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1Instituto de Fı́sica Teórica, Universidade Estadual Paulista, São Paulo, SP-01140-070, Brazil
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ABSTRACT
One of the primary sources of uncertainties in modelling the cosmic-shear power spectrum on small scales is the effect of
baryonic physics. Accurate cosmology for stage-IV surveys requires knowledge of the matter power spectrum deep in the
non-linear regime at the per cent level. Therefore, it is important to develop reliable mitigation techniques to take into account
baryonic uncertainties if information from small scales is to be considered in the cosmological analysis. In this work, we develop
a new mitigation method for dealing with baryonic physics for the case of the shear angular power spectrum. The method is based
on an augmented covariance matrix that incorporates baryonic uncertainties informed by hydrodynamical simulations. We use
the results from 13 hydrodynamical simulations and the residual errors arising from a fit to a �CDM model using the extended
halo model code HMCODE to account for baryonic physics. These residual errors are used to model a so-called theoretical error
covariance matrix that is added to the original covariance matrix. In order to assess the performance of the method, we use the
2D tomographic shear from four hydrodynamical simulations that have different extremes of baryonic parameters as mock data
and run a likelihood analysis comparing the residual bias on �m and σ 8 of our method and the HMCODE for an LSST-like survey.
We use different modelling of the theoretical error covariance matrix to test the robustness of the method. We show that it is
possible to reduce the bias in the determination of the tested cosmological parameters at the price of a modest decrease in the
precision.

Key words: cosmology: observations – large-scale structure of Universe.

1 IN T RO D U C T I O N

One of the goals of modern cosmology is to uncover the nature
of dark matter and dark energy. Current and new instruments aim
at obtaining data with increasing quality and quantity. Surveys of
galaxies such as the Extended Baryon Oscillation Spectroscopic
Survey (eBOSS;1 eBOSS Collaboration 2021) and the previous
phases of the Sloan Digital Sky Survey (SDSS; Eisenstein et al.
2011; Blanton et al. 2017), the Hyper Suprime-Cam Subaru Strategic
Program (HSC-SSP;2 Hikage et al. 2019), the Kilo-Degree Survey
(KiDS;3 Hildebrandt et al. 2017; Heymans et al. 2021), and the Dark
Energy Survey (DES;4 Abbott et al. 2018) have already delivered
an outstanding amount of results. And future surveys such as the
Dark Energy Spectroscopic Instrument (DESI;5 DESI Collaboration
2016), the Vera C. Rubin Observatory Legacy Survey of Space and

� E-mail: mgabroelaop@gmail.com (MGM); rogerio.rosenfeld@gmail.com
(RR)
1www.sdss.org/surveys/eboss
2hsc.mtk.nao.ac.jp/ssp
3kids.strw.leidenuniv.nl
4www.darkenergysurvey.org
5www.desi.lbl.gov

Time (LSST;6 Ivezić et al. 2019), Euclid7 (Laureijs et al. 2011), and
the Nancy Grace Roman Space Telescope8 (Spergel et al. 2015) will
provide even more accurate information.

In order to extract cosmological information from these data, it is
important to have an accurate theoretical modelling of the measured
observables. One of the key obstacles in the interpretation of weak
lensing measurements is the modelling of baryonic feedback at small
scales. For a recent review of the challenges of baryonic feedback
and relevant references see, e.g. Chisari et al. (2019).

State-of-the-art hydrodynamical simulations allow the study of
the impact of baryonic feedback galaxy formation dynamics on the
matter power spectrum. However, these simulations cannot predict
the behaviour of feedback processes from first principles and several
phenomenological parameters must be assumed. Therefore, there
are uncertainties in the predictions of baryonic feedback from these
simulations since there is a range of different values for these
parameters that can be used.

6www.lsst.org
7www.euclid-ec.org
8roman.gsfc.nasa.gov
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The main methods used for mitigating baryonic uncertainties
consist on using the information from current cosmological hydro-
dynamical simulations to:

(i) Choose a scale (’scale-cut’) below which one cannot trust the
theoretical modelling of the power spectrum (Krause et al. 2017);

(ii) Use principal component analysis to find the modes that are
the most significant in describing baryonic impacts and marginalize
over them (Eifler et al. 2015; Huang et al. 2019);

(iii) Construct self-calibrated phenomenological models that
mimic the baryonic effects in the structure of dark matter haloes
(Mead et al. 2015).

DES and HSC have chosen to mitigate baryonic uncertainties
using scale cuts to eliminate the impact of baryonic physics as
modelled by either the Over Whelmingly Large Simulations (OWLS)
hydrodynamical simulations (van Daalen et al. 2011) in the case of
DES (Krause et al. 2017), or by a modification of the dark matter
power spectrum due to the active galactic nucleus (AGN) feedback
modelled by a fitting function in the case of HSC (Hikage et al. 2019;
Hamana et al. 2020). KiDS, on the other hand, uses in their fiducial
analysis a baryon feedback parameter (Asgari et al. 2021).

In a recent study, Huang et al. (2019) showed that in the case of
weak lensing for the LSST there are still residual errors using these
mitigation methods. In this paper, we aim to mitigate these residual
errors, particularly the ones arising from a likelihood analysis using
hydrodynamical simulations as input data and a theoretical model
using HMCODE (Mead et al. 2015).

