SVD-CLOSED SUBGROUPS OF THE UNITARY GROUP: GENERALIZED PRINCIPAL LOGARITHMS AND MINIMIZING GEODESICS

DONATO PERTICI AND ALBERTO DOLCETTI

Dipartimento di Matematica e Informatica, Viale Morgagni 67/a, 50134 Firenze, ITALIA donato.pertici@unifi.it, http://orcid.org/0000-0003-4667-9568 alberto.dolcetti@unifi.it, http://orcid.org/0000-0001-9791-8122

ABSTRACT. We study the set of generalized principal \mathfrak{g} -logarithms of any matrix belonging to a connected SVD-closed subgroup G of U_n , with Lie algebra \mathfrak{g} . This set is a non-empty disjoint union of a finite number of subsets diffeomorphic to homogeneous spaces, and it is related to a suitable set of minimizing geodesics. Many particular cases for the group G are explicitly analysed.

Contents

Introduction		1
1.	Basic notations and some preliminary facts.	3
2.	Commuting matrices and SVD-systems	7
3.	SVD-closed real Lie subalgebras of $\mathfrak{gl}_n(\mathbb{C})$	9
4.	SVD-closed subgroups of U_n	12
5.	Generalized principal \mathfrak{g} -logarithms	15
6.	Closed subgroups of ${\cal U}_n$ endowed with the Frobenius metric	18
7.	Generalized principal $\langle V \rangle_{\mathfrak{u}_n}$ -logarithms, with $V \in U_n$	19
8.	Generalized principal $\preccurlyeq Q \succcurlyeq_{\mathfrak{su}_n}$ -logarithms, with $Q \in O_n$	21
References		23

KEYWORDS. Generalized principal logarithm; SVD-decomposition, SVD-closed subgroup, Frobenius metric, minimizing geodesics, (symmetric) homogeneous space.

MATHEMATICS SUBJECT CLASSIFICATION (2020): 53C30, 15B30, 22E15. GRANTS: This research has been partially supported by GNSAGA-INdAM (Italy).

INTRODUCTION

If M is a matrix belonging to a connected closed subgroup G of $GL_n(\mathbb{C})$, having \mathfrak{g} as Lie algebra, we say that a matrix $L \in \mathfrak{g}$ is a generalized principal \mathfrak{g} -logarithm of M, if $\exp(L) = M$ and $-\pi \leq Im(\lambda) \leq \pi$, for every eigenvalue λ of L; the set of all generalized principal \mathfrak{g} -logarithms of M is denoted by \mathfrak{g} -plog(M). Our definition relaxes the usual one of principal logarithm, which excludes the matrices $M \in GL_n(\mathbb{C})$ with negative eigenvalues (see, for instance, [Higham 2008, Thm. 1.31]). The usual definition implies both existence and uniqueness of a principal logarithm. In some relevant cases, matrices with negative eigenvalues and belonging to a closed subgroup G of $GL_n(\mathbb{C})$, have an infinite set of generalized principal \mathfrak{g} -logarithms, on which it is possible to define some natural geometric structures. We have already studied the sets \mathfrak{so}_n -plog(M), if $M \in SO_n$, and $gl_n(\mathbb{R})$ plog(M), if M is semi-simple (see [Dolcetti-Pertici 2018a] and [Pertici 2022]). Our interest in the set \mathfrak{g} -plog(M) is related to a differential-geometric setting, which we briefly describe. Denote by ϕ the Frobenius (or Hilbert-Schmidt) positive definite real scalar product on $\mathfrak{gl}_n(\mathbb{C})$, defined by $\phi(A, B) := Re(tr(AB^*))$. If G is a connected closed subgroup G of the unitary group U_n (with Lie algebra \mathfrak{g}), we still denote by ϕ the Riemannian metric on G, obtained by restriction of the Frobenius scalar product of $\mathfrak{gl}_n(\mathbb{C})$. This metric is bi-invariant on G and the corresponding geodesics are the curves $\gamma(t) = P \exp(tX)$, where $X \in \mathfrak{g}$ and $P \in G$. The set of minimizing geodesic segments of (G, ϕ) is a classical and relevant subject of investigation.

In this paper we also assume that the group G is SVD-closed: a condition satisfied by many closed subgroup of U_n . The reason is that, under this assumption, for every $P_0, P_1 \in G$, the set of minimizing geodesic segments of (G, ϕ) with endpoints P_0 and P_1 , can be parametrized by the set of generalized principal \mathfrak{g} -logarithms of $P_0^*P_1$ (see Theorem 6.5). Therefore, a geometric structure on \mathfrak{g} -plog $(P_0^*P_1)$ induces a corresponding structure on the set of minimizing geodesic segments joining P_0 and P_1 .

To fully illustrate the statements of the title and of the previous result, we must explain the meaning of *SVD-closure*. Any matrix $M \in \mathfrak{gl}_n(\mathbb{C}) \setminus \{0\}$ has a unique decomposition (called *SVD-decomposition* of M) of the form $M = \sum_{i=1}^{p} \sigma_i A_i$, where $\sigma_1 > \sigma_2 > \cdots > \sigma_p > 0$ are the non-zero singular values of M, and $A_1, A_2, \cdots A_p$ are non-zero complex matrices (called *SVD-components* of M) such that $A_h^*A_j = A_hA_j^* = 0$, for every $h \neq j$, and $A_jA_j^*A_j = A_j$, for every j. We say that a real Lie subalgebra \mathfrak{g} of $\mathfrak{gl}_n(\mathbb{C})$ is *SVD-closed* if, for any matrix $M \in \mathfrak{g} \setminus \{0\}$, all SVD-components of M belong to \mathfrak{g} . A closed subgroup of $GL_n(\mathbb{C})$ is *SVD-closed* if its Lie algebra is SVD-closed in $\mathfrak{gl}_n(\mathbb{C})$.

Sections 1 and 2 are devoted to recall many general basic notions and preliminary facts on matrices. In Section 3 we discuss and determine a wide class of SVD-closed real Lie subalgebras of $\mathfrak{gl}_n(\mathbb{C})$. The key result is that the sets of fixed points of all automorphisms of the real Lie algebra $\mathfrak{gl}_n(\mathbb{C})$, commuting with the map $\eta : A \mapsto A^*$ and preserving the so-called *triple Jordan product*, are SVD-closed real Lie subalgebras of $\mathfrak{gl}_n(\mathbb{C})$ (see Proposition 3.5). In Section 4, we prove that many classical groups of matrices are SVDclosed, as, for instance, the real general linear group $GL_n(\mathbb{R})$, the unitary group U_n , the special orthogonal complex group $SO_n(\mathbb{C})$, the symplectic groups $Sp_{2n}(\mathbb{C})$, $Sp_{2n}(\mathbb{R})$, the generalized unitary groups $U_{(p,n-p)}$ and all their intersections. In particular, we analyse the following families of SVD-closed subgroups of U_n : $\preccurlyeq Q \succcurlyeq_{U_n} := \{X \in U_n : XQX^T = Q\}$ and $\preccurlyeq Q \succcurlyeq_{SU_n} := \preccurlyeq Q \succcurlyeq_{U_n} \cap SU_n$, where Q is an arbitrary real orthogonal matrix. Among them, we find many classical closed subgroups of U_n , as, for instance, SO_n , Sp_n , $U_{(p,n-p)} \cap U_n$ and $(SO_{(p,n-p)}(\mathbb{C})) \cap U_n$.

