
Journal of Cosmology and
Astroparticle Physics

     

OPEN ACCESS

Effective theory of squeezed correlation functions
To cite this article: Mehrdad Mirbabayi and Marko Simonović JCAP03(2016)056

 

View the article online for updates and enhancements.

You may also like
Squeezed primordial bispectrum from a
general vacuum state
Jinn-Ouk Gong and Misao Sasaki

-

Implications of the Planck bispectrum
constraints for the primordial trispectrum
Christian T. Byrnes, Sami Nurmi,
Gianmassimo Tasinato et al.

-

The squeezed limit of the bispectrum in
multi-field inflation
Zachary Kenton and David J. Mulryne

-

This content was downloaded from IP address 195.231.119.125 on 14/11/2023 at 16:24

https://doi.org/10.1088/1475-7516/2016/03/056
/article/10.1088/0264-9381/30/9/095005
/article/10.1088/0264-9381/30/9/095005
/article/10.1209/0295-5075/103/19001
/article/10.1209/0295-5075/103/19001
/article/10.1088/1475-7516/2015/10/018
/article/10.1088/1475-7516/2015/10/018


J
C
A
P
0
3
(
2
0
1
6
)
0
5
6

ournal of Cosmology and Astroparticle Physics
An IOP and SISSA journalJ

Effective theory of squeezed
correlation functions

Mehrdad Mirbabayi and Marko Simonović
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Abstract. Various inflationary scenarios can often be distinguished from one another by
looking at the squeezed limit behavior of correlation functions. Therefore, it is useful to have
a framework designed to study this limit in a more systematic and efficient way. We propose
using an expansion in terms of weakly coupled super-horizon degrees of freedom, which is
argued to generically exist in a near de Sitter space-time. The modes have a simple factorized
form which leads to factorization of the squeezed-limit correlation functions with power-
law behavior in klong/kshort. This approach reproduces the known results in single-, quasi-
single-, and multi-field inflationary models. However, it is applicable even if, unlike the above
examples, the additional degrees of freedom are not weakly coupled at sub-horizon scales.
Stronger results are derived in two-field (or sufficiently symmetric multi-field) inflationary
models. We discuss the observability of the non-Gaussian 3-point function in the large-scale
structure surveys, and argue that the squeezed limit behavior has a higher detectability
chance than equilateral behavior when it scales as (klong/kshort)

∆ with ∆ < 1 — where local
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1 Introduction

One of the main goals of modern cosmology is to understand the origin of primordial fluctu-
ations. We are fairly confident, given the in-phase acoustic oscillations, that the fluctuations
have been super-horizon for a while. Inflation seems to be the simplest, and most widely
accepted, explanation for generating the observed slightly red-tilted and almost Gaussian
spectrum. However, there are many different inflationary scenarios, and there are alterna-
tives to inflation, which we would like, and potentially be able to distinguish using data
from observations in the foreseeable future. This program requires an understanding of the
cosmological observables, and a classification of different models in terms of their distinctive
observational signatures.

Perhaps the most decisive of these signatures whose detection rules out non-inflationary
alternatives is the B-type polarization of the cosmic microwave background caused by pri-
mordial tensor modes. However, depending on the energy scale of inflation, the amplitude of
tensor modes may be too small for the B-modes to be observable, and even if observed, there
is still much to learn about inflation. In particular, understanding what other degrees of
freedom besides the inflaton are active during inflation and what is their spectrum of masses
and couplings can teach us about the underlying ultraviolet physics.

It is well known through several examples that the information about these degrees
of freedom is encoded in the squeezed limit of correlation functions in momentum space,
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when one or a partial sum of momenta becomes “soft”, i.e. much smaller in magnitude than
the others. Single-field models of inflation satisfy a set of identities relating the squeezed
limit correlation functions to lower order statistics [1, 2]. In particular, denoting the soft
momentum by q and factoring out the power spectrum of the soft mode P (q), the zeroth
and first order terms in q are fully fixed by these identities [3, 4]. The model dependent
self-interactions (for instance, the equilateral type 3-point correlators) start to contribute
starting from second order. That is, neglecting the tensorial structure,

〈ζq · · · ζk〉nonuniversal
single-field

P (q)
∝ q2. (1.1)

On the other hand additional light degrees of freedom during inflation leave characteristically
different imprints in the squeezed limit correlation functions whose scaling in the ratio of the
small momentum to the large ones q/k is determined by the ratio of the mass to the expansion
rate during inflation (m/H) [5, 6]. The purpose of this note is to give a more unified treatment
of this limit.

We take an approach similar in spirit to the effective field theory (EFT) of single-field
inflation [7]. In the simplest single-field, slow-roll models of inflation the background ex-
pansion as well as the dynamics of scalar fluctuations are fully described in terms of one
fundamental scalar field, the inflaton. However, there exist several models where the back-
ground is not driven by a weakly coupled fundamental field, such as DBI and k-inflation,
but the fluctuations have a richer phenomenology (e.g. non-Gaussianity). These models are
generally characterized by having a lower strong-coupling scale compared to the energy scale
at which de Sitter isometries are broken [8]. The advantage of the EFT of inflation is to pro-
vide a unifying framework to study the perturbations in these models by means of separating
the discussion of background evolution from the fluctuations and parameterizing the former
in a set of time-dependent coefficients. This allows a much more efficient and systematic
treatment of the fluctuations, and in terms of parameters that are directly determined by
observations.

Similarly, the simplest inflationary models with more than one degree of freedom are
usually described by the addition of new fields that are weakly coupled up to an energy scale
Λ � H. They can be included in the EFT framework as in [6, 9], and their coupling to
the inflaton, or their subsequent conversion to adiabatic modes modifies the phenomenology
of inflation. However, distinct features generally appear in the behavior of the correlation
functions in the squeezed limit. Away from this limit the shapes of correlation functions
are expected to be degenerate with those resulting from self-interactions in a single-field
model. Hence, although the EFT of multi-field inflation allows us to calculate the full shape
of non-Gaussianity, only a part of it is of special interest. We therefore look for an effective
description of this part by working directly at the level of the correlation functions rather
than the Lagrangian. We will argue that such description exists, it is independent of de-
tails of interactions and is parameterized in terms of quantities that are directly related to
observations.

One can also imagine scenarios in which the additional degrees of freedom are strongly
coupled below and around the Hubble scale, i.e. Λ ∼ H. The EFT approach can fail in
this case, while as we will argue, at super-horizon scales one seems to be able to always talk
about weakly coupled degrees of freedom. This is a consequence of locality and the slow-
roll assumption, namely that the time-variation of the parameters of the underlying theory
is much slower than the expansion rate H. Therefore, one advantage of our approach is
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that it proves many of the known results about the squeezed limit behavior of inflationary
correlation functions hold more universally, beyond the explicit models in which they were
originally derived. In particular, the squeezed limit behavior is describable in terms of a
discrete sum of power laws with either real positive or pairs of complex conjugate powers
whose real parts are multiples of 3/2. Any deviation (such as negative powers or a continuous
spectrum) seems to indicate a radically different alternative to inflation.1

In what follows, we first investigate the evolution of local operators at super-horizon
scales in more detail, and argue that they have simple scaling behavior as a function of the
conformal time η, up to slow-roll corrections. In many cases of interest they become classical
and their time and space dependence factorizes:

σ(η, x) ≈ σ̂(x)η∆σ . (1.2)

We then show that to describe the squeezed limit behavior of the observed correlation func-
tions, all that is needed is the spectrum of {∆σ}, plus a set of coefficients parameterizing the
degree of coupling between adiabatic fluctuations and each local operator, e.g.