In order to develop a new mitigation method for the residual errors
in an LSST-like tomographic weak lensing survey, we adapt the
general statistical approach developed by Baldauf et al. (2016; see
also Audren et al. 2013).This method incorporates the effects of non-
negligible theoretical uncertainties in the covariance matrix, leading
to a smooth suppression of modes where these uncertainties are
larger. This method was recently applied for the case of unknown
non-linear corrections in the matter and galaxy power spectra in
Chudaykin, Ivanov & Simonovic (2021).

This paper is organized as follows. In Section 2 we review the
theoretical modelling of the convergence power spectrum and its
Gaussian covariance matrix. Section 3 presents the main ingredients
of a general proposal to include theoretical errors in a covariance
matrix proposed in Baldauf et al. (2016). In Section 4 we adapt this
method to construct covariance matrices aimed at mitigating residual
baryonic uncertainties using a set of hydrodynamical simulations
and their best fits from a likelihood analysis that employed HMCODE
to model baryonic effects. In Section 5 we perform a simulated
likelihood analysis for an LSST-like weak lensing survey with
different covariance matrices and find that the augmented covariance
matrices in fact result in an increased accuracy (less biased inferred
cosmological parameters) at the expense of a modest decrease in the
precision (larger error bars). We discuss our findings in Section 6
and present our conclusions in Section 7.

2 C O N V E R G E N C E P OW E R SP E C T RU M A N D
I T S G AU S S I A N C OVA R I A N C E M AT R I X

Here we are interested in the convergence angular power spectrum
between two tomographic bins i and j, Cij

κκ (�) given in the Limber
approximation by

Cij
κκ (�) =

∫ χh

0
dχ

gi(χ )gj (χ )

χ2
Pm

(
� + 1/2

χ
, z(χ )

)
, (1)

where χ is the comoving radial distance between the observer and
the object, the lens efficiency gi(χ ), in a flat cosmology, is written
for source galaxies with redshift distribution ni(z) as

gi(χ ) ≡ 3�mH 2
0

2c2a(χ )

∫ χh

0
dz ni(z)

(χ ′(z) − χ )χ

χ ′(z)
	(χ ′(z) − χ ), (2)

with �m the matter density parameter, c the speed of light, a(χ )
is the expansion scale factor as a function of χ , H0 the Hubble
constant taken at the present day and 	(χ

′
(z)−χ ) is the heavyside

step function. In this preliminary analysis, we will not consider
effects such as bias corrections to shear and intrinsic alignments.

The Gaussian covariance of projected convergence power spectra
can be expressed as (Hu & Jain 2004)

CovG(Cij
κκ (�), Cpq

κκ (�′)) = 〈

Cij

κκ (�) 
Cpq
κκ (�′)

〉 =
2π δ��′

A�
�

[
C̄ip

κκ (�)C̄jq
κκ (�′) + C̄iq

κκ (�)C̄jp
κκ (�′)

]
, (3)

with

C̄ij
κκ (�) = Cij

κκ (�) + δij

(σ i)2

ni
�

, (4)

where � is the angular survey area, 
� is the angular bin width (as
described in Section 2), ni

� is the area density of galaxies in redshift
bin i and σ i is the Gaussian shape noise per component. For LSST
Y10, we adopt the requirements of The LSST Dark Energy Science
Collaboration (2018) with a survey area � of 14 300 deg2, shape
noise of σ i = 0.26 and ni

� = 5.4 arcmin−2 for all bins. Furthermore,
we use a gravity-only model for the non-linear two-point function
from Takahashi et al. (2012) in CosmoLike (Krause & Eifler 2017),
in order to generate the analytical Gaussian covariance matrix.

The covariance matrix has contributions from a Gaussian part
and a non-Gaussian part composed of the connected four-point
(trispectrum) contributions and supersample covariance (Hu & Jain
2004; Krause et al. 2017; Barreira, Krause & Schmidt 2018). The
Gaussian contribution is the dominant one as seen in a χ2 analysis for
DES-Y3 set-up (Friedrich et al. 2020) and for stage-IV experiments
(Barreira et al. 2018). As an initial test of our mitigation method,
we will be interested in incorporating errors from residual baryon
effects in the Gaussian covariance matrix.

3 MI TI GATI NG UNCERTAI NTI ES WI TH
M O D I F I E D C OVA R I A N C E S

In this section, we briefly review the strategy described in Baldauf
et al. (2016) to model a general residual error as a Gaussian random
variable that can be marginalized over resulting in an additional
contribution to the covariance matrix.

Let x be the data vector, and t the theoretical vector. The
error vector e being the residual between the data vector and its
corresponding best-fitting theory, with mean value ē. We assume e
to follow a Gaussian distribution

Pe ∝ exp
[

− 1

2
(e − ē)C−1

e (e − ē)
]
, (5)

with a covariance matrix Ce given by

Cab
e = 〈

ea eb
〉 − ē a ē b. (6)

In this section, for simplicity, we will use a and b as the indexes for
the angular bins. We parametrize

〈
ea eb

〉
as〈

ea eb
〉 ≡ Ea ρab Eb, (7)

where we introduced a quantity we call the envelope Ea = E(�a) and
assume that the correlation coefficient ρab is Gaussian and it depends
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only on the distance between two bins centred at �a and �b. Thus,

ρab ≡ exp

[
− (�a − �b)2

2L2

]
. (8)

Hence, we can fully describe this mitigation approach by the smooth
envelope E(�) and the correlation �-scale L, which specifies the
minimal scale of variation of the theoretical model. Note that
including the correlation coefficient is one important difference
compared to the method of Audren et al. (2013), where fluctuations
due to theoretical uncertainties in all bins are treated as independent.

