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Abstract Spin-1 resonances are naturally present in composite Higgs frameworks. We first review a model
independent approach to parameterize a single additional heavy triplet and then we consider more realistic
models arising in composite Higgs scenarios where a larger number of spin-1 resonances is expected. In
these cases, finite width and interference effects can heavily affect the bounds extracted from the data.

1 Introduction

The presence of additional spin-1 particles, triplets or
singlets of SU(2), is a common feature of several beyond
the Standard Model (BSM) frameworks. They appear
as Kaluza–Klein excitations of W , Z and γ in flat or
warped extra-dimension extensions of the SM, as new
vector and axial-vector resonances in walking techni-
color inspired effective Lagrangians, and are naturally
present in composite Higgs scenarios (for references see,
for example, the recent reviews [1,2]). They are also
expected in weakly interacting BSM theories like the
Little Higgs models or Grand Unified theories. In this
chapter, we review some of the topics related to the the-
oretical approaches to describe the interactions of the
new spin-1 resonances with the SM particles and with a
composite Higgs. The new vectors could give clear sig-
nals in the Drell–Yan channel at the LHC, in the dilep-
ton or in the diboson channels. From the LHC measure-
ments one could then derive bounds on their masses and
couplings. A very convenient tool to get these limits is
a general model independent approach [3]. This allows,
from a comparison with the data, to get bounds on
the couplings to fermions and bosons of a new spin-1
triplet at fixed mass. This simplified approach however
is not able to reproduce extended models containing
more than one triplet. We consider then possible pro-
posals describing two new triplets which can describe
the low-lying resonances relevant at the LHC and out-
line the importance of the interference and finite width
effects.

In Sect. 2 we review a model independent approach,
to parameterize the presence of an additional heavy
triplet of spin-1 resonances, that makes use of an effec-
tive Lagrangian description. Experimental data from
CMS and ATLAS collaborations, using this parameter-
ization, are used in Sect. 3 to get bounds on two partic-
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ular models. In Sect. 4 we review a general method to
build effective Lagrangians describing two new heavy
triplets, replicas of W and Z, analyze two particular
models and review the bounds on their parameter space
using the LHC measurements. Finally in Sect. 5 we out-
line, by considering a composite Higgs model, the rele-
vance of the interference and finite width effects in the
analysis of the data to extract bounds on the model
itself.

2 Heavy vector triplet simplified model and
bounds from the LHC measurements

Following [3] (see also [4]) we can parameterize the pres-
ence of a new heavy vector triplet, interacting with SM
gauge bosons and fermions by the following simple effec-
tive phenomenological Lagrangian containing operators
up to dimension d = 4

LV = −1
4
D[μV a

ν]D
[μV ν] a +

m2
V

2
V a

μ V μ a

+ i gV cHV a
μ H†τa

↔
D

μ
H +

g2

gV
cF V a

μ Jμ a
F

+
gV

2
cV V V εabcV

a
μ V b

ν D[μV ν]c

+g2V cV V HHV a
μ V μaH†H

−g

2
cV V W εabcW

μνaV b
μV c

ν . (1)

Here V a
μ , a = 1, 2, 3, is the new heavy vector triplet, in

the adjoint representation of SU(2)L and with vanish-
ing hypercharge, describing the charged and the neu-
tral heavy spin-1 particles: V ±

μ = (V 1
μ ∓ iV 2

μ )/
√

2 and
V 0

μ = V 3
μ . The covariant derivatives in Eq. (1) are

defined by

D[μV a
ν] = DμV a

ν −DνV a
μ , DμV a

ν = ∂μV a
ν +g εabcW b

μV c
ν ,

(2)
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where g denotes the SU(2)L gauge coupling. The last
two terms of the first row of Eq. (1) contain the inter-
actions of the new vector bosons with the Higgs and
the three Goldstones (encoded in H) and therefore, by
the Equivalence Theorem, with the longitudinal com-
ponents of W and Z which are their relevant degrees
of freedom at high energies, and with the SM fermions.
Specifically:

iH†τa
↔
D

μ
H = iH†τaDμH − iDμH†τaH, (3)

DμH =
(

∂μ + ig
σa

2
W a − ig′ σ

3

2
Y μ

)
H, (4)

with g′ the weak hypercharge coupling, while Jμ a
F are

the SM left-handed fermionic currents

Jμ a
F =

∑
f

fLγμ σa

2
fL. (5)

The operators in the second line of Eq. (1) are not rele-
vant for LHC because they do not contain vertices with
SM gauge bosons.