〈ζ(x)ζ(0)〉σ = ξ0(x) + σ̂(0)ξσ(x) + ∂iσ̂(0)ξi∂σ(x) + ∂i∂j σ̂(0)ξij∂∂σ(x) + · · ·

+ σ̂2(0)ξσ2(x) + σ̂∂iσ̂(0)ξiσ∂σ(x) + · · ·
(1.3)

At this order the ξ functions are fixed up to numerical coefficients which are the theoretical
data directly related to the observations. This applies to quasi-single field and multi-field
models but also when ζ is directly coupled to a composite operator like σ2. The contribution
of an operator of dimension ∆O ≥ 0 to the squeezed limit scales as

〈ζq · · · ζk〉O
P (q)

∝ q∆O . (1.4)

The special case in which the perturbations of the intermediate operator do not decay sig-
nificantly by expansion (∆O ' 0) deserves a more detailed discussion. These fluctuations
are called entropic perturbations, which can convert to adiabatic perturbations at a later
time during or after the end of inflation. The squeezed limit behavior is again simply related
to a set of mixing and coupling coefficients. In the case where there is only one entropy
mode, or there are several identical ones, we can determine the degree to which the observed
adiabatic fluctuations are coming from the initial fluctuations of the inflaton, and derive a
new consistency condition satisfied by ratios of squeezed limit correlation functions. In the
more general case, unitarity imposes an inequality condition on these ratios [11, 12].

Exceptions to (1.2) occur when there are massive particles of m > 3H/2. This case
is discussed separately since the corresponding super-horizon modes never become classical;
they are described by two complex conjugate power laws and the notion of particle remains
applicable. However, there is still a sense in which the correlation functions factorize in the
squeezed limit which is analogous to that of scattering amplitudes on single particle poles.
The squeezed limit of the bispectrum now scales as

〈ζq · · · ζk〉O
P (q)

= O(q3/2), (1.5)

1In many of the existing alternatives to inflation the fluctuating fields see an effective de Sitter background
metric (see [10] and references therein), and hence our conclusions remain unmodified.
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but it also oscillates as a function of the ratio and the angle between the short and long
momenta. This case is particularly interesting since the squeezed limit correlation functions,
which in real space describe the correlation between short distance ∼ 1/k measurements
performed at large separation ∼ 1/q, have quantum mechanical origin in contrast to all
previous cases. The oscillations arise from interference between two branches of the wave-
function [13, 14].

Finally, we discuss the observational prospects of these squeezed limit behaviors. It
is known that local non-Gaussianity (a non-Gaussianity type that can be generated by en-
tropy modes) has a higher chance of being detected by observation of “non-local biasing” in
large-scale structure surveys [15]. This is because the squeezed limit behavior of local non-
Gaussianity is distinct from what can be caused by gravitational dynamics in the formation
of structures, which scales as q2 in the soft momentum. In particular, by going to larger
scales, or equivalently sending q → 0 the contribution of local non-Gaussianity rises com-
pared to the gravitational one. A milder enhancement can arise in all of the above scenarios.
However, due to the finite size of the universe the amount of signal in the long wavelength
modes is limited. Through an estimate of the signal-to-noise ratio we will argue that only
those non-Gaussian 3-point functions that have the squeezed limit scaling below O(q) are
better detectable in this limit.

2 Super-horizon degrees of freedom

Let us begin by considering an interacting theory of fields of non-zero mass during inflation.
We denote them by {σa}, and order them with respect to their mass: ma ≤ ma+1. As long as
the time variation of coupling coefficients in the interaction Hamiltonian H is slower than the
Hubble rate (the slow-roll assumption), it is easy to see that interactions become irrelevant
for super-horizon modes. Hence, one can choose a basis of free fields.

Note first that if one ignores the interactions among the sub-horizon and super-horizon
modes and focus only on the latter, the terms with spatial derivative are negligible. Thus the
equations of motion form a system of ODEs in time. Take the equation(s) for the lightest
field(s). It is of the general form

a−3∂t(a
3σ̇1) +m2

1σ1 = F1({σa}, t), (2.1)

where F1 is at least of second order in fields or their time-derivatives and it can explicitly
depend on time through time-dependent coupling coefficients. Over-dot denotes ∂t. To argue
that F1 becomes negligible outside of the horizon we need to analyze the linear solutions. Up
to slow-roll suppressed corrections, the super-horizon free-field solutions in a near de Sitter
space-time of expansion rate H are of the form

σ±(q, η) ∝ (qη)∆±σ

q3/2
, ∆±σ =

3

2
±
√

9

4
− m2

H2
, (2.2)

where η = −1/aH is the conformal time and the q dependence is fixed by the canonical
quantization condition. It follows from the solution (2.2) that for masses below 3H/2 the
mode functions divide into growing and decaying modes. Therefore, after a few Hubble times
the field fluctuations are dominated by a single growing mode and the spatial and temporal
dependence of the perturbations factorize, giving

σ̇(q, t) ' −∆−σHσ(q, t), (2.3)

– 4 –



J
C
A
P
0
3
(
2
0
1
6
)
0
5
6

up to corrections that decay with a negative power of a. It follows that the field has become
classical: by locality the equal-time real space commutator [σ(x, t), σ̇(x′, t)] is proportional
to a−3δ3(x− x′) which implies that the momentum space commutator

[σ(q, t), σ̇(q′, t)] ∝ a−3δ3(q + q′) (2.4)

decays much faster than the product σ(q, t)σ̇(q′, t) ∝ a−2∆−σ . Hence the field and its time
derivative can be simultaneously known with negligible uncertainty. For heavier fields with
m > 3H/2 this conclusion does not hold.

Returning to the main problem, the slow-roll assumption about the explicit time de-
pendence of F1 together with ma > 0 then imply that the interactions on the right-hand side
of (2.1) decay by a negative power of a, and hence become negligible at late times. That is
σ1 becomes free.

We can now proceed to the next field, say σ2 with equation of motion given by

a−3∂t(a
3σ̇2) +m2

2σ2 = F2({σa}, t). (2.5)

Let us focus on one example, for instance, F2 = λσ2
1 (the generalization to arbitrary in-

teraction is straightforward). If ∆−σ2 < 2∆−σ1 , then the above argument can be repeated to
show that F2 becomes irrelevant at late times. However, in the opposite regime there can
be interactions made of lighter fields which are not negligible. Here we can use the factor-
ization property of the solutions for light fields to diagonalize the equation (2.5). Note that
∆−σ2 ≥ 2∆−σ1 can happen only if ∆−σ1 ≤ 3/4 for which the above-mentioned dominance of the
growing mode and factorization of super-horizon solution is valid. We can therefore redefine
the heavier field by adding to it a particular solution of the equation made of the lighter
fields. In the above example, take

σ2 = σ̃2 +
λ

2∆1(2∆1 − 3)H2 +m2
2

σ2
1, (2.6)

where ∆1 ≡ ∆−σ1 . The field σ̃2 now satisfies a free field equation of mass m2, plus corrections
that are negligible outside of the horizon. This procedure can be continued to obtain a
complete basis of free fields {σ̃a}. The tildes will be dropped in the following.

So far the interactions with modes of the horizon size or shorter have been ignored. Once
they are included and averaged over two types of corrections arise. First, their back-reaction
to the long modes renormalizes the mass and coupling coefficients of the theory (or introduces
new interactions), and secondly, the short modes can stochastically combine to make up a
long wavelength mode. The first correction does not introduce any qualitative difference in
the above argument except that the masses must be replaced by the renormalized ones. On
the other hand, the stochastic contribution of horizon size modes on a super-horizon mode
q is suppressed because it requires N ∼ (aH/q)3 independent Hubble patches to conspire.
The contribution to the variance of σ is therefore expected to be of order (q/aH)3 and hence
negligible [16].

Since every perturbative theory of massive fields approaches the free theory outside of
the horizon, we expect any (possibly strongly coupled) theory which can be continuously
connected to a perturbative theory by dialing its coupling coefficients to also satisfy this
property. If there are massless fields that are not protected by a symmetry, the interactions
do not necessarily decay with a. However, keeping these scalar fields massless seems to
require considerable fine-tuning. We discard this possibility in what follows. Note that the
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metric fluctuations (both tensor and scalar modes) are massless, but their interactions contain
sufficient number of derivatives and die off outside the horizon.