Assuming a Gaussian likelihood, we can include the theoretical
error as

Le ∝ exp

{
− 1

2

[
(x − t − e) C−1

d (x − t − e) + (e − ē) C−1
e (e − ē)

]}
, (9)

where Cd is the usual data covariance matrix and Ce the error
covariance matrix. We can marginalize the likelihood over the errors
e to obtain:

L ∝ exp

[
−1

2
(x − t − ē)C−1(x − t − ē)

]
, (10)

with the augmented covariance matrix C given by

C = Cd + Ce. (11)

In the next section, we will present our ansatz for the error covariance
matrix in the case of uncertainties arising from the modelling of
baryon physics.

4 MO D E L L I N G TH E T H E O R E T I C A L E R RO R
C OVA R I A N C E

In this section, we use 13 hydrodynamical simulations9 to model
the residual baryonic error from HMCODE on the convergence angular
power spectrum of an LSST-like survey with the introduction of
a baryonic error covariance matrix, which we will denote in the
following by CovBar. The 13 hydrodynamical simulations considered
in this work are: Illustris (Vogelsberger et al. 2014), Eagle (Schaye
et al. 2015), MassiveBlack-II (MB-II; Khandai et al. 2015), Horizon-
AGN (Dubois et al. 2014), and the nine different baryonic scenarios
from the OWLS simulation set (Schaye et al. 2010; van Daalen et al.
2011).

We compute the tomographic convergence angular power spec-
trum from equation (1) with an upper limit of �max ∼ 3000. Following
the Dark Energy Science Collaboration (DESC) requirements for
the LSST Y10 weak lensing analysis (Mandelbaum et al. 2018), we
consider 20 equally spaced logarithmic angular � bins ranging from
20 to 3000 for each tomographic spectra.

The matter power spectrum that enters equation (1) includes
baryons and non-linear effects that we must account for. One widely
used method to take include these effects in the matter power
spectrum is to use a phenomenological halo model based approach
implemented in HMCODE (Mead et al. 2015). This variant of the
halo model uses two physically motivated additional parameters: the
halo bloating parameter, η0, and the minimum halo concentration,
A. Calibration with the Cosmic Emu emulator obtained from the
high-resolution gravity only (G) N-body simulations Coyote suite
(Lawrence et al. 2010) yields A = 3.13 and η0 = 0.604. When
varying the A and η0 parameters, one controls the halo-profile in a

9In some cases, such as CMB lensing, one can also use analytical prescriptions
to estimate the impact of baryonic physics on the matter power spectrum
(Bragança et al. 2020).

Table 1. Parameters of the flat-�CDM + HMCODE parameters adopted in
this work. Massless neutrinos were assumed.

Parameter Fiducial Prior

�m 0.3156 flat(0.2998−0.3314)
σ 8 0.831 flat(0.789−0.873)
h0 0.6727 fixed
�b 0.049 1685 fixed
ns 0.9645 fixed
w −1.0 fixed
τ 0.08 fixed
A 0.08 flat(1.0−8.0)
η0 0.08 flat(0.3−1.6)

mass-dependent way that reproduces different feedback processes
from various baryonic scenarios.

The HMCODE can be used to reproduce the results from hydrody-
namical simulations. However, the results from best-fitting param-
eters arising from a Markov Chain Monte Carlo (MCMC) analysis
show residual errors between the HMCODE-generated power spectra
and the power spectra from simulations (Huang et al. 2019). We will
mitigate these residual errors, modelling them as Gaussian variables
that can be marginalized, generating an augmented covariance matrix
as reviewed in Section 3.

There are several hydrodynamical simulations that include the
effects of baryons, but they all depend on certain assumptions, such
as the intensity of baryonic feedback processes. We use the results
from Huang et al. (2019), who studied the spread in the predictions of
the 3D power spectrum from different hydrodynamical simulations
to assess the residual errors. We denote P δ

hydro the 3D power spectrum
output from a given hydrodynamical simulation.

One difficulty in comparing different simulations is that they do
not have the same input cosmology defined by the parameters that
we denote pco. In order to compare results for the same cosmology,
one adopts the following definition for the baryonic power spectra,
P δ

hydro:

P δ
hydro(k, z|pco) = P δ

hydro, sim(k, z|pco,sim)

P
G,sim
δ (k, z|pco,sim)

P δ
HMcode, G(k, z|pco). (12)

where P δ
hydro, sim is the outcome from a given baryonic simulation

at some cosmology pco,sim and P δ
G,sim denotes the corresponding

gravity-only N-body simulation. Finally, P δ
HMcode, G(k, z|pco), is the

power spectrum calculated from the HMCODE calibrated by gravity
only simulations. Thus we are assuming that the baryonic physics
contribution to the power spectrum is independent of the input
cosmologies pco,sim. This was shown to be a good approximation
in van Daalen, McCarthy & Schaye (2020) by running hydro-
simulations given the span of cosmology from Wilkinson Microwave
Anisotropy Probe (WMAP) 2009 (Hinshaw et al. 2013) to Planck
2015 (Planck Collaboration XIII 2016). Schneider et al. (2020) also
showed that ignoring the coupling between baryon and cosmology
would be valid for future stage-IV weak lensing experiments. We
adopt the fiducial flat-�CDM cosmology shown in Table 1.

