z,X), Y

)
+ g

(
X,Γ∇(Z, Y )

)

= −g
(
Γ∇(X,Y ), Z

)
− g

(
Γ∇(Y,X), Z

)
− g

(
Γ∇(Y, Z)− Γ∇(Z, Y ), X

)
+ g

(
Γ∇(Z,X)− Γ∇(X,Z), Y

)

= −2g
(
Γ∇(X,Y ), Z

)
+ g

(
T∇(X,Y ), Z

)
− g

(
T∇(Y, Z), X

)
+ g

(
T∇(Z,X), Y

)

that completes the proof. �

We also remark that the curvatures Ω∇ and Rm(g) are related by the following

Lemma 2.3. The difference Ω∇ − Rm(g) is explicitly given by

Ω∇(X,Y )− Rm(g)(X,Y ) = Xy(Dg
Y Γ

∇)− Y y(Dg
XΓ∇)−

[
Γ∇
X ,Γ∇

Y

]
, (2.11)

where Γ∇
X := Γ∇(X, ·) and Xy(Dg

Y Γ
∇) = (Dg

Y Γ
∇)(X, ·).

Proof. By the very definition

Ω∇(X,Y ) = ∇[X,Y ] − [∇X ,∇Y ]

= Dg

[X,Y ] + Γ∇
[X,Y ] −

[
Dg

X + Γ∇
X , Dg

Y + Γ∇
Y

]

= Rm(g)(X,Y )−
[
Dg

X ,Γ∇
Y

]
+
[
Dg

Y ,Γ
∇
X

]
+ Γ∇

[X,Y ] −
[
Γ∇
X ,Γ∇

Y

]
.

Since (
−
[
Dg

X ,Γ∇
Y

]
+
[
Dg

Y ,Γ
∇
X

]
+ Γ∇

[X,Y ]

)
(V ) =

= −Dg
X

(
Γ∇(Y, V )

)
+ Γ∇(Y,Dg

XV ) +Dg
Y

(
Γ∇(X,V )

)
− Γ∇(X,Dg

Y V ) + Γ∇([X,Y ], V )

= −
(
Dg

XΓ∇)
(Y, V )− Γ∇(Dg

XY, V
)
+
(
Dg

Y Γ
∇)

(X,V ) + Γ∇(Dg
Y X,V ) + Γ∇([X,Y ], V

)

=
(
Dg

Y Γ
∇)

(X,V )−
(
Dg

XΓ∇)
(Y, V ) ,

the thesis follows. �

4



Let us choose now one of the Gauduchon connections ∇ = ∇t, t ∈ R. Then, its torsion T t(J, g) is related to the
tensor field DgJ by means of the following

Lemma 2.4. Fix an integer k ≥ 1 and a parameter t ∈ R. Then, there exists a constant C = C(m, k, t) > 1 such that

1

C

k+1∑

j=1

∣∣((Dg)jJ
)
x

∣∣
g
≤

k∑

j=0

∣∣((Dg)jT t(J, g)
)
x

∣∣
g
≤ C

k+1∑

j=1

∣∣((Dg)jJ
)
x

∣∣
g

(2.12)

for any x ∈ M .

Proof. Easy computations show that

dω(X,Y, Z) = g((Dg
XJ)Y, Z) + g((Dg

Y J)Z,X) + g((Dg
ZJ)X,Y )

and

NJ (X,Y ) =
(
(Dg

JXJ)− J ◦ (Dg
XJ)

)
Y −

(
(Dg

JY J)− J ◦ (Dg
Y J)

)
X .

Therefore, by (2.5), it follows that there exists C1 = C1(m, k, t) such that

k+1∑

j=0

∣∣((Dg)jT t(g)
)
x

∣∣
g
≤ C1

k+2∑

j=1

∣∣((Dg)jJ
)
x

∣∣
g

for any x ∈ M . On the other hand, since ∇tJ = 0, it holds

Dg
XJ = Dg

XJ −∇t
XJ = −[Γt

X , J ]

and so, by (2.10), there exists C2 = C2(m, k, t) such that

k+2∑

j=1

∣∣((Dg)jJ
)
x

∣∣
g
≤ C2

k+1∑

j=0

∣∣((Dg)jT t(g)
)
x

∣∣
g

for any x ∈ M , which concludes the proof. �

Finally, formulas (2.10), (2.11) and (2.12) directly imply the following result.

Proposition 2.5. Fix an integer k ≥ 0, a parameter t ∈ R and a point x ∈ M .

i) Let K1 > 0 be such that

k∑

i=0

∣∣((∇t)iΩt(g)
)
x

∣∣
g
+

k+1∑

j=0

∣∣((∇t)jT t(g)
)
x

∣∣
g
< K1 .

Then, there exists a constant C1 = C1(m, k, t,K1) > 0 such that

k∑

i=0

∣∣((Dg)i Rm(g)
)
x

∣∣
g
+

k+2∑

j=1

∣∣((Dg)jJ
)
x

∣∣
g
< C1 .

ii) Let K2 > 0 be such that

k∑

i=0

∣∣((Dg)i Rm(g)
)
x

∣∣
g
+

k+2∑

j=1

∣∣((Dg)jJ
)
x

∣∣
g
< K2 .

Then, there exists a constant C2 = C2(m, k, t,K2) > 0 such that

k∑

i=0

∣∣((∇t)iΩt(g)
)
x

∣∣
g
+

k+1∑

j=0

∣∣((∇t)jT t(g)
)
x

∣∣
g
< C2 .

3. Locally homogeneous almost-Hermitian spaces

In this section, we will collect some known and less known facts about locally homogeneous almost-Hermitian
spaces. In particular, inspired by the Riemannian case, we briefly present the notions of real holomorphic Killing
generators, of unitary transitive Lie algebras, and of Hermitian Ambrose-Singer connections.
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3.1. Real holomorphic Killing generators.
Let (M,J, g) be an almost-Hermitian manifold. A vector field X ∈ C∞(M,TM) is said to be real holomorphic

(resp. Killing) if LXJ = 0 (resp. LXg = 0), namely, if its local flow is made by pseudo-holomorphic (resp. isometric)
local transformations. Moreover, for the sake of notation, we set

AX := −DgX

for any vector field X on M (not necessarily real holomorphic or Killing).
We recall the following well-known fact, see e.g. [38, p 118], [26, p 541], see also [43, Sect 2.1], [41, Lem I.1.4] for

detailed computations, stating that the space of pairs
(
Xp, (AX)p

)
∈ TpM ⊕ so(TpM, gp)

at a point p ∈ M , varying X real holomorphic Killing vector field of (M,J, g) defined in a neighorhood of p, can be
endowed with a structure of Lie algebra.

Lemma 3.1 ([38, p 118]). Let p ∈ M be a point and X,Y real holomorphic Killing vector fields of the almost-Hermitian
manifold (M,J, g) defined on a neighborhood of p. Set the pairs (v,A) :=

(
Xp, (AX)p

)
, (w,B) :=

(
Yp, (AY )p

)
. Then,

[X,Y ] is a real holomorphic Killing vector field of (M,J, g) and

[X,Y ]p = A(w) −B(v) , (3.1)

(A[X,Y ])p = [A,B] + Rm(g)p(v, w) . (3.2)

Proof. The Jacobi identity L[X,Y ] = [LX ,LY ] shows that [X,Y ] is real holomorphic Killing. Equation (3.1) follows
from the definition of torsion and Dg being torsion-free. Equation (3.2) follows by direct computation, by noticing
that

A[X,Y ] = [AX , AY ] + Rm(g)(X,Y ) + ([Dg
X , AY ]− Rm(g)(X,Y ))− ([Dg

Y , AX ]− Rm(g)(Y,X))

and that the quantity
αY (X,Z1, Z2) := g([Dg

X , AY ]Z1 − Rm(g)(X,Y )Z1, Z2)

vanishes, for Y Killing vector field. Indeed, αY (X,Z1, Z2) is symmetric in (X,Z1) by using the algebraic Bianchi
identity, and skew-symmetric in (Z1, Z2) since (LY g)(U, V ) = g(Dg

V Y, U) − g(Dg
UY, V ) vanishes for Y Killing vector

field. This completes the proof. �

It is well known that Killing vector fields satisfy the following formulas:

Lemma 3.2 ([38, Lem 10]). Let X ∈ C∞(M,TM) be a Killing vector field on the Riemannian manifold (M, g). Then

AX · g = 0, (3.3)

X y
(
(Dg)k+1 Rm(g)

)
+AX ·

(
(Dg)k Rm(g)

)
= 0 for any k ∈ Z≥0 , (3.4)

where the action of AX on the tensor bundle of M is by derivation.

Futhermore, in the almost-Hermitian setting, we derive similar formulas for the infinitesimal action on the almost-
complex structure in the following:

Lemma 3.3. Let X ∈ C∞(M,TM) be a Killing vector field on the almost-Hermitian manifold (M,J, g). Then

(Dg)k(LXJ) = X y (Dg)k+1J +AX ·
(
(Dg)kJ

)
for any k ∈ Z≥0 , (3.5)

where the action of AX on the tensor algebra is by derivation.

Proof. We prove the formula by induction on k ∈ Z≥0. For the sake of shortness of notation, we forget the metric g.
For k = 0, take any vector field Y ∈ C∞(M,TM) and compute (see [26, Eqn 2.1.2]):

(LXJ)(Y ) = LX(JY )− J(LXY ) = [X, JY ]− J [X,Y ]

= DX(JY )−DJY X − JDXY + JDY X

= DX(JY )− JDXY +AX(JY )− JAXY

= (DXJ)(Y ) + [AX , J ](Y ) .

