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a b s t r a c t 

Objectives: The COVID-19 pandemic significantly changed respiratory viruses’ epidemiology due to non- 

pharmaceutical interventions and possible viral interactions. This study investigates whether the circula- 

tion patterns of respiratory viruses have returned to pre-pandemic norms by comparing their peak timing 

and duration during the first three SARS-CoV-2 seasons to pre-pandemic times. 

Methods: Global Influenza Surveillance and Response System data from 194 countries (2014-2023) was 

analyzed for epidemic peak timing and duration, focusing on pre-pandemic and pandemic periods across 

both hemispheres and the intertropical belt. The analysis was restricted to countries meeting specific data 

thresholds to ensure robustness. 

Results: In 2022/2023, the northern hemisphere experienced earlier influenza and respiratory syncytial 

virus (RSV) peaks by 1.9 months ( P < 0.001). The duration of influenza epidemics increased by 2.2 weeks 

( P < 0.001), with RSV showing a similar trend. The southern hemisphere’s influenza peak shift was not 

significant ( P = 0.437). Intertropical regions presented no substantial change in peak timing but experi- 

enced a significant reduction in the duration for human metapneumovirus and adenovirus (7.2 and 6.5 

weeks shorter, respectively, P < 0.001). 

Conclusions: The pandemic altered the typical patterns of influenza and RSV, with earlier peaks in 2022 

in temperate areas. These findings highlight the importance of robust surveillance data to inform public 

health strategies on evolving viral dynamics in the years to come. 

© 2024 The Authors. Published by Elsevier Ltd on behalf of International Society for Infectious Diseases. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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The emergence of the COVID-19 pandemic, caused by SARS- 

oV-2, has undeniably reshaped life on a global scale. As infection 

ates and fatalities surged to historic proportions, initial strategies 

o combat the crisis revolved around non-pharmaceutical inter- 

entions (NPIs), such as the use of facemasks, physical distancing, 

ravel bans, and lockdowns, considering the absence of available 
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accines or targeted therapeutics. Characterized by a spectrum 

f actions spanning individual precautions to broader societal 

easures, NPIs aimed to curtail the rapid dissemination of the 

irus [ 1 ]. By carefully designing policies to implement NPIs aimed 

t reducing the spread of respiratory viruses, the impact has gone 

eyond just SARS-CoV-2. As a result, noticeable changes have 

ccurred in the usual patterns of how common respiratory viruses, 

uch as influenza viruses and respiratory syncytial virus (RSV), 

pread throughout the year [ 2 ]. Essentially, the combination of 

he COVID-19 pandemic and the strategic use of NPIs triggered 

 series of significant changes that extended beyond immediate 
nfection control measures. 
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Influenza viruses, endemic human coronaviruses, RSV, and hu- 

an metapneumovirus (hMPV), tend to follow typical patterns in 

emperate climate regions, with the highest numbers of detections 

uring the winter months [ 3–5 ]. On the other hand, adenoviruses, 

uman bocaviruses, and rhinoviruses can be found all year round 

 6 , 7 ]. After the emergence of SARS-CoV-2, a decrease in activity 

as observed for nearly all these respiratory viruses, with a few 

xceptions (rhinoviruses and other enteroviruses were reported in- 

reasing their activity as of June 2020) [ 8–10 ]. 

Currently, it remains uncertain whether influenza and other 

espiratory viruses will return to their typical circulation patterns 

r adapt to a new normality. Foreseeing when respiratory virus 

pidemics will occur is crucial in the field of public health; as 

n example, planning when to run influenza vaccination cam- 

aigns depends on the expected timing patterns of when the virus 

s spreading the most. Moreover, giving preventive treatments to 

igh-risk infants for RSV needs to match the start of RSV out- 

reaks. By knowing and adjusting for the timing of respiratory 

irus epidemics, we can protect those who are most at risk, im- 

rove how ready we are for health care challenges, and lower the 

verall impact of these diseases. 