In order to compute the convergence angular power spectrum one
needs to project the 3D power spectrum into different tomographic
redshift bins. For the galaxy number distribution, we again DESC
requirements for the LSST Y10 weak lensing analysis (Mandelbaum
et al. 2018). Hence, we use the following parametric form for the
source redshift distribution n(z):

n(z) ∝ z2 exp
[−(z/z0)α

]
, (13)

MNRAS 507, 5592–5601 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/507/4/5592/6363702 by U
niversita di Firenze user on 01 D

ecem
ber 2023



Mitigation baryonic effects 5595

Figure 1. The redshift distribution of source galaxies for LSST Y10 weak
lensing measurements (Mandelbaum et al. 2018). Dashed line: the true
underlying galaxy distribution following equation (13) normalized to n� =
27 arcmin−2. Shaded areas: the redshift distribution of galaxies split into five
tomographic bins normalized to ni

� = 5.4 arcmin−2. The shades of blue are
darker for lower redshifts and lighter for higher redshifts.

where we set (z0, α) = (0.11, 0.68) for Y10. Furthermore, the total
number density of galaxies is normalized as n� = 27 arcmin−2.

We take into account uncertainties in the photometric redshift
measurements by considering a Gaussian probability distribution for
a true redshift given a point measurement of a photometric redshift
zphot:

P (zphot|z) ∝ exp
[−(zphot − z)2/2σ 2

z

]
, (14)

with a photometric redshift error of σ z = 0.05(1 + z). The redshift
distribution in each photometric redshift bin ni(z) is then given by

ni(z) =
∫ z

(i+1)
phot

z
(i)
phot

dzphot n(z) P (zphot|z),

where the minimum redshift of the ith tomographic bin, z
(i)
phot, is

constructed such that each one contains an equal number density of
galaxies, ni

� = 5.4 arcmin−2. Furthermore the number of galaxies
per steradian in the ith bin, ni

� is given by

ni
� =

∫ ∞

0
dz ni(z).

The resulting five ni(z) tomographic distributions for the LSST
source samples are shown in Fig. 1. By construction, the sum of the
individual distributions equals the total

∑
i n

i
� ≡ n�.

With the galaxy redshift distributions in the five tomographic bins,
we can proceed to model the residual errors of baryonic effects on the
convergence angular power spectrum. We compare the convergence
angular power spectra as obtained from a given hydrodynamical
simulation with the best-fitting HMCODE results for that particular
simulation. An example of these residual errors for 13 different
simulations is shown in Fig. 2 for the autocorrelations of redshift
bins 0 and 4 in the same angular binning and scale-cut as the data-
vector. One can see that the spread of the errors decreases at higher
redshifts, where baryonic effects are less important.

In this work, we use the best-fitting models generated by Huang
et al. (2019). These models are characterized by the best-fitting values
of A and η0, and were obtained from MCMC runs, fitting the HMCODE
baryonic parameters to the 2D convergence power spectra of the
hydrodynamical simulations (considering the 3D power spectrum

of equation 12). We will now use these results to model the two
ingredients that enter the additional covariance matrix due to the
marginalization of the baryonic residual error: the envelope and the
correlation.

4.1 Modelling the envelope

Based on the residual errors for the angular power spectra and on
the assumption that the true angular power spectrum spectra (i.e.
the one directly obtained from observations) lies among the range
of the hydrodynamical models, we decided to test three different
parametrizations for the envelope shown in Fig. 2 that we call the
Mirror, 2Mirror, and the Variance envelopes.

The Mirror envelope is a conservative definition. It takes the most
extreme deviations of the HMcode best-fitting models and mirrors
them about the horizontal axis, hence the name Mirror envelope. This
approach overestimates the error amplitude, but guarantees that we
are taking all the possible deviations the baryonic error may present.
Also, this definition ensures the residual error, e, to have zero mean,
ē = 0, which leads to the additional baryonic covariance matrix:

CovBar(C
ij
κκ (�), Cpq

κκ (�′)) = E
ij

Mirror(�) ρij,pq (�, �′) E
pq

Mirror(�
′), (15)

with

E
ij

Mirror(�) ≡ Cij
κκ (�) max

model

∣∣∣∣∣1 − C
ij

HMcode(�)

C
ij

Sim(�)

∣∣∣∣∣ , (16)

the i, j indexes labels the tomographic bins pairs from Fig. 1, Cij
κκ (�)

on the right-hand side follows a gravity only model, just like the one
used to compute the Gaussian covariance in equation (3). We choose
the boundaries of the envelope to be at the model that presents the
maximum deviation at that �. The absolute value makes it explicit that
the Mirror envelope is a symmetric function about the �-axis. An even
more conservative envelope, used to stress-test our approach with
only our two most extreme baryonic data-vectors (ILLUSTRIS and
MB-II), is the 2Mirror envelope which consists in simply doubling
the Mirror envelope, as it follows

E
ij

2Mirror(�) ≡ 2 × E
ij

Mirror(�). (17)

The Variance envelope, on the other hand, is a less conservative
approach which defines the envelope as the variance of the random
vector e. In this approach, we interpret the residual error from each
hydrosimulation as a realization of the random variable e. Hence, we
simply take the variance between the 13 error curves and define it as
our envelope, as follows:

E
ij

Var(�) = Cij
κκ (�)

√√√√ 1

N

N∑
model

[
1 − C

ij

HMcode model(�)

C
ij

Sims model(�)
− ē ij (�)

]
, (18)

where N = 13 stands for the total number baryonic models being
considered here. In contrast with the mirror envelope, this definition
does not impose a symmetric envelope; in other words, the Variance
approach admits a non-zero mean value for the theoretical error,

ē ij (�) ≡ 〈1 − C
ij
HMcode(�)