In Section 5 we study the set \mathfrak{g} -plog(M) for a matrix M, belonging to a connected SVDclosed subgroup G of U_n , with Lie algebra \mathfrak{g} . In particular we prove that \mathfrak{g} -plog(M) is non-empty (see Proposition 5.5) and that it is a disjoint union of a finite number of compact submanifolds of \mathfrak{g} , each of which is diffeomorphic to a homogeneous space (Theorem 5.7). In Section 6 we obtain some results about of the Riemannian manifold (G, ϕ) , where G is any connected SVD-closed subgroup of U_n , and, among them, the already mentioned Theorem 6.5. In addition, we compute the diameter of all connected SVD-closed subgroups of U_n that we considered in Section 4 (see Proposition 6.7).

The main result of Section 7 is Theorem 7.2, in which we prove that, for every $V \in U_n$ and $M \in \langle V \rangle_{U_n}$, the set $\langle V \rangle_{\mathfrak{u}_n}$ -plog(M) has a finite number of components, each of which is a simply connected compact submanifold of \mathfrak{u}_n , diffeomorphic to the product of suitable complex Grassmannians. Finally, the main result of Section 8 is Theorem 8.5, which states that, for every $Q \in O_n$ and $M \in \exists Q \succeq_{SU_n}$, the set $\exists Q \succeq_{\mathfrak{su}_n} - plog(M)$ has a finite number of components, each of which is a simply connected compact submanifold of \mathfrak{su}_n , diffeomorphic to the product of suitable complex Grassmannians with the symmetric homogeneous spaces $\frac{SO_{2m}}{U_m}$ and $\frac{Sp_{\mu}}{U_{\mu}}$.

1. BASIC NOTATIONS AND SOME PRELIMINARY FACTS.

1.1. Notations.

a) In this paper we will use many standard notations from the matrix theory and from the theory of Lie groups and algebras.

Among these, if \mathbb{K} is either the field of real numbers \mathbb{R} , or the field of complex numbers \mathbb{C} , or the associative division algebra of quaternions \mathbb{H} , then $\mathfrak{gl}_n(\mathbb{K})$ denotes the real Lie algebra of square matrices of order n and $GL_n(\mathbb{K})$ the Lie group of invertible matrices of order n, both with coefficients in \mathbb{K} . In any case, the identity matrix and the null matrix of order n are denoted by I_n and by $\mathbf{0}_n$, respectively, and we define also $\mathbb{K}^0 = \{0\}$. As usual, \mathbf{i} is the unit imaginary number of \mathbb{C} and \mathbf{j} , \mathbf{k} are the further standard imaginary unities of \mathbb{H} , so that $\mathbf{i}^2 = \mathbf{j}^2 = \mathbf{k}^2 = -1$, $\mathbf{ij} = -\mathbf{ji} = \mathbf{k}$, $\mathbf{jk} = -\mathbf{kj} = \mathbf{i}$, $\mathbf{ki} = -\mathbf{ik} = \mathbf{j}$. Note that any $q \in \mathbb{H}$ can be written in a unique way as $q = z + w\mathbf{j}$ with $z, w \in \mathbb{C}$, so that the complex field \mathbb{C} can be identified with the set of quaternions of the form $z + 0 \cdot \mathbf{j}$, with $z \in \mathbb{C}$. We denote by $e^z := \sum_{i=0}^{+\infty} \frac{z^i}{i!}$ the exponential of $z \in \mathbb{C}$ and, if $z \neq 0$, by $\log(z)$, the unique complex logarithm of z, whose imaginary part lies in the interval $(-\pi, \pi]$. For every $A \in \mathfrak{gl}_n(\mathbb{H})$, A^T , \overline{A} , $A^* := \overline{A}^T$ and A^{-1} (provided that A is invertible) are respectively transpose, conjugate, adjoint and inverse of the matrix A and tr(A) is its

trace. If $A \in \mathfrak{gl}_n(\mathbb{C})$, $\det(A)$ denotes its determinant, while $\exp(A) := \sum_{i=0}^{+\infty} \frac{A^i}{i!} \in GL_n(\mathbb{C})$ denotes the exponential of the matrix A.

If M_1, \dots, M_h are square matrices of orders r_1, \dots, r_h , respectively, then $M_1 \oplus \dots \oplus M_h$ denotes the related block-diagonal square matrix of order $r_1 + \dots + r_h$. Moreover, if B is a $p \times p$ matrix, then $B^{\oplus h}$ denotes the $ph \times ph$ block-diagonal matrix $\underline{B \oplus \dots \oplus B}$.

If S_1, \ldots, S_m are sets of square matrices, then $S_1 \oplus \cdots \oplus S_m$ denotes the set of all matrices $B_1 \oplus \cdots \oplus B_m$ with $B_j \in S_j$, for every j. If the sets S_1, \ldots, S_m are mutually disjoint, we write $\bigsqcup_{i=1}^{h} S_i$ to denote their (disjoint) union.

To give a full generality to the results of this paper (and to their proofs), it is necessary to establish agreements on the notations that we will use: if h is a non-negative integer parameter, whenever, in any formula, we write any term as $\sum_{i=1}^{h} (\cdots)$, $\bigoplus_{i=1}^{h} (\cdots)$ or $\prod_{i=1}^{h} (\cdots)$, we mean that, if h = 0, this sum, this direct sum or this product must not appear in the related formula. Moreover, if G_n (for $n \ge 1$) denotes any classical Lie groups of matrices of order n, having Lie algebra \mathfrak{g}_n , and if H_n is a closed subgroup of G_n , we also assign a meaning to the expressions G_0 , \mathfrak{g}_0 , $\frac{G_0}{H_0}$, defining them all equal to a single point \mathcal{Q} which, conventionally, satisfies the following conditions:

 $\lambda Q = Q$, for every $\lambda \in \mathbb{C}$; $Q \oplus B = B \oplus Q = B$, for any square matrix B; $Q \oplus S = S \oplus Q = S$, for any set of square matrices S.