Analysis at ATLAS and CMS on new heavy vector
triplet models are performed by using the first line oper-
ators, in terms of mV and two parameters gH and gF

defined as

gH = gV cH , gF =
g2cF

gV
. (6)

In Fig. 1 the CMS bounds on (gH , gF ), obtained by
using an integrated luminosity of 35.6 fb−1 at the LHC
with a center of mass energy of 13 TeV [5] are shown. A
combination of searches for a heavy triplet of resonances
decaying into pairs of vector bosons, a vector boson and
a Higgs boson, two Higgs bosons, or pairs of leptons, has
been considered. The bounds are obtained for narrow
resonances, the areas bounded by the thin gray contour
lines correspond to regions where the resonance widths
are predicted to be larger than the average experimen-
tal resolution (5%). The red dot and the violet cross
correspond to model A and B that we review in the
next subsection. A similar analysis has been performed
by ATLAS [6].

In Fig. 2 we present a further result from a CMS
analysis corresponding of the same integrated luminos-
ity corresponds to 35.9 fb−1, where only the charged
channel in Drell–Yan process of new resonances has
been considered to obtain 95%CL limits on the cou-
pling strength gW ′/gW as a function of the W ′ mass [7].
Notice that for the Sequential Standard Model (SSM),
where the coupling of the W ′ is set at the SM value,
the bound on MW ′ is around 5 TeV.

3 Two reference models

In this section we review two reference models that have
been proposed in the past to describe additional triplets
and have been used in the ATLAS and CMS analyses.

Fig. 1 Exclusion limits on the couplings of heavy vector
resonances to fermions gF and SM vector bosons and the
Higgs boson gH for narrow resonances obtained from the
statistical combination of all the channels (solid lines). The
dilepton (dotted lines) and the diboson searches (dashed
lines) constrain different regions. Three resonance mass
hypotheses (3.0, 4.0, and 4.5 TeV) are considered. The
hatched bands indicate the regions excluded. The analysis
uses an integrated luminosity of 35.9 fb−1. From [5]

Fig. 2 Expected (dashed line) and observed (solid line)
95%CL limits on the coupling strength gW ′/gW as functions
of the W ′ mass, for the muon channel. The area above the
limit line is excluded. The SSM W ′ couplings are shown as
a dotted line. The analysis uses an integrated luminosity of
35.9 fb−1. Similar bounds are extracted from the electron
channel. From [7]

They are a model, (A), with an extended electroweak
symmetry [8] and a strongly coupled composite model
(B) [9].

3.1 Model A

This model corresponds to an extension of the elec-
troweak symmetry to SU(2)1 ⊗ SU(2)2 ⊗ U(1)Y broken
to SU(2) ⊗ U(1)Y . Fermions are supposed to transform
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only under SU(2)1 ⊗U(1)Y . Two scalar fields are intro-
duced: the SM Higgs H, a doublet of SU(2)1, and an
additional one, Φ, belonging to the representation (2,2)
of SU(2)1 ⊗SU(2)2 ⊗U(1)Y , the latter acquiring a vac-
uum expectation value:

〈Φ〉 =
(

f 0
0 f

)
. (7)

This bidoublet breaks the SU(2)1 ⊗ SU(2)2 symmetry
to the diagonal SU(2). The gauge couplings gV and g
are identified as gV = g2, 1/g2 = 1/g21 +1/g22 , with g1,2

the gauge couplings of SU(2)1,2. Other details can be
found in [8] and [3]. In Fig. 1 the violet cross represents
this model. Only masses of the new resonances higher
than 4.5–5 TeV are allowed.