The aim of this study was to analyze the global seasonal pat- 

erns and timing of major respiratory viruses, including influenza 

iruses, RSV, adenoviruses, hMPV, human parainfluenza viruses 

hPIV), rhinoviruses, human coronaviruses, and bocaviruses, and, in 

articular, to compare patterns of circulation in the pre–COVID-19 

ra with those observed in the three seasons of the COVID-19 pan- 

emic. 

ethods 

orld Health Organization (WHO) FluNet database 

FluNet ( https://www.who.int/tools/flunet ), managed by WHO, 

ffers a freely available web-based repository that compiles weekly 

aboratory-confirmed viruses detection data from 194 countries, 

erritories, and dependencies (referred to as countries henceforth 

or brevity) through the WHO regional databases and direct con- 

ributions from National Influenza Centers and other reference lab- 

ratories involved in the Global Influenza Surveillance and Re- 

ponse System (GISRS). Formerly, the database provided informa- 

ion on influenza viruses, whereas, currently, it includes the weekly 

umber of detections of adenoviruses, bocaviruses, human coron- 

viruses, hMPV, hPIV, RSV, and rhinoviruses. For the present anal- 

sis, on July 10, 2023, we downloaded the weekly number of 

aboratory-confirmed cases for each virus that were reported be- 

ween weeks 01/2014 and 26/2023. 

efinitions and preliminary analysis 

A country was assigned to belong to the northern hemisphere 

f its centroid lies north of the Tropic of Cancer, to the southern 

emisphere if it lies south of the Tropic of Capricorn, or to the 

ntertropical belt (ITB) if it lies between the tropics. The unit of 

nalysis was the “country-season” (for conciseness, referred to as 

eason hereafter), defined as the calendar year for countries in the 

outhern hemisphere and the ITB or the period from week 27 in 

 year to week 26 next year for countries in the northern hemi- 

phere (where epidemics caused by most respiratory viruses typ- 

cally take place in autumn and winter, thus bridging 2 calendar 

ears). In what follows, “season 2022” will refer to the calendar 

ear 2022 in the southern hemisphere and the ITB or to the period 

etween the weeks 27/2022 and 26/2023 in the northern hemi- 

phere. 
2

n the WHO FluNet database, each country can contribute data 

abeled as the following 

• “Sentinel surveillance:” data gathered regularly and systemati- 

cally within sentinel surveillance systems. 
• “Non-sentinel surveillance:” data originating from outbreak in- 

vestigations, universal testing, point-of-care testing, or other 

testing systems apart from surveillance. 
• “Not defined:” data lacking a specific categorization (possibly 

including combined sentinel and non-sentinel data). 

We conducted a preliminary exploration of the WHO FluNet 

atabase with the aim of verifying its utility for the purposes of 

he present analysis. In detail, we compared sentinel and non- 

entinel data (in countries where data of both types were available 

uring the same season[s]) to quantify the differences in the tim- 

ng of primary peaks of influenza virus detections (for 2014-2019) 

hen using either data type, with the aim to assess the reliability 

f the non-sentinel data for the study of the timing of epidemics. 

nfluenza positivity rate 

The FluNet database includes a “specimens processed” variable 

hat only pertains to influenza virus detections (WHO, personal 

ommunication, March 2023). Furthermore, only sentinel surveil- 

ance systems routinely report the number of influenza virus de- 

ections alongside the number of processed specimens. Thus, the 

eason-specific positivity rate for influenza for a given country was 

alculated as the ratio of the number of detections over the num- 

er of tested specimens reported by sentinel systems. To reduce 

he level of uncertainty, we restricted the analysis to the seasons 

ith ≥30 reported weeks of observation and ≥50 processed spec- 

mens. The positivity rate for influenza for each country was sep- 

rately calculated in the pre–COVID-19 period (2014-2019) and in 

ach of the three following seasons (2020, 2021, and 2022). The 

019/2020 season was considered as part of the pre-pandemic pe- 

iod also for northern hemisphere countries because the COVID- 

9 pandemic was declared on March 11, 2020 when the period 

f maximum circulation of most respiratory viruses is usually ap- 

roaching its end. We, then, calculated the median global and re- 

ional influenza virus positivity rate (and interquartile range [IQR]) 

or each period. 