We also give explicit computations for k = 1: for any vector field Y ∈ C∞(M,TM),

D(LXJ)(Y, ) = DY DXJ +DY [AX , J ]

= D2
Y,XJ +DDY XJ + (DY AX)J +AX(DY J)− (DY J)AX − J(DY AX)

= D2
X,Y J − [Rm(Y,X), J ] +DDY XJ

− Rm(X,Y )J +AX(DY J)− (DY J)AX + J Rm(X,Y )

= D2
X,Y J +DDY XJ + (AX(DJ))(Y ) + (DJ)(AXY )− ((DJ)AX)(Y )

= (X yD2J)(Y ) + (AX ·DJ)(Y ),

where we used the Ricci formula [8, Eqn (1.21)] D2
X,Y − D2

Y,X = −Rm(X,Y ), and the property [26, Lem 2.2]

DY AX = −Rm(X,Y ) for Killing vector field X .
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As for the inductive step, assume that Equation (3.5) holds true for some k ∈ Z≥0. By using again the Kostant
formula and the Ricci formulas, we compute, for vector fields Y0, Y1, . . . , Yk ∈ C∞(M,TM),

Dk+1
Y0,Y1,...,Yk

(LXJ) =
(
DY0(D

k(LXJ))
)
Y1,...,Yk

=
(
DY0(X yDk+1J)

)
Y1,...,Yk

+
(
DY0(AX ·DkJ)

)
Y1,...,Yk

= Dk+2
Y0,X,Y1,...,Yk

J +Dk+1
DY0X,Y1,...,Yk

J

+
(
(DY0AX)(DkJ)

)
Y1,...,Yk

+
(
AX(DY0D

kJ)
)
Y1,...,Yk

−
(
DY0D

kJ)AX

)
Y1,...,Yk

−
(
(DkJ)(DY0AX)

)
Y1,...,Yk

= Dk+2
X,Y0,Y1,...,Yk

J − Rm(Y0, X) ·Dk
Y1,...,Yk

J

+Dk
Rm(Y0,X)Y1,...,Yk

J + · · ·+Dk
Y1,...,Rm(Y0,X)Yk

J +Dk+1
DY0X,Y1,...,Yk

J

− (Rm(X,Y0) ·D
kJ)Y1,...,Yk

+ (AX ·Dk+1J)Y0,Y1,...,Yk
+Dk+1

AXY0,Y1,...,Yk
J

= (X yDk+2J)Y0,Y1,...,Yk
+ (AX ·Dk+1J)Y0,Y1,...,Yk

,

completing the proof. �

We recall now the following

Definition 3.4. An almost-Hermitian manifold (M,J, g) is said to be a locally homogeneous almost-Hermitian space
if its pseudogroup of local automorphisms PJ,g acts transitively, that is, for any x, y ∈ M there exist neighborhoods
Ux, Uy ⊂ M of x, y, respectively, and a local pseudo-holomorphic isometry f : Ux → Uy such that f(x) = y.

Let (M,J, g) be a locally homogeneous almost-Hermitian space. Since J, g determine a smooth U(m)-structure on
M , it follows that PJ,g is a transitive Lie pseudogroup of transformations on M and so, by standard Lie pseudogroup
theory (see e.g. [50, Thm 2.2]), the following result holds.

Lemma 3.5. Let (M,J, g) be a locally homogeneous almost-Hermitian space. Then both g and J are real-analytic.

Following [38, page 110], we give the following definition. Given a locally homogeneous almost-Hermitian space
(M,J, g) and a distinguished point p ∈ M , the real holomorphic Killing generators at p are defined as those pairs
(v,A) ∈ TpM ⊕ gl(TpM) such that

A · gp = 0 , v y
(
(Dg)k+1J

)
p +A ·

(
(Dg)kJ

)
p = 0 ,

v y
(
(Dg)k+1 Rm(g)

)
p + A ·

(
(Dg)k Rm(g)

)
p = 0 for any k ∈ Z≥0 ,

(3.6)

where gl(TpM) acts on the tensor algebra over TpM as a derivation. This definition is suggested by Lemma 3.2 and
Lemma 3.3, as shown in the following

Proposition 3.6. If X is a real holomorphic Killing vector field of (M,J, g) defined in a neighborhood of the point
p ∈ M , then the pair (v,A) :=

(
Xp, (AX)p

)
is a real holomorphic Killing generator of (M,J, g) at p. Conversely, there

exists a neighborhood Ωp ⊂ M of p such that, for any holomorphic Killing generator (v,A) at p, there exists a real
holomorphic Killing vector field X of (M,J, g) defined on Ωp such that (v,A) =

(
Xp, (AX)p

)
.

Proof. Assume that X is a real holomorphic Killing vector field of (M,J, g) defined in a neighborhood of p. Then, by
the very definition, by (3.4), and by (3.5) respectively, it follows that

(
Xp, (AX)p

)
satisfies (3.6), namely,

(
Xp, (AX)p

)

is a real holomorphic Killing generator of (M,J, g) at p.
Conversely, being g real-analytic, then, by [38, Thms 1, 2], there exists a neighborhood Ωp of p such that, for any

real holomorphic Killing generator (v,A) at p, one can find a real-analytic Killing vector field X defined on Ωp such
that (v,A) =

(
Xp, (AX)p

)
. Moreover, by means of (3.5), it follows that (Dg)k(LXJ)p = 0 for any k ∈ Z≥0. Since the

endomorphism field LXJ is real-analytic, we conclude that X is real holomorphic. �

Thanks to Lemma 3.1, we denote by killJ,g the Lie algebra of all the real holomorphic Killing generators of the
locally homogeneous almost-Hermitian manifold (M,J, g) at the point p with the Lie bracket

[
(v,A), (w,B)

]
:=

(
A(w) −B(v), [A,B] + Rm(g)p(v, w)

)
(3.7)

and we call it the Hermitian Nomizu algebra of (M,J, g) at p.

3.2. Unitary transitive Lie algebras.
We recall that the Malcev-closure in the connected Lie group G of a Lie subalgebra h of g = Lie(G) is the Lie algebra

of the closure H of H in G, where H is the simply connected Lie group with Lie(H) = h. Following [29, 43], we consider
the following

Definition 3.7. Let m, q ∈ Z≥0. A unitary transitive Lie algebra (g = h+m, I, 〈 , 〉) of rank (m, q) is the datum of

· a (q+2m)-dimensional Lie algebra g;

· a q-dimensional Lie subalgebra h ⊂ g which does not contain any non-trivial ideal of g;

· an ad(h)-invariant complement m of h in g;
7



· an ad(h)-invariant linear complex structure I on m;

· an ad(h)-invariant Euclidean product 〈 , 〉 on m such that 〈I·, I··〉 = 〈·, ··〉.

A unitary transitive Lie algebra (g = h+m, I, 〈 , 〉) is said to be

· integrable it the linear complex structure I satisfies

[IX, IY ]m − [X,Y ]m = I[IX, Y ]m + I[X, IY ]m for any X,Y ∈ m ,

non-integrable otherwise;

· regular if h is Malcev-closed in the simply connected Lie group G with Lie(G) = g, non-regular otherwise.

Let (g = h + m, I, 〈 , 〉) be a unitary transitive Lie algebra of rank (m, q). Since there are no ideals of g in h, the
adjoint action of h on m is a faithful representation in u(m, I, 〈 , 〉) and so 0 ≤ q ≤ m2. An adapted frame is a basis
u = (e1, . . ., eq+2m) : Rq+2m → g such that

h = span(e1, . . ., eq) , m = span(eq+1, . . ., eq+2m) , Ieq+(2i−1) = eq+2i , 〈eq+i, eq+j〉 = δij .

An isomorphism between two unitary transitive Lie algebras (gi = hi +mi, Ii, 〈 , 〉i) is any Lie algebra isomorphism
ϕ : g1 → g2 such that

ϕ(h1) = h2 , ϕ(m1) = m2 , I2 ◦ ϕ|m1 = ϕ|m1 ◦ I1 , 〈 , 〉1 = (ϕ|m1)
∗〈 , 〉2 .

Remark 3.8. The product 〈 , 〉 on m can be extended to an inner product 〈 , 〉′ on g in such a way that the decom-

position g = h+ m is orthogonal and 〈 , 〉′|h⊗h corresponds, via the embedding h
ad
→ u(m, I, 〈 , 〉) →֒ so(m, 〈 , 〉), to the

negative Cartan-Killing form of so(m, 〈 , 〉).

A distinguished class of unitary transitive Lie algebras are given by the Hermitian Nomizu algebras of locally
homogeneous almost-Hermitian manifolds. Indeed, let (M,J, g) be a locally homogeneous Hermitian space, p ∈ M a

distinguished point and killJ,g the Hermitian Nomizu algebra of (M,J, g) at p. Consider the Euclidean scalar product

on killJ,g given by

〈〈(v,A), (w,B)〉〉g := gp(v, w) − tr(AB) ,

set kill
J,g
0 := {(0, A) ∈ killJ,g} ⊂ u(TpM,Jp, gp) and let mg be the 〈〈 , 〉〉g-orthogonal complement of killJ,g0 in killJ,g.

Being (M,J, g) locally homogeneous, it follows that mg ≃ TpM and this allows us to define a linear complex structure
IJ and a scalar product 〈 , 〉g on mg induced by J and g on M , respectively. Then,

(killJ,g = kill
J,g
0 +mg, IJ , 〈 , 〉g) (3.8)

is a unitary transitive Lie algebra. It is straightforward to check that the Hermitian Nomizu algebra, modulo isomor-
phisms, does not depend on the particular choice of the point p and that two locally homogeneous almost-Hermitian
spaces are locally pseudo-holomorphically isometric if and only if their Hermitian Nomizu algebras are isomorphic.

3.3. Hermitian Ambrose–Singer connections and Hermitian–Singer invariant.
As in the Riemannian case, the following facts hold true. First, locally homogeneity is encoded by the existence of

a distinguished connection. More precisely

Theorem 3.9 ([24, 49]). Let (M,J, g) be an almost-Hermitian manifold. It is locally homogenous if and only if it
admits a Hermitian connection with parallel torsion and parallel curvature.

A connection as in the previous theorem is called a Hermitian Ambrose-Singer connection. Moreover, by the proof of
this theorem, it follows that Hermitian Ambrose-Singer connections are in one-to-one correspondence with the choice
of a reductive decomposition for the Hermitian Nomizu algebra, i.e. a choice of a complement m for the isotropy

algebra kill
J,g
0 inside killJ,g that is invariant under the adjoint representation. One of this choice has already been

discussed in the previous section.
Second, it is possible to recognize a locally homogeneous almost-Hermitian manifold by means of a finite set of

algebraic tensors on a tangent space. To this purpose, fix p ∈ M and for any k ≥ 0 set

j(k) :=
{
A ∈ u(TpM,Jp, gp) : A ·

(
(Dg)i Rm(g)p

)
= 0 for 0 ≤ i ≤ k , A ·

(
(Dg)jJp

)
= 0 for 1 ≤ j ≤ k + 2

}
. (3.9)

Since
(
j(k)

)
k∈Z≥0

is a filtration of the finite dimensional Lie algebra u(TpM,Jp, gp), there exists a first integer kJ,g

such that j(kJ,g) = j(kJ,g+1). It is called the Hermitian-Singer invariant of (M,J, g) by [15]. Notice that, by adapting
[54, Thm 4.1], whose proof can be found in [37, proof of Thm 2.1], and [54, Prop 4.3], it is possible to prove that
j(k) = j(kJ,g) for any k ≥ kJ,g.

Remark 3.10 (Open question, 1). In the same spirit of [34], it will be interesting to construct examples of:

i) locally homogeneous almost-Hermitian spaces with arbitrarily high Hermitian Singer invariant;
ii) pairs of locally homogeneous almost-Hermitian spaces with Hermitian Singer invariant k, that are not locally

pseudo-holomorphically isometric, which have the same Riemannian curvature up to order k and the same almost-
complex structure up to order k + 2.
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For later purposes, for any positive integer m we set

(m) := max{kJ,g : (M,J, g) alm. Herm. loc. hom. with dimR M ≤ 2m} . (3.10)

Notice that m 7→ (m) is non-decreasing and 0 ≤ (m) ≤ m2 − 1.