3.2 Model B

This is the simplest model where the Higgs boson is
realized as a pseudo Nambu–Goldstone from the break-
ing, at the scale f , of an extended symmetry, SO(5) →
SO(4), the so-called Minimal Composite Higgs Model
[9]. The construction of the Lagrangian is based on the
Callan–Coleman–Wess–Zumino formalism. The Higgs
is identified as a (2,2) under the unbroken SU(2)L ⊗
SU(2)R ∼ SO(4) and new vectors are introduced as
representations of the unbroken SO(4). In particular a
new triplet field ρμ, (3,1) of SU(2)L ⊗SU(2)R ∼ SO(4)
is present in the spectrum. The Lagrangian describing
the Higgs gauge boson sector is given by

Lρ = − 1
4g̃′2 (Bμν)2 − 1

4g̃2
(W a

μν)2 +
f2

4
di

μdμi

− 1
4g2ρ

(ρa
μν)2 +

m2
ρ

2g2ρ

(
ρa

μ − ea
μ

)2
. (8)

The ρ field strength is given by ρa
μν = ∂μρa

ν −
∂νρa

μ − εabcρb
μρc

ν , while the d and (ρ − e) terms for the
SO(5)/SO(4) coset, in the large f limit, are given by
(see also Ref. [10]):

di
μdμ i =

4
f2

|DμH|2 +
2

3f4

[
(∂μ|H|2)2 − 4|H|2|DμH|2]

+O

(
1
f6

)
, (9)

and

ρa
μ − ea

μ = ρa
μ + W a

μ − i

f2
H†τa

↔
DμH

+
i

f4
|H|2H†τa

↔
DμH + O

(
1
f6

)
. (10)

The heavy vector triplet V a
μ of Eq. (1), is identified as

V a
μ ≡ ρa

μ + W a
μ . (11)

After the breaking of SU(2) ⊗ U(1)Y , the couplings
of the physical Higgs to pairs of SM gauge bosons are
rescaled by

√
1 − ξ, with ξ =

v2

f2
, v = 245 GeV. (12)

The current limit on ξ, using kV = 1.05 ± 0.04 from
ATLAS [32], is ξ � 0.06 at 95%CL.

The coupling gV is here identified with gρ, and it
turns out [3] that

cH ∼ cF ∼ 1. (13)

The red dot of Fig. 1 corresponds to cH = −1 and
gV = 3, for which resonances lighter than 4–4.5 TeV are
excluded. Other vector resonances like ρR belonging to
the representation (1,3) of SU(2)L ⊗ SU(2)R could be
included in the model, see for instance [11].

4 Effective Lagrangians for new spin-1
triplets

A general procedure for building effective Lagrangians
describing new vector resonances is the so-called hid-
den local symmetry approach [12–14]. We review here
the main ingredients for two new triplets of vector reso-
nances. For similar proposals in the framework of walk-
ing technicolor models see [15,16]. In these approaches
the Higgs is described as an isosinglet scalar state.

We start considering the following group structure:
G′ = SU(2)L ⊗ SU(2)R ⊗ SU(2)′

L ⊗ SU(2)′
R broken to

the diagonal SU(2)V . The nine Goldstone bosons result-
ing from the spontaneous breaking can be described by
three independent SU(2) fields L(x), R(x) and M(x),
transforming under the extended symmetry group G′
as follows:

L′ = gLLhL, R′ = gRRhR, M ′ = h†
RMhL, (14)

with gL,R ∈ SU(2)L,R and hL,R ∈ SU(2)′
L,R.

In order to derive the most general Lagrangian up
to second order in the derivatives, it is convenient to
consider the following covariant quantities

Vμ
0 = L†DμL, Vμ

1 = M†DμM, Vμ
2 = M†(R†DμR)M,

(15)
with

DμL = ∂μL − LLμ, DμR = ∂μR − RRμ,

DμM = ∂μM − MLμ + RμM (16)

where Lμ = igLLa
μτa/2, Rμ = igRRa

μτa/2 are gauge
fields of SU(2)′

L ⊗ SU(2)′
R. Using Eq. (15) we can build
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six independent invariants under the transformations of
Eq. (14):

TrV2
0 , TrV2

1 , TrV2
2 , Tr(V0V1), Tr(V1V2), Tr(V0V2).

(17)
In conclusion, the most general Lagrangian for the vec-
tor boson interactions is a combination of these six
invariants. The gauging of the Lagrangian with respect
to the electroweak symmetry is obtained by substitut-
ing the covariant derivatives of Eq. (16) with

DμL → DμL + W̃μL, DμR → DμR + ỸμR,

DμM → DμM, (18)

where W̃μ = ig̃W̃ a
μ τa/2, Ỹμ = ig̃′Ỹμτ3/2, and the

“tildes” indicate quantities which are not the SM ones
due to mixing. The non-linear formulation of the SM is
obtained in terms of the matrix U ≡ LM†R† and the
scalar singlet h. The effective Higgs Lagrangian is then
written in terms of the quantities given in Eq. (15) as

v2

4

(
1 + 2a

h

v
+ b

h2

v2

)
Tr(DμU)†DμU + · · ·

= −v2

4

(
1 + 2a

h

v
+ b

h2

v2

)
Tr[(V0 − V1 − V2)2] + ...