eak timing 

We used the EPIPOI software ( https://www.epipoi.info/ ) to an- 

lyze country-specific influenza time series in 2014-2019 to deter- 

ine the typical timing of the peak of activity for each respiratory 

irus [ 3 , 11 ]. To ensure the robustness of our results, we decided to

nclude in the analysis only the seasons with ≥30 weeks of obser- 

ation and ≥50 detections for influenza and RSV. 

For the other respiratory viruses, the minimum number of de- 

ections per season was lowered to 20, in the attempt to retain a 

ufficiently high number of countries and seasons, given the lower 

umber of detections for these viruses than influenza and RSV. 

The forementioned approach was not suitable for analyzing in- 

ividual seasons; thus, in each of the three seasons after the emer- 

ence of COVID-19 (2020, 2021, and 2022), the timing of the peak 

as defined as the week where the 3-week moving average of 

eported detections for each virus when it reached its maximum 

alue. The timing of the virus-specific peak was calculated sepa- 

ately for the seasons 2020, 2021, and 2022, considering the dis- 

upted seasonality of most respiratory viruses’ circulation during 

he COVID-19 pandemic. 

Finally, we aimed to investigate whether the timing of epi- 

emics in the most recent season included in our analysis had 

https://www.who.int/tools/flunet
https://www.epipoi.info/
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eturned to overlap with that typical of before the COVID-19 

andemic. To that extent, we calculated the difference between 

he timing of the peak in 2022 and the typical timing for the 

re-pandemic period (2014-2019) separately for each respiratory 

irus and in each country. Scatterplots were created to illustrate 

he results, and the sign test was used to assess statistical signif- 

cance of the median difference in the timing of the peak between 

he season 2022 and the pre–COVID-19 period in the attempt to 

dentify the trends of anticipation or delay. For our analysis, data 

n influenza A and B were merged, with the aim of offering a 

omprehensive overview of influenza seasonality and to better 

nform vaccination timing and coverage to eventually optimize 

ublic health outcomes. This approach aligns with practical public 

ealth objectives, given the unified nature of influenza vaccination, 

hich targets the A and B strains. 

uration of the epidemics 

The virus-specific epidemic duration is a useful measure for an- 

icipating health care demands because a steeper epidemic curve 

an significantly strain resources even if it is short-lived. It also 

ids in optimizing the timing of interventions, such as vaccination 

ampaigns. We determined the duration for each season and coun- 

ry through the average annual percentage method, whereby the 

uration is defined as the briefest continuous period during which 

t least 75% of all reported detections occurred within the season 

 3 ]. This analysis was separately conducted in the 2014-2019 pe- 

iod and in each of the three subsequent seasons. For each virus, 

e applied the Wilcoxon signed-rank test to compare the country- 

pecific median duration of epidemics in the pre-pandemic period 

ith that in 2022. 

oftware 

All analyses were conducted using Stata version 17 (Stata Corp, 

ollege Station, TX, USA), the ggplot 2 package in RStudio version 

023.06.1 (Posit Software, PBC, Boston, MA, USA, http://www.posit. 

o/.) and the freely available analytical software EPIPOI ( https: 

/www.epipoi.info/ ) [ 11 ]. 

esults 

ata availability 

The number of seasons with data and the number of detections 

f each respiratory virus reported during the study period for the 

76 countries included in the analyses are available in Supplemen- 

ary Tables 1 and 2. The most included countries are in the north- 

rn hemisphere (n = 84) or in the ITB (n = 86), whereas six coun-

ries are in the southern hemisphere. The WHO region with the 

ighest number of countries reporting data for at least one virus 

as the European region (54 countries, 30.7%), followed by the re- 

ion of the Americas (46, 26.1%), the African region (31, 17.6%), the 

astern Mediterranean region (18, 10.2%), the west Pacific region 

16, 9.1%), and the southeast Asian region (11, 6.3%). 