For any m, s ∈ N with s ≥ (m) + 2, we define X̃ s(m) to be the set of all the (2s+3)-tuples

(J1, . . ., Js+2)⊕ (R0, R1, . . ., Rs) ∈ E(1)(m, s)⊕ E(2)(m, s) , with

E(1)(m, s) :=
⊕

1≤k≤s+2

(⊗k(R2m)∗ ⊗ so(2m)
)
, E(2)(m, s) :=

⊕

0≤k≤s

(⊗k(R2m)∗ ⊗ Λ2(R2m)∗ ⊗ so(2m)
)
.

satisfying the subsequent conditions (X1) and (X2).

(X1) The following eight identities hold:

i) 〈R0(Y1∧Y2)V1, V2〉st = 〈R0(V1∧V2)Y1, Y2〉st ,

ii) S
Y1,Y2,V1

〈R0(Y1∧Y2)V1, V2〉st = 0 ,

iii) 〈R1(X1|Y1∧Y2)V1, V2〉st = 〈R1(X1|V1∧V2)Y1, Y2〉st ,

iv) S
Y1,Y2,V1

〈R1(X1|Y1∧Y2)V1, V2〉st = 0 ,

v) S
X1,Y1,Y2

〈R1(X1|Y1∧Y2)V1, V2〉st = 0 ,

vi) Rk+2(X1, X2, X3, . . .Xk+2|Y1∧Y2)−Rk+2(X2, X1, X3, . . .Xk+2|Y1∧Y2)

= −
(
R0(X1∧X2) · R

k
)
(X3, . . .Xk+2|Y1∧Y2) for any 0 ≤ k ≤ s− 2 ,

vii) J2(X1, X2)− J2(X2, X1) = −R0(X1∧X2) · Ist ,

viii) Jk+2(X1, X2, X3, . . .Xk+2)− Jk+2(X2, X1, X3, . . .Xk+2)

= −
(
R0(X1∧X2) · J

k
)
(X3, . . .Xk+2|Y1∧Y2) for any 1 ≤ k ≤ s ,

where so(2m) acts on the tensor algebra on R2m by derivation.

(X2) For any 1 ≤ k ≤ s, the maps

αk(A) := (A · Ist, A · J1, . . ., A · Jk+1)⊕ (A · R0, A · R1, . . ., A ·Rk−1) , with A ∈ so(2m) ,

βk(X) := (XyJ1, . . ., XyJk+2)⊕ (XyR1, XyR2, . . ., XyRk) , with X ∈ R
2m

verify

βk(R2m) ⊂ αk−1(so(2m)) for any (m) + 2 ≤ k ≤ s ,

ker(αk) = ker(αk+1) for any (m) ≤ k ≤ s− 1 .

Notice that X̃ s(m) is invariant under the standard left action of U(m), and hence

Definition 3.11. Let m, s ∈ N with s ≥ (m) + 2. We call Hermitian s-tuples of rank m the elements of the quotient

space X s(m) := U(m)\X̃ s(m).

This definition is motivated by the following result, which is the almost-Hermitian analogue of [37, Thm 3.1]:

Theorem 3.12 ([15]). Let (M2m, J, g) be a locally homogeneous almost-Hermitian space. Let also p ∈ M be a point,
u : R2m → TpM a unitary frame and s ≥ (m) + 2 an integer. Then

(
u∗(DgJ

)
p, . . ., u

∗((Dg)s+2J
)
p

)
⊕
(
u∗Rm(g)p, u

∗(Dg Rm(g)
)
p, . . ., u

∗((Dg)s Rm(g)
)
p

)

defines a Hermitian s-tuple of rank m which is independent of p and u. Conversely, for any Hermitian s-tuple
θs ∈ X s(m) of rank m, there exists a locally homogeneous almost-Hermitian space (Mm, J, g), uniquely determined up
to a local pseudo-holomorphic isometry, such that

θs =
[(
u∗(DgJ

)
p, . . ., u

∗((Dg)s+2J
)
p

)
⊕
(
u∗ Rm(g)p, u

∗(Dg Rm(g)
)
p, . . ., u

∗((Dg)s Rm(g)
)
p

)]

for some p ∈ M and u : R2m → TpM unitary frame.

4. Almost-Hermitian geometric models

4.1. The class of almost-Hermitian geometric models.
In this section, following [10, 44], we introduce a special class of locally homogeneous almost-Hermitian spaces,

namely

Definition 4.1. A 2m-dimensional almost-Hermitian geometric model is a locally homogeneous almost-Hermitian
distance ball (B, Ĵ , ĝ) = (Bĝ(o, π), Ĵ , ĝ) of radius π, dimension dimR B = 2m, with bounded sectional curvature
| sec(ĝ)| ≤ 1 and injectivity radius at the center o ∈ B equal to injo(B, ĝ) = π.
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From now on, up to pulling back the metric via the Riemannian exponential map Exp(ĝ)o, any almost-Hermitian

geometric model will be always assumed to be of the form (B2m, Ĵ , ĝ), where B2m := Bst(0, π) ⊂ R2m is the 2m-
dimensional Euclidean ball of radius π, the standard coordinates of B2m will be always assumed to be normal for ĝ at
0 and Ĵ |0 = Ist. In particular, the geodesics starting from 0 ∈ B2m are precisely the straight lines and the Riemannian
distance from the center equals dĝ(0, x) = |x|st for any x ∈ B2m. Hence, Bĝ(0, r) = Bst(0, r) for any 0 < r ≤ π.

For latter purposes, we prove that local pseudo-holomorphic isometries can be extended in the following way:

Lemma 4.2. Let (B2m, Ĵ1, ĝ1) and (B2m, Ĵ2, ĝ2) be two almost-Hermitian geometric models and ssume that there

exists 0 < ε < π and a pointed pseudo-holomorphic isometry f : (Bst(0, ε), Ĵ1, ĝ1) → (Bst(0, ε), Ĵ2, ĝ2). Then, f

extends analytically to a pointed pseudo-holomorphic isometry f̃ : (B2m, Ĵ1, ĝ1) → (B2m, Ĵ2, ĝ2).

Proof. Let us define the map

f̃ : B2m → B2m , f̃ := Exp(ĝ2)0 ◦ df |0 ◦ Exp(ĝ1)
−1
0 .

Then, by construction, it follows that f̃ is real-analytic diffeomorphism satisfying f̃(x) = f(x) for any x ∈ Bst(0, ε)

and f̃∗ĝ2 = ĝ1. We now consider the function

h : B2m → R , h(x) :=
∣∣df̃(x) ◦ J1(x) ◦ (df̃(x))−1 − J2(f̃(x))

∣∣2
ĝ2

and we observe that it is real-analytic. Moreover h(x) = 0 for any x ∈ Bst(0, ε) and so it follows that h(x) = 0 for any
x ∈ B2m. This completes the proof. �

Following [10, Lemma 1.3 and Lemma 1.4] and the proof of Lemma 4.2, one can also prove the following

Lemma 4.3. Let (B2m, Ĵ , ĝ) be an almost-Hermitian geometric model. Then

injx(B
2m, ĝ) = π − |x|st for any x ∈ B2m . (4.1)

Moreover, fix x, y ∈ B2m and set rx,y := π − max{|x|st, |y|st}. Then, any pointed pseudo-holomorphic iso-

metry f : (Bĝ(x, ε), Ĵ , ĝ) → (Bĝ(y, ε), Ĵ , ĝ) can be uniquely extended to a pointed pseudo-holomorphic isometry

f̃ : (Bĝ(x, rx,y), Ĵ , ĝ) → (Bĝ(y, rx,y), Ĵ , ĝ).

One of the main properties of the class of almost-Hermitian geometric models is the fact that they give rise to a good
parametrization for the moduli space of locally homogeneous almost-Hermitian spaces up to local pseudo-holomorphic
isometries. More precisely, the following existence result holds true.

Theorem 4.4. Let (M2m, J, g) be a locally homogeneous almost-Hermitian space with | sec(g)| ≤ 1. Then, there exists

a 2m-dimensional almost-Hermitian geometric model (B2m, Ĵ , ĝ) that is locally pseudo-holomorphically isometric to
(M2m, J, g). The almost-Hermitian geometric model is unique up to pseudo-holomorphic isometry.

Proof. Fix a point p ∈ M . By [44, Theorem A], there exists a 2m-dimensional, smooth, locally homogeneous Rie-
mannian distance ball (B2m, ĝ) with | sec(ĝ)| ≤ 1 and inj0(B

2m, ĝ) = π, together with a smooth diffeomorphism

φ : Bst(0, ε) ⊂ B2m → U ⊂ M

verifying φ(0) = p and φ∗g = ĝ. Then, it is easy to check that Ĵ := (dφ)−1 ◦ J ◦ dφ can be extended to the whole

ball B2m and gives rise to an almost-Hermitian geometric model (B2m, Ĵ , ĝ). Finally, the uniqueness follows from
Theorem 3.12 and Lemma 4.2. �

4.2. Cheeger-Gromov convergence of almost-Hermitian geometric models.
In the Riemannian setting, geometric models are introduced to provide a right framework to study convergence

in the Cheeger-Gromov topology even without a lower bound on the injectivity radius. Indeed, it is well-known by
[12, 13] that there exist families of Riemannian manifolds that collapse with bounded curvature. The idea of studying
limits of such families in the Cheeger-Gromov topology was originally conceived in the seminal works by [21, 33], where
the notion of Riemannian groupoids is used. Remarkably, when restricting to Riemannian homogeneous spaces, this
construction reduces to consider geometric models.

Firstly, we give the following definition of convergence, which generalizes the usual notion of pointed convergence for
complete Riemannian manifolds (see e.g. [46]) to the case of incomplete almost-Hermitian manifolds. In the following,
the Banach spaces Ck,α(B) are defined following [20, p. 52] for any bounded ball B ⊂ R2m.

Definition 4.5. A sequence (B2m, Ĵ (n), ĝ(n)) of 2m-dimensional almost-Hermitian geometric models is said to converge

in the pointed Ck,α-topology to a 2m-dimensional almost-Hermitian geometric model (B2m, Ĵ (∞), ĝ(∞)) if, for any

0 < δ < π, there exists a sequence of Ck+1,α-embeddings φ
(n)
δ : Bst(0, π − δ) → B2m such that φ

(n)
δ (0) = 0 for any

n ∈ N and∥∥∥
(
φ
(n)∗
δ ĝ(n)

)
ij
−
(
ĝ(∞)

)
ij

∥∥∥
Ck,α(Bst(0,π−δ))

→ 0 ,
∥∥∥
(
(dφ

(n)
δ )−1 ◦ Ĵ (n) ◦ (dφ

(n)
δ )

)i
j
−
(
Ĵ (∞)

)i
j

∥∥∥
Ck,α(Bst(0,π−δ))

→ 0

as n → +∞, for any 1 ≤ i, j ≤ 2m.