C
ij
Sims(�)

〉 and the baryonic error contribution to the

covariance matrix has to be changed accordingly:

CovBar(C
ij
κκ (�), Cpq

κκ (�′)) = E
ij

Var(�) ρij,pq (�, �′) E
pq

Var(�
′)

− ē ij (�) ē pq (�′), (19)

Fig. 2 shows the different envelopes for two redshift bins: the first
and the last ones. As expected, larger redshifts result in larger physical
scales for the same angular scale leading to a decrease in the baryonic
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Figure 2. The figures show the envelope’s behaviour at redshift bins i, j = 0, 0 (low-redshift, on the left) and i, j = 4, 4 (high-redshift, on the right), with respect
to the set of 13 baryonic models (solid lines). The lighter shaded area presents the 2Mirror envelope definition; which doubles the size of the most extreme
scenarios and reflect them into the x-axis, ensuring a zero mean to the error variable. The intermediate grey area shows the coverage of the Mirror envelope. In
this definition, the covariance amplitude is assumed to follow the size of the most extreme scenario. Finally, the darkest area shows the Variance envelope. For
this definition, we take the standard deviation between all scenarios as the amplitude.

effects for a given angular scale. Notice that, as opposed to the
mirror model, the Variance envelope underestimates the covariance
amplitude for the most extreme scenarios. For instance, the Illustris
simulation residual errors (red line) are left outside of the Variance
envelope for � � 100.

4.2 Modelling the correlation

The last ingredient to model is the correlation coefficient ρ ij, pq(�,
�

′
) that relates different redshift bins and Fourier modes of the error

covariance. We adopt the ansatz

ρij,pq (�, �′) ≡ Rij,pq exp
[−(� − �′)2/2LijLpq

]
, (20)

which separates the redshift bin correlations Rij, pq from the correla-
tion of Fourier modes.

In this work we will model the effect on the covariance within
the same redshift bin pairs, neglecting cross-covariances induced by
baryonic effects in different redshift bin pairs, i.e. we assume:

Rij,pq = δipδjq . (21)

With this major assumption, we are including tomographic power
spectra that can fluctuate independently from other tomographic
pairs as possible baryonic models. We will show that this ansatz
is sufficient to mitigate the baryonic uncertainties.

With a diagonal Rij, pq, the only parameter left to fully define the
theoretical error covariance is the correlation scale of the baryonic
errors, Lij. We adopt

Lij = khalo 〈χ〉ij = khalo

∫
dχ χ gi(χ )gj (χ )∫
dχ gi(χ )gj (χ )

, (22)

with khalo = 1.0 h Mpc−1 being a typical halo scale for ρvirial = ρ200

and M200 ≈ 1013.5M�. The chosen halo mass input, M200 ≈ 1013.5 M�
was motivated by Takada & Bridle (2007). In their fig. 3, they show
that, at non-linear scales, an expressive fraction of the 1-halo term
contributions for the lensing effects comes from haloes with masses
of ≈1013.5 M�. The calculated values of Lij using equation (22) are
shown in Table 2.

Table 2. Evaluated tomographic values of the characteristic �-scale for
residual baryonic errors, Lij, calculated in equation (22).

i \ j 0 1 2 3 4

0 491 600 637 653 665

1 – 806 912 959 987

2 – – 1120 1241 1308

3 – – – 1483 1655

4 – – – – 2112

4.3 Full covariance

Finally, the full covariance is given by

Cov(Cij
κκ (�), Cpq

κκ (�′)) = CovG(Cij
κκ (�), Cpq

κκ (�′)) δ�′
�

+ CovBar(C
ij
κκ (�), Cpq

κκ (�′)), (23)

where the Gaussian covariance matrix is given by equation (3) and
is analytically generated using CosmoLike (Krause & Eifler 2017)
with the LSST survey characteristics already discussed.

It is important to mention that shape noise starts to dominate the
Gaussian covariance matrix, that is (σ i)2/2ni

A > Cii
κκ (�) in equation

(4), for � � 600, in the last redshift bin. For closer redshift bins, the
shape noise is dominating for even smaller values of �.

In Fig. 3 we show the fractional difference between the Gaussian
covariance matrix and the augmented covariance matrix (Gaussian
plus baryonic theoretical errors). For large � (small scales), the
theoretical errors term has larger relative values and dominates
the uncertainties. In the following section, we study the impact of
the augmented covariance matrix on parameter estimation using a
simulated likelihood analysis.

5 L I K E L I H O O D A NA LY S I S

In this section we present our analysis choices used to assess the
effectiveness of the proposed mitigation approach. In general lines,
the analysis methodology consists in the following steps:
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Mitigation baryonic effects 5597

Figure 3. Fractional change in the diagonal elements of the covariance matrix (� = �
′
) due to the inclusion the baryonic terms from the Mirror (left) and

Variance (right) envelopes.

(i) Take the lensing spectra predicted by one of the four hydro-
dynamical simulations (Eagle, Illustris, MB-II, and Horizon-AGN)
as mock data for our fiducial cosmology. These four simulations are
representatives of the different baryonic effects.

(ii) Use the nested sampling algorithm MULTINEST (Feroz, Hob-
son & Bridges 2009) to fit the mock data to the HMCODE model by
varying two cosmological (�m, σ 8) and two nuisance parameters (A,
η0) and determine the statistical errors from the Gaussian covariance
on the cosmological parameters. This analysis does not include the
residual effects of the model.

(iii) Determine the HMCODE bias with respect to the input cosmo-
logical parameters before the mitigation technique is applied.