It is also useful to define the zero-order identity matrix I_0 and $M^{\oplus 0}$ (for every square matrix M) both equal to this point Q and, to simplify the notations and some statements, the complex numbers, which are not eigenvalues of a matrix M, will be called *eigenvalues of multiplicity zero* of M. Furthermore, we denote:

$$\Omega := \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}; \ \Omega_n := \begin{pmatrix} \mathbf{0}_n & -I_n \\ I_n & \mathbf{0}_n \end{pmatrix}; \text{ hence } \Omega_1 = \Omega, \text{ while, for } n \ge 2, \text{ we have } \Omega_n \neq \Omega^{\oplus n};$$
$$W = I = I \oplus \mathbf{i} I \quad \text{for every } n \neq 0 \text{ such that } n + q \ge 1 \quad (W = \mathbf{i} \text{s unitary and diagonal});$$

$$\begin{split} W_{(p,q)} &:= I_p \oplus \mathbf{i} I_q, \ \text{ for every } p, q \ge 0 \text{ such that } p+q \ge 1 \ (W_{(p,q)} \text{ is unitary and diagonal}); \\ E_{\varphi} &:= \begin{pmatrix} \cos(\varphi) & -\sin(\varphi) \\ \sin(\varphi) & \cos(\varphi) \end{pmatrix} = \cos(\varphi) I_2 + \sin(\varphi) \Omega, \text{ with } \varphi \in \mathbb{R}, \ \text{ so } \Omega = E_{\pi/2} \text{ and } \\ E_{\varphi}^{\oplus h} &= \cos(\varphi) I_{2h} + \sin(\varphi) \Omega^{\oplus h} \text{ for every } h \ge 1; \end{split}$$

 $\begin{array}{ll} \text{moreover, for every } p,q \geq 0 \text{ with } p+q \geq 1, \quad E_{\varphi}^{(p,q)} := E_{\varphi}^{\oplus p} \oplus (-E_{\varphi})^{\oplus q} \text{ (so } E_{\varphi}^{(n,0)} = E_{\varphi}^{\oplus n}) \\ \text{and } J^{(p,q)} := I_p \oplus (-I_q) = E_0^{(p,q)} \quad \text{ (so } J^{(p,0)} = I_p \text{ and } J^{(0,q)} = -I_q). \end{array}$

b) As usual, $O_n := \{X \in gl_n(\mathbb{R}) : XX^T = I_n\}$ is the real orthogonal group;

 $U_n := \{ X \in \mathfrak{gl}_n(\mathbb{C}) : XX^* = I_n \}$ is the (complex) unitary group;

 $SO_n := \{X \in O_n : \det(X) = 1\}, SU_n := \{X \in U_n : \det(X) = 1\}$ are their special subgroups; while $U_n(\mathbb{H}) := \{X \in \mathfrak{gl}_n(\mathbb{H}) : XX^* = I_n\}$ is the quaternionic unitary group. Note that the identification (recalled in (a)) of \mathbb{C} as a subalgebra of \mathbb{H} , allows to identify U_n with a subgroup of $U_n(\mathbb{H})$. In this paper this identification is always implied and not explicitly indicated. Furthermore, for every $p, q \ge 0$, with $p + q \ge 1$, $\begin{array}{l} O_{(p,q)}(\mathbb{C}) \coloneqq \{X \in \mathfrak{gl}_{(p+q)}(\mathbb{C}) : XJ^{(p,q)}X^T = J^{(p,q)}\},\\ SO_{(p,q)}(\mathbb{C}) \coloneqq \{X \in O_{(p,q)}(\mathbb{C}) : det(X) = 1\},\\ O_{(p,q)} \coloneqq O_{(p,q)}(\mathbb{C}) \cap \mathfrak{gl}_{(p+q)}(\mathbb{R}), \quad SO_{(p,q)} \coloneqq SO_{(p,q)}(\mathbb{C}) \cap \mathfrak{gl}_{(p+q)}(\mathbb{R}),\\ \text{are the complex and real indefinite orthogonal groups, with their special subgroups;}\\ U_{(p,q)} \coloneqq \{X \in \mathfrak{gl}_{(p+q)}(\mathbb{C}) : XJ^{(p,q)}X^* = J^{(p,q)}\} \text{ is the indefinite unitary group. Finally}\\ Sp_{2n}(\mathbb{C}) \coloneqq \{X \in \mathfrak{gl}_{2n}(\mathbb{C}) : X\Omega_nX^T = \Omega_n\} \quad \text{and} \quad Sp_{2n}(\mathbb{R}) \coloneqq Sp_{2n}(\mathbb{C}) \cap \mathfrak{gl}_{2n}(\mathbb{R}) \text{ are,}\\ \text{respectively, the complex and real symplectic groups; while } Sp_n \coloneqq Sp_{2n}(\mathbb{C}) \cap U_{2n} \text{ is the}\\ \text{compact symplectic group. Of course, all the previous are real Lie groups of matrices.}\\ \text{We recall that a well-known Cartan theorem states that a subgroup H of a given Lie group}\\ G \text{ is closed if and only if it is an embedded real submanifold of G. Of course, if the Lie group G is compact, then every closed subgroup of G is compact too.}\\ \text{If } G \text{ is any Lie group and } P \in G, \text{ then } T_P(G) \text{ denotes the tangent space of } G \text{ at } P. \end{array}$

c) The Lie algebras related to the previous Lie groups are denoted by: $\mathfrak{so}_n = \{A \in \mathfrak{gl}_n(\mathbb{R}) : A = -A^T\}$, the Lie algebra of both O_n and SO_n ; $\mathfrak{u}_n = \{A \in \mathfrak{gl}_n(\mathbb{C}) : A = -A^*\}$, the Lie algebra of U_n ; $\mathfrak{su}_n = \{A \in \mathfrak{gl}_n(\mathbb{C}) : A = -A^*, \ tr(A) = 0\}$, the Lie algebra of SU_n ; $\mathfrak{u}_n(\mathbb{H}) = \{A \in \mathfrak{gl}_n(\mathbb{H}) : A = -A^*\}$, the Lie algebra of $U_n(\mathbb{H})$.

The Lie algebras of the remaining Lie groups will be denoted by the corresponding small gothic letters: for instance, $\mathfrak{so}_{(p,q)}(\mathbb{C})$ and \mathfrak{sp}_n are the Lie algebras of $SO_{(p,q)}(\mathbb{C})$ and of Sp_n , respectively.

d) If $B \in GL_n(\mathbb{C})$, we denote by Ad_B the map from $\mathfrak{gl}_n(\mathbb{C})$ onto itself, defined by

 $Ad_B: A \mapsto Ad_B(A) := BAB^{-1}$. Note that Ad_B commutes with the exponential map. In this paper, we will still denote by Ad_B the restriction of this map to any subset of $\mathfrak{gl}_n(\mathbb{C})$. We indicate with τ , μ and η the maps from $\mathfrak{gl}_n(\mathbb{C})$ onto itself, given by: $\tau: A \mapsto A^T$, $\mu: A \mapsto \overline{A}, \qquad \eta: A \mapsto A^*$. The maps $\mu, -\tau, -\eta$ and Ad_B (with $B \in GL_n(\mathbb{C})$) are automorphisms of the real Lie algebra $\mathfrak{gl}_n(\mathbb{C})$; furthermore, the automorphisms $\mu, -\tau, -\eta$ are involutive, mutually commuting and the composition of any two of them is the third automorphism; hence the group generated by $\mu, -\tau, -\eta$ is isomorphic to $\mathbb{Z}_2 \oplus \mathbb{Z}_2$.

e) We denote by ϕ the Frobenius (or Hilbert-Schmidt) positive definite real scalar product on $\mathfrak{gl}_n(\mathbb{C})$, defined by $\phi(A, B) := \operatorname{Re}(tr(AB^*))$, and we denote by $||A||_{\phi} := \sqrt{\phi(A, A)} = \sqrt{tr(AA^*)}$, the related Frobenius norm. Note that, if $A \in \mathfrak{u}_n$, then $||A||_{\phi}^2 = -tr(A^2)$. Since the eigenvalues of the skew-hermitian matrix A are purely imaginary, we also get $||A||_{\phi} = \sqrt{-tr(A^2)} = \sqrt{\sum_{j=1}^n |\lambda_j|^2}$, where $\lambda_1, \cdots, \lambda_n$ are the n eigenvalues of A.