It is important to stress that the above argument does not ensure that the super-horizon
degrees of freedom continue to exist as weakly coupled fields at horizon and sub-horizon scales.
However some general statements about correlation functions can be made even in these cases.
For example, one can imagine that the physics at the sub-horizon scales is described by a
strongly coupled conformal field theory (CFT).2 Or the compactification scale of the string
theory may happen to be close to H in which case a weakly coupled 4d description might not
exist. The other interesting example is models with dissipation [18]. In all these and similar
scenarios it is hard or impossible to calculate the correlation functions. Nevertheless, the
results of the following sections hold regardless of that. They are based just on the existence
of free super-horizon degrees of freedom.

3 Squeezed limit in a classical background field

The result of the previous section has important consequences for the squeezed limit correla-
tion functions. In order to see that let us consider a long-wavelength perturbation of a light
field whose space and time dependence factorizes as argued above, σ(x, η) ' σ̂(x)g(η), where
g(η) is the growing solution. This long wavelength mode slightly modifies the background
seen by the short wavelength fluctuations. Hence, in the squeezed limit of cosmological cor-
relation functions, the contribution of σ is through the response of shorter wavelength modes
to this background. More specifically, this happens when the short modes start interacting
with the long mode after its horizon crossing, or if their memory of earlier interactions is
erased due to adiabatic evolution. In these cases an effective description can be employed.
First, note that the short scale physics can only depend on local observables made of the
long-wavelength mode which can be organized in a derivative expansion. For instance, the
2-point correlation functions of shorter wavelength metric fluctuations ζ on the background
can be written as

〈ζ(x)ζ(0)〉σ = ξ0(x) + σ̂(0)ξσ(x) + ∂iσ̂(0)ξi∂σ(x) + ∂i∂j σ̂(0)ξij∂∂σ(x) + · · ·

+ σ̂2(0)ξσ2(x) + σ̂∂iσ̂(0)ξiσ∂σ(x) + · · ·
(3.1)

where ξ0 is the correlation function in the absence of the particular long wavelength mode.
This expansion in terms of local operators is not necessarily valid to all orders in the soft
momentum q. For now, we are mainly interested in the leading contribution, however this
point will be discussed in more detail in section 3.1.1.

Equation (3.1) implies that

〈ζqζk1ζk2〉 = Pζσ̂(q)ξσ(k1) + · · · (3.2)

where Pζσ̂(q) is the cross correlation Pζσ̂(q) = 〈ζqσ̂−q〉 and dots represent other contributions
to the squeezed limit 3-point function. If the mixing r ≡ Pζσ̂/

√
Pζ(q)Pσ̂(q) � 1, then to

2One such example was proposed in [17]. There it was assumed that a sector of theory is described both at
super- and sub-horizon scales by a CFT that is conformally coupled to the metric. We think one can consider
a more general case where the coupling of the ultraviolet CFT to the metric is not conformal and hence it
flows to a QFT with a mass gap of order H on curved background. The above arguments would then apply
in this case.
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leading order in r we can write

〈ζqζk1ζk2〉σ '
〈ζqσ−q(η0)〉 〈ζk1ζk2σq(η0)〉

Pσ(q, η0)
, (3.3)

where η0 is a time late enough so that all of the modes are super-horizon. The same for-
mula (3.1) can also be used to find the squeezed limit of a four-point function when the
sum of two momenta is much less than individual momenta (this is sometimes called the
counter-collinear limit). We get (for k1 ≈ −k2 and k3 ≈ −k4)

〈ζk1ζk2ζk3ζk4〉 =
∑

ϕ1,ϕ2∈{ζ,σ̂a}

Pϕ1ϕ2(q)ξϕ1(k1)ξϕ2(k3) + · · · (3.4)

Note that the background long wavelength mode can be a fluctuation in ζ (or the tensor
modes γij). However, unlike the generic case, now there are consistency conditions on how
the short modes respond to a long-wavelength metric fluctuation. Some linear superpositions
of these fluctuations are locally indistinguishable from coordinate transformations and the
response of the short modes is completely fixed by symmetries [4]. Model dependence starts to
show up at order ∂i∂jζ which is the reason for the squeezed limit behavior of equilateral-type
shapes (1.1). In the absence of other super-horizon degrees of freedom the above constraints
lead to consistency conditions on the full squeezed limit correlation functions, which hold
regardless of the details of sub-horizon physics. For instance, an explicit derivation when the
sub-horizon dynamics is effectively dissipative can be found in [19].

In the presence of other degrees of freedom, two cases are of special interest and will
be discussed separately in the following sections. First, when σ has mass comparable to H
(or more precisely m2/H2 � 1 − ns, the scalar tilt). In this case σ fluctuations gradually
decay outside the horizon, and the long-short correlation (3.1) forms around the horizon
crossing time of the short modes during inflation. The second case is when m/H � 1. In
this case (3.1) can form simultaneously for all k, long after they have all crossed the horizon.
We denote these nearly massless fluctuations as entropy modes.

3.1 Massive fields with 1 − ns � m2/H2 < 9/4

Neglecting slow-roll corrections, the growing mode of a field with mass m < 3H/2 at super-
horizon scales behaves as

σq(η) ' σ̂qη∆−σ ∝ (qη)∆−σ

q3/2
. (3.5)

Since the correlation (3.1) forms around the horizon crossing time η ∼ −1/k, the factor η∆−σ

translates into k−∆−σ . On the other hand, the scale invariance of de Sitter (i.e. the symmetry
under (η,x)→ (λη, λx)) implies that

〈ζqσ−q(η0)〉′ ∝ (qη0)∆−σ

q3
. (3.6)

From (3.5) we see that Pσ(q, η0)∝(qη0)2∆−σ /q3 up to normalization constants and 〈σq(η0)σ̂−q〉
= Pσ(q, η0)/η∆−σ

0 . Hence, the q dependence of (3.2) and (3.3) are fully fixed and using the
scale invariance we can write

〈ζqζk1ζk2〉σ ∝ Pζ(q)Pζ(k)
( q
k

)∆−σ
, (3.7)
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where in this approximation Pζ(q) ∝ q−3. It is seen that a wide range of squeezed limit
behaviors with 0 < ∆−σ < 3/2 result depending on the mass of σ. The quasi-single field
scenario [20] is the perturbative realization of this possibility. A review of the perturbative
calculation is provided in appendix A.1.

Note that there can also be a mixing between ζ and a composite operator made of σ.
For instance, if

Pζσ̂2(q) ≡
〈
ζqσ̂

2(q)
〉′ 6= 0 (3.8)

then there will be a contribution like (3.7) but with ∆−σ → 2∆−σ . More generally for any
local operator O of dimension ∆O ≤ 2, we have the squeezed limit behavior (q/k)∆O that
decays slower than the equilateral-type contributions. This is explicitly demonstrated in
a perturbative example in appendix A.2. Note that the whole range between the local and
equilateral type non-Gaussianity is covered in these models. This type of correlation between
the metric fluctuation ζ and operators constructed out of super-horizon degrees of freedom
can naturally arise, for instance via a coupling ζ̇σ2.

3.1.1 Squeezed limit and operator product expansion

Before discussing the case of entropic fluctuations, let us make some comments which cast
doubt on any general connection between squeezed limit correlation functions during inflation
(or a near de Sitter phase) and operator product expansion (OPE) in a hypothetical conformal
field theory in one lower dimension (hints that such a connection might exist can be found
e.g. in [14, 21]). The presence of such a connection is motivated by the fact that the action
of de Sitter isometries on super-horizon fields can be identified with the action of conformal
group on some dual operators in a CFT living on a spatial slice. This can best be seen at
the level of the wavefunction of the universe. The wavefunction is most naturally expressed
for fields of dimension lower than 3/2 in terms of sufficiently smooth (super-horizon) field
configurations as Ψ[{ϕ}, η]. This is the analog of coordinate basis for particle quantum
mechanics ψ(x, t), but now with one real variable for each ϕ(x), or for each ϕ(q) with
q � −η−1. The expectation values are calculated by integrating over all of these fields

〈F [{ϕ(η)}]〉 =

∫
Dϕ|Ψ[{ϕ}, η]|2F [{ϕ}]. (3.9)

Note that ϕ on the r.h.s. is an integration variable and the time-dependence is fully encoded
in Ψ.