The number of specimens tested for influenza viruses 

mounted to over 48.64 million over the study period. A to- 

al of over 4.98 million influenza detections were reported by 173 

ountries, whereas 138 countries contributed over 0.97 million 

SV detections. Much fewer countries reported data pertaining to 

he other respiratory viruses, from 78 for adenoviruses to only 48 

or seasonal coronaviruses; the total number of detections over 

he study period ranged from 0.23 million for rhinoviruses to only 

366 for bocaviruses. Of note, 37 countries did not report any 

etections for respiratory viruses other than influenza, whereas 

nly 16 countries (of which 11 from the region of the Americas) 
3

eported at least one detection for each virus during the analyzed 

eriod. 

omparison of sentinel and non-sentinel data 

The comparison of sentinel and non-sentinel data showed ei- 

her no or minor variations in terms of respiratory virus-specific 

iming of the peak when comparing data collected within differ- 

nt surveillance systems in a given country. In detail, for 23 coun- 

ries, there were influenza data available from sentinel and non- 

entinel surveillance systems: the difference in the timing of the 

eak calculated using either type of data was less than 1 week in 

1.7% of the countries and within 2 weeks in 91.3% of the coun- 

ries. Moreover, the differences were distributed in an approxi- 

ately symmetric way around zero, indicating no consistent bias 

n one direction. The difference in the timing of the peak tended 

o be smaller when more seasons were available for analysis. Simi- 

ar findings emerged for RSV (for which eight countries contributed 

ata from sentinel and non-sentinel surveillance systems). Having 

hus ascertained that the data coming from either type of surveil- 

ance system were equally suitable for determining the timing of 

pidemics, the surveillance system with the most abundant data 

as used for each country to ensure the robustness of the analy- 

is. This approach was chosen over an alternative possible method 

f merging data from different systems to prioritize maintaining 

ata integrity and consistency. 

he pre–COVID-19 era (2014-2019) 

In 2014-2019, the median influenza positivity rate was 0.384 

orldwide (IQR 0.287-0.467, 50 countries included). The tempo- 

al characteristics of epidemics caused by each respiratory virus 

re summarized in Table 1 . The epidemics caused by influenza 

iruses, RSV, and the other respiratory viruses in temperate coun- 

ries mostly peaked in winter months and generally lasted over 1 

onth less than in ITB countries, with only a few exceptions. 

he first seasons with SARS-CoV-2 circulation: 2020 and 2021 

The influenza positivity rate dropped to 0.001 (median value, 

QR 0.0 0 0-0.020, n = 67 countries) in the 2020 season and re- 

ained in values well below those observed in the pre-pandemic 

eriod in the 2021 season as well (median 0.069, IQR 0.023-0.172, 

 = 73 countries). Owing to the very limited viral circulation, the 

iming and duration of influenza epidemics in these two seasons 

as not determined nor compared to the pre-pandemic period. 

ikewise, there was a major drop in the number of detections of 

ost other respiratory viruses in the early phase of the COVID-19 

andemic, which prevented a comparison of seasonality patterns 

ith pre-pandemic ones. 

he 2022 season 

nfluenza 

In the 2022 season, the global median influenza positivity rate 

ose to 0.140 (IQR 0.073-0.244), roughly twice as high as in the 

revious season, although still less than half than in the pre- 

andemic period. 