Then we observe that, by means of [44, Corollary 3.8] and Proposition 2.5, the following convergence result holds
true in the set of all the almost-Hermitian geometric models.

10



Theorem 4.6. Let (B2m, Ĵ (n), ĝ(n)) be a sequence of 2m-dimensional almost-Hermitian geometric models and assume
that there exist an integer k ≥ 0, a parameter t ∈ R and a constant K > 0 such that, for any n ∈ N,

k∑

i=0

∣∣(∇(n) t)iΩt(Ĵ (n), ĝ(n))
∣∣
ĝ(n) +

k+1∑

j=0

∣∣(∇(n) t)jT t(Ĵ (n), ĝ(n))
∣∣
ĝ(n) < K .

Then, (B2m, Ĵ (n), ĝ(n)) subconverges to a limit 2m-dimensional almost-Hermitian geometric model (B2m, Ĵ (∞), ĝ(∞))
in the pointed Ck+1,α-topology, for any 0 < α < 1.

Proof. By Proposition 2.5, there exists a constant C = C(m, k, t,K) such that, for any n ∈ N,

k∑

i=0

∣∣((Dĝ(n)

)i Rm(ĝ(n))
)∣∣

ĝ(n) < C ,
k+2∑

j=1

∣∣((Dĝ(n)

)j Ĵ (n)
)∣∣

ĝ(n) < C . (4.2)

By the first inequality in (4.2) and [44, Corollary 3.8], up to pass to a subsequence, we can assume that the sequence of
Riemannian distance balls (B2m, ĝ(n)) converges to a 2m-dimensional, smooth, locally homogeneous Riemannian dis-
tance ball (B2m, ĝ(∞)) in the pointed Ck+1,α-topology, for any 0 < α < 1, with | sec(ĝ(∞))| ≤ 1 and inj0(B

2m, ĝ(∞)) = π.

In other words, we can fix any 0 < δ < π and find a sequence of Ck+2,α-embeddings φ
(n)
δ : Bst(0, π − δ) → B2m such

that φ
(n)
δ (0) = 0 and

∥∥∥
(
φ
(n)∗
δ ĝ(n)

)
ij
−
(
ĝ(∞)

)
ij

∥∥∥
Ck+1,α(Bst(0,π−δ))

→ 0 as n → +∞ , for any 1 ≤ i, j ≤ 2m . (4.3)

Actually, the intertwining embeddings φ
(n)
δ can be assumed to be smooth. Indeed, we can approximate each φ

(n)
δ with

a smooth map φ̃
(n)
δ : Bst(0, π − δ) → B2m, satisfying φ̃

(n)
δ (0) = 0, in the Ck+2,α-norm, i.e.

max
1≤ℓ≤2m

∥∥∥
(
φ̃
(n)
δ − φ

(n)
δ

)ℓ∥∥∥
Ck+2,α(Bst(0,π−δ))

≤ ε(n)

for some constant ε(n) > 0. Notice that the condition of being embedding is open, see e.g. [23, Ch 2, Thm 1.4], and

so, up to take ε(n) small enough, the map φ̃
(n)
δ is an embedding as well. Moreover, a direct computation shows that

there exists a constant C > 0, that does not depend on n, such that
∥∥∥
(
φ̃
(n)∗
δ ĝ(n)

)
ij
−
(
ĝ(∞)

)
ij

∥∥∥
Ck+1,α(Bst(0,π−δ))

≤ C
(
ε(n) +

∥∥∥
(
φ
(n)∗
δ ĝ(n)

)
ij
−
(
ĝ(∞)

)
ij

∥∥∥
Ck+1,α(Bst(0,π−δ))

)

for any 1 ≤ i, j ≤ 2m. Therefore, letting ε(n) → 0, this shows that (4.3) holds also with φ̃
(n)
δ in place of φ

(n)
δ .

By (4.2), the tensors (dφ
(n)
δ )−1 ◦ Ĵ (n) ◦ (dφ

(n)
δ ) are uniformly bounded in the Ck+2-norm on the compact set

Bst(0, π − δ). Then, by the Ascoli-Arzelà Theorem, up to pass to a subsequence, there exists a (1, 1)-tensor field Ĵ (∞)

on Bst(0, π − δ) of class Ck+1,α such that
∥∥∥
(
(dφ

(n)
δ )−1 ◦ Ĵ (n) ◦ (dφ

(n)
δ )

)i
j
−
(
Ĵ (∞)

)i
j

∥∥∥
Ck+1,α(Bst(0,π−δ))

→ 0 as n → +∞ , for any 1 ≤ i, j ≤ 2m ,

(see e.g. the proof of [14, Corollary 3.15]). By letting δ → 0+ and using a Cantor diagonal argument, we obtain a

well defined limit tensor field Ĵ (∞) on the whole ball B2m. Since (ĝ(n), Ĵ (n)) is an almost-Hermitian structure on B2m

for any n ∈ N, it follows that (ĝ(∞), Ĵ (∞)) is an almost-Hermitian structure on B2m. In virtue of Lemma 4.3, one

can mimic the proof of [10, Theorem 2.6] and show that (B2m, ĝ(∞), Ĵ (∞)) is a locally homogeneous almost-Hermitian

space. Finally, in order to prove that the tensor Ĵ (∞) is smooth, and hence real-analytic, one can proceed as in the
proof of [44, Theorem B] by two steps. Firstly, in virtue of Lemma 4.3, one constructs a locally compact and effective

local topological group of pseudo-holomorphic isometries acting transitively on (B2m, ĝ(∞), Ĵ (∞)) around the origin.
Then, by the local Myers-Steenrod Theorem [42, Theorem A], this turns out to be a transitive local Lie group of
pseudo-holomorphic isometries and hence the thesis follows. �

Remark 4.7 (Open question, 2). Let us stress that, in contrast with the Riemannian case, this is not a compactness
theorem (compare with [44, Theorem B]). In fact, even though the limit space is real-analytic, we do not have control
on the top order covariant derivative of the limit almost-complex structure, even for k = 0. We ask whether it is
possible to refine Definition 4.1 and get new estimates in order to obtain a compactness result.

5. The space of locally homogeneous almost-Hermitian spaces

5.1. A parametrization for locally homogeneous almost-Hermitian spaces.
For any m, q ∈ Z with m ≥ 1 and 0 ≤ q ≤ m2, we indicate with Hloc,alm-C

q,m the moduli space of unitary transitive Lie

algebras of rank (q,m) up to isomorphisms and we indicate with Halm-C
q,m the subset of moduli space of regular ones.

Similarly, with Hloc,C
q,m (resp. HC

q,m) denotes the subset of integrable unitary transitive Lie algebras (resp. the regular

ones). We fix a decomposition Rq+2m = Rq ⊕ R2m and the corresponding diagonal embedding of GL(q) × U(m) into
11



GL(q+2m). Accordingly, we denote by prR2m : Rq+2m → R2m the induced natural projection onto the second factor.
We define

Wq,m :=
(
GL(q)× U(m)

)∖(
Λ2(Rq+2m)∗ ⊗ R

q+2m
)
,

where GL(q) × U(m) acts on Λ2(Rq+2m)∗ ⊗ Rq+2m on the left by change of basis. Following [29], one can prove that
the map

Ψq,m : Hloc,alm-C
q,m → Wq,m , (g = h+m, I, 〈 , 〉) 7→ µ := u∗([·, ·]g

)
,

where u : Rq+2m → g is any adapted linear frame for (g = h + m, I, 〈 , 〉), is well defined, injective and that its image
contains precisely the elements µ ∈ Wq,m which verify the following conditions:

(h1) µ satisfies the Jacobi condition and µ(Rq,Rq) ⊂ Rq, µ(Rq,R2m) ⊂ R2m;
(h2) 〈µ(Z,X), Y 〉st = 〈X,µ(Z, Y )〉st for any X,Y ∈ R2m, Z ∈ Rq;
(h3) µ(Z, IstX) = Istµ(Z,X) for any X ∈ R2m, Z ∈ Rq;
(h4)

{
Z ∈ Rq : µ(Z,R2m) = {0}

}
= {0}.

The image of Hloc,C
q,m is characterized by the further condition

(h5) prR2m

(
µ(IstX, IstY )− µ(X,Y )

)
= IstprR2m

(
µ(IstX,Y ) + µ(X, IstY )

)
for any X,Y ∈ R2m.

Remark 5.1. We point out that, while conditions (h1), (h2), (h3), (h5) are closed, condition (h4) is open. However,
following [29], the following fact holds: for any element µ̃ ∈ Wq,m \ H

loc,alm-C
q,m satisfying conditions (h1), (h2) and

(h3), there exist a unique integer 0 ≤ q′ < q and a decomposition Rq = Rq−q′ ⊕ Rq′ such that Rq−q′ =
{
Z ∈ Rq :

µ(Z,R2m) = {0}
}
and

(µ̃)|q′,m := pr
Rq′+2m ◦ (µ̃|

Rq′+2m×Rq′+2m) ∈ H
loc,alm-C
q′,m ,

where Rq′+2m = Rq′ ⊕ R2m and pr
Rq′+2m : Rq+2m → Rq′+2m is the projection with respect to the decomposition

Rq+2m = Rq−q′ ⊕ Rq′+2m.

From now on, we identify Hloc,alm-C
q,m with its image through Ψq,m and, for any µ ∈ Hloc,alm-C

q,m ≃ Ψq,m(Hloc,alm-C
q,m ),

we set

gµ := (Rq+2m, µ) , hµ := (Rq, µ|Rq×Rq )

so that (gµ = hµ + R2m, Ist, 〈 , 〉st) is the unitary transitive Lie algebra uniquely associated to the bracket µ. We also
set

H
loc,alm-C
m :=

m2⋃

q=0

H
loc,alm-C
q,m , H

alm-C
m :=

m2⋃

q=0

H
alm-C
q,m , H

loc,C
m :=

m2⋃

q=0

H
loc,C
q,m , H

C

m :=

m2⋃

q=0

H
C

q,m . (5.1)

The set Hloc,alm-C
q,m parametrizes the moduli space of the equivalence classes of m-dimensional locally homogeneous

almost-Hermitian spaces, up to local equivariant pseudo-holomorphic isometries, in the following way.

Theorem 5.2. For any unitary transitive Lie algebra µ ∈ Hloc,alm-C
m , there exist a pointed locally homogeneous almost-

Hermitian space ((M,J, g), p) and an injective homomorphism ϕ : gµ → killJ,g such that

ϕ(hµ) ⊂ kill
J,g
0 , ϕ(R2m) = mg , ϕ|R2m ◦ Ist ◦ (ϕ|R2m )−1 = IJ , ((ϕ|R2m)−1)∗〈 , 〉st = 〈 , 〉g ,

where (killJ,g = kill
J,g
0 +mg, IJ , 〈 , 〉g) is the Hermitian Nomizu algebra of (M,J, g) at p, as in (3.8). The space (M,J, g)

is uniquely determined up to a local equivariant pseudo-holomorphic isometry. Moreover, J is integrable if and only if
µ ∈ Hloc,C

m , and (M,J, g) is locally equivariantly pseudo-holomorphically isometric to a globally homogeneous almost-
Hermitian space if and only if µ is regular.