(iv) Use MULTINEST to fit the mock data again to a model with
those same two cosmological and two nuisance parameters but with
the augmented covariance matrix proposed in the previous section.

(v) Determine the final residual bias as the difference between this
second fit and the true values of the cosmological parameters used
in the mock data (specified in Table 1).

(vi) Compare the statistical degradation of the methods from the
size of the error bars in both cases.

In our analysis, we consider three sets of results for baryonic
mitigation: HMCODE + Gaussian covariance matrix, HMCODE + Mir-
ror covariance mitigation, and HMCODE + Variance covariance
mitigation. The 2Mirror covariance mitigation is used as a stress
test of the method for the Illustris and MB-II simulations.

We assume a Gaussian likelihood for the tomographic two-point
measurements. The model predictions are computed with HMCODE
and the final posterior distribution on cosmological parameters is
obtained with MULTINEST, implemented in CosmoSIS 10 (Zuntz
et al. 2015). We use nlive = 100 live points, efficiency of 0.01 and
tolerance of 0.01. We sample over the parameters {�m, σ 8, A, η0}
since we want to concentrate on the cosmological parameters mostly
affected by baryonic effects.

The results of the posterior distributions for the four different
covariance matrices are shown in Fig. 4(a) and (b) for the Illustris and
MB-II simulations. The dashed lines show the input cosmological
parameters (�m, σ 8) together with the HMCODE parameters (A, η0)
determined from the best-fitting analysis for a given simulation.

10https://bitbucket.org/joezuntz/cosmosis/wiki/Home

For the Illustris simulations, one cannotice a significant decrease
in the bias for the cosmological parameters, whereas for the MB-II
simulations there is a less significant improvement. This is probably
due to the fact that Illustris has a stronger baryonic feedback than
MB-II. It is also interesting to notice the effect of ‘saturation’ of
the theoretical covariance matrix by comparing the results from the
Mirror to the 2Mirror matrices: by becoming very conservative one
stops losing statistical power and hence the areas of the ellipses do not
change significantly. This is due to the fact that the affected modes
are already suppressed and further suppression does not remove
information. However, it is important to point out that there is a slight
difference between different choices of the covariance matrix. This
can be the most easily seen looking at the 2D posteriors for degenerate
parameters, such as �m − σ 8 panel in Fig. 4(a). In this case the true
cosmology for the most aggressive 1σ envelope is slightly outside
the 1σ contour. On the other hand, using the more conservative
Mirror covariance leads to unbiased results for both cosmological
parameters as well as for the best constrained principal component.
This is important to keep in mind, particularly for combination with
external data which have different degeneracy directions.

The results for the 1D marginalized 68 per cent error bars for the
cosmological parameters (�m, σ 8) are shown in Fig. 5 for the four
simulations using three different covariance matrices for the analyses
(four for Illustris and MB-II simulations). One can see that by using
improved covariance matrices modelling baryonic uncertainties can
help in reducing the bias on the determination of cosmological
parameters at a modest increase of the uncertainties.

6 D ISCUSSION

Our final results are summarized in Table 3, where we show the
68 per cent error bars on the parameters �m, σ 8, A, and η0 for four
simulations and different covariance matrices and the amount of bias
in the cosmological parameters �m and σ 8 measured in units of
the standard deviation. For Illustris and MB-II, representatives of
extreme cases of baryonic parameters, we also present results with
the very conservative case of the 2Mirror envelope. We can think of
these augmented covariances from the Mirror and Variance envelopes
acting in the data vector as a soft scale-cut. They gradually reduce
the weight of a data point for the overall analysis as we move to
scales with larger theoretical uncertainties.
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Figure 4. Comparison of the posterior distributions for the cosmological (�m, σ 8) and nuisance parameters (A, η0) among different mitigation covariances. The
colours represent different covariance matrix model: Gaussian contributions only (blue), Mirror envelope (grey), 2Mirror (green), and Variance envelope (red)
taking the Illustris (left) and MB-II (right) simulations as the input data vector. The dashed lines show the input cosmological parameters (�m, σ 8) together with
the HMCode parameters (A, η0) determined from the best-fitting analysis for the simulations. (a) Posterior distributions for an Illustris data vector. (b) Posterior
distributions for a MB-II data vector.
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Mitigation baryonic effects 5599

Figure 5. Results for the 68 per cent error bars for the cosmological parameters �m and σ 8 for different data vectors from four hydrodynamical simulation
using three different covariance matrices (four in the case of Illustris and MB-II) in a nested sampling analysis of the posterior. Dashed lines are the input
parameters.

Table 3. Summary of the results from simulated likelihood accuracy tests. In columns 3–6, we give the best-fitting posterior values as well as the 68 per cent
confidence interval for two �CDM cosmological and nuisance parameters of the HMCODE (�m and σ 8; A and η0). Columns 7–8 presents the offset between the
best-fitting values and the fiducial ones. This offset is quantified in terms of the 68 per cent confidence interval, i.e. the 1σ interval size of that constraint.