In countries of the northern hemisphere (n = 65), the peak of 

nfluenza epidemics in the 2022-2023 season was 1.9 months ear- 

ier than the pre-pandemic period ( P -value for difference < 0.001) 

 Table 2 , Figure 1 , Supplementary Table 3). In the southern hemi-

phere, the peak was 2.2 months earlier (5 countries, P -value 

or difference with the pre-pandemic period 0.437), whereas in 

ountries of the ITB (n = 45), there was practically no differ- 

nce in the month of occurrence of the epidemic peak between 

http://www.posit.co/.)
https://www.epipoi.info/
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Figure 1. Difference in the timing of the epidemic peak between 2014-2019 (typical peak timing) and the epidemic peak timing observed in 2022 by virus type. The dots 

situated above/left (or below/right) of the diagonal indicate countries where the peak in the 2022 seasons occurred earlier (or later) than the median timing of 2014-2019. 

The x-axis and y-axis values indicate peak month, with 1 for January through 12 for December. The different colors in the chart correspond to different WHO regions: AFR 

(Africa) in brown, AMR (Americas) in red, EMR (eastern Mediterranean) in green, EUR (Europe) in orange, SEAR (southeast Asia) in lilac, and WPR (western Pacific) in blue. 

RSV: respiratory syncytial virus; hMPV: human metapneumovirus. 
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022 and pre-pandemic seasons (median difference −0.1 months, 

 -value = 0.276) ( Figure 1 ). 

The influenza epidemics tended to last longer in 2022 than 

he median of the pre-pandemic period in countries of the north- 

rn hemisphere, where the median duration rose from 8.8 to 11.0 

eeks ( P -value < 0.001), and the southern hemisphere (from 12.5 

o 20.0 weeks, P -value = 0.125). 

On the contrary, data from 2022 compared with 2014-2019 

uggest a shift toward slightly shorter influenza epidemics in ITB 
f

4

ountries (median 22.5 vs 23.7 weeks, P -value 0.260), although this 

ifference is not statistically significant. 

SV 

Similar to influenza viruses, the peak of RSV epidemics in the 

022 season in northern hemisphere countries (n = 26) occurred 

ignificantly earlier than in the pre-pandemic period (median dif- 

erence −1.9 months, P -value < 0.001), whereas no substantial dif- 
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Table 1 

Median timing of peak (month) and duration of epidemics (in weeks) caused by each respiratory virus in the pre-pandemic period (2014-2019) in countries in the northern and southern hemisphere and the inter-tropical belt 

(see text for details). 

Influenza RSV Adenoviruses Bocaviruses Human coronaviruses hMPV hPIV Rhinoviruses 

Northern hemisphere (n = 84) a 

N countries with data 76 38 7 4 6 6 6 7 

Peak timing, median February, 1st half January, 2nd half January, 1st half March, 2nd half February, 2nd half March, 2nd half January, 1st half February, 2nd half 

Duration of epidemics (weeks), median 8.8 11.0 25.7 26.1 15.2 16.2 27.8 28.7 

Intertropical belt (n = 86) a 

N countries with data 62 29 21 3 4 17 22 17 

Peak timing, median May, 2nd half July, 2nd half May, 1st half September, 2nd half July, 1st half September, 2nd half May, 2nd half July, 1st half 

Duration of epidemics (weeks), median 23.7 17.5 30.0 31.6 26.3 21.2 24.2 25.3 

Southern hemisphere belt (n = 6) a 

N countries with data 5 5 4 0 1 4 5 2 

Peak timing, median July, 2nd half July, 2nd half July, 2nd half - September, 1st half September, 1st half August, 2nd half May, 1st half 

Duration of epidemics (weeks), median 12.5 11.2 28.9 - 15.2 14.9 21.0 17.7 

RSV: respiratory syncytial virus; hMPV: human metapneumovirus; hPIV: human parainfluenza viruses. 
a n represents the number of countries in a given area of the world that reported data for at least one virus. 