Proof. The analogue statement in the category of locally homogeneous Riemannian spaces follows from [50, Lemma
3.5 and Prop 4.4]. Here, we just sketch the construction of the pointed locally homogeneous almost-Hermitian space
associated to an element µ ∈ H

loc,alm-C
m . Let Gµ be the unique simply connected Lie group with Lie(Gµ) = gµ and

Hµ ⊂ Gµ the connected Lie subgroup with Lie(Hµ) = hµ, which is closed in Gµ if and only if µ is regular. Then one can
consider the local quotient of Lie groups Gµ/Hµ, which admits a unique suitable real-analytic manifold structure (see e.g.
[42, Sect 6]). Moreover, by means of the standard local action of Gµ on Gµ/Hµ, one can construct a uniquely determined
invariant almost-Hermitian structure (Jµ, gµ) on Gµ/Hµ such that (R2m, Ist, 〈 , 〉st) ≃ (TeµHµ

Gµ/Hµ, Jµ|eµHµ
, gµ|eµHµ

).
�

5.2. Gauduchon connections of locally homogeneous almost-Hermitian spaces.
For any µ ∈ Hloc,alm-C

q,m , we will refer to all the geometric data of (Gµ/Hµ, Jµ, gµ) by writing µ, for example, Dµ will

denote the Levi-Civita connection and D̃µ will denote its Hermitian Ambrose-Singer connection, uniquely determined
by the fixed reductive decomposition gµ = hµ + R2m. Moreover, we consider the orthogonal decomposition

µ = (µ|hµ∧gµ
) + µhµ

+ µR2m , where µhµ
: R2m ∧ R

2m → hµ , µR2m : R2m ∧ R
2m → R

2m , (5.2)

with respect to the the ad(hµ)-invariant product 〈 , 〉
′
µ on gµ introduced in Remark 3.8. We denote by Fµ ∈ Λ3(R2m)∗

the three-form corresponding to dc ωµ, which is given by

Fµ(X,Y, Z) = −〈µR2m(IstX, IstY ), Z〉st − 〈µR2m(IstY, IstZ), X〉st − 〈µR2m(IstZ, IstX), Y 〉st .
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We also denote by Nµ the Nijenhuis tensor, which is given by

Nµ(X,Y ) = −µR2m(IstX, IstY ) + µR2m(X,Y ) + IstµR2m(IstX,Y ) + IstµR2m(X, IstY ) .

According to (2.2), we consider the decomposition Fµ = (Fµ)+ + (Fµ)−. By [19, Eqns (1.2.1) and (2.2.4)], we have

(Fµ)−(X,Y, Z) = 〈Nµ(X,Y ), Z〉st + 〈Nµ(Y, Z), X〉st + 〈Nµ(Z,X), Y 〉st ,

(Fµ)+(X,Y, Z) = −〈µR2m(X,Y ), Z〉st − 〈µR2m(Y, Z), X〉st − 〈µR2m(Z,X), Y 〉st

+ 〈µR2m(IstX,Y ), IstZ〉st + 〈µR2m(IstY, Z), IstX〉st + 〈µR2m(IstZ,X), IstY 〉st

+ 〈µR2m(X, IstY ), IstZ〉st + 〈µR2m(Y, IstZ), IstX〉st + 〈µR2m(Z, IstX), IstY 〉st .

Fix a parameter t ∈ R and look at the Gauduchon connection ∇t,µ. Let us consider now the (1, 2)-tensors

Sµ := D̃µ −Dµ , At,µ := D̃µ −∇t,µ ,

which can be identified with linear maps

Sµ : R2m → so(2m) , At,µ : R2m → u(m) .

For the operator Sµ, by [25, Ch X, Thm 3.3]), we have

〈Sµ(X)Y, Z〉st = − 1
2 〈µR2m(X,Y ), Z〉st −

1
2 〈µR2m(Z,X), Y 〉st −

1
2 〈µR2m(Z, Y ), X〉st . (5.3)

For the operator At,µ, by (2.3), we have

〈At,µ(X)Y, Z〉st = 〈Sµ(X)Y, Z〉st +
t+1
4 (Fµ)+(X, IstY, IstZ) + t−1

4 (Fµ)+(X,Y, Z)

+ 1
4 〈N

µ(Y, Z), X〉st +
1
2 (F

µ)−(X,Y, Z) .

Then, by [25, Thm 2.3, Ch X], the Riemannian curvature is explicitly given by

Rm(µ)(X,Y ) = adµ
(
µhµ

(X,Y )
)
|R2m − [Sµ(X), Sµ(Y )]− Sµ(µR2m(X,Y )) , (5.4)

and, analogously, the t-Gauduchon curvature and torsion are given by

T t(µ)(X,Y ) = At,µ(X)Y −At,µ(Y )X − µR2m(X,Y ) ,

Ωt(µ)(X,Y ) = adµ
(
µhµ

(X,Y )
)
|R2m − [At,µ(X), At,µ(Y )]−At,µ(µR2m(X,Y )) .

(5.5)

Moreover, we recall that any Gµ-invariant tensor field Q on Gµ/Hµ is parallel with respect to D̃µ, see e.g. the proof
of [25, Prop 2.7, Ch X]. Therefore, for the covariant derivatives DµQ and ∇t,µQ, we have

XyDµQ = −Sµ(X) ·Q , Xy∇t,µQ = −At,µ(X) ·Q . (5.6)

5.3. A potpourri of topologies in the moduli space.
We are going to introduce some topologies on the moduli space Hloc,alm-C

m . The first one is the so-called algebraic
convergence, that is

Definition 5.3. A sequence (µ(n)) ⊂ Hloc,alm-C
q,m is said to converge algebraically to µ(∞) ∈ Hloc,alm-C

m if one of the
following conditions is satisfied:

i) µ(∞) ∈ Hloc,alm-C
q,m and µ(n) → µ(∞) in the standard topology induced by Wq,m;

ii) µ(∞) ∈ H
loc,alm-C
q′,m for some 0 ≤ q′ < q and there exists µ̃(∞) ∈ Wq,m \ H

loc,alm-C
q,m such that µ(n) → µ̃(∞) in the

standard topology of Wq,m and (µ̃(∞))|q′,m = µ(∞) as in Remark 5.1.

For the second notion of convergence, we notice that Theorem 3.12 and Theorem 5.2 give rise to a well defined map

H
loc,alm-C
m → X s(m) , µ 7→ θs(µ)

that assigns to any µ ∈ Hloc,alm-C
m the corresponding Hermitian s-tuples θs(µ) of (Gµ/Hµ, Jµ, gµ), for any s ≥ (m)+ 2

(see Subsection 3.3). Let us notice that this map is surjective but not injective. In fact, it holds that θs(µ1) = θs(µ2)
for some, and hence for any, s ≥ (m)+2 if and only if kill(µ1) = kill(µ2). Then, the so-called infinitesimal convergence
is defined as follows.

Definition 5.4. A sequence (µ(n)) ⊂ Hloc,alm-C
m is said to converge s-infinitesimally to µ(∞) ∈ Hloc,alm-C

m , for some
s ≥ (m)+2, if θs(µ(n)) → θs(µ(∞)) as n → +∞ in the standard topology of X s(m). If (µ(n)) converges s-infinitesimally
to µ(∞) for any s ≥ (m) + 2, then (µ(n)) is said to converge infinitesimally to µ(∞).

By the previous observation, uniqueness of limit has to be intended in the following way: if a sequence (µ(n)) ⊂

Hloc,alm-C
m converges s1-infinitesimally to µ

(∞)
1 and s2-infinitesimally to µ

(∞)
2 for some integers s2 ≥ s1 ≥ (m) + 2,

then kill(µ
(∞)
1 ) = kill(µ

(∞)
2 ). We also mention that our notion of infinitesimal convergence is equivalent to the original

notion introduced by Lauret in [29, Sect 6] and [32, Sect 3.4]. Moreover, since the infinitesimal convergence involves
only the germs on the almost-Hermitian structures at the origin, it turns out that it is weaker than the algebraic
convergence topology, i.e.

Proposition 5.5. Let q,m ∈ Z with m ≥ 1 and 0 ≤ q ≤ m2. If (µ(n)) ⊂ Hloc,alm-C
m converges algebraically to

µ(∞) ∈ Hloc,alm-C
m , then (µ(n)) converges infinitesimally to µ(∞).
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Proof. Assume that (µ(n)) ⊂ Hloc,alm-C
m converges algebraically to µ(∞) ∈ Hloc,alm-C

m . From (5.3), it follows that

Sµ(n)

→ Sµ(∞)

in the standard Euclidean topology. Therefore, the proof follows from (5.4) and (5.6). �

Notice that, in the Riemannian case, the converse assertion of Proposition (5.5) does not hold true. A counterexam-
ple consisting on a sequence of Ricci flow blow-downs on the universal cover of SL(2,R) is discussed in [9, Ex 9.1]. The
phenomenon of sequences that converge infinitesimally but do not admit any convergent subsequence in the algebraic
topology is called algebraic collapse [9, Sect 5].

The last topology we consider in the moduli space Hloc,alm-C
m is the pointed convergence topology (see e.g. Definition

4.5). More precisely, by means of Theorem 4.4, for any element µ ∈ Hloc,alm-C
m with | sec(µ)| ≤ 1, there exists a unique,

up to equivariant pseudo-holomorphic isometry, 2m-dimensional almost-Hermitian geometric model (Bµ, Ĵµ, ĝµ) in the
class µ. For the sake of notation, we set

H
loc,alm-C
m (1) := {µ ∈ H

loc,alm-C
m : | sec(µ)| ≤ 1}

and we observe that, for any µ ∈ Hloc,alm-C
m , there exists a rescaling constant c > 0 such that c · µ ∈ Hloc,alm-C

m (1),
where the R>0-action on the moduli space Hloc,alm-C

m , according to the decomposition (5.2), is given by

(c · µ)|hµ∧gµ
:= µ|hµ∧gµ

, (c · µ)hµ
:= 1

c2
µhµ

, (c · µ)R2m := 1
c
µR2m .

Indeed, the space (Gc·µ/Hc·µ, Jc·µ, gc·µ) turns out to be locally equivariantly pseudo-holomorphically isometric to
(Gµ/Hµ, Jµ, c

2gµ), and so sec(c · µ) = 1
c
sec(µ).

Let us notice now that, by the very definition, the convergence in the pointed Cs+2-topology of a sequence of
geometric models in Hloc,alm-C

m (1) implies the s-infinitesimal convergence. Concerning the opposite implication, the
following weaker version holds true.