(19)

The SM couplings correspond to a = b = 1 and dots
stand for interaction terms between the scalar singlet
h and the other invariants of Eq. (17). For example, by
adding the two invariants TrV2

0 and TrV2
2 , one obtains

a model with two spin-1 vector triplets, with Lμ and
Rμ unmixed, when neglecting weak interactions.

Following the hidden local symmetry approach, here
briefly reviewed, the SM fermions are coupled to the
extra spin-1 resonances via mixing with the SM gauge
bosons. In addition, direct couplings, for example, of the
ψL fermions to Lμ are allowed [13]. In fact, for each, ψL

we can construct a SU(2) doublet

χL = L†ψL, (20)

and consider the following invariant term

bLχ̄Liγμ(∂μ + iLμ +
i

2
g̃′(B − L)Yμ)χL (21)

where bL is a dimensionless parameter. In the unitary
gauge L = I and, shifting ψL → ψL/

√
1 + bL, one gets

a fermion-heavy triplet interaction term

− bL

1 + bL
ψ̄LγμLμψL (22)

contributing, together with the mixing term, to gF =
g2cF /gV in Eq. (1). The procedure can be generalized
to several triplets [17].

4.1 Explicit models with two new spin-1 triplets

In the following we will concentrate on two differ-
ent models describing two extra triplets of spin-1 res-
onances. We have seen that their interactions are
described, in general, by six independent invariants.
They are reduced to four by requiring the invariance
under the discrete left-right transformation, denoted by
P : L ↔ R, M ↔ M†. Namely, the most general G′⊗P
invariant Lagrangian is given by [14]

LG = −v2

4
[a1I1 + a2I2 + a3I3 + a4I4] + Lkin (23)

with

I1 = Tr[(V0 − V1 − V2)2], I2 = Tr[(V0 + V2)2],
I3 = Tr[(V0 − V2)2], I4 = Tr[V2

1 ] (24)

and the kinetic terms (we take gL = gR = g′′/
√

2):

Lkin =
1

g′′2 Tr[Fμν(L)]2 +
1

g′′2Tr[Fμν(R)]2. (25)

4.1.1 4-site model with a composite Higgs

As said, new vector resonances appear in five-dimensional
extensions of the SM as Kaluza–Klein (KK) excitations
of the SM gauge bosons [18–20]. When deconstructed
[21–24], these theories appear as gauge theories with
extended SU(2) symmetries.

We review here a simple four-dimensional model [25–
30], corresponding to a deconstruction including two
additional copies of the SU(2) symmetry, namely G′ =
SU(2)L ⊗SU(2)R ⊗SU(2)1⊗SU(2)2 with the particular
choice:

a1 = 0, a2 = a3 =
2f2

1

v2
, a4 =

4f2
2

v2
,

4
v2

=
2
f2
1

+
1
f2
2

.

(26)
Following the general construction illustrated above, we
add to the Lagrangian the scalar–scalar and scalar–
vector interactions as in Eq. (19) (with scalar we here
refer both the the Higgs particle and the Goldstones):

LhG =
(

2ah
h

v
+ bh

h2

v2

)
f2
1 [Tr(DμΣ1)†DμΣ1

+Tr(DμΣ3)†DμΣ3]

+
(

2ch
h

v
+ dh

h2

v2

)
f2
2Tr(DμΣ2)†DμΣ2, (27)

with the identification of the chiral fields: Σ1 =
L, Σ2 = M†, Σ3 = R. The covariant derivatives
are defined as in Eq. (18) with the additional gauge
fields identified as: Lμ → −Ã

1

μ, Rμ → −Ã
2

μ, Ãi
μ =

igiÃ
ia
μ τa/2 and we assume g1 = g2 for the couplings.