1.2. **Remarks.** a) The map $\rho : \mathbb{C} \to \mathfrak{gl}_2(\mathbb{R})$, given by $\rho(z) := Re(z)I_2 + Im(z)\Omega = \begin{pmatrix} Re(z) & -Im(z) \\ Im(z) & Re(z) \end{pmatrix}$, is a monomorphism of \mathbb{R} -algebras, such that $\rho(\overline{z}) = \rho(z)^T$ and such that $\rho(z) \in GL_2(\mathbb{R})$ as soon as $z \neq 0$. More generally, for any $h \geq 1$, we denote again

by ρ the mapping: $\mathfrak{gl}_h(\mathbb{C}) \to \mathfrak{gl}_{2h}(\mathbb{R})$, which maps the $h \times h$ complex matrix $Z = (z_{ij})$ to the block matrix $\rho(Z) = (\rho(z_{ij})) \in \mathfrak{gl}_{2h}(\mathbb{R})$, having h^2 blocks of order 2×2 . We say that ρ is the *decomplexification* map. It is not hard to prove that, if $\lambda_1, \dots, \lambda_h$ are the h eigenvalues of any matrix $Z \in \mathfrak{gl}_h(\mathbb{C})$, then $\lambda_1, \overline{\lambda}_1, \dots, \lambda_h, \overline{\lambda}_h$ are the 2h eigenvalues of $\rho(Z) \in \mathfrak{gl}_{2h}(\mathbb{R})$ and that ρ is a monomorphism of \mathbb{R} -algebras, whose restriction to $GL_h(\mathbb{C})$ is a monomorphism of Lie groups, having as image $\rho(\mathfrak{gl}_h(\mathbb{C})) \cap GL_{2h}(\mathbb{R})$. We have also $\rho(Z^*) = \rho(Z)^T$; so, the restriction of ρ to U_h is a monomorphism of Lie groups and $\rho(U_h) = \rho(\mathfrak{gl}_h(\mathbb{C})) \cap SO_{2h}$. From now on, to simplify the notations, the map ρ will be omitted, hence we will regard the real Lie algebra $\mathfrak{gl}_h(\mathbb{C})$ as Lie subalgebra of $\mathfrak{gl}_{2h}(\mathbb{R})$, the Lie groups $GL_h(\mathbb{C})$ and U_h as closed subgroups of $GL_{2h}(\mathbb{R})$ and SO_{2h} , respectively; in particular we will write $U_h = \mathfrak{gl}_h(\mathbb{C}) \cap SO_{2h}$.

b) We denote by $\Psi : \mathbb{H} \to \mathfrak{gl}_2(\mathbb{C})$ the map: $z + w\mathbf{j} \mapsto \Psi(z + w\mathbf{j}) := \begin{pmatrix} z & -w \\ \overline{w} & \overline{z} \end{pmatrix}$, where $z, w \in \mathbb{C}$; this map is a monomorphism of \mathbb{R} -algebras. Note that, for every $q \in \mathbb{H}$, we have $\Psi(\overline{q}) = (\Psi(q))^*$. It is possible to extend this map to a monomorphism of \mathbb{R} -algebras (still denoted by the same symbol) $\Psi : \mathfrak{gl}_h(\mathbb{H}) \to \mathfrak{gl}_{2h}(\mathbb{C})$ $(h \geq 1)$, which maps the $h \times h$ quaternion matrix $Q = (q_{ij})$ to the block matrix $\Psi(Q) = (\Psi(q_{ij})) \in \mathfrak{gl}_{2h}(\mathbb{C})$, having h^2 blocks of order 2×2 . It can be easily checked that we have $\Psi(A^*) = (\Psi(A))^*$ and $(\Omega^{\oplus h})\Psi(A^*)(\Omega^{\oplus h})^T = (\Psi(A))^T$, for every $A \in \mathfrak{gl}_h(\mathbb{H})$. Moreover, Ψ maps $GL_h(\mathbb{H})$ into $GL_{2h}(\mathbb{C})$ and $U_h(\mathbb{H})$ into U_{2h} ; both restrictions $GL_h(\mathbb{H}) \to GL_{2h}(\mathbb{C})$ and $U_h(\mathbb{H}) \to U_{2h}$ are monomorphisms of Lie groups. Hence, up to the isomorphim Ψ , we will consider $\mathfrak{gl}_h(\mathbb{H})$ as real Lie subalgebra of $\mathfrak{gl}_{2h}(\mathbb{C})$, $GL_h(\mathbb{H})$ as closed subgroup of $GL_{2h}(\mathbb{C})$ and $U_{h}(\mathbb{H})$.

Note also that the monomorphism Ψ maps the closed subgroup U_h of $U_h(\mathbb{H})$ onto a closed subgroup of $\Psi(U_h(\mathbb{H})) \subset U_{2h}$, so that the elements of $\Psi(U_h)$ are the $2h \times 2h$ complex unitary matrices, having h^2 blocks Z_{ij} of the form: $Z_{ij} = \begin{pmatrix} z_{ij} & 0 \\ 0 & \overline{z}_{ij} \end{pmatrix}$, with $z_{ij} \in \mathbb{C}$.

As in the case of the map ρ , from now on, to simplify the notations, we will omit to indicate the map Ψ and so, for instance, we will simply write $U_h(\mathbb{H}) = U_{2h} \cap \mathfrak{gl}_h(\mathbb{H})$ and $\mathfrak{u}_h(\mathbb{H}) = \mathfrak{u}_{2h} \cap \mathfrak{gl}_h(\mathbb{H})$. From this last equality, we easily get that every matrix of $\mathfrak{u}_h(\mathbb{H})$ has trace 0. Therefore, since $U_h(\mathbb{H}) = \exp(\mathfrak{u}_h(\mathbb{H}))$, the group $U_h(\mathbb{H})$ is contained in SU_{2h} , hence $U_h(\mathbb{H}) = SU_{2h} \cap \mathfrak{gl}_h(\mathbb{H})$ and $\mathfrak{u}_h(\mathbb{H}) = \mathfrak{su}_{2h} \cap \mathfrak{gl}_h(\mathbb{H})$.