Theorem 5.6. If a sequence (µ(n)) ⊂ Hloc,alm-C
m (1) converges (s+1)-infinitesimally to µ(∞) ∈ Hloc,alm-C

m (1) for some

integer s ≥ (m) + 2, then the corresponding geometric models (Bµ(n) , Ĵµ(n) , ĝµ(n)) converge to the geometric model

(Bµ(∞) , Ĵµ(∞) , ĝµ(∞)) in the pointed Cs+2,α-topology for any 0 ≤ α < 1.

Proof. Assume that (µ(n)) ⊂ Hloc,alm-C
m (1) converges (s + 1)-infinitesimally to µ(∞) ∈ Hloc,alm-C

m (1) for some integer
s ≥ (m) + 2. Then, by Proposition 2.5 and Theorem 4.6, one can pass to a subsequence (µ(ni)) ⊂ (µ(n)) such

that the associated almost-Hermitian geometric models (Bµ(ni) , Ĵµ(ni) , ĝµ(ni)) converge to a limit geometric model

in the pointed Cs+2,α-topology for any 0 ≤ α < 1 as i → +∞. By Theorem 3.12, any convergent subsequence
of (Bµ(n) , Ĵµ(n) , ĝµ(n)) in the pointed Cs+2,α-topology necessarily converges to the almost-Hermitian geometric model

(Bµ(∞) , Ĵµ(∞) , ĝµ(∞)) of µ(∞). This implies that the full sequence (Bµ(n) , Ĵµ(n) , ĝµ(n)) converges in the pointed Cs+2,α-

topology to (Bµ(∞) , Ĵµ(∞) , ĝµ(∞)). �

As a direct corollary, we obtain

Corollary 5.7. A sequence (µ(n)) ⊂ Hloc,alm-C
m (1) converges infinitesimally to µ(∞) ∈ Hloc,alm-C

m (1) if and only if

the corresponding geometric models (Bµ(n) , Ĵµ(n) , ĝµ(n)) converge to the geometric model (Bµ(∞) , Ĵµ(∞) , ĝµ(∞)) in the
pointed C∞-topology.

We end this section by summarizing the various topologies in the following diagram

algebraic conv

Prop 5.5

qy ❧❧❧
❧❧
❧❧
❧❧
❧❧
❧❧
❧

❧❧
❧❧
❧❧
❧❧
❧❧
❧❧
❧❧

$,
◗◗

◗◗
◗◗

◗◗
◗◗

◗◗

◗◗
◗◗

◗◗
◗◗

◗◗
◗◗

infinitesimal conv

��

ks Cor 5.7 +3 C∞-pointed conv
of geom models

��

s-infinitesimal conv
Thm 5.6 with k=s+1

*2 Ck,α-pointed conv
of geom models

k=s+2

jr

and by collecting some open problems.

Remark 5.8 (Open questions, 3).

i) Find an explicit example of algebraic collapse for locally homogeneous almost-Hermitian spaces.
ii) Show that, in real dimension 2m > 2, the s-infinitesimal convergence is strictly weaker than the (s+1)-infinitesimal

convergence for any s ≥ (m) + 2. In the Riemannian case, this has been proven in [43, Theorem C] by using a
slight modification of Berger spheres.

iii) We do not know whether the s-infinitesimal convergence is equivalent to the convergence of geometric models in
the pointed Cs+2-topology. In contrast to the other questions, this is open also in the Riemannian case.
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6. Examples of explicit computations of Gauduchon curvatures

6.1. The Iwasawa threefold.
Consider the Iwasawa manifold

M := Heis(3;Z[i])\Heis(3;C) ,

namely, the compact 3-dimensional complex manifold defined as the quotient of the 3-dimensional complex Heisenberg
group

Heis(3;C) :=








1 z1 z3

1 z2

1



 ∈ GL(3;C) : z1, z2, z3 ∈ C





by the cocompact discrete subgroup Heis(3;Z[i]) := Heis(3;C) ∩ GL(3;Z[i]). Denote by J the complex structure of
M induced by the natural left-invariant complex structure of Heis(3;C).

Let g be a locally homogeneous Hermitian structure on (M,J). Fix (e0, . . . , e5) unitary frame for TM with respect
to (J, g), and denote by (e0, . . . , e5) the dual coframe for T ∗M . The general structure equations are

µ(e0, e2) = αe4 , µ(e0, e3) = αe5 , µ(e1, e2) = αe5 , µ(e1, e3) = −αe4 , (6.1)

depending on parameters α ∈ R
>0. Note that any such Hermitian metric is balanced in the sense of Michelsohn,

namely, dω2 = 0.

Remark 6.1. Equations (6.1) can be derived as follows. Consider the standard left-invariant coframe of (1, 0)-forms
on Heis(3;C) given by

ϕ1 := dz1 , ϕ2 := dz2 , ϕ3 := dz3 − z1 dz2 ,

and notice that the structure equations, with respect to this coframe, are

dϕ1 = 0 , dϕ2 = 0 , dϕ3 = −ϕ1 ∧ ϕ2 .

Then, by [56, p 1032], the fundamental (1, 1)-form associated to any left-invariant Hermitian metric g on Heis(3;C)
has the form

2ω = −ir2ϕ1 ∧ ϕ̄1 − iσ2ϕ2 ∧ ϕ̄2 − iτ2ϕ3 ∧ ϕ̄3 +
(
uϕ1 ∧ ϕ̄2 − ūϕ2 ∧ ϕ̄1

)
,

where r, σ, τ ∈ R>0 and u ∈ C are such that r2σ2 > |u|2. By changing frame to make it (J, g)-unitary, (6.1) follows by
setting

α =
√

r2

r2σ2−|u|2 · τ
r
.

In particular, the standard Hermitian metric corresponds to parameter α = 1.

By using formulas in Section 5.2, we can compute all the relevant geometric data of (M,J, g). We clearly have that
Nµ = 0, hence (Fµ)− = 0 and (Fµ)+ = Fµ. Moreover, Fµ has the following non-zero components, up to symmetries:

Fµ(e0, e2, e4) = Fµ(e0, e3, e5) = Fµ(e1, e2, e5) = −Fµ(e1, e3, e4) = −α .

It is straighforward to compute

Sµ(e0) =
α
2

















0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 −1 0 0 0
0 0 0 −1 0 0

















, Sµ(e1) =
α
2

















0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0
0 0 0 1 0 0
0 0 −1 0 0 0

















, Sµ(e2) =
α
2

















0 0 0 0 −1 0
0 0 0 0 0 −1
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 0 0 0

















,

Sµ(e3) =
α
2

















0 0 0 0 0 −1
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 −1 0 0 0 0
1 0 0 0 0 0

















, Sµ(e4) =
α
2

















0 0 −1 0 0 0
0 0 0 1 0 0
1 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

















, Sµ(e5) =
α
2

















0 0 0 −1 0 0
0 0 −1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

















,

and

At,µ(e0) =
α(t−1)

2

















0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 −1 0
0 0 0 0 0 −1
0 0 1 0 0 0

0 0 0 1 0 0

















, At,µ(e1) =
α(t−1)

2

















0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 1 0
0 0 0 −1 0 0

0 0 1 0 0 0

















,

At,µ(e2) =
α(t−1)

2

















0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
−1 0 0 0 0 0
0 −1 0 0 0 0

















, At,µ(e3) =
α(t−1)

2

















0 0 0 0 0 1
0 0 0 0 −1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
−1 0 0 0 0 0

















,

At,µ(e4) = At,µ(e5) = 0 .
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In particular, it is easy to check that the Chern connection (corresponding to parameter t = 1) is flat. Finally, we
compute the Gauduchon curvature: the non-zero components are

Ω
t
(µ)(e0, e1) =

α2(t−1)2

2















0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 −1 0 0
0 0 1 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0















Ω
t
(µ)(e0, e2) =

α2(t−1)2

4















0 0 1 0 0 0
0 0 0 1 0 0
−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0















Ω
t
(µ)(e0, e3) =

α2(t−1)2

4















0 0 0 1 0 0
0 0 −1 0 0 0
0 1 0 0 0 0
−1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0















Ω
t
(µ)(e1, e2) =

α2(t−1)2

4















0 0 0 −1 0 0
0 0 1 0 0 0
0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0















,

Ω
t
(µ)(e1, e3) =

α2(t−1)2

4















0 0 1 0 0 0
0 0 0 1 0 0
−1 0 0 0 0 0
0 −1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0















, Ω
t
(µ)(e2, e3) =

α2(t−1)2

2















0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0















,

The first Gauduchon-Ricci form is zero. The second Gauduchon-Ricci form is

ρ
t,(2)

(µ) =
α2(t−1)2

2















0 −1 0 0 0 0
1 0 0 0 0 0
0 0 0 −1 0 0
0 0 1 0 0 0
0 0 0 0 0 2
0 0 0 0 −2 0















.

Finally, the Gauduchon scalar curvature is clearly 0. One can also compute the torsion T t(µ), its covariant derivates
∇t,µT t(µ), as well as the covariant derivatives ∇t,µΩt(µ), etc.

6.2. The Kodaira surface.
We consider the primary Kodaira surface, see e.g. [6]. It is known that it is a compact quotient of the Lie group

G := Heis(3;R)× R , (6.2)

where Heis(3;R) denotes the 3-dimensional real Heisenberg group, by means of the co-compact lattice Γ := Heis(3;Z)×
Z. The group G can be endowed with a left-invariant complex structure J0, that is unique up to linear equivalence,
that moves to the quotient M := Γ\G. The compact complex surface (M,J) has Kodaira dimension 0, odd first Betti
number, and trivial canonical bundle.

Arguing as in Remark 6.1, any locally homogeneous Hermitian structure (J0, g) is described by the unitary frame
(e0, e1, e2, e3) with structure equations

µ(e0, e1) =
α
r
e0 −

β
r
e1 −

v
r2
e3 , µ(e0, e2) = −α2

v
e0 +

αβ
v
e1 +

α
r
e3 ,

µ(e0, e3) = −αβ
v
e0 +

β2

v
e1 +

β
r
e3 , µ(e1, e2) =

αβ
v
e0 −

β2

v
e1 −

β
r
e3 ,

µ(e1, e3) = −α2

v
e0 +

αβ
v
e1 +

α
r
e3 , µ(e2, e3) =

(α2+β2)αr
v2 e0 −

(α2+β2)βr
v2 e1 −

α2+β2

v
e3 ,

depending on parameters r, v ∈ R>0, α, β ∈ R. In particular, the standard Hermitian structure corresponds to
r = v = 1 and α = β = 0 (see e.g. [2]). With respect to this frame, the Fµ form is

Fµ = −
(
α2

v
+ β2

v
+ v

r2

)
e0 ∧ e1 ∧ e3 +

( (α2+β2)αr
v2 + α

r

)
e0 ∧ e2 ∧ e3 −

( (α2+β2)βr
v2 + β

r

)
e1 ∧ e2 ∧ e3 .