Table 2 

Peak timing (month) and duration of epidemics (in weeks) caused by each respiratory virus in 2022 in countries in the southern hemisphere and the inter-tropical belt, and 2022/2023 for countries in the northern hemisphere 

(see text for details). 

Influenza RSV Adenoviruses Bocaviruses Coronaviruses hMPV hPIV Rhinoviruses 

Northern hemisphere (n = 84) a 

N countries with data 68 37 6 4 5 6 5 6 

Peak timing, median December, 2nd half December, 1st half March, 1st half December, 1st half January, 2nd half November, 2nd half September, 2nd half December, 1st half 

Duration of epidemics (weeks), median 11.0 12.0 34.0 31.5 22.0 25.0 32.0 35.0 

Intertropical belt (n = 86) a 

N countries with data 47 25 15 5 11 13 16 13 

Peak timing, median August, 2nd half June, 2nd half September, 2nd half August, 2nd half September, 1st half July, 2nd half June, 2nd half June, 2nd half 

Duration of epidemics (weeks), median 22.5 12.0 22.0 16.0 21.0 14.0 20.0 25.0 

Southern hemisphere belt (n = 6) a 

N countries with data 5 5 3 1 2 4 4 2 

Peak timing, median June, 1st half June, 2nd half November, 1st half August, 1st half August, 1st half July, 2nd half July, 2nd half September, 2nd half 

Duration of epidemics (weeks), median 20.0 14.0 29.0 10.0 11.0 11.0 22.0 23.0 

RSV: respiratory syncytial virus hMPV: human metapneumovirus; hPIV: human parainfluenza viruses. 
a n represents the number of countries in a given area of the world that reported data for at least one virus. 
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erences emerged for countries in the ITB (n = 20, P -value = 0.498)

nd the southern hemisphere compared with the median of the 

re-pandemic period (n = 5, P -value = 0.625) ( Table 2 , Figure 1 ,

upplementary Table 4). 

In addition, regarding the duration of RSV epidemics, the pic- 

ure mirrored that of influenza viruses, with a longer duration in 

he 2022 season (compared with 2014-2019) in countries of the 

orthern (12.0 vs 11.0 weeks, P -value < 0.001) and southern (14.0 

s 11.2 weeks, P -value > 0.05) hemispheres and, inversely, a ten- 

ency toward shorter durations in tropical countries (12.0 vs 17.5 

eeks, P -value < 0.001). 

ther respiratory viruses 

For respiratory viruses other than influenza viruses and RSV, 

he number of countries with available data was generally too lim- 

ted to reliably answer the question of whether the temporal char- 

cteristics of epidemics (peak timing and duration) remained al- 

ered in the 2022 season compared with the pre-pandemic period. 

he only exceptions concerned a shorter duration of epidemics 

aused by hMPV (median 14.0 vs 21.2 weeks, P -value = 0.001) and 

denoviruses (median 23.5 vs 30.0 weeks, P -value < 0.001) in 2022 

han in 2014-2019 in ITB countries and a longer duration of epi- 

emics caused by the same viruses in northern hemisphere coun- 

ries (hMPV: median 25.0 vs 16.2, P -value = 0.08; adenoviruses: 

edian 34.0 vs 25.8, P -value = 0.008), with no significant changes 

n the timing of the peak ( Table 2 , Figure 1 , Supplementary Table

). 

iscussion 

The spread of SARS-CoV-2 in early 2020 profoundly disrupted 

he circulation, timing, and duration of epidemics of influenza 

iruses and other respiratory viruses [ 2 , 12 , 13 ], perhaps even caus-

ng the disappearance of the influenza viruses B/Yamagata lineage 

 14 , 15 ]. After the rebound in respiratory viruses’ circulation start- 

ng 2021 [ 8 , 16 ], questions arose regarding the return of their usual

easonal patterns [ 2 , 17 ], particularly, in light of the continued pres-

nce of SARS-CoV-2 and possible viral interference. Here, we ana- 

yzed global data for respiratory viruses over nine consecutive sea- 

ons (2014-2022), showcasing the distinct virus-specific circulation, 

iming, and duration of epidemics by latitude-defined world areas. 