c) Fixed $n \geq 1$, for any $i, j = 1, \dots, 2n$, let W(i, j) be the square matrix of order 2n, having 1 at the entry (i, j) and 0 elsewhere, and let B be the $2n \times 2n$ real matrix defined by $B := \sum_{j=1}^{n} \left(W(j, 2j - 1) + W(n + j, 2j) \right)$. Since $W(i, j)W(h, k) = \delta_{jh}W(i, k)$, it is easy to check that B is an orthogonal matrix such that $B^{T}\Omega_{n}B = \Omega^{\oplus n}$; from this, one can get that X belongs to $U_{n}(\mathbb{H})$ if and only if $B X B^{T}$ belongs to Sp_{n} , i.e. $Ad_{B}\left(U_{n}(\mathbb{H})\right) = Sp_{n}$. It is also easy to check that Ad_{B} maps the closed subgroup U_{n} of $U_{n}(\mathbb{H})$ onto the closed subgroup of Sp_n of matrices of the form $A \oplus \overline{A}$ with $A \in U_n$. Hence U_n can be regarded as the closed subgroup of Sp_n of matrices of this form, and so, the simply connected compact symmetric homogeneous space $\frac{Sp_n}{U_n}$, obtained in this way, is diffeomorphic to $\frac{U_n(\mathbb{H})}{U_n}$. d) Let Φ be the automorphism of \mathbb{R} -algebra \mathbb{H} , defined by $\Phi(t+x\mathbf{i}+y\mathbf{j}+z\mathbf{k}) = t+y\mathbf{i}+x\mathbf{j}-z\mathbf{k}$, for every $t, x, y, z \in \mathbb{R}$. We have: $\Phi(\overline{q}) = \overline{\Phi(q)}$, for every $q \in \mathbb{H}$. Acting on each single entry of the matrix, this map induces an automorphism (still denoted by Φ) of the \mathbb{R} -algebra $\mathfrak{gl}_n(\mathbb{H})$. Since $\Phi(A^*) = \Phi(A)^*$, for every $A \in \mathfrak{gl}_n(\mathbb{H})$, the restriction of Φ to $U_n(\mathbb{H})$ is an automorphism of Lie group $U_n(\mathbb{H})$, which maps U_n onto a closed subgroup of $U_n(\mathbb{H})$. Hence the homogeneous space $\frac{U_n(\mathbb{H})}{\Phi(U_n)}$ is diffeomorphic to $\frac{U_n(\mathbb{H})}{U_n}$ and, by (c), also to $\frac{Sp_n}{U_n}$. Remembering (b), up to the map Ψ , the subgroup $\Phi(U_n)$ of $U_n(\mathbb{H})$ can be identified with the subgroup of U_{2n} , whose elements are the $2n \times 2n$ special orthogonal matrices, having n^2 real blocks U_{ij} of the form: $U_{ij} = \begin{pmatrix} x_{ij} & -y_{ij} \\ y_{ij} & x_{ij} \end{pmatrix}$. Note that, remembering (a), the restriction of Φ to U_n agrees with the restriction to U_n of the decomplexification map ρ .

2. Commuting matrices and SVD-systems

2.1. Notation. Let
$$S \subseteq \mathfrak{gl}_n(\mathbb{C})$$
 and $M \in \mathfrak{gl}_n(\mathbb{C})$. We denote
 $\langle M \rangle_S := \{ X \in S : XM = MX \}$ and $\preccurlyeq M \succcurlyeq_S := \{ X \in S : XM = M\overline{X} \}.$

2.2. **Remarks.** a) Let $A \in U_n$, $M \in \mathfrak{gl}_n(\mathbb{C})$ and $S \subseteq \mathfrak{gl}_n(\mathbb{C})$. It is easy to check that $Ad_A(\preccurlyeq M \succcurlyeq_S) = \preccurlyeq AMA^T \succcurlyeq_{Ad_A(S)}$.

In particular, if $A \in O_n$, we get $Ad_A (\preccurlyeq M \succcurlyeq_S) = \preccurlyeq Ad_A(M) \succcurlyeq_{Ad_A(S)}$.

b) Let G be a closed subgroup of $GL_n(\mathbb{C})$, having $\mathfrak{g} \subseteq \mathfrak{gl}_n(\mathbb{C})$ as Lie algebra and let M be any matrix in $\mathfrak{gl}_n(\mathbb{C})$. Then $\langle M \rangle_G$ and $\preccurlyeq M \succcurlyeq_G$ are closed subgroups of G, whose Lie algebras are $\langle M \rangle_{\mathfrak{g}}$ and $\preccurlyeq M \succcurlyeq_{\mathfrak{g}}$, respectively.

2.3. Lemma. a) Let $\varphi \in \mathbb{R}$, $\varphi \neq k\pi$, $k \in \mathbb{Z}$. Any matrix of $\mathfrak{gl}_{2n}(\mathbb{C})$ commutes with $E_{\varphi}^{\oplus n}$ if and only if it commutes with $\Omega^{\oplus n}$, i.e. $\langle E_{\varphi}^{\oplus n} \rangle_{\mathfrak{gl}_{2n}(\mathbb{C})} = \langle \Omega^{\oplus n} \rangle_{\mathfrak{gl}_{2n}(\mathbb{C})}$.

b) Let S be any subset of $\mathfrak{gl}_{2n}(\mathbb{C})$, then $\langle \Omega^{\oplus n} \rangle_{\mathcal{S}}$ consists of the matrices of S, having n^2 blocks of the form: $X_{ij} = \begin{pmatrix} a_{ij} & -b_{ij} \\ b_{ij} & a_{ij} \end{pmatrix}$, with $a_{ij}, b_{ij} \in \mathbb{C}$.

Proof. Part (a) is trivial and follows from $E_{\varphi}^{\oplus n} = \cos(\varphi)I_{2n} + \sin(\varphi)\Omega^{\oplus n}$ and $\sin(\varphi) \neq 0$. For part (b), we can write an arbitrary matrix of S in n^2 blocks, X_{ij} , each of them of order 2. We easily get that such a matrix commutes with $\Omega^{\oplus n}$ if and only if each block commutes with Ω , i. e. if and only if each X_{ij} is of the form stated in (b).

2.4. Lemma. Let $D := \bigoplus_{j=1}^{s} D_{j} \in \mathfrak{gl}_{n}(\mathbb{C})$ be a block diagonal matrix, with $D_{j} \in \mathfrak{gl}_{n_{j}}(\mathbb{C})$ simisimple matrices. Denote by S_{j} and by $-S_{j}$ $(j = 1, \dots, s)$, respectively, the set of the eigenvalues of D_{j} and the sets of their opposites.

a) Assume that $S_i \cap (-S_j) = \emptyset$ as soon as $i \neq j$. Then a matrix $A \in \mathfrak{gl}_n(\mathbb{C})$ anticommutes with D if and only if $A = \bigoplus_{j=1}^s A_j$, where each A_j belongs to $\mathfrak{gl}_{n_j}(\mathbb{C})$ and anticommutes with D_j .

b) Assume that $S_i \cap S_j = \emptyset$ as soon as $i \neq j$. Then a matrix $A \in \mathfrak{gl}_n(\mathbb{C})$ commutes with D if and only if $A = \bigoplus_{j=1}^s A_j$, where each A_j belongs to $\mathfrak{gl}_{n_j}(\mathbb{C})$ and commutes with D_j .