As before, we can explicitly compute the Levi-Civita connection, the Gauduchon connections, and their related geo-
metric quantities, see Appendix A.2 for the relevant SageMath code.
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As an example, the Chern connection (t = 1) is given by:

A
t=1,µ

(e0) =



















0 −

α
r

(α2−β2)r2−v2

2 r2v

αβ
v

α
r

0 −

αβ
v

(α2−β2)r2−v2

2 r2v

−

(α2−β2)r2−v2

2 r2v

αβ
v

0 α
r

−

αβ
v

−

(α2−β2)r2−v2

2 r2v
−

α
r

0



















,

A
t=1,µ

(e1) =



















0 β
r

−

αβ
v

(α2−β2)r2+v2

2 r2v

−

β
r

0 −

(α2−β2)r2+v2

2 r2v
−

αβ
v

αβ
v

(α2−β2)r2+v2

2 r2v
0 −

β
r

−

(α2−β2)r2+v2

2 r2v

αβ
v

β
r

0



















,

A
t=1,µ

(e2) =























0 0

(

α2+β2
)

r2+v2

2 rv2
β −

(

α2+β2
)

r2+v2

2 rv2
α

0 0

(

α2+β2
)

r2+v2

2 rv2
α

(

α2+β2
)

r2+v2

2 rv2
β

−

(

α2+β2
)

r2+v2

2 rv2
β −

(

α2+β2
)

r2+v2

2 rv2
α 0 0

(

α2+β2
)

r2+v2

2 rv2
α −

(

α2+β2
)

r2+v2

2 rv2
β 0 0























,

A
t=1,µ

(e3) =























0 −

α2+β2

v

(

α2+β2
)

r2−v2

2 rv2
α

(

α2+β2
)

r2−v2

2 rv2
β

α2+β2

v
0 −

(

α2+β2
)

r2−v2

2 rv2
β

(

α2+β2
)

r2−v2

2 rv2
α

−

(

α2+β2
)

r2−v2

2 rv2
α

(

α2+β2
)

r2−v2

2 rv2
β 0 α2+β2

v

−

(

α2+β2
)

r2−v2

2 rv2
β −

(

α2+β2
)

r2−v2

2 rv2
α −

α2+β2

v
0























.

It is easy to see that the first Chern-Ricci form vanishes, and the second Chern-Ricci form is given by:

ρ
t=1,(2)

(µ) =



















0 −

L1
2L2

2r4v4
−

L1
2α

r3v3
−

L1
2β

r3v3

L1
2L2

2 r4v4
0

L1
2β

r3v3
−

L1
2α

r3v3

L1
2α

r3v3
−

L1
2β

r3v3
0

L1
2L2

2 r4v4

L1
2β

r3v3
L1

2α

r3v3
−

L1
2L2

2 r4v4
0



















,

where we put
L1 := α2r2 + β2r2 + v2 , L2 := α2r2 + β2r2 − v2 .

Finally, the Gauduchon scalar curvature is given by

scalt(µ) = − (α2r2+β2r2+v2)
3

r4v4 (t− 1) ,

which vanishes for the Chern connection.

6.3. The Kodaira-Thurston almost-complex 4-manifold.
We consider the same differentiable manifold M = Γ\G as in the previous Section, where G is as in (6.2). It is

known that G admits another left-invariant almost-complex structure J1, which is non-integrable, that induces an
almost-Kählerian structure on the quotient M , see e.g. [51, 53].

In Appendix A.3, we will construct an orthogonal frame (w0, w1, w2, w3) such that J1w0 = w2, J1w1 = w3, whose
structure equations depend on r, σ ∈ R>0 and u := x + iy ∈ C such that r2σ2 > x2 + y2. We will also compute the
Gauduchon curvatures.

Appendix A. SageMath code

In this Appendix, we collect the SageMath [48] code that we used for the explicit computations of Section 6. The
code is available at https://github.com/danieleangella/locally-homogeneous-hermitian.git.

A.1. The Iwasawa threefolds (see Section 6.1).
The following SageMath code has been tested on CoCalc:

sage : v e r s i on ( )

SageMath ve r s i on 9 . 3 , Release Date : 2021−05−09

We will make use of the following functions, to simplify matrices and forms depending on parameters:

sage : def simp mat (A, d i c ={}):

l i s t a =[ ]

for b in A. l i s t ( ) :

try :

l i s t a . append (b . subs ( d i c ) . f a c t o r ( ) )

except :

l i s t a . append (b)

try :

return ( matr ix (A. nrows ( ) ,A. nco l s ( ) , l i s t a ) )

except :

return (A)
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sage : def s imp form ( phi , d i c ={}):

return (sum ( [ phi . i n t e r i o r p r odu c t (b ) . c o n s t a n t c o e f f i c i e n t ( ) . subs ( d i c ) . f a c t o r ( )∗b

for b in E. ba s i s ( ) ] ) )

We construct the exterior algebra generated by e0, . . . , e5, with Lie bracket determined by the structure equations
in (6.1):

sage : n = 6

sage : E = Exter i o rA lgebra (SR, ’ e ’ , n )

sage : = var ( ” alpha ” )

sage : d = E. coboundary ({

( 0 , 2 ) : alpha ∗E. gens ( ) [ 4 ] ,

( 0 , 3 ) : alpha ∗E. gens ( ) [ 5 ] ,

( 1 , 2 ) : alpha ∗E. gens ( ) [ 5 ] ,

( 1 , 3 ) : −alpha ∗E. gens ( ) [ 4 ] ,

})

We save the structure constants in the following dictionary:

sage : mu = {( a , b ) : sum ( [ d( c ) . i n t e r i o r p r odu c t ( a∗b)∗ c for c in E. gens ( ) ] )

for a in E. gens ( ) for b in E. gens ( )}

We also define the following function, to compute the Lie bracket:

sage : def Lie (x , y ) :

return (sum ( [ x . i n t e r i o r p r odu c t ( a ) . c o n s t a n t c o e f f i c i e n t ( )

∗y . i n t e r i o r p r odu c t (b ) . c o n s t a n t c o e f f i c i e n t ( )∗mu[ ( a , b ) ]

for a in E. gens ( ) for b in E. gens ( ) ] ) )

The almost-complex structure is given as follows:

sage : j = matrix (2 , [ 0 , −1 , 1 , 0 ] )

sage : Jmat=b l o ck d i agona l mat r i x ( [ j for k in range(n / 2 ) ] )

sage : J = E. l i f t morph i sm (Jmat )

It is easy to check that the almost-complex structure is integrable:

sage : Ni j={(a , b ) : Lie ( J ( a ) , J (b))−Lie (a , b)−J ( Lie ( J ( a ) , b)+Lie (a , J (b ) ) )

for a in E. gens ( ) for b in E. gens ( )}

sage : [ Ni j [ ( a , b ) ] for a in E. gens ( ) for b in E. gens ( ) i f Nij [ ( a , b ) ] != 0 ]

[ ]

We compute Fµ:

sage : F = −J (d (sum ( [E . gens ( ) [ 2 ∗ j ]∗ J (E. gens ( ) [ 2 ∗ j ] ) for j in range(n / 2 ) ] ) ) )

sage : F

−alpha ∗ e0∗ e2∗ e4 − alpha ∗ e0∗ e3∗ e5 − alpha ∗e1 ∗e2 ∗e5 + alpha ∗ e1∗ e3∗ e4

We compute the Levi-Civita connection Sµ:

sage : S = {x : simp mat ( matrix (n , n , [−1/2∗mu[ ( x , y ) ] . i n t e r i o r p r odu c t ( z ) . c o n s t a n t c o e f f i c i e n t ( )

−1/2∗mu[ ( z , x ) ] . i n t e r i o r p r odu c t ( y ) . c o n s t a n t c o e f f i c i e n t ( )

−1/2∗mu[ ( z , y ) ] . i n t e r i o r p r odu c t ( x ) . c o n s t a n t c o e f f i c i e n t ( )

for z in E. gens ( ) for y in E. gens ( ) ] ) ) for x in E. gens ( )}

and the Gauduchon connection At,µ:

sage : = var ( ” t ” )

sage : A = {x : simp mat ( matrix (n , n , [ S [ x ] [ E . gens ( ) . index ( y ) ,E . gens ( ) . index ( z ) ]

+(t+1)/4∗F. i n t e r i o r p r odu c t (x∗J ( y )∗J ( z ) ) . c o n s t a n t c o e f f i c i e n t ( )

+(t −1)/4∗F. i n t e r i o r p r odu c t (x∗y∗ z ) . c o n s t a n t c o e f f i c i e n t ( )

for y in E. gens ( ) for z in E. gens ( ) ] ) ) for x in E. gens ( )}

The Chern connection can be obtained by setting t = 1:

sage : ACh = {x : simp mat (A[ x ] , { t : 1} ) for x in A. keys ( )}

For example, we can print the LATEX code for Sµ as

sage : for a in S . keys ( ) :

print ( r ”Sˆ\mu(%s)=%s” % ( l a t ex ( a ) , l a t ex (S [ a ] ) ) , ”\n” )

Finally, we compute the Gauduchon curvature:

sage : Omega = {( x , y ) : simp mat (A[ y ]∗A[ x]−A[ x ]∗A[ y ]

−(sum ( [ matr ix (n , n , [mu[ ( x , y ) ] . i n t e r i o r p r odu c t ( c ) . c o n s t a n t c o e f f i c i e n t ( )∗b

for b in A[ c ] . l i s t ( ) ] )

for c in E. gens ( ) ] ) i f not mu[ ( x , y)]==0 else zero matr i x (n ) ) )

for x in E. gens ( ) for y in E. gens ( )}

It suffices to change A by S in the code above to compute the Riemannian curvature. Moreover, the Chern curvature
can be computed as:

sage : OmegaCh = {b : simp mat (Omega [ b ] , { t : 1} ) for b in Omega . keys ( )}
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The first and the second Gauduchon-Ricci forms can be computed as:

sage : rho1 = 1/2∗ simp mat ( matrix (n , n , [ sum ( [Omega [ (E. gens ( ) [ i ] ,E. gens ( ) [ j ] ) ] [ 2 ∗ k ,2∗ k+1]

for k in range(n / 2 ) ] ) for i in range(n) for j in range(n ) ] )

+matrix (n , n , [ sum ( [ J (E. gens ( ) [ i ] ) . i n t e r i o r p r odu c t (u ) . c o n s t a n t c o e f f i c i e n t ( )

∗J (E. gens ( ) [ j ] ) . i n t e r i o r p r odu c t (v ) . c o n s t a n t c o e f f i c i e n t ( )

∗Omega [ ( u , v ) ] [ 2 ∗ k ,2∗ k+1] for u in E. gens ( ) for v in E. gens ( )

for k in range(n / 2 ) ] ) for i in range(n) for j in range(n ) ] ) )

sage : rho2 = 1/2∗( simp mat (sum ( [ Omega [ (E. gens ( ) [ 2 ∗ j ] ,E . gens ( ) [ 2 ∗ j +1 ] ) ] for j in range(n / 2 ) ] )

+sum ( [ J (E . gens ( ) [ 2 ∗ j ] ) . i n t e r i o r p r odu c t (u ) . c o n s t a n t c o e f f i c i e n t ( )

∗J (E. gens ( ) [ 2 ∗ j +1 ] ) . i n t e r i o r p r odu c t ( v ) . c o n s t a n t c o e f f i c i e n t ( )

∗Omega [ ( u , v ) ] for u in E. gens ( ) for v in E. gens ( ) for j in range(n / 2 ) ] ) ) )

In particular, the first and the second Chern-Ricci curvatures are both zero, as shown by computing:

sage : rho1Ch = simp mat ( rho1 , { t : 1} )

sage : rho2Ch = simp mat ( rho2 , { t : 1} )

Finally, the scalar curvature is computed either as:

sage : s c a l = 2∗sum ( [ rho2 [ 2∗ j , 2∗ j +1] for j in range(n / 2 ) ] )

or as:

sage : s c a l = 2∗sum ( [ rho1 [ 2∗ j , 2∗ j +1] for j in range(n / 2 ) ] )

giving zero. (We stress here that we can use the built-in methods simplify full or factor of
sage.symbolic.expression.Expression.)