In the unitary gauge, this model predicts two new
triplets of gauge bosons, which acquire mass through
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Fig. 3 Left: 95%CL bounds on the plane (ah, ch) for z =
0.95 (continuous blue) and z = 0.9 (dashed green) from
ATLAS measurements [32] on kV = 1.05±0.04, kγ = 1±0.06
based on 79.8 fb−1. Right: 5σ-discovery plot from D–Y pro-

duction at LHC with L=100 fb−1 for z = 0.8 in the plane
(ac

2, M2). Inside the grey (dashed) (central white) regions
both W1,2 (only W2) (no resonance) can be detected. From
[25]

the same non-linear symmetry breaking mechanism giv-
ing mass to the SM gauge bosons. For large g1, W±, Z
mass eigenvalues are given by

M2
W ± � g̃2v2

4

[
1 − g̃2

2g21
(1 + z4)

]
,

M2
Z � (g̃2 + g̃′2)v2

4

[
1 − g̃2

2g21
zζ

]
, (28)

where

z =
f1√

f2
1 + 2f2

2

, zζ =
1
2

z4 + cos2 2θ̃

cos2 θ̃
, tan θ̃ =

g̃′

g̃
.

(29)
The heavy vector triplets, A1 = (W±

1 , Z1) and A2 =
(W±

2 , Z2), have masses approximately given by M1,M2

with

M1 � g1v√
2(1 − z2)

, M2 � 1
z
M1, (30)

As said, direct couplings of the extra spin-1 reso-
nances to the SM fermions are allowed by the symme-
tries. They are present also in the small mixing limit
and can be introduced by following the construction
described above.

From Eq. (27) we derive the couplings of the Higgs h
to the charged gauge bosons:

2h

v

[
aM2

W W+W− + ahM2
1W+

1 W−
1

+(ahz2 + ch(1 − z2)M2
2W+

2 W−
2

]
, (31)

a = ah(1 − z2) + chz2, (32)

and similarly for the neutral sector. The SM limit is
obtained for z → 1 (namely g1, f1 → ∞), ch → 1 and
ah → 0. In this limit a → 1.

Bounds on hW+W−, hZZ, hγγ couplings from
recent analysis at LHC, can be translated in limits on
ah, ch for different values of z. Assuming no deviation
in the top Higgs couplings (ct = 1), we can compute
[31]

Γ/ΓSM (h → γγ)

∼
[
1 +

9
8
[ah(1 + z2) + ch(1 − z2)] +

9
7
(a − 1)

]
,

(33)

and use ATLAS measurements [32] on kV = 1.05 ±
0.04, kγ = 1 ± 0.06 based on 79.8 fb−1 of integrated
luminosity to get the 95%CL bounds shown in Fig. 3
(Left).

Unitarity bounds on the 4-Site model extra spin-1
resonance masses are approximately 2–4 TeV depend-
ing on the z value. For z = 0.95 unitarity bounds
increases to approximately 4 TeV [29].

Bounds from S, T, U parameters on the charged cou-
plings of the heavy triplets to SM fermions, ac

1 and
ac
2, and on the corresponding neutral couplings, can be

found in [25–30]. For example, for z = 0.95, MW1 = 2
TeV, one obtains −0.35 ≤ ac

1 ≤ 0.4. An extended anal-
ysis of Drell–Yan production of these new vectors in
the dilepton and diboson channel at LHC was also per-
formed in [25–30]. The 5σ-discovery contours for a fore-
seen LHC integrated luminosity of 100 fb−1 in the plane
(ac

2,M2), for z = 0.8, where ac
2 is the W2 charged cou-

pling and M2 is approximately W2 mass, is plotted in
Fig. 3 (Right). The upper and lower parts of the plot
are excluded by the EWPTs. Inside the grey regions
both W1,2 are visible; inside the dashed ones only W2
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can be detected. Inside the central uncolored region no
resonance is visible in the Drell-Yan channel.

However, in presence of several new triplets, as in
this model, we cannot extract bounds on the couplings
of the new resonances from Figs. 1 and 2 because as
shown in [27,33,34] there are significant interference
effects that cannot be neglected. In Sect. 5 we review
these effects in a composite Higgs model.