ur results suggest that the global patterns of circulation of some 

espiratory viruses kept differing from what they were before the 

OVID-19 pandemic. In particular, the dynamics of influenza virus, 

SV, and hMPV epidemics exhibited notable shifts in timing and 

uration in the 2022 season (2022/2023 in the northern hemi- 

phere) compared with the pre-pandemic periods. In the north- 

rn hemisphere and the southern hemisphere, the influenza and 

SV epidemic peaks took place significantly earlier and the epi- 

emics showed a prolonged median duration. In the tropical area, 

o distinct peak timing patterns emerged, whereas a trend toward 

 slight shortening of epidemics was found for these viruses. A 

imilar trend was seen, despite paucity of data, when analyzing the 

eak timing of hMPV, which was also earlier (although this result 

as not statistically significant). Unlike influenza viruses, RSV, and 

MPV, data for other respiratory viruses were scarce and no reli- 

ble comparison between the pre- and the peri-pandemic eras was 

ossible. 

Early during the pandemic, a sharp decrease in the circulation 

f most respiratory viruses was signaled worldwide, which was 

ainly attributed to the public health measures enforced world- 

ide and, possibly, to the direct interaction between the new 

irus and other pathogens [ 18 ]. The scarce circulation of respira- 

ory viruses resulted in an increased proportion of population be- 

ng susceptible to infection [ 19 ]: this scenario opened up discus- 
6

ions suggesting compensatory respiratory virus seasons and that 

he anticipatory behavior of influenza viruses and other respira- 

ory virus epidemics observed in temperate areas might merely 

eflect a temporary catch-up in susceptibility, with the underlying 

ssumption that the situation would normalize thereafter, as seen 

or RSV after the 2009 influenza pandemic [ 20 ]. The altered timing 

nd duration of respiratory virus epidemics observed in 2022, par- 

icularly, for influenza viruses and RSV, could indeed be partially 

xplained by a compensatory mechanism owing to increased sus- 

eptibility in populations from scarce virus circulation in the pre- 

eding years [ 21 ]. Varying influenza vaccine uptake trends, a factor 

hat remains insufficiently understood outside of regions such as 

urope and North America owing to limited data, should also be 

aken into consideration [ 22 ]. Although the reasons for the shift in 

pidemic timing are multifaceted, it is noteworthy that influenza 

n Australia showed a peak around weeks 27-28 in 2023, similar 

o the previous year. This somehow suggests that a return to the 

re-pandemic patterns may not be immediate. Continued observa- 

ion is necessary to determine whether this represents a temporary 

djustment or a more lasting alteration in peak timing [ 8 ]. This 

nderscores the importance of a nuanced understanding of mul- 

iple factors at play, encompassing potential interactions between 

iruses, shifts in population behavior, and the persistent effects of 

ublic health measures. 

Although it remains to be seen whether these shifts will be 

ustained in the post-pandemic era, they underscore the potential 

eed for adapting global preparedness effort s, such as maintaining 

nd enforcing robust local and regional surveillance systems to ef- 

ectively monitor these trends [ 23 , 24 ]. Such systems are crucial for 

uiding appropriate public health responses, including the timely 

dministration of influenza vaccinations and the application of pre- 

entive measures against RSV, encompassing monoclonal antibod- 

es and new vaccines [ 25–28 ]. To this regard, the current paucity 

f data on many respiratory viruses underscores the need to en- 

ance global surveillance networks; strengthening the GISRS and 

ational systems for regular, comprehensive monitoring of respi- 

atory viruses will be vital for gaining a deeper understanding of 

heir circulation, ultimately guiding public health responses and 

olicymaking. To the best of our knowledge, this is the first anal- 

sis of global activity of respiratory viruses at a national level that 

ssessed how the timing of different respiratory viruses changed 

fter the appearance of SARS-CoV-2 using routine surveillance data 

rom the GISRS. 