The coefficient of the term ϕ1 · · ·ϕn in log Ψ have the same structure as an n-point
correlation function of CFT operators 〈O1 · · ·On〉 with dimensions ∆Oi = ∆+

ϕi = 3 − ∆−ϕi
times η∆−1 · · · η∆−n . (For scalar fields heavier than 3H/2 the mapping is less clear since both
asymptotic solutions, ∆±ϕ , decay the same way.) Now one may expect that the dominant
squeezed limit behavior of correlation functions should be related to the OPE limit of the
CFT operators, where two operators dual to the short modes are brought close to each other
in position space, and their product is expanded as a sum over operators. We will show that
this is not necessarily the case.

As a concrete example consider φ(x1)φ(x2)σ(x3) where φ is a dimension zero field (an
approximation to the almost massless fluctuations of the inflaton). The coefficient of this
term has the structure of 〈Φ(x1)Φ(x2)Σ(x3)〉, where ∆Φ = 3 and ∆Σ = ∆+

σ . In the limit
|x12| = |x1 − x2| → 0, one expects

O1(x1)O2(x2) ∼
∑
Q

c
∆Q

12 x
∆Q−∆1−∆2

12 Q(x1), (3.10)
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where the constants c
∆Q

12 are called OPE coefficients. Using 〈Q(x1)Q(x2)〉 ∝ x
−2∆Q

12 gives a
term in log Ψ of the form ∫ ∏

i

d3xiφ(x1)φ(x2)σ(x3)x∆+
σ−6

12 x−2∆+
σ

13 . (3.11)

Taking the Fourier transform, we obtain∫
d3kd3qφ(k)φ(−k − q)σ(q)f(k, q, η), with f(k, q, η) ∝ k3−∆+

σ q2∆+
σ−3η−∆−σ . (3.12)

The 3-point correlation function can be computed via

〈φk1(η)φk2(η)σk3(η)〉 =

∫
DφDσφ(k1)φ(k2)σ(k3)|Ψ[{ϕ}, t]|2. (3.13)

For small non-Gaussianities, |Ψ|2 is dominated by the Gaussian part

|Ψ[{ϕ}, η]|2 = exp

∑
{ϕ}

−1

2

∫
d3kP−1

ϕ (k, η)ϕ(k)ϕ(−k)

 , (3.14)

and the non-Gaussian correlation functions can be calculated perturbatively. The cubic
term (3.12) gives the squeezed limit contribution

〈φk(η)φ−k−q(η)σq(η)〉OPE = f(k, q, η)P 2
φ(k)Pσ(q, η) ∝ η∆−σ k3−∆+

σ P 2
φ(k), (3.15)

where we have used the fact that

Pσ(q, η) ∝ (qη)2∆−σ

q3
= η2∆−σ q2∆+

σ−3. (3.16)

However, one can show that (3.15) is a subleading contribution in the squeezed limit. The
leading contribution comes from correlating with σq(η) a similar expression as (3.1) with the
substitution ζ → φ. Up to an overall constant, this is fixed by the scale invariance

〈φkφ−k−qσq(η)〉 ∝ η−∆−σ k−∆−σ Pφ(k)Pσ(q, η). (3.17)

(Note that super-horizon φk is time-independent in our approximation.) Hence

〈φkφ−k−qσq(η)〉OPE

〈φkφ−k−qσq(η)〉
∼
( q
k

)3−2∆−σ
� 1, (3.18)

where we used the fact that ∆−σ < 3/2. Note that on the level of in-in diagrams the OPE
result corresponds to having both power spectra on the short modes, while the diagrams for
expression (3.17) have one of the power spectra on the long mode. These different diagrams
are shown in figure 1.

The dominant squeezed limit contribution (3.17) arises from the following cubic term
in log Ψ: ∫

d3kd3qφ(k)φ(−k − q)σ(q)k−∆−σ P−1
φ (k)η−∆−σ . (3.19)
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(a) (b)

Figure 1. (a) The diagram that corresponds to the squeezed limit bispectrum calculated using OPE
(see equation (3.15)). Both power spectra are on the short modes. (b) Diagrams for the leading part
of the squeezed limit bispectrum given by (3.17). One of the power spectra is on the long mode.

This is a local function of x13 when transformed to the position space. Interpreted as a corre-
lation function of dual operators, it is a contact term 〈Φ(x1)Φ(x2)Σ(x3)〉contact ∝ δ3(x1−x3).
However, this does not make it any less relevant for cosmological correlation functions. We
can translate to correlation functions of ζ by using

ζ ' −Hφ
φ̇s.r.

, (3.20)

where φ̇s.r. is the background slow-roll rate of the change of φ. The field σ would then
contribute to the 3-point function if there is a mixing Pζσ, and, even if not, its exchange
contributes to the squeezed 4-point function (|q| = |k1 + k2| � ki):

〈ζk1ζk2ζk3ζk4〉σ =

(
H

φ̇s.r.

)4 〈φk1φk2σq(η)〉′ 〈φk3φk4σq(η)〉′

Pσ(q, η)
. (3.21)

The resulting three and four point functions are non-analytic functions of q which lead to
long-range correlations in position space.

Our expansion (3.1) keeps only these local terms in log Ψ, which as argued above play
the dominant role in the squeezed limit. The corrections generically start at order estimated
in (3.18).

3.2 Entropic perturbations m/H � 1

The fluctuations of a very light field σ remain almost constant during inflation and the
power in fluctuations is nearly scale invariant. As a consequence they can affect cosmolog-
ical observables at a later epoch of cosmic evolution, e.g. during reheating or when the σ
fluctuations become time-dependent again (for instance when the expansion rate drops be-
low their mass). In the latter case the mode functions are not given by (2.2) with ∆− ' 0
anymore, however we will argue that the modes remain classical and to study the affect of
super-horizon perturbations of σ on the observables one can still use an expansion in terms
of local observables (3.1).

Suppose at some time the solutions to the linear equation of motion for σ become
oscillatory with a (time-dependent) physical frequency ω. Now both mode functions have to
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be kept but the reason why the field can still be treated classically is that the fluctuations have
very large occupation number. The amplitude of the inflationary fluctuations are

〈
σ2
k

〉′ ∼
H2

inf/k
3 while the typical size of the vacuum fluctuations for a fluctuating field of frequency

ω is
〈
σ2
k

〉
vac
∼ 1/a3ω. The ratio of the two is a measure of the occupation number which is

N ∼
〈
σ2
k

〉〈
σ2
k

〉
vac

∼
ωH2

inf

(k/a)3
. (3.22)

This is much larger than unity if the mode starts oscillating while it is still super-horizon,
in which case k/a � ω � Hinf , and also when it enters the (sound) horizon long after the
end of inflation, when ω = k/a ∼ Hreentry � Hinf . This implies that σ and σ̇ can both
be known with great accuracy and the evolution of the field is determined in terms of its
freeze-out value during inflation σ̂. As long as the σ mode is super-horizon this evolution
is also local and therefore an expansion like (3.1) can be used to relate observables to the
locally measurable operators made of σ which can all be related to the local value of σ̂ and
its derivatives. Moreover, since the interactions occur when all modes are already super-
horizon they should be independent of k, therefore the squeezed limit behavior is the same
as local non-Gaussianity. Note that, as before this local non-Gaussianity can be generated
via a mixing between ζ and σ2 or other composite operators made of σ — energy density is
perhaps the most natural candidate — while Pζσ can in principle vanish.