4.1.2 Linear degenerate BESS

A second interesting choice in the general parameteri-
zation given in Eq. (23) is a1 = 1, a4 = 0, a2 = a3. The
Lagrangian then reads

LG =
v2

4
{Tr(∂μU†∂μU) + 2 a2 [Tr(DμL†DμL)

+Tr(DμR†DμR)]}. (34)

In this model, before turning on electro-weak inter-
actions, the new triplets Lμ and Rμ are degener-
ate in mass (from here the name degenerate Breaking
the Electro-Weak Symmetry Strongly (BESS) Model).
Notice that each of the three terms in the above expres-
sion is invariant under an independent SU(2) ⊗ SU(2)
group

U ′ = ωLUω†
R, L′ = gLLhL, R′ = gRRhR, (35)

so that the symmetry of the Lagrangian is enlarged to
Gmax = [SU(2) ⊗ SU(2)]3. As a consequence of this
enlarged symmetry or equivalently of the degeneracy
of Lμ and Rμ fields (or the combination correspond-
ing to the vector and axial-vector fields) the correction
to the S parameter at leading order is zero [35]. The
possibility of an enhanced symmetry in near conformal
theories and the emergence of parity doublet was sug-
gested also in [15] (see also [16]) in the framework of
walking technicolor.

The degenerate BESS model has also a linear (renor-
malizable) formulation [36,37]. It is based on a gauge
group G = SU(2)L ⊗ U(1) ⊗ SU(2)′

L ⊗ SU(2)′
R and

has a scalar sector consisting of scalar fields L̃ ∈
(2, 0, 2, 0), Ũ ∈ (2, 2, 0, 0), R̃ ∈ (0, 2, 0, 2) of the group
G (it is a generalized version of Model A in Sect. 3.1).
The scalar fields break the gauge symmetries through
the following chain

SU(2)L ⊗ U(1) ⊗ SU(2)′
L ⊗ SU(2)′

R↓ u
SU(2)weak ⊗ U(1)Y

↓ v
U(1)em

(36)

The two breakings are induced by the expectation
values 〈L̃〉 = 〈R̃〉 = u, and 〈Ũ〉 = v, respectively and
we assume u � v. The first two expectation values
make the breaking SU(2)L ⊗ SU(2)′

L → SU(2)weak and
U(1) ⊗ SU(2)′

R → U(1)Y , whereas the second breaks

in the standard way SU(2)weak ⊗ U(1)Y → U(1)em.
The parameter a2 of Eq. (34) is related to u via a2 =
u2/(2v2).

Standard fermions are supposed to couple only to Ũ .
The model, in the limit of large u, satisfies decoupling
giving back the SM with a light Higgs and suppressed
contributions to the parameters S, T, U .

We parameterize the scalar fields as L̃ = ρ̃LL, R̃ =
ρ̃RR, Ũ = ρ̃UU , with L†L = I, R†R = I and U†U = I.
The Lagrangian for their kinetic terms and interactions
with the gauge bosons is given by (Lμ → Ã

1

μ, Rμ →
−Ã2

μ)

LρG =
1
4

[
Tr(DμŨ)†(DμŨ) + Tr(DμL̃)†(DμL̃)

+Tr(DμR̃)†(DμR̃)
]
, (37)

DL̃ = ∂L̃ + W̃μL̃ − L̃Ã1
μ

DR̃ = ∂R̃ + ỸμR̃ − R̃Ã2
μ

DŨ = ∂Ũ + W̃μŨ − ŨỸμ. (38)

The scalar potential is expressed in terms of three
Higgs fields:

V = 2μ2(ρ̃2L + ρ̃2R) + λ(ρ̃4L + ρ̃4R) + 2m2ρ̃2U + hρ̃4U

+2f3ρ̃
2
Lρ̃2R + 2fρ̃2U (ρ̃2L + ρ̃2R). (39)

After shifting the fields by their VEV’s u, v �= 0, the
squared mass eigenvalues of the Higgses are:

m2
ρU

� 8
(

h − 2
f2

λ + f3

)
v2,

m2
ρL

� 8(λ − f3)u2,

m2
ρR

� 8(λ + f3)u2. (40)

Concerning the gauge sector, let’s call the mass eigen-
states of the new spin-1 resonances Ai = (W±

i , Zi),
i = 1, 2. The fields W±

2 are unmixed and their squared
mass is given by

M2
W2

=
1
4
g21u

2 ≡ M2, (41)

where g1 is the common coupling constant of the extra
gauge symmetry. The other two charged eigenvalues, in
the limit of small r = g2v2/(4M2), are

M2
W � v2

4
g2(1 − rs2ϕ), M2

W1
� M2

c2ϕ
, (42)

with ϕ defined by the relation g = g1sϕ, with 1/g2 =
1/g̃2 + 1/g21 . Notice that the SM gauge boson masses
receive corrections O(r) due to mixing.
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Fig. 4 95%CL bounds on the plane (M, tan ϕ) from
electro-weak precision measurements (continuous line) com-
pared with bounds (dotted) from the muon channel at LHC
extracted from the analysis of Fig. 2