Although this study offers a broad scope and presents new 

nsights, some limitations exist that need to be fully acknowl- 

dged. First, it must be acknowledged how the inclusion of non- 

nfluenza respiratory viruses is not systematic and the reporting 

y some countries may not be comprehensive, leading to little data 

or some viruses. However, the GISRS database’s expansion to in- 

lude more virus reporting marks progress in global surveillance 

ffort s in recent years. Analyzing these data now while acknowl- 

dging that data for some viruses and countries are limited may 

e key to understanding future health trends, reflecting our com- 

itment to enhancing public health surveillance. Underreporting 

r inconsistent reporting across diverse regions and countries is 

urrently an issue. For instance, European countries lack direct ac- 

ess to upload data to FluNet, resulting in only influenza, RSV, and 

ARS-CoV-2 data being forwarded from European Centre for Dis- 

ase Prevention and Control to WHO Europe and subsequently to 

he FluNet/WHO databases. In general, the paucity of data impeded 

 reliable comparison between the pre- and post-pandemic eras for 

denoviruses, bocaviruses, human coronaviruses, rhinoviruses, and 

PIV, thereby constraining a more comprehensive understanding 

f the COVID-19 pandemic’s influence on the global respiratory vi- 

al landscape. In addition, the scarcity of countries providing data, 

n particular, sentinel data, may affect the generalizability of our 
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[  
ndings. This reflects the varying quality of surveillance systems 

cross countries, a factor that must be carefully considered, espe- 

ially considering the importance of sentinel data for accurately as- 

essing epidemic peak timing, duration, and magnitude. Our deci- 

ion to use sentinel and non-sentinel data was made to enable the 

nalysis for a larger number of countries, striving for a more global 

epresentation. In addition, our reliance on WHO’s FluNet database 

or weekly aggregated influenza detection data rather than case- 

ased reports limits the granularity of our analysis, and despite 

he robust global surveillance framework provided by GISRS, which 

ncludes protocols to ensure data integrity and minimize errors, 

he aggregated nature of the data requires careful interpretation. 

urthermore, our analysis might have benefited from country-level 

ata, for instance, by evaluating the baseline variability of the epi- 

emic peaks for each virus at the country level, by detailing the 

recise timing and manner in which NPIs were lifted, and by tak- 

ng into consideration how each distinct virus tends to respond 

o NPIs [ 29 ]. Nevertheless, it is worth noting that the majority of 

ountries had already lifted NPIs during the last season that we 

onsidered in our analysis (2022 for the southern hemisphere and 

he tropics and 2022/2023 for the northern hemisphere). Finally, 

ur analysis does not explore the potential influence of climate fac- 

ors on the observed variations and variability in respiratory virus 

irculation. Incorporating these environmental factors into future 

nvestigations may provide valuable insights into the dynamics of 

espiratory virus epidemics. 

Our research contributes to the understanding of the COVID- 

9 pandemic’s short-term impact on respiratory virus patterns. By 

nalyzing data from nine seasons, including three after the emer- 

ence of SARS-CoV-2, we offer insights into the potential shifts in 

he behavior of these pathogens during the pandemic period. Al- 

hough we offer insights into potential shifts in the behavior of 

hese pathogens during the pandemic period, it is important to ac- 

nowledge that these findings may reflect transient adaptations to 

nprecedented global health measures and societal changes. There- 

ore, continuous surveillance in the years to come will be essential 

o discern whether these observed shifts signify temporary pertur- 

ations or the advent of possibly long-lasting changes in respira- 

ory virus circulation patterns. In a swiftly evolving context, our 

esearch serves as a valuable guide, providing evidence-based in- 

ights to inform strategies aimed at protecting public health. 
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