Baryonic Covariance 68 per cent limits Bias
data vector matrix �m σ8 η0 A �m σ8

Horizon-AGN Gaussian 0.3192 ± 0.0018 0.8267 ± 0.0024 0.601+0.015
−0.018 2.54+0.13

−0.16 2.00σ 1.79σ

Gauss. + Mirror 0.3154 ± 0.0026 0.8316+0.0040
−0.0036 0.587 ± 0.033 2.51 ± 0.32 0.08σ 0.16σ

Gauss. + Variance 0.3164 ± 0.0024 0.8304 ± 0.0034 0.600 ± 0.021 2.64 ± 0.19 0.33σ 0.18σ

ILLUSTRIS Gaussian 0.3082 ± 0.0019 0.8382 ± 0.0027 0.764 ± 0.017 2.14 ± 0.13 3.89σ 2.66σ

Gauss. + 2Mirror 0.3139 ± 0.0027 0.8326 ± 0.0036 0.816 ± 0.046 2.33+0.36
−0.42 0.63σ 0.45σ

Gauss. + Mirror 0.3137 ± 0.0025 0.8321 ± 0.0036 0.819 ± 0.036 2.40+0.29
−0.34 0.76σ 0.31σ

Gauss. + Variance 0.3122 ± 0.0023 0.8334 ± 0.0033 0.780 ± 0.022 2.11 ± 0.16 1.50σ 0.73σ

EAGLE Gaussian 0.3175 ± 0.0024 0.8279 ± 0.0031 0.570+0.016
−0.015 2.52+0.13

−0.15 0.79σ 1.00σ

Gauss. + Mirror 0.3148 ± 0.0025 0.8317 ± 0.0037 0.569 ± 0.034 2.56 ± 0.33 0.32σ 0.19σ

Gauss. + Variance 0.3153 ± 0.0022 0.8308 ± 0.0032 0.572 ± 0.020 2.63+0.16
−0.18 0.13σ 0.06σ

MB-II Gaussian 0.3150 ± 0.0019 0.8308 ± 0.0026 0.620 ± 0.016 3.56 ± 0.18 0.32σ 0.07σ

Gauss. + 2Mirror 0.3147+0.0033
−0.0031 0.8314+0.0045

−0.0043 0.631+0.057
−0.052 3.63+0.72

−0.62 0.28σ 0.09σ

Gauss. + Mirror 0.3148 ± 0.0026 0.8313 ± 0.0038 0.630 ± 0.032 3.66 ± 0.39 0.31σ 0.08σ

Gauss. + Variance 0.3149+0.0021
−0.0025 0.8312 ± 0.0033 0.612 ± 0.018 3.37 ± 0.19 0.30σ 0.06σ

Whereas the Mirror method performs a more conservative cut by
accounting for unrealistically strong feedback models in its error
amplitude, the Variance envelope considers the uncertainties on
modelling more realistic AGN suppression leading to a softer cut.
Figs 4(a),(b) and 5 show the 2D and 1D constraints obtained through
these two approaches. We now discuss our results for the different
simulations according to the strength of AGN feedback.

6.1 Weak AGN model

We begin by discussing the performance of theHMCODE-only analysis
without the mitigation of its residuals (named as ‘Gaussian’). For
the MB-II data vector, the halo-bloating (η0) and concentration
parameters (A) alone successfully recover the true cosmology. Even
with only two free cosmological parameters, which may increase the

bias since the other parameters are kept fixed, the best-fitting values
for both �m and σ 8 are below the ∼0.4σ offset shift. This result
is not unexpected if we recall MB-II’s response function shown in
Fig. 1 from Huang et al. (2019). Consequently, applying the 2Mirror,
Mirror, and Variance methods to this well-modelled scenario does
not significantly affect the residual biases, which remains below the
∼0.4σ deviation.

6.2 Strong AGN model

Fig. 5 shows the evolution of the marginalized bias, for mock data
based on Illustris, over increasingly conservative approaches (from
left to right). The blue bars represent the constraint obtained when
relying only on the HMCODE mitigation parameters. When ignoring
A and η0 limitations on fitting complex dynamics, the residual bias
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goes highly above the 2σ deviation for both �m and σ 8, as depicted
in Table 3. However, studies on the HMCODE residuals obtained a
different result from ours. Huang et al. (2019) obtained that, after
marginalizing over 6 wCDM cosmological parameters, the halo-
based model effectively mitigates the bias impact to less than 0.5σ

for the �m and σ 8 1D posteriors. The discrepancy between our results
is likely due to our bias analysis being naturally overestimated by
the limited parameter space, especially on the w0 and wa parameters
with a strong correlation with �m and σ 8.11

The Variance covariance matrix (red bars) drastically reduces the
HMCODE’s offset of �m from 3.9σ to 1.5σ , and σ 8 from 2.7σ to 0.7σ ,
as shown in Table 3. If focusing on the more conservative method
(grey bars) one sees that, in this extreme AGN model, the larger
covariance amplitude pays itself in the bias mitigation: the offset of
both cosmological parameters is less than the marginalized statistical
uncertainty.

6.3 Intermediate AGN models

Fig. 5 shows the marginal 1D distributions for the analysis based
on AGN models that are not as underestimated as MB-II and not as
unrealistically strong as Illustris. For the Horizon-AGN, both Mirror
and Variance covariances are effective in reducing HMCODE’s residual
error below the 0.4σ shift for our setup. The mirror is more successful
in reducing the bias of both parameters: reaching a 0.1σ shift for �m

and 0.2σ deviation for σ 8. Compared with the Variance envelope,
the Mirror approach degrades the 1D error of σ 8 by 17 per cent
to gain 10 per cent on the accuracy. For �m, the loss in statistical
power, 8 per cent, compared to Variance statistics, is compensated
by a 76 per cent accuracy improvement.

