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ERRATA TO: THE ALGEBRA OF SLICE FUNCTIONS

RICCARDO GHILONI, ALESSANDRO PEROTTI, AND CATERINA STOPPATO

Abstract. We correct the statement and proof of [4, Proposition 4.10] and

straighten out [4, Example 4.13] accordingly. We take this chance to correct a

sentence within [4, Examples 1.13].

This note corrects a few errors in the article [4].
The first correction concerns a single sentence within [4, Examples 1.13, page

4736]: we must add to the sentence “The set Q6 is the intersection of S 7 with
the hyperplane q0 = 0” the words “minus R + ε Im(H)∗.” For a proof of this fact,
see [3, page 5513].

The second correction originates from [2, Remark 6.3]. We propose a new
statement and proof of [4, Proposition 4.10]. In R3, let us adopt the notation
ω± := 1

2 (1 ± e123). We recall that ω+ω− = 0 = ω−ω+. We notice that ω2
± = ω±,

that ω++ω− = 1, and that ω+−ω− = e123. As a consequence, R3 = ω+R2+ω−R2.

Proposition 4.10. If A = R3, if f ∈ S(Ω) and if x ∈ Ω \ R, then one of the
following happens:

(1) V (f) ∩ Sx = ∅;
(2) V (f) ∩ Sx = {y}, f ′s(x) ∈ C∗A and y = Re(x)− f◦s (x)f ′s(x)−1;
(3) V (f) ∩ Sx is not empty and f ′s(x) ∈ ω±R∗2; for all y ∈ V (f) ∩ Sx, it holds

V (f) ∩ Sx = {ω±y + ω∓z : z ∈ Sx ∩ R2};
(4) V (f) ⊇ Sx and f ′s(x) = 0.

In each of the aforementioned cases, respectively:

(1) Sx does not intersect V (f c) nor V (N(f));
(2) Sx ⊆ V (N(f)) and V (f c) ∩ Sx = {f ′s(x)−1ycf ′s(x)};
(3) Sx ⊆ V (N(f)) and V (f c) ∩ Sx = {h−1ych : y ∈ V (f) ∩ Sx}, where h ∈ R∗2

is such that f ′s(x) = ω±h;
(4) Sx is included both in V (f c) and in V (N(f)).

Proof. Let us assume Sx = α+βSR3
, whence f(α+βI) = a1+Ia2 for each I ∈ SR3

,
where a1 = f◦s (x), a2 = βf ′s(x). We can apply [4, Theorem 4.1], taking into account
the following facts: R3 is nonsingular; R3 is compatible; CR3

is R3 minus the set
ω+R∗2 ∪ ω−R∗2 of its zero divisors. We derive the following properties.

• If f ′s(x) = 0 then one of the following holds:
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– Sx is included in V (f), V (f c), V (N(f)) and V (N(f c)).
– Sx does not intersect V (f), V (f c) nor V (N(f)).

• If f ′s(x) is a right zero divisor then one of the following holds:
– Sx intersects V (f) at at least one point y = α+βu and the intersection

is the set of all y′ = α+βv ∈ Sx such that (v−u)f ′s(x) = 0. Moreover,
Sx ⊆ V (N(f)).

– Sx does not intersect V (f).
• If f ′s(x) is neither 0 nor a right zero divisor then one of the following holds:

– Sx intersects V (f) exactly at y = Re(x) − f◦s (x)f ′s(x)−1. It holds
Sx ∩ V (f c) = {f ′s(x)−1ycf ′s(x)} and Sx ⊆ V (N(f)).

– Sx does not intersect V (f) nor V (f c). Sx is not included in V (N(f)).

We now observe that, when Sx is not included in V (N(f)), then it does not intersect
V (N(f)). Suppose, indeed, N(f)(α+ βI) = n(a1)− n(a2) + It(a1a

c
2) to vanish for

some I ∈ SR3
. Since the functions n, t : R3 → R3 take values in the center R+e123R

of the algebra, there exist a, b, c, d ∈ R such that n(a1) − n(a2) = a + e123b and
t(a1a

c
2) = c + e123d, whence a + e123b = −I(c + e123d). By squaring, we obtain

a2 + b2 + 2e123ab = −c2 − d2 − 2e123cd, whence a2 + b2 = −c2 − d2. It follows that
a = b = c = d = 0 and that n(a1) − n(a2) = t(a1a

c
2) = 0. As a consequence, Sx is

included in V (N(f)).
We are left with studying in detail the case when a2 = βf ′s(x) is a right zero

divisor. We recall that, in R3, both the set of left zero divisors and the set of right
zero divisors coincide with ω+R∗2 ∪ ω−R∗2. We suppose henceforth that a2 = ω±h
with h ∈ R∗2.