These models are known to violate standard single-field consistency conditions since
unlike long wavelength ζ perturbations those of σ are not locally equivalent to a coordinate
transformation. That is, while in the squeezed limit

ξζq(k1, · · · ,kN )→ D 〈ζk1 · · · ζkN 〉 , (3.23)

where D is the dilatation operator, ξσq(k1, · · · ,kN ) is completely model dependent. However,
we can still find weaker conditions which are satisfied by models in which the violation of
the single-field relations is triggered by mixing with other fields, thereby distinguishing them
from models in which ζ by itself evolves at super-horizon scales.3

The idea is to use the knowledge about the vertices with soft ζ modes [like (3.23)],
and the factorization to eliminate the ignorance about interactions of soft σ modes. We
first consider only a single entropic mode, which is easily generalizable to the case of several
identical ones. Here, one can fully determine the degree of mixing between σ and ζ from
combinations of observable squeezed-limit correlation functions. The mixing cannot exceed
1 by unitarity, otherwise the two-by-two correlation matrix will have negative eigenvalues.
Moreover, different ways of determining it from different combinations of correlation functions
must agree. This gives a consistency condition for these models. In the more general case, the
unitarity requirement still puts a weaker constraint on the ratio of squeezed limit correlation
functions. Most notably, on fNL and τNL, which characterize respectively the 3-point and
the 4-point correlators when the sum of two momenta becomes soft. However, these weaker
constraints on observables must be obeyed as a consequence of the axioms of probability [12],
and therefore any consistent theory of fluctuations would automatically satisfy them.

3.2.1 Consistency conditions on two-field scenarios

Consider having only one entropy mode. In this case, we have

〈ζqζk1ζk2〉
′ = Pζσ̂(q)ξσ(k1) + Pζ(q)ξζ(k1), (3.24)

3The latter case can be characterized by the condition that the constant adiabatic mode of Weinberg [22]
is a sub-dominant solution to the linearized field equations.
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and

〈ζk1ζk2ζk3ζk4〉
′ = ξζ(k1)ξζ(k3)Pζ(q) + ξσ(k1)ξσ(k3)Pσ̂(q)

+ [ξζ(k1)ξσ(k3) + ξσ(k1)ξζ(k3)]Pζσ̂(q),
(3.25)

for the counter-collinear limit of the 4-point function k1 + k2 = q → 0. Solving for r =
Pζσ̂/

√
Pζ(q)Pσ̂(q), we obtain4

r2 =
[〈ζk1ζk2ζq〉

′ − Pζ(q)ξζ(k1)][〈ζk3ζk4ζ−q〉
′ − Pζ(q)ξζ(k3)]

Pζ(q)[〈ζk1ζk2ζk3ζk4〉
′ − 〈ζk1ζk2ζq〉

′ ξζ(k3)− 〈ζk3ζk4ζq〉
′ ξζ(k1) + Pζ(q)ξζ(k1)ξζ(k1)]

.

(3.26)
This must hold for all k1 and k3 as long as they are much larger than q.5 Using the standard
consistency condition (3.23), and assuming that r � 1 simplifies the above equation to

r2 =
[〈ζk1ζk2ζq〉

′ − Pζ(q)DPζ(k1)][〈ζk3ζk4ζ−q〉
′ − Pζ(q)DPζ(k3)]

Pζ(q) 〈ζk1ζk2ζk3ζk4〉
′ − P 2

ζ (q)DPζ(k1)DPζ(k3)
. (3.27)

The above equation tells us that, even though the σ field itself is unobservable, the
mixing parameter r can still be measured just from the observable correlation functions of
ζ. Moreover, r can also be solved in terms of the counter-collinear limit of the 5-point
function and the squeezed limit of 3- and 4-point functions, and so on. Then, given that
the two expressions for r must agree, one can write down an equality that involves just the
correlators of ζ. These relations are new consistency conditions for the two-field inflation
that hold irrespectively of the details of σ interactions.

3.2.2 Unitarity constraints on multi-field models

In the more general case where a set of local operators {Oa} contribute to the squeezed limits,
the constraints are weaker, since in general one cannot solve for the individual mixings ra.
However, there are inequalities that must be satisfied for the theory to be unitary.6 We derive
the simplest one: the squeezed limit of the 3-point function and the counter-collinear limit
of 4-point function now read

〈ζqζk1ζk2〉
′ =

∑
a

Pζa(q)ξa(k1) + Pζ(q)ξζ(k1), (3.28)

and

〈ζk1ζk2ζk3ζk4〉
′ = ξζ(k1)ξζ(k3)Pζ(q) +

∑
a,b

ξa(k1)ξb(k3)Pab(q)

+
∑
a

[ξζ(k1)ξa(k3) + ξa(k1)ξζ(k3)]Pζa(q),
(3.29)

where Pab =
〈
ÔaÔb

〉
. Choosing an orthogonal basis for the operators such that Pab ∝ δab,

and assuming for simplicity that k1 ' k3, we arrive at the following constraint (using the

4Notice that in this equation we treat r non-perturbatively.
5One may wonder if the denominator can be equal to zero for some momentum configurations. It is equal

to Pσ̂(q)Pζ(q)ξσ(k1)ξσ(k3) and therefore it can vanish only when the numerator vanishes as well. Note that
in this case r cannot be determined using (3.26).

6For a discussion of unitarity constraints on single field inflation see [23].
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Cauchy-Schwartz theorem)

[〈ζk1ζk2ζq〉
′ − Pζ(q)ξζ(k1)]2 ≤

(∑
a

r2
a

)
Pζ(q)[〈ζk1ζk2ζk3ζk4〉

′ − 2 〈ζk1ζk2ζq〉
′ ξζ(k1)

+ Pζ(q)ξζ(k1)ξζ(k1)]. (3.30)

In the extremely squeezed limit where only local shape survives, this simplifies to(
12

5
f̃NL

)2

≤

(∑
a

r2
a

)[
4τNL −

((
12

5
fNL

)2

−
(

12

5
f̃NL

)2
)]

, (3.31)

where f̃NL is the observable part of the local non-Gaussianity: the difference between total fNL

and the single-field part. A stronger bound can be obtained by subtracting the contribution
of tensor mode exchange from the 4-point function since Pζγ = 0.

On the other hand, 1 −
∑

a r
2
a is proportional to the determinant of the total 2-point

correlation matrix detPϕϕ′ , where ϕ indicates all local fields and operators including ζ. The
positivity of this determinant together with (3.31) then implies(

6

5
fNL

)2

≤ τNL. (3.32)

Let us close this section by two general remarks. First, the underlying assumption for
the expansion (3.1) was that the short modes are in vacuum until the long mode has crossed
the horizon and become classical. This assumption can be broken for instance if the short
wavelength modes get excited inside the horizon. An explicit example of this sort is axion
models of inflation [24, 25] where there is another physical frequency ω > H in the problem
at which the modes get excited. This case has been studied in appendix A.4. As seen after
sufficient squeezing (here q/k � H/ω) our formalism will be applicable again. In particular,
in the absence of other degrees of freedom the single-field consistency conditions hold for
sufficiently squeezed correlators [26].

The second remark is regarding the resemblance between the expansion (3.1) for classical
long wavelength modes and the bias expansion for the distribution of halos and galaxies. In
the latter case the dynamics of the short scale modes is influenced by the local observables
of the long wavelength perturbations of gravitational potential (made of ∂i∂jφ) along the
trajectory of the short modes. However unlike a super-horizon σ field whose time-evolution
is local and fully determined in terms of the field σ̂ and its spatial derivatives at a single
time-slice, the sub-horizon density fluctuations have long range gravitational interactions.
Therefore the bias expansion won’t be local if written just in terms of the initial field and its
spatial derivatives (see e.g. [27]).