A.2. The Kodaira surface (see Section 6.2).
We can perform the computations for the Kodaira surface as in the previous Section, with small changes, starting

by setting the dimension:

sage : n = 4

Here the code to construct the differential:

sage : f 3 = −alpha ∗ r∗E. gens ( ) [ 0 ]+ beta ∗ r ∗E. gens ( ) [ 1 ]+ v∗E. gens ( ) [ 3 ]

sage : d = E. coboundary ({

( 0 , 1 ) : −1/r ˆ2∗ f3 ,

( 0 , 2 ) : alpha /( r∗v )∗ f3 ,

( 0 , 3 ) : beta /( r ∗v )∗ f3 ,

( 1 , 2 ) : −beta /( r∗v )∗ f3 ,

( 1 , 3 ) : alpha /( r∗v )∗ f3 ,

( 2 , 3 ) : −(alphaˆ2+beta ˆ2)/( vˆ2)∗ f 3

})

A.3. The Kodaira-Thurston almost-complex 4-manifold (see Section 6.3).
We can perform the computations as in the previous Sections. We present here the code in order to compute the

complex structure equations.
We start from the standard real frame (e0, e1, e2, e3) with structure equations determined by [e0, e1] = −e3:

sage : n = 4

sage : E = Exter i o rA lgebra (SR, ’ e ’ , n )

sage : d = E. coboundary ({

( 0 , 1 ) : −E. gens ( ) [ 3 ] ,

( 0 , 2 ) : 0 ,

( 0 , 3 ) : 0 ,

( 1 , 2 ) : 0 ,

( 1 , 3 ) : 0 ,

( 2 , 3 ) : 0

})

sage : print ( [ d (b) for b in E. gens ( ) ] )

[ 0 , 0 , 0 , −e0∗ e1 ]

The non-integrable almost-complex structure is given by Je0 = e2 and Je1 = e3:

sage : Jmat=block matr i x ( [ [ ze ro matr i x (2 ) , − i d en t i t y mat r i x ( 2 ) ] ,

[ i d en t i t y mat r i x (2 ) , ze ro matr i x ( 2 ) ] ] )

sage : J = E. l i f t morph i sm (Jmat )

sage : print ( [ J (b) for b in E. gens ( ) ] )

[ e2 , e3 , −e0 , −e1 ]

We check the non-integrability:

sage : Ni j={(a , b ) : −J ( Lie ( J ( a ) , b)+Lie (a , J (b))+ Lie ( J ( a ) , J (b))−Lie ( a , b ) )

for a in E. gens ( ) for b in E. gens ( )}

sage : [ Ni j [ ( a , b ) ] for a in E. gens ( ) for b in E. gens ( ) i f Nij [ ( a , b ) ] != 0 ]

[ e1 , e1 , −e1 , −e1 , e1 , −e1 , −e1 , e1 ]
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We construct the coframe of (1, 0)-forms ϕ1 := e0 − ie2, ϕ1 := e1 − ie3, where (e0, e1, e2, e3) denotes the dual basis of
(e0, e1, e2, e3):

sage : varphi = [E . gens ( ) [ j ]− I ∗J (E . gens ( ) [ j ] ) for j in range(n /2 ) ]

sage : barvarphi = [E . gens ( ) [ j ]+ I ∗J (E . gens ( ) [ j ] ) for j in range(n /2 ) ]

sage : varphi

[ e0 − I ∗e2 , e1 − I ∗ e3 ]

Notice that the convention by SageMath for the action of the complex structure on the dual differs from our notation:

sage : a l l ( [ J (b)==I ∗b for b in varphi ] )

True

sage : a l l ( [ J (b)==−I ∗b for b in barvarphi ] )

True

We check that the structure equations in this coframe are

sage : [ d (b) for b in varphi ]

[ 0 , I ∗e0 ∗e1 ]

namely,

dϕ1 = 0 , dϕ2 = i
4

(
ϕ1 ∧ ϕ2 + ϕ1 ∧ ϕ̄2 − ϕ2 ∧ ϕ̄1 + ϕ̄1 ∧ ϕ̄2

)
.

The generic almost-Hermitian metric is given by

2ω = −ir2ϕ1 ∧ ϕ̄1 − iσ2ϕ2 ∧ ϕ̄2 + uϕ1 ∧ ϕ̄2 − ūϕ2 ∧ ϕ̄1 ,

where r, σ ∈ R>0 and u ∈ C satisfy r2σ2 > |u|2 (compare with Remark 6.1). The following code will allow us to derive
the g-orthonormal frame with respect to the generic metric g associated to ω and J :

sage : = var ( ” r sigma x y” )

sage : omega = 1/2∗(− I ∗ r ˆ2∗ varphi [ 0 ] ∗ barvarphi [0]− I ∗ sigmaˆ2∗ varphi [ 1 ] ∗ barvarphi [ 1 ]

+(x+I ∗y )∗ varphi [ 0 ] ∗ barvarphi [1 ] −(x−I ∗y )∗ varphi [ 1 ] ∗ barvarphi [ 0 ] )

sage : P = matrix (n , n , [ omega . i n t e r i o r p r odu c t ( a∗J (b ) ) . c o n s t a n t c o e f f i c i e n t ( )

for a in E. gens ( ) for b in E. gens ( ) ] )

sage : def s ca l a r p r oduc t (a , b ,P=P) :

return ( a . t r anspose ( )∗P∗b ) [ 0 , 0 ]

sage : def GS( e ) :

ftmp = [ ]

for j in range( len ( e ) ) :

ftmp . append ( e [ j ]−sum ( [ s c a l a r p r oduc t ( e [ j ] , ftmp [ k ] ) / s ca l a r p r oduc t ( ftmp [ k ] , ftmp [ k ] )∗ ftmp [ k ]

for k in range (0 , j ) ] ) )

f = [1/ sq r t ( s ca l a r p r oduc t ( ftmp [ j ] , ftmp [ j ] ) ) ∗ ftmp [ j ] for j in range( len ( e ) ) ]

return ( f )

sage : fmat = GS( [ i d en t i t y mat r i x (n ) [ : , j ] for j in range(n ) ] )

sage : f = [sum ( [ emat [ j ] [ k , 0 ] ∗E. gens ( ) [ k ] for k in range(n ) ] ) for j in range(n ) ]

We now make the frame w also (J, g)-unitary:

sage : w = [1/ sq r t ( 2 )∗ ( f [ j ]−J ( f [ j ] ) ) for j in [ 0 , 3 ] ]+ [ 1 / sq r t ( 2 )∗ ( f [ j ]+J ( f [ j ] ) ) for j in [ 0 , 3 ] ]

namely, it is orthonormal and J acts as J(w0) = w2, J(w1) = w3:

sage : a l l ( [ matr ix (n , n , [ omega . i n t e r i o r p r odu c t (b∗J ( c ) ) . c o n s t a n t c o e f f i c i e n t ( ) . s i m p l i f y f u l l ( )

for b in w for c in w])== iden t i ty mat r i x (n ) ]

+ [ J (w[0] ) −w[2]==0 , J (w[1] ) −w[3]==0])

True

We are now able to compute the structure equations with respect to the (J, g)-unitary frame (w0, w1, w2, w3):

sage : muw = {( a , b , c ) : Lie (w[ a ] , w[ b ] ) . i n t e r i o r p r odu c t (w[ c ] ) . c o n s t a n t c o e f f i c i e n t ( )

for a in range(n ) for b in range(n) for c in range(n)}

We can now construct the Lie algebra by using these structure equations:

sage : r e s e t ( ’E ’ )

sage : E = Exter i o rA lgebra (SR, ’ e ’ , n )

sage : s t r u c t e q = {( j , k ) : sum ( [mue [ ( j , k , h ) ] ∗E. gens ( ) [ h ] for h in range(n ) ] )

for j in range(n) for k in range(n)}

sage : d = E. coboundary ({ ( a , b ) : sum ( [muw[ ( a , b , c ) ] ∗E. gens ( ) [ c ] for c in range(n ) ] )

for a in range(n) for b in range(n )} )

We check that the Jacobi identity is satisfied:

sage : a l l ( [ d(d (b))==0 for b in E. gens ( ) ] )

True
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We now proceed by constructing the variables mu, F, Nij, S. We note that the almost-Hermitian structure is
almost-Kähler, namely, dω = 0. We need to modify the formula for A, in order to include the terms coming from the
non-vanishing Nijenhuis tensor:

sage : A = {x : simp mat ( matrix (n , n , [ S [ x ] [ E . gens ( ) . index ( y ) ,E . gens ( ) . index ( z ) ]

+(t+1)/4∗F. i n t e r i o r p r odu c t (x∗J ( y )∗J ( z ) ) . c o n s t a n t c o e f f i c i e n t ( )

+(t −1)/4∗F. i n t e r i o r p r odu c t (x∗y∗ z ) . c o n s t a n t c o e f f i c i e n t ( )

+1/4∗Nij [ ( y , z ) ] . i n t e r i o r p r odu c t (x ) . c o n s t a n t c o e f f i c i e n t ( )

for y in E. gens ( ) for z in E. gens ( ) ] ) ) for x in E. gens ( )}

We also compute the variables ACh, the curvatures Omega and OmegaCh, the Ricci forms Ric1 and Ric2, Ric1Ch
and Ric2Ch, the scalar curvature scal:

sage : l a t ex ( s c a l . s i m p l i f y f u l l ( ) )

−\ f r a c { r ˆ{2}}{ r ˆ{4} \ sigmaˆ{4} − 2 \ , r ˆ{2} \ sigmaˆ{2} xˆ{2}

+ xˆ{4} + yˆ{4} − 2 \ , {\ l e f t ( r ˆ{2} \ sigmaˆ{2} − xˆ{2}\ r i gh t )} yˆ{2}}
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