We first assume y = α + βu ∈ V (f) ∩ Sx. We will prove that V (f) ∩ Sx =
{ω±y + ω∓z : z ∈ Sx ∩ R2} by solving the equation (v − u)a2 = 0 or, equivalently,
(v − u)ω± = 0 for v ∈ SR3

. This equation is equivalent to v − u = ω∓k for some
k ∈ R2. We remark that ω±u = ω±u± for appropriate u± ∈ R2. Thus,

v = u+ ω∓k = ω±u+ ω∓u+ ω∓k = ω±u± + ω∓(u∓ + k)

for some k ∈ R2. Equivalently, v = ω±u± + ω∓u
′ = ω±u+ ω∓u

′ for some u′ ∈ R2.
Such a v belongs to SR3

if, and only if,

0 = t(v) = ω±t(u) + ω∓t(u
′) = ω∓t(u

′),

1 = n(v) = ω±n(u) + ω∓n(u′) = ω± + ω∓n(u′) ,

where we took into account the fact that t(u) = 0 and n(u) = 1. Thus, v belongs to
SR3 if, and only if, t(u′) = 0, n(u′) = 1, i.e., u′ ∈ SR2 . It follows that the solutions
of (v − u)ω± = 0 in SR3 are exactly the Clifford numbers v = ω±u + ω∓u

′ with
u′ ∈ SR2

. This proves that the elements of V (f) ∩ Sx are the points α + βv =
ω±(α+ βu) + ω∓(α+ βu′) = ω±y + ω∓z with z ∈ Sx ∩ R2.

Under the same assumption y = α + βu ∈ V (f) ∩ Sx, not only Sx ⊆ V (N(f))
as we already stated; it also holds y′ := h−1ych ∈ V (f c) ∩ Sx. To prove this
fact, we first observe that y′ belongs to Sx by [4, Remark 1.16]: indeed, h ∈
C∗R3

. We then observe that f(y) = a1 + ua2 = 0 implies a1 = −ua2, whence

f c(y′) = ac1 − h−1uhac2 = ac2u − h−1uhhcω± = ac2u − hcω±u = ac2u − ac2u = 0.
Taking into account the equalities f = (f c)c and β(f c)′s(x) = ac2, we conclude that
V (f c) ∩ Sx = {h−1ych : y ∈ V (f) ∩ Sx}.

Now let us assume, instead, V (f) ∩ Sx = ∅. We remark that V (f c) ∩ Sx = ∅: if
f c had a zero in Sx, then (f c)c = f would have a zero in Sx by what we already
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proved. We conclude the proof by checking that V (N(f)) ∩ Sx = ∅. Suppose by
contradiction V (N(f)) ∩ Sx 6= ∅, whence Sx ⊆ V (N(f)). Then n(a1) = n(a2) and
t(a1a

c
2) = 0. The fact that n(a1) = n(a2) = ω±n(h) implies that a1 = ω±k, with

k ∈ R∗2 having n(k) = n(h). Since 1 = n(k)n(h)−1 = n(kh−1) and 0 = t(a1a
c
2) =

ω±t(kh
c) = ω±t(kh

−1)n(h), if we set w := −kh−1, then n(w) = 1 and t(w) = 0.
Thus, w ∈ SR3 and f(α+βw) = ω±k+wω±h = ω±(k+wh) = 0, which contradicts
the hypothesis V (f) ∩ Sx = ∅. �

Consequently, we apply a third correction. Namely, we modify [4, Example 4.13]
as follows.

Example 4.13. Let A = R3 and let f(x) =
(
e1 − Im(x)

| Im(x)|

)
ω−. Then f is slice

regular in QA \R and f is constant in C+
I for each I ∈ SR3 . By direct computation,

f(e1) = 0 and f ′s(e1) = −ω−. By Proposition 4.10, it holds

V (f) =
⋃

u∈SR2

C+
ω−e1+ω+u.

For instance, C+
e1 ,C

+
e23 are both included in V (f) because ω−e1 + ω+e1 = e1 and

ω−e1 + ω+(−e1) = (ω− − ω+)e1 = −e123e1 = −e21e23 = e23.

An example of g ∈ SR(QA \ R) with the same zero set as f , but which is not
constant along the half-slices C+

I , can be constructed following [1] and letting g(x) =
x · f(x) = xf(x).

We take this chance to point out that [5, Example 9.6] must be corrected along
the same lines. This is done in [2, Example 6.6], with an approach that is slightly
different from ours.
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