4 Heavy fields m/H > 3/2

In this case the two solutions of the free-field equation decay with the same rate and oscillate,
scaling as η3/2±iµ where µ =

√
m2/H2 − 9/4. Hence, the fields are not classical and we

cannot expand as in (3.1). However, there is still a sense in which the correlation functions
arising from the exchange of heavy fields factorize in the squeezed limit. This is because in
this limit the dominant contribution arises from the production of on-shell heavy particles,
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whose amplitude is suppressed by a Boltzmann factor exp(−πµ) for each pair of particles. In
the weakly coupled case the other contributions in which no on-shell particle is created are
captured by a set of effective derivative self-couplings of ζ arising from integrating out the
heavy particle. These self couplings are not suppressed by any Boltzmann factor, but they
lead to equilateral type non-Gaussianities. For instance, the squeezed limit bispectrum scales
as q2, which decays by a factor of (q/k)1/2 faster compared to the former contribution from
production of on-shell particles which goes as (q/k)3/2. For higher statistics these on-shell
particles give a sub-dominant piece but they still have a characteristically different functional
form. This problem has been thoroughly studied in [13, 14] and we will just touch upon the
salient features of the squeezed limit correlators.7

Instead of correlation functions in a classical background, here we should talk about the
wavefunction of universe to keep track of the phase of the σ field. Since the concept of particle
is well-defined for late-time heavy fields, it is more natural to expand the wavefunction in
terms of eigenstates of particle number operator as in the scattering theory. Let us choose an
intermediate time η̃ satisfying k−1 � −η̃ � q−1, so that the super-horizon field σq is well-
defined but the hard k modes are in vacuum. The wavefunction at η0, when all correlations
are formed, can be written as

|Ψ(η0)〉 =
∑
N

∫ N∏
n=1

d3qn
(2π)3

∫
Dζ U(η0, η̃) |{ζ}, Nσ〉 Ψ[{ζ}, Nσ; η̃], (4.1)

where U(η0, η̃) is the time-evolution operator and the sum is only over N -particle states of σ
with super-horizon wavelengths. Other possible degrees of freedom have been omitted. The
wavefunction |Ψ(η̃)〉 depends on the sub-horizon dynamics, and if σ exists there as a weakly
coupled degree of freedom can be perturbatively calculated. However, on general grounds we
expect that

Ψ[{ζ}, Nσ; η̃] ∝ e−Nπµ/2, (4.2)

since we assume that the theory is in the adiabatic vacuum deep inside the horizon, and
hence particle production is a result of evolution in the expanding background. Secondly, all
modes that are still deeply sub-horizon must be in vacuum:

Ψ[{ζ}, Nσ; η̃] ∝ δ(ζk), for all − kη̃ � 1. (4.3)

(The iε prescription evolves such a wavefunction into the true vacuum.) On the other hand,
the soft ζq modes are constant up to corrections of order (qη̃)2, therefore

〈ζq|U(η0, η̃)|ζ̃q〉 ∝ δ[ζq − ζ̃q +O(q2η̃2)]. (4.4)

The correlation functions are obtained by taking averages using the wavefunction (4.1). Keep-
ing the minimum number of Boltzmann factors, we get:

〈ζqζk1ζk2〉σ ' 〈ζk1ζk2 |1σq〉
∫
dζq ζq Ψ†[ζq, 0σ; η̃] Ψ[ζq, 1σ−q; η̃] + c.c. (4.5)

The second factor on the r.h.s. depends on the sub-horizon mixing of ζq and σq. We expect
from the perturbative calculation that this correlation should form at −qη ∼ µ � 1 and
to introduce another factor of exp(−µπ/2). The first factor on the r.h.s. corresponds to a

7For a study of the impact of heavy fields on correlators involving tensor modes see [28].
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massive particle decaying into a pair of ζk modes when their total energy red-shifts to values
around the mass, i.e. η ∼ −µ/k. The super-horizon wavefunction σq ∝ (qη)3/2+iµ/q3/2 + c.c.
then leads to an oscillating piece cos(µ log k + φq) and a dilution factor (q/k)3/2. The phase
φq is fixed if we require that σ should be in the adiabatic vacuum at very early times. As
emphasized in [14] the oscillations result from interference: the expectation value is calculated
between the Gaussian part of the wavefunction, and the part with production of a pair of
entangled σ particles, one of them oscillating into a ζq mode, and the other decaying at a
much later time into a pair of short wavelength ζ±k modes. Fixing the other factors by
approximate scale invariance, we obtain

〈ζqζk1ζk2〉σ ∝ Pζ(q)Pζ(k)
( q
k

)3/2
cos
(
µ log

q

k
− φ0

)
. (4.6)

This is enhanced in the squeezed limit by (k/q)1/2 compared to equilateral type shapes.
Moreover, the oscillating component makes this shape distinct from other contributions. We
could also consider the σ-exchange contribution to the 4-point correlator:

〈ζk1ζk2ζk3ζk4〉σ ∝ e
2µπ 〈ζk1ζk2 |1σq〉 〈ζk3ζk4 |1σ−q〉+ c.c. (4.7)

Again this is an interference between the Gaussian piece, and a piece which describes the fol-
lowing process: (i) An entangled pair of massive particles is produced in the time-dependent
background. (ii) The particles move out of causal contact. (iii) They subsequently decay
into several ζ fields, when the total energy of the red-shifting modes coincides with m.

Finally, if the exchanged field has spin s > 0, the squeezed limit result would be pro-
portional to εi1···is(q)k̂i1 · · · k̂is . Only the longitudinal polarization of a massive tensor field
can mix with a scalar ζ, e.g. via ζ̇∂i1 · · · ∂isσi1···is . Therefore,

〈ζqζk1ζk2〉σ ∝ Pζ(q)Pζ(k)
( q
k

)3/2
cos
(
µ log

q

k
− φ0

)
Ps(q̂ · k̂), (4.8)

where Ps is the Legendre polynomial.

4.1 Quantum versus classical correlation

We have seen that the squeezed limit correlation functions have an expansion in terms of a
discrete set of power-laws

〈ζqζk1ζk2〉 ∼ Pζ(q)Pζ(k)
∑
∆

a∆

( q
k

)∆
,

〈ζk1ζk2ζk3ζk4〉 ∼ Pζ(k1)Pζ(k3)
∑
∆

b∆

( q
k

)∆
counter-collinear ,

(4.9)

with ∆ integers ≥ 2 for equilateral type non-Gaussianities, real numbers corresponding to
the light (m/H < 3/2) degrees of freedom and their derivatives and products, or pairs of
complex numbers corresponding to heavy degrees of freedom. This expansion is unambiguous
and non-trivial and seems to be dictated just by the isometries of a quasi-de Sitter space-
time. As emphasized in [14] the case of heavy field exchange is fundamentally different as
it corresponds to a quantum mechanical interference effect.8 In fact one can see that the

8It was also argued that they are distinguishable due to the non-locality of the real space correlator.
However, almost all terms in the above expansion lead to large distance (non-local) correlations when Fourier
transformed with respect to q (see the discussion of section 3.1.1).
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fundamental difference between the case of heavy intermediate fields and the other cases
is the difference between quantum versus classical correlations. The outcome of two short
distance measurements in two far separated laboratories are correlated with each other in
all cases, but in one case they are deterministic while in the other case the outcome of one
measurement influences the result of the other.

This difference has a distinct imprint in the squeezed limit correlators: when the long
wavelength mode becomes classical, the σ field works as a hidden variable and the expan-
sion (3.1) is possible. As a result the dependence on the momenta on two sides of the inter-
mediate long wavelength mode factorizes (see for instance (3.3) and (3.4)), or more generally
it can be written as a sum of factorized terms weighted by the correlations among various
derivatives and products of σ. Different short distance measurements have no influence on
one another; they are correlated because they are both influenced by a single long mode. On
the other hand, the heavy field contribution is not factorizable because of the dependence
of the squeezed 3-point and 4-point functions, respectively, on log(q/k) and log(q2/k12k34)
(where kij = |ki − kj |) [14].