Proof. We proof only part (a), being part (b) similar and easier.

We write the matrix A in blocks $A = (A_{ij})$, consistent with the block structure of D, so the condition AD = -DA is equivalent to $A_{ij}D_j = -D_iA_{ij}$, for $i, j = 1, \dots, n$. Assume $i \neq j$ and let \mathcal{B} be a basis of \mathbb{C}^{n_j} , consisting of eigenvectors of D_j . If $v \in \mathcal{B}$, with associated eigenvalue λ , then $D_i(A_{ij}v) = -A_{ij}D_jv = -\lambda(A_{ij}v)$. This implies that $A_{ij}v = 0$, otherwise (against the assumptions made) $-\lambda$ would be eigenvalue of D_i . This holds for every $v \in \mathcal{B}$ and so, $A_{ij} = \mathbf{0}$, as soon as $i \neq j$. Therefore $A = \bigoplus_{j=1}^{s} A_{jj}$, where each A_{ij} anticommutes with D_j . The converse is trivial.

2.5. **Remark-Definition.** If $M \in \mathfrak{gl}_n(\mathbb{C})$ and G is a closed subgroup of $GL_n(\mathbb{C})$, we call Ad(G)-orbit of M, denoted by Ad(G)(M), the set $\{Ad_B(M) = BMB^{-1} : B \in G\}$.

It is well-known that each orbit Ad(G)(M) is an immersed submanifold of $\mathfrak{gl}_n(\mathbb{C})$, diffeomorphic to the homogeneous space $\frac{G}{\langle M \rangle_G}$, being $\langle M \rangle_G$ the isotropy subgroup of M with respect to the action of G; furthermore, if G is compact, then Ad(G)(M) is a compact (embedded) submanifold of $\mathfrak{gl}_n(\mathbb{C})$ (see, for instance, [EoM-Orbit]).

2.6. **Remarks-Definitions.** A non-empty family of matrices $A_1, \dots, A_p \in \mathfrak{gl}_n(\mathbb{C}) \setminus \{0\}$ is said to be an *SVD-system*, if $A_h^*A_j = A_hA_j^* = 0$, for every $h \neq j$, and $A_jA_j^*A_j = A_j$, for every $j = 1, \dots, p$. Note that, if A_1, \dots, A_p is an SVD-system, then

a) the matrices A_1,\cdots,A_p are linearly independent over $\mathbb{C};$

b) $c_1A_1, c_2A_2, \dots, c_pA_p$ is still an SVD-system, if $c_j \in \mathbb{C}$ and $|c_j| = 1$, for $j = 1, \dots, p$. We call SVD-decomposition of $M \in \mathfrak{gl}_n(\mathbb{C}) \setminus \{0\}$, any decomposition $M = \sum_{j=1}^p \sigma_j A_j$, where $A_1, \dots, A_p \in \mathfrak{gl}_n(\mathbb{C}) \setminus \{0\}$ form an SVD-system and $\sigma_1 > \sigma_2 > \dots > \sigma_p > 0$ are positive real numbers. Any matrix $M \in \mathfrak{gl}_n(\mathbb{C}) \setminus \{0\}$ has an SVD-decomposition $M = \sum_{j=1}^p \sigma_j A_j$ and this decomposition is unique, i.e. if $M = \sum_{h=1}^q \tau_h B_h$ is another SVD-decomposition, then $p = q, \sigma_j = \tau_j$ and $A_j = B_j$ for every $j = 1, \dots, p$. The positive numbers $\sigma_1, \sigma_2, \dots, \sigma_p$ are the distinct square roots of the non-zero eigenvalues of M^*M ; they are known as the non-zero singular values of M. We say that the matrices $A_1, \dots A_p$ are the SVD-components of M. For more information, see for instance [Horn-Johnson 2013, Thm. 2.6.3], [Ottaviani-Paoletti 2015, Thm.3.4] and also [Dolcetti-Pertici 2017, §4].

2.7. **Lemma.** Let A_1, \dots, A_p be an SVD-system of skew-hermitian matrices of order n, let $\theta_1 > \theta_2 > \dots > \theta_p$ be real numbers and denote $M := \sum_{i=1}^p \theta_j A_j$. Then

a) the eigenvalues of A_j are: **i** with multiplicity $\mu_j \ge 0$, $-\mathbf{i}$ with multiplicity $\nu_j \ge 0$ (where $\mu_j + \nu_j \ge 1$) and 0 with multiplicity $n - (\mu_j + \nu_j) \ge 0$, for every $j = 1, \dots, p$; b) the distinct eigenvalues of M are $\mathbf{i}\theta_j$ with multiplicity $\mu_j \ge 0$, $-\mathbf{i}\theta_j$ with multiplicity $\nu_j \ge 0$ (for $j = 1, \dots, p$ and $\sum_{j=1}^{p} (\mu_j + \nu_j) \ge p$), and 0 with multiplicity $n - \sum_{j=1}^{p} (\mu_j + \nu_j) \ge 0$.

Proof. Since A_1, \dots, A_p is an SVD-system of skew-hermitian matrices, each matrix A_j satisfies the matrix equation $X^3 + X = 0$. This allows to obtain (a).

We have $A_h A_j = -A_h A_j^* = 0$, for every $h \neq j$; these conditions imply that, if v is an eigenvector of A_j associated with the eigenvalue **i** or $-\mathbf{i}$, then $A_h v = 0$, for every $j \neq h$. Moreover the same conditions give, in particular, that the matrices A_h and A_j commute, hence A_1, \dots, A_p are simultaneously diagonalizable (together with M) by means of a unitary matrix (see for instance [Horn-Johnson 2013, Thm. 2.5.5 p. 135]). Using a common (orthonormal) basis of eigenvectors, we easily obtain (b).