We can understand Variance and Mirror’s different performances
with Horizon-AGN by recalling the shape of their covariances
amplitudes from the left-hand panel of Fig. 2. We can see that,
for tomographic bins i = 0 and j = 0, the model’s physics becomes
underestimated as we move beyond � = 1000. On the other hand,
the top left panel shows that the Mirror approach’s amplitude has no
problems with covering the same physics, leading to higher effective
accuracy.

For the EAGLE based analysis, HMCODE fitting approach alone is
effective enough to keep the bias within the 1σ statistical uncertainty
for one marginalized cosmological parameter. Furthermore, our
residual mitigation methods improve the HMCODE model accuracy
on both �m and σ 8 from 0.8σ and 1.0σ , respectively, to less than
0.2σ (0.4σ ) for the Variance (Mirror) approach.

Compared to the Gaussian method in which we only rely on the
HMCODE mitigation, the Mirror method increases the error bar by
4 per cent and 19 per cent for �m and σ 8, respectively. Whereas for
our less conservative mitigation covariance, the Variance method,
the constraint on σ 8 degrades just by 3 per cent and it shrinks for �m

by 8 per cent. The first thing we can comment about these results is
that both Mirror and Variance methods accuracy overcompensates the
loss in precision, which means that they can extract more information
from the likelihood analysis for the EAGLE scenario. Finally, we
can see the gain of 8 per cent in statistical power in �m, from the
1σ analysis, even though we would expect the modified covariance

11Since w0 and wa are strongly correlated with �m and σ 8, as we can see
from Huang et al. Fig. 4, keeping them fixed during the likelihood analyses
increases the information on the matter parameters posterior distributions.
That information gain leads to a tighter constraint on �m and σ 8 and, thus,
on the overall bias.

matrix to degrade the cosmological constraints. Please notice that
this unexpected result only appears for one simulation (EAGLE) and
for one parameter (�m). It may be a consequence of the non-linear
relation between the data covariance matrix and the posterior 1D
distribution on the cosmological parameters.

To summarize, our modified covariance models (Mirror and Vari-
ance) are successful in improving theHMCODE information gain in the
cosmic-shear likelihood analysis. For the ‘strong’ and ‘intermediate’
baryonic scenarios (Horizon-AGN, ILLUSTRIS, and EAGLE), the
accuracy refinement of our method dramatically outweighs the loss
in statistical power of the tested cosmological parameters (compared
to the Gaussian analysis). The MB-II scenario is the only exception in
which our mitigation method does not seem to be necessary because
it is already well-modelled by the HMCODE free parameters alone.

7 C O N C L U S I O N S

Baryonic physics can significantly affect the theoretical modelling
of the matter power spectrum in the small-scale regime. Therefore,
mitigation methods have to be developed and tested to properly take
this source of uncertainty into account. In this work, we focused on
the mitigation of the baryonic effects using as an example the shear
angular power spectrum in an LSST-like survey. We propose a mitiga-
tion method to decrease the bias in the determination of cosmological
parameters due to residual errors in the baryonic modelling that uses
the halo model-based HMCODE (Mead et al. 2015).12 This method is
based on an augmented covariance matrix that incorporates baryonic
uncertainties informed by hydrodynamical simulations.

The augmented covariance matrix is constructed using the residual
errors in the best-fitting modelling of 13 hydrodynamical simulations
using HMCODE. We interpret these residual errors as a random
variable and integrate over them to obtain the augmented covariance
matrix. Nevertheless, there is some freedom in this interpretation and
therefore we studied three different possibilities for what is called
the envelope of the residual errors: the Mirror, Variance, and 2Mirror
envelopes. Although, we do not provide the ultimate prescription
for how to robustly estimate the envelope of the theoretical error,
the results from Fig. 5 and Table 3 show that the use of these
augmented covariance matrices can lead to a significant reduction
in the bias of the estimated cosmological parameters at the cost of a
small increase in the uncertainties in the parameters. The proposed
choices about baryonic errors are still very dependent on the set of
simulations. How to optimize theoretical error without unnecessarily
down-weighting any data points and in an as model-independent way
as possible remains one of the main open questions that deserves
more investigation in the future. Finding the answer is the key for
having a truly robust analysis with reliable error bars on cosmological
parameters.

It must be also emphasized that the presented analysis is a first
exploratory investigation, as many simplifications were assumed
such as a reduced space of cosmological parameters, neglecting
non-Gaussian contributions to the fiducial covariance matrix, and not
including other sources of systematic effects, e.g. intrinsic alignments
(IA). In principle, the covariance is calculated for the total shear
power spectrum, and includes IA contributions to the cosmic variance

12During the completion of this work a new version of HMCODE was released
(Mead et al. 2021). This new version includes gas expulsion by AGN feedback
and encapsulates star formation. Different, more physical parameters are
introduced. The study of the consequences of the new code to our analysis is
beyond the scope of the present work.
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term. While we often choose to marginalize IA parametrically, and
ignore theoretical modelling uncertainties in the scale dependence
of IA, one could extend the theoretical error covariance approach to
include IA in the form of additional (additive) terms in the covariance.
However, DES-Y3 results (Secco et al. 2021) prefer IA models with
simple scale dependence, putting the focus on baryon mitigation.

Our results are encouraging since for the scenarios studied in this
paper, the reduction in the residual bias consistently compensates for
the increase in the statistical error. Furthermore, the proposed method
is easy to implement and computationally inexpensive, providing an
interesting alternative to the more conservative scale-cut methods.
We conclude that mitigation method for baryonic uncertainties
described here is a promising and viable option for analyzing data
with the quality level expected at the future surveys like LSST and it
deserves further investigation.
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