5 Prospects in large-scale structure surveys

In this section we will discuss the observability of various squeezed limit behaviors, when
contrasted with the contribution from the gravitational interactions during the structure
formation (see [26] for a related analysis in the context of single-field inflation). Consider a
non-Gaussian 3-point correlator whose squeezed limit behavior is

〈ζqζkζk′〉 = fNLP (k)P (q)
( q
k

)∆
(2π)3δ3(q + k + k′). (5.1)

The signal to noise ratio in a 3d survey of volume V can be estimated as

(S/N)2 =
V 3

(2π)9

∫
d3k1d

3k′d3q
〈ζqζkζk′〉 〈ζqζkζk′〉
〈ζqζkζk′ζqζkζk′〉

. (5.2)

Using (5.1), approximating the denominator by the Gaussian contribution, and replacing
(2π)3δ(0)→ V (appropriate for finite volume surveys), we get

(S/N)2 = f2
NL

V

(2π)6

∫
d3k

∫
d3qP (q)

( q
k

)2∆
, (5.3)

where we are calculating the signal in the squeezed limit configurations q � k. The k
integral is dominated by the highest values of k. This is generally the case since the number
of modes grows as k3. For biased tracers, k really corresponds to the modes that have become
nonlinear. The dependence on k would then be different. However, we are interested in the
dependence on q as it is made small so that ζq mode is linear and P (q) ∝ 1/q3. Limiting the
inner integral to q < qmax we get a contribution which is proportional to

(S/N) ∝ q∆
max. (5.4)

That is, the error with which this type of non-Gaussianity can be measured by considering
modes longer than q−1

max scales as q−∆
max. This suggests that unless ∆ = 0, there is more signal

in larger values of q.
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However, there is a guaranteed level of non-Gaussianity due to the subsequent grav-
itational interaction of the modes that also increases as q becomes bigger and competes
with primordial signal. For very large values of the hard momenta k, this is not accurately
calculable. However, in the squeezed limit its q dependence must scale as

〈ζqζkζk′〉gr ∝ O(q2)P (q), (5.5)

since the short scale dynamics can only depend on the local observables made of the long
mode. As k is kept fixed around the largest available values and q is made smaller, this
gravitational contribution decays faster than (5.1) for all ∆ < 2. Therefore, the relevant
question is how the signal in modes with q < qmax, i.e. equation (5.4), compares to the
ratio of (5.1) to (5.5), which scales as q∆−2

max . One finds that for ∆ < 1 the primordial shape
is better distinguishable in the squeezed limit, while for higher values of ∆ analyzing the
equilateral configurations significantly improves the chance of detectability. However, unlike
the squeezed limit the equilateral primordial shapes are not expected to be very distinct from
gravitational contributions, hence the theoretical uncertainty in determining the latter close
to the nonlinear scale poses a challenge to increasing k.

6 Conclusions

We argued that several squeezed limit properties of non-single-field inflationary models hold
more generically, and can be studied in a unified fashion. The fields in a quasi-de Sitter
space-time become free at super-horizon scales and follow power-law time evolution. The
light fields become classical and the leading squeezed limit behaviors can be obtained from
an effective parameterization of short-distance correlations in terms of a local expansion in
derivatives and powers of the background long wavelength mode. We showed how the known
results, such as the squeezed limit behavior in quasi-single-field models, and the unitarity
constrains on multi-field models, can be derived in a more model independent way from
this formalism. Heavy fields, on the other hand, have complex wavefunction at late times
and are naturally described in terms of many particle states. The squeezed limit correlation
functions due to the production of these heavy particles by the time-dependent background
is dominated by interference effects and hence they oscillate as a function of the ratio of
kshort/klong. All these features have not much to do with the details of sub-horizon dynamics,
but they essentially depend on quasi-de Sitter evolution and the existence of (not too heavy)
super-horizon degrees of freedom other than metric and inflaton fluctuations. The form can
be used as a general test of a quasi-de Sitter cosmic evolution. Finally, we discussed the
observability of various squeezed limit scalings of the bispectrum.
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A Purturbative examples of factorization

A.1 Fundamental fields

Suppose ζ is coupled to a light field σ via

H = H1 +H2 = ζ̇2σ + ζ̇σ. (A.1)
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We are interested in the leading contribution of a σ exchange to the squeezed limit of the
3-point function 〈ζqζk1ζk2〉σ:

〈ζqζk1ζk2〉σ2 = −2Re

〈
ζq(η0)ζk1(η0)ζk2(η0)

∫ η0

−∞

dη1

η4
1

∫ η1

−∞

dη2

η4
2

H1(η1)H2(η2)

〉
+

〈∫ η0

−∞

dη1

η4
1

H1(η1)ζq(η0)ζk1(η0)ζk2(η0)

∫ η1

−∞

dη2

η4
2

H2(η2)

〉
+H1(η1)↔ H2(η2) ,

(A.2)

where we introduced an infrared regulator η0 since the field σ is generically time-dependent
at super-horizon scales. We will often drop the time argument of ζ if it is η0. The main
contribution to the squeezed limit is when the mixing H2 between the soft ζ and σ fields
occurs at a time around ηq ∼ −1/q much earlier than the H1 interaction at ηk ∼ −1/k. Sub-
stituting (A.1) in (A.2), expanding in terms of mode functions and using this approximation,
we obtain

− ζq(η0)ζk1(η0)ζk2(η0)

∫ η0

−∞

dη1

η4
1

∫ η1

−∞

dη2

η4
2

ζ∗k1
(η1)ζ∗k2

(η1)σq(η1)σ∗q (η2)ζ∗q(η2) + c.c.

+ ζq(η0)ζ∗k1
(η0)ζ∗k2

(η0)

∫ η0

−∞

dη1

η4
1

ζk1(η1)ζk2(η1)σq(η1)

∫ η0

−∞

dη2

η4
2

σ∗q (η2)ζ∗q(η2) + c.c.

(A.3)

We next argue that this expression factorizes into

〈ζqζk1ζk2〉σ '
〈ζqσ−q(η0)〉 〈ζk1ζk2σq(η0)〉

Pσ(q, η0)
∝ P (q)P (k)

( q
k

)∆σ

, (A.4)

where ∆σ = 3
2 −

√
9
4 −

m2

H2 is the scaling of the growing mode and Pσ(q, η0) = |σq(η0)|2. The

two mixed correlators in the numerator are given by

〈ζqσ−q(η0)〉 = −iζq(η0)σ−q(η0)

∫ η0

−∞

dη

η4
σ∗−q(η)ζ∗q(η) + c.c. (A.5)

and

〈ζk1ζk2σq(η0)〉 = −iζk1(η0)ζk2(η0)σq(η0)

∫ η0

−∞

dη

η4
1

ζ∗k1
(η1)ζ∗k2

(η1)σ∗q(η1) + c.c. (A.6)

The relation (A.4) is then verified by noticing that: (a) The integral in (A.5) is independent
of η0 as long as −qη0 � 1. Therefore, since the η1 integral on the first line of (A.3) is
dominated by −η1 ∼ 1/k � 1/q, we can replace the upper-bound of the η2 integral with η0.
(b) At late times the time-dependence of the mode functions factorizes and we can replace:

σq(η2)→ σ∗q (η2)
σq(η0)

σ∗q (η0)
. (A.7)

A.1.1 Light fields

For fields of dimension ∆σ ≤ 1, the integral in (A.5) is naively dominated by late times, and
the approximation (a) seems to be invalid. However, this late-time dominance is spurious
since it is pure imaginary and cancels in the final result. This independence from the late-
time cutoff η0 (apart from the trivial scaling in σq(η0)) becomes manifest by reorganizing
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the perturbation theory as time-evolution problem [29]. In this language there are two
contributions to 〈ζqσ−q(η0)〉:

〈ζqσ−q(η0)〉 = σ∗−q(η0)

∫ η0

−∞

dη

η4
ĠRζq(η0, η)σ−q(η) + ζq(η0)

∫ η0

−∞

dη

η4
GRσ−q

(η0, η)ζ̇∗q(η), (A.8)

where

GRfq(η0, η) =
i

2
(fq(η0)f∗q (η)− c.c.) (A.9)

is the retarded propagator of the indicated field. At late times it decays as η3, while ζ̇q(η) ∝ η2

and σq(η) ∝ η∆σ . Hence, for all ∆σ > 0 each term in (A.8) is manifestly IR-safe, i.e. it does
not depend on the upper limit of the integral as long as −qη0 � 1, but only the sum of the
two terms is real. The case of an unprotected massless field ∆σ = 0 is special. Here, the
dependence on η0 is real and corresponds to the possibility of the generation of a mass for σ
via its mixing with ζ.