2.8. Lemma. Let A_1, A_2, \dots, A_p be an SVD-system of skew-hermitian matrices of order n and let $\alpha_1, \alpha_2, \dots, \alpha_p$ be complex numbers. Then

$$\exp\left(\sum_{j=1}^{p} \alpha_j A_j\right) = I_n + \sum_{j=1}^{p} \left[\sin(\alpha_j)A_j + (1 - \cos(\alpha_j))A_j^2\right]$$

 $\begin{array}{l} Proof. \ \text{Since} \ A_1, A_2, \cdots, A_p \ \text{are skew-hermitian, as in the proof of Lemma 2.7, the properties of being an SVD-system give:} \ A_h A_j = 0, \ \text{for} \ h \neq j \ (\text{so} \ A_h \ \text{and} \ A_j \ \text{commute}), \ \text{and} \ A_j^3 = -A_j, \ \text{for every} \ j. \ \text{Hence} \ (\alpha_j A_j)^{2k-1} = (-1)^{k-1} \alpha_j^{2k-1} A_j \ \text{and} \ (\alpha_j A_j)^{2k} = (-1)^{k-1} \alpha_j^{2k} A_j^2, \ \text{for every} \ j = 1, \cdots, p \ \text{and} \ \text{for every} \ k \geq 1. \ \text{Therefore:} \ \exp(\sum_{j=1}^p \alpha_j A_j) = \prod_{j=1}^p \exp(\alpha_j A_j) = \prod_{j=1}^p \exp(\alpha_j A_j) = \prod_{j=1}^p \left[I_n + \sin(\alpha_j) A_j + (1 - \cos(\alpha_j)) A_j^2\right] = I_n + \sum_{j=1}^p \left[\sin(\alpha_j) A_j + (1 - \cos(\alpha_j)) A_j^2\right]. \ \Box$

2.9. **Remark.** Lemma 2.8 gives one of the possible generalizations of the classical Rodrigues' formula (see [Gallier-Xu 2002, Thm. 2.2] and [Dolcetti-Pertici 2018b, Ex. 4.11]). Note also that, from this Lemma, we obtain $\exp(\alpha\Omega) = E_{\alpha}$, for every $\alpha \in \mathbb{R}$.

3. SVD-closed real Lie subalgebras of $\mathfrak{gl}_n(\mathbb{C})$

3.1. **Remark-Definition.** We say that a real Lie subalgebra \mathfrak{g} of $\mathfrak{gl}_n(\mathbb{C})$ is *SVD-closed* if all SVD-components of every matrix of $\mathfrak{g} \setminus \{0\}$ belong to \mathfrak{g} .

Note that any intersection of SVD-closed real Lie subalgebras of $\mathfrak{gl}_n(\mathbb{C})$ is an SVD-closed real Lie subalgebra of $\mathfrak{gl}_n(\mathbb{C})$.

3.2. Notation. We denote by \mathfrak{A}_n the group, whose elements are the automorphisms f of the real Lie algebra $\mathfrak{gl}_n(\mathbb{C})$, such that

i) $f \circ \eta = \eta \circ f$ (i.e. $f(A^*) = f(A)^*$, for every $A \in \mathfrak{gl}_n(\mathbb{C})$); ii) f(ABA) = f(A)f(B)f(A), for every $A, B \in \mathfrak{gl}_n(\mathbb{C})$ (i.e. f preserves the so-called Jordan triple product).

3.3. Lemma. The elements of \mathfrak{A}_n are precisely the following maps:

(1) $X \mapsto Ad_V(X) = VXV^*$, (2) $X \mapsto (Ad_V \circ \mu)(X) = V\overline{X}V^*$, (3) $X \mapsto (Ad_V \circ (-\tau))(X) = -VX^TV^*$, (4) $X \mapsto (Ad_V \circ (-\eta))(X) = -VX^*V^*$, for every $V \in U_n$.

Proof. It is easy to check that the previous maps are elements of \mathfrak{A}_n .

For the converse, consider the decomposition $\mathfrak{gl}_n(\mathbb{C}) = \mathcal{H}_n \oplus \mathfrak{u}_n$, where \mathcal{H}_n is the real vector subspace of $\mathfrak{gl}_n(\mathbb{C})$ of hermitian matrices, so that every matrix $Z \in \mathfrak{gl}_n(\mathbb{C})$ can be uniquely written as $Z = \frac{Z+Z^*}{2} + \frac{Z-Z^*}{2}$, with $\frac{Z+Z^*}{2} \in \mathcal{H}_n$ and $\frac{Z-Z^*}{2} \in \mathfrak{u}_n$; let $f \in \mathfrak{A}_n$ and denote by f_1 and by f_2 the restrictions of f to \mathcal{H}_n and to \mathfrak{u}_n , respectively. Since $f \circ \eta = \eta \circ f$, we have $f_1(\mathcal{H}_n) = \mathcal{H}_n$ and $f_2(\mathfrak{u}_n) = \mathfrak{u}_n$. By [An-Hou 2006, Thm. 2.1], there exists a unitary matrix $V \in U_n$ such that we have

either
$$f_1 = Ad_V$$
 or $f_1 = -Ad_V$ or $f_1 = Ad_V \circ \mu$ or $f_1 = -Ad_V \circ \mu$.
In particular, this implies $f(I_r) = \pm I_r$.

Now we denote $\mathcal{M} := \mathbf{i}I_n$ and $\mathcal{N} := I_n - \mathcal{M} = (1 - \mathbf{i})I_n$, so that $\mathcal{N}Y\mathcal{N} = -2\mathbf{i}Y$, for every $Y \in \mathfrak{gl}_n(\mathbb{C})$. Since f is an automorphism of the Lie algebra $\mathfrak{gl}_n(\mathbb{C})$ and \mathcal{M} belongs to its center \mathcal{Z} , then also $f(\mathcal{M})$ belongs to \mathcal{Z} , i.e. $f(\mathcal{M}) = \lambda I_n$ for some $\lambda \in \mathbb{C}$. Since f preserves the Jordan triple product, we get: $-f(I_n) = f(\mathcal{M}I_n\mathcal{M}) = \lambda^2 f(I_n)$. Hence $\lambda = \pm \mathbf{i}$, so that $f(\mathcal{N}) = f(I_n) - f(\mathcal{M}) = (\varepsilon_1 + \varepsilon_2 \mathbf{i})I_n$, where $\varepsilon_1, \varepsilon_2 = \pm 1$; from this we get $f(\mathcal{N})^2 = 2\varepsilon \mathbf{i}I_n$, where $\varepsilon = \pm 1$. Fixed $Y \in \mathfrak{u}_n$, we have $(\mathbf{i}Y)^* = \mathbf{i}Y$ and, so, $\mathcal{N}Y\mathcal{N} = -2\mathbf{i}Y \in \mathcal{H}_n$. Remembering that f preserves the Jordan triple product, we get $-2f_1(\mathbf{i}Y) = f_1(\mathcal{N}Y\mathcal{N}) = f(\mathcal{N})f_2(Y)f(\mathcal{N}) = 2\varepsilon \mathbf{i}f_2(Y)$ and this gives $f_2(Y) = \varepsilon \mathbf{i}f_1(\mathbf{i}Y)$. This last equality implies that $f(Z) = \frac{1}{2}[f_1(Z+Z^*)+\varepsilon \mathbf{i}f_1(\mathbf{i}Z-\mathbf{i}Z^*)]$, for every $Z \in \mathfrak{gl}_n(\mathbb{C})$. Taking into account the four possible expressions for f_1 (and the fact that $\varepsilon = \pm 1$), easy computations allow to obtain the following eight possible expressions for f:

 $\pm Ad_{_V}, \quad \pm Ad_{_V}\circ\mu, \quad \pm Ad_{_V}\circ\eta, \quad \pm Ad_{_V}\circ\tau.$

But $-Ad_V$, $-Ad_V \circ \mu$, $Ad_V \circ \eta$, $Ad_V \circ \tau$ are not automorphisms of the real Lie algebra $\mathfrak{gl}_n(\mathbb{C})$, while the remaining four are the expressions for f in the statement. \Box

3.4. **Remark.** If $f \in \mathfrak{A}_n$, then either f(XY) = f(X)f(Y) for every $X, Y \in \mathfrak{gl}_n(\mathbb{C})$ (in the cases (1) and (2) of Lemma 3.3) or f(XY) = -f(Y)f(X) for every $X, Y \in \mathfrak{gl}_n(\mathbb{C})$ (in the remaining cases (3) and (4)).