In the charged sector, at the first order in r, the cou-
plings are given by

Lcharged
fermions = −(aW W−

μ + ac
1W

−
1μ)Jμ−

L + h.c., (43)

with

aW =
g√
2
(1 − s2ϕr), ac

1 = − g√
2
(1 + c2ϕr) tan ϕ, (44)

and J±
L = ψ̄Lγμτ±ψL. There is no coupling of W±

2
to fermions, because they do not mix with W±. The
fermionic couplings of the neutral gauge boson sector
are given in [37]. The heavy gauge bosons are cou-
pled to fermions only through mixing with the SM
ones, namely these couplings vanish for sϕ → 0. Nev-
ertheless one could consider also direct couplings to
fermions as shown in the derivation of the general effec-
tive Lagrangian.

Since in this set-up, only the charged gauge bosons
W±

1 are coupled to fermions, there is no the interference
effect between W±

1 and W±
2 and we can use the analysis

presented in Fig. 2 for a single heavy triplet resonances
to extract bounds on the linear degenerate BESS model.
Results on the plane (M, tan ϕ) are shown in Fig. 4.

In the neutral sector both Z1 and Z2 are coupled
to fermions and a dedicated analysis is necessary to
get bounds from LHC results. Couplings of the SM-
like Higgs ρU to SM fermions are rescaled by cα, where
α is the mixing angle in the scalar sector, while the
couplings of ρU to SM gauge bosons are given by

ρU

[
v

2
g2cα(1 − s4ϕx2)W+W− +

v

4c2θ
g2cα

[
1 − 2x2

s4ϕ
c4θ

(1 − 2c2θs
2
θ)

]
Z2

]
. (45)

Due to the stringent limits on the plane (M, tan ϕ),
current bounds from LHC on the parameter kV [32]
can be directly translated on a bound on α, namely:
0.97 ≤ cα ≤ 1 at 2σ level.

5 Drell–Yan production and interference
effects in models with multi-triplet
structure

Drell–Yan production in the dilepton channels is a very
good tool for searching new heavy triplets as we have
already discussed in Sect. 2. A class of BSM scenar-
ios, like composite Higgs models and the SM model
in five dimensions, predict several new spin-1 reso-
nances. In these cases the interpretation of the exper-
imental results and related bounds on the parame-
ter space of the models is complicated by the pres-
ence of finite width and interference effects. We briefly
review in this Section some of such effects for the D–
Y process of the neutral channels (new Z ′s) in com-
posite Higgs models [34]. The four-dimensional com-
posite Higgs model (4DCHM), that we are going to
review, is the one proposed in [38], based on two non-
linear σ models, one for SO(5)/SO(4) and the second
for SO(5)L⊗SO(5)R/SO(5)L+R. After the breaking one
is left with 4 neutral and 6 charged spin one heavy par-
ticles, or two triplets (3,1)+(1,3), almost degenerate
in mass, and, in addition, two neutral and one charged
coset resonances.

The extra neutral resonances, that couple to fermions,
are denoted by Z2, Z3, Z5 with squared masses, at order
O(ξ), given by

M2
Z2

� m2
ρ

c2ψ

(
1 − s2ψc4ψ

4c2ψ
ξ

)
,

M2
Z3

� m2
ρ

c2θ

(
1 − s2θc

4
θ

4c2θ
ξ

)

M2
Z5

� 2m2
ρ

[
1 +

1
16

(
1

c2θ
+

1
2c2ψ

)
ξ

]
,

(46)

with ξ = v2/f2, tan θ = g̃/gρ and tan ψ =
√

2g̃′/gρ

where gρ is the gauge coupling of the SO(5) group, f
is the scale of the spontaneous strong symmetry break-
ing and mρ = fgρ. The Z5 resonance, having a mass
∼ √