In this formalism, the leading contribution of σ exchange to the squeezed limit comes
from two diagrams

〈ζqζk1ζk2〉 =

∫ η0

−∞

dη2

η4
2

ĠRζq(η0, η2)σ−q(η2)

∫ η0

−∞

dη1

η4
1

σ∗q(η1) · · ·

+ ζq(η0)

∫ η0

−∞

dη1

η4
1

∫ η0

−∞

dη2

η4
2

GRσ−q
(η1, η2)ζ̇∗q(η2) · · · ,

(A.10)

where dots represent the part of the diagrams corresponding to the interaction among the
high momentum modes at η1 ∼ −1/k. The approximation (b) can now be rephrased as

GRσq(η1, η2)→ GRσq(η0, η2)
σq(η1)

σq(η0)
, for − qη1 � 1, (A.11)

and leads to the same factorization formula (A.4).

A.2 Local operator exchange

Suppose ζ is coupled to a light field σ of mass m < 3H/2 via

H = H1 +H2 = ζ̇2σ2 + ζ̇σ2. (A.12)

We are interested in the leading contribution of a σ loop to the squeezed limit of the 3-point
function 〈ζqζk1ζk2〉σ:

〈ζqζk1ζk2〉σ2=−2Re

〈
ζq(η0)ζk1(η0)ζk2(η0)

∫ η0

−∞

dη1

η4
1

∫ η1

−∞

dη2

η4
2

H1(η1)H2(η2)

〉
+Re

〈∫ η0

−∞

dη1

η4
1

H1(η1)ζq(η0)ζk1(η0)ζk2(η0)

∫ η1

−∞

dη2

η4
2

H2(η2)

〉
+H1(η1)↔H2(η2),

(A.13)

where we introduced an infrared regulator η0 since the field σ is generically time-dependent at
super-horizon scales. We will often drop the time argument of ζ if it is η0. The contribution
to the squeezed limit is insignificant unless the momenta of the virtual pair q1 and q2 are
of the same order as the soft momentum q, when an H2 interaction among the three soft
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modes occur around ηq ∼ −1/q much earlier than the H1 interaction at ηk ∼ −1/k. Substi-
tuting (A.12) in (A.13), expanding in terms of mode functions and using this approximation,
we obtain

− 2Re

∫ η0

−∞

dη1

η4
1

∫ η0

−∞

dη2

η4
2

[
ζq(η0)ζk1(η0)ζk2(η0)ζ∗k1

(η1)ζ∗k2
(η1)ζ∗q(η2)

− ζq(η0)ζ∗k1
(η0)ζ∗k2

(η0)ζk1(η1)ζk2(η1)ζ∗q(η2)
] 〈
σ2
q(η1)σ2

−q(η2)
〉
,

(A.14)

where 〈
σ2
q(η1)σ2

−q(η2)
〉

=

∫
q1+q2=q

σq1
(η1)σq2

(η1)σ∗q1
(η2)σ2

q2
(η2). (A.15)

Using the late time behavior:

σ(η1)

σ(η0)
'
(
η1

η0

)∆σ

∆σ =
3

2
−
√

9

4
− m2

H2
(A.16)

in (A.15) and substituting in (A.14), it is easy to see that it factorizes:

〈ζqζk1ζk2〉σ '
∫
q1+q2=q

〈
ζqσ−q1

(η0)σ−q2
(η0)

〉 〈
ζk1ζk2σq1

(η0)σq2
(η0)

〉
Pσ(q1, η0)Pσ(q2, η0)

. (A.17)

However, one can show that the above squeezed limit 3-point function fully factorizes. Note
first that because of the late time behavior (A.16)〈

ζk1ζk2σq1
(η0)σq2

(η0)
〉

= f(k1, η0)Pσ(q1, η0)Pσ(q2, η0) , (A.18)

which implies
〈ζqζk1ζk2〉σ2 ' f(k1, η0)

〈
ζqσ

2
−q(η0)

〉
. (A.19)

Next, integrate (A.18) over q1 and q2, with q1 + q2 = q, to obtain〈
ζk1ζk2σ

2
q(η0)

〉
= f(k1, η0)Pσ2(q, η0). (A.20)

Combining (A.19) and (A.20) we finally obtain

〈ζqζk1ζk2〉σ2 '
〈
ζqσ

2
−q(η0)

〉 〈
ζk1ζk2σ

2
q(η0)

〉
Pσ2(q, η0)

∝ P (q)P (k)
( q
k

)2∆σ

. (A.21)

Let us make a few remarks:

• The above derivation holds only if ∆σ ≤ 1. Otherwise, the η1 integral in (A.13) is
dominated by η1 ∼ η2 and not by η1 ∼ −1/q: the UV divergence in the σ loop wins
over slow variation of ζq(η1) at super-horizon scales. Nevertheless, by renormalizing
the composite operator one expects to obtain the same factorized contribution.

• Although the above formula was derived for the operator σ2, it is expected to hold
more generally for any intermediate operator O

〈ζqζk1ζk2〉O '
〈ζqO−q(η0)〉 〈ζk1ζk2Oq(η0)〉

〈Oq(η0)O−q(η0)〉
∝ P (q)P (k)

( q
k

)∆O

, (A.22)

and the last scaling to be valid even for large mixing.
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A.3 Soft internal lines

The approximation (b) of appendix A.1 can be used to also show that the contribution of soft
internal lines (or operators in general) to the correlation functions factorizes. For instance,
a 4-point function in the counter-collinear limit k1 + k2 = q → 0 can be written as

〈ζk1ζk2ζk3ζk4〉O '
〈ζk1ζk2Oq(η0)〉 〈ζk3ζk4O−q(η0)〉

〈Oq(η0)O−q(η0)〉
. (A.23)

The intermediate operator can now be a soft ζq mode.

A.4 Resonant non-Gaussianity

The above predictions always require sufficient amount of squeezing q/k � 1. This is needed
to ensure that the short modes are in vacuum before the long mode crosses the horizon.
An illustrative example is resonant non-Gaussianity where the factorization on soft internal
lines, e.g. (A.23), can fail due to insufficient squeezing. Here the modes get excited at physical
frequencies of order the resonant frequency ω � H and the interactions start to be important
when the short modes cross this threshold. If q/k > H/ω the soft intermediate mode is not
yet super-horizon when the interactions of the short modes become important. Thus, the
approximation (b) cannot be made. More explicitly, the leading contribution to a 4-point
function in the counter-collinear limit contains a term

− ζq(η0)ζk1(η0)ζk2(η0)

∫ η0

−∞

dη1

η4
1

V (3)(η1)

∫ η1

−∞

dη2

η4
2

V (3)(η2)

ζ∗k1
(η1)ζ∗k2

(η1)ζq(η1)ζ∗k3
(η2)ζ∗k4

(η2)ζ∗q(η2) + {k1,k2} ↔ {k3,k4}+ c.c.

(A.24)

where V (n)(η) ∝ cosωt is the leading cubic vertex. The integrals are dominated when
−kη ∼ ω/H around the saddle point. Suppose q � k but q/k � H/ω then we can neglect
the factor exp(−iqη) in ζq(η) and replace

ζq(η) = ζq(η0)(1 + iqη)e−iqη → iqηζq(η0), (A.25)

which gives an opposite contribution compared to ζ∗q (η)ζq(η0)/ζ∗q (η0) in the same approxi-
mation. Hence the approximation (b) does not hold in this regime.
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