2 higher than Z2 and Z3, gives a negligible contri-
bution to the Drell–Yan process at LHC RunII and it
has been neglected in the analysis. The change in the
differential D–Y cross section in the dilepton invariant
mass produced by the interference is shown in Fig. 5 for
the benchmark F, corresponding to MZ2 = 2192 GeV
and MZ3 = 2258 GeV. The interference effects pro-
duce the dip before the resonant peak, and spoils the
analysis performed within the narrow width approxi-
mation (NWA) or in the finite width approach (FWA).
The same conclusion can be derived by plotting the
ratio of the cross section over the NWA as a function
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Fig. 5 (Left) Differential cross section in the dilepton
invariant mass for the benchmark point F within the
4DCHM, i.e. double-resonant Z2,3 scenario. (Right) Ratio of
the full signal cross section for the Z2,3 bosons corresponding
to benchmark F within the 4DCHM scenario (dashed line)
and the two resonances FWA (solid line) over the NWA

result as a function of the symmetric integration interval
around the peak. The vertical red line represents the CMS
adopted optimal cut, δm = |Mll −MZ′ | ≤ 0.05ELHC, which
keeps the interference and FW effects below 10% in the case
of narrow single Z′ models [33]. From [34]

Fig. 6 Left(Right): Differential cross section in the dilepton invariant mass for the BP F(G) after the smearing due to
finite detector resolution. The width of the Gaussian is assumed 26 GeV (38 GeV). The statistical error, visualized as the
blue bands, is evaluated for 30 fb−1. From [34]

Table 1 4DCHM parameter space points associated to the benchmarks F, G mentioned in the text. From [34]

Benchmark f (GeV) gρ MZ2 (GeV) MZ3 (GeV) MZ5 (GeV)

F 1200 1.75 2192 2258 2972
G 2900 1.00 3356 3806 4107

of δm = Mll −MZ′ . In the NWA the signal rate is typi-
cally estimated modelling the signal as a Breit–Wigner
function convoluted with a Gaussian function, which
is used to describe the dilepton mass resolution. This
example shows that one should avoid to use NWA or
FWA within the 4DCHM or similar models like the
4-Site model of Sect. 4.1 to extract bounds on Z ′ cou-
plings and masses.

The two resonances Z2 and Z3 are, in some regions of
the parameter space, almost degenerate. Therefore they
could appear as a single bump in the dilepton invariant
mass after convoluting the signal with a Gaussian dis-
tribution to simulate detector resolution. This is shown
in Fig. 6 (Left) for the benchmark F of Table 1. In Fig. 6
(Right) the two resonances corresponding to he bench-
mark G of Table 1 are separated enough so that the two
peak structure is not washed out after the inclusion of
the detector smearing.

In Fig. 7 we show the exclusion limits at LHC RUN
II for different values of integrated luminosity (30–3000
fb−1) in the parameter space (f, gρ).

The 4DCHM can be considered as a concrete realiza-
tion of the Model B, described in Sect. (3.2) with the
feature that the two almost degenerate triplets of spin-1
resonances corresponding to the SO(4) symmetry (bro-
ken by the EW interactions) are both phenomenolog-
ically relevant. Their interference cannot be neglected
as well as their widths which is naturally non-narrow.
A direct comparison of the results shown in Fig. 7 with
the results shown in Fig. 1 is not possible, because the
analysis of CMS refers to a single heavy vector triplet
and takes into account, in addition to the D–Y pro-
cesses, diboson and H-boson productions.

6 Conclusions

The presence of new spin-1 particles, heavier than W
and Z, is a common feature of several proposals of BSM
physics, like for example extensions of the SM in flat
or warped extra dimensions, composite Higgs or tech-
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Fig. 7 95%CL exclusion limits from D–Y production in
dilepton channel at the LHC RUNII with 13 TeV for differ-
ent values of integrated luminosity. The blue (red) contour
refers to the electron (muon) channel. From [34]

nicolor models. In this note we have first reviewed a
general model independent approach based on a simpli-
fied effective Lagrangian describing the interactions of
a new heavy triplet with the SM particles. This param-
eterization has been used, using CMS and ATLAS
results, to get bounds on the parameters of the effective
Lagrangian. We have then reviewed a general approach
to built effective Lagrangians describing the interac-
tions in presence of two new triplets of heavy resonances
and considered two particular models and their present
limits. Finally we have discussed, in the framework of
a composite Higgs model the relevance of the interfer-
ence and finite width effects, in the Drell–Yan differen-
tial cross section in the dilepton neutral channel. The
interference effect, coming from the contributions of the
neutral spin-1 resonances exchanged in the s-channel,
generate a dip before the resonant peak, that spoils
the simple analysis performed within the narrow width
approximation or in the finite width approach. In these
cases a model dependent approach is therefore neces-
sary to get bounds on the parameters of the model.
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