3.5. **Proposition.** For every $f \in \mathfrak{A}_n$, the set $Fix(f) := \{M \in \mathfrak{gl}_n(\mathbb{C}) : f(M) = M\}$ is an SVD-closed real Lie subalgebra of $\mathfrak{gl}_n(\mathbb{C})$.

Proof. Choose an element f of \mathfrak{A}_n ; Fix(f) is a real Lie subalgebra of $\mathfrak{gl}_n(\mathbb{C})$, since f is an automorphism of the real Lie algebra $\mathfrak{gl}_n(\mathbb{C})$. Hence it suffices to prove that Fix(f) is SVD-closed. Let $M = \sum_{i=1}^p \sigma_i A_i$ be a matrix of $Fix(f) \setminus \{0\}$, with its SVD-decomposition; since f is \mathbb{R} -linear, we have $M = f(M) = \sum_{i=1}^p \sigma_i f(A_i)$. By conditions (i), (ii) of Notation 3.2, we have $f(A_i)f(A_i)^*f(A_i) = f(A_iA_i^*A_i) = f(A_i)$, for $i = 1, \cdots, p$. Furthermore, by Remark

10

3.4, $f(A_i)f(A_j)^*$ equals either $f(A_iA_j^*)$ or $-f(A_j^*A_i)$ and, in both cases, $f(A_i)f(A_j)^* = 0$, if $i \neq j$. Similarly, we get $f(A_i)^*f(A_j) = 0$, if $i \neq j$. Hence $\sum_{i=1}^p \sigma_i f(A_i)$ is another SVD-decomposition of M; by uniqueness, we get $f(A_i) = A_i$, so every $A_i \in Fix(f)$.

3.6. Examples. From Proposition 3.5 and from Lemma 3.3, we obtain that, for every $V \in U_n$, the following are SVD-closed real Lie subalgebras of $\mathfrak{gl}_n(\mathbb{C})$: $Fix(Ad_V) = \langle V \rangle_{\mathfrak{gl}_n(\mathbb{C})}; \qquad Fix(Ad_V \circ \mu) = \preccurlyeq V \succcurlyeq_{\mathfrak{gl}_n(\mathbb{C})}; \qquad Fix(Ad_V \circ (-\tau));$ $Fix(Ad_V \circ (-\eta))$ (note that, if $V = I_n$, we have $Fix(-\eta) = \mathfrak{u}_n$). Taking into account Remark-Definition 3.1, we obtain that $\langle V \rangle_{\mathfrak{g}} = \langle V \rangle_{\mathfrak{gl}_n(\mathbb{C})} \cap \mathfrak{g}$ and $\preccurlyeq V \succ_{\mathfrak{g}} = \preccurlyeq V \succ_{\mathfrak{gl}_n(\mathbb{C})} \cap \mathfrak{g}$ are SVD-closed real Lie subalgebras of \mathfrak{g} , for every $V \in U_n$, and for every SVD-closed real Lie subalgebra \mathfrak{g} of $\mathfrak{gl}_n(\mathbb{C})$. In particular, for $\mathfrak{g} = \mathfrak{u}_n$, we deduce that $Fix(Ad_V \circ (-\eta)) \cap \mathfrak{u}_n = Fix(Ad_V) \cap \mathfrak{u}_n = \langle V \rangle_{\mathfrak{u}_n}$ and $Fix(Ad_V \circ (-\tau)) \cap \mathfrak{u}_n = Fix(Ad_V \circ \mu) \cap \mathfrak{u}_n = \preccurlyeq V \succeq_{\mathfrak{u}_n}$ are SVD-closed Lie subalgebras of \mathfrak{u}_n , for every $V \in U_n$. Other particular SVD-closed real Lie subalgebras of $\mathfrak{gl}_n(\mathbb{C})$ are the following: $\mathfrak{so}_n(\mathbb{C}) = Fix(-\tau);$ $\mathfrak{so}_n = \mathfrak{u}_n \cap gl_n(\mathbb{R});$ $gl_n(\mathbb{R}) = Fix(\mu);$ $\mathfrak{sp}_{2n}(\mathbb{C})=Fix\big(Ad_{\Omega_n}\circ(-\tau)\big);\qquad \mathfrak{sp}_n=\mathfrak{sp}_{2n}(\mathbb{C})\cap\mathfrak{u}_{2n};\qquad \mathfrak{su}_2=\mathfrak{sp}_2(\mathbb{C})\cap\mathfrak{u}_2;$
$$\begin{split} & \mathfrak{sp}_{2n}(\mathbb{R}) = \mathfrak{sp}_{2n}(\mathbb{C}) \cap gl_n(\mathbb{R}); \\ & \mathfrak{so}_{(p,q)}(\mathbb{C}) = Fix \big(Ad_{_{J(p,q)}} \circ (-\tau) \big); \\ & \mathfrak{so}_{(p,q)}(\mathbb{C}) = so_{(p,q)}(\mathbb{C}) \cap \mathfrak{gl}_{(p+1)}(\mathbb{C}) \\ & \mathfrak{so}_{(p,q)}(\mathbb{C}) = \mathfrak{so}_{(p,q)}(\mathbb{C}) \cap \mathfrak{gl}_{(p+1)}(\mathbb{C}) \\ & \mathfrak{so}_{(p,q)}(\mathbb{C}) = \mathfrak{so}_{(p,q)}(\mathbb{C}) \\ & \mathfrak{so}_{(p,q)}(\mathbb{C}) = \mathfrak{so}_{(p,q)}(\mathbb{C}) \\ & \mathfrak{so}_{(p,q)}(\mathbb{C}) = \mathfrak{so}_{(p,q)}(\mathbb{C}) \\ & \mathfrak{so}_{(p,q)}(\mathbb{C}) \\ &$$
 $\mathfrak{so}_{(p,q)} = \mathfrak{so}_{(p,q)}(\mathbb{C}) \cap \mathfrak{gl}_{(p+q)}(\mathbb{R}).$

3.7. **Remark.** If $n \ge 3$, the following are not SVD-closed real Lie subalgebras of $\mathfrak{gl}_n(\mathbb{C})$: $\mathfrak{su}_n, \qquad \mathfrak{sl}_n(\mathbb{C}) = \{M \in \mathfrak{gl}_n(\mathbb{C}) : tr(M) = 0\}, \qquad \mathfrak{sl}_n(\mathbb{R}) := \mathfrak{sl}_n(\mathbb{C}) \cap gl_n(\mathbb{R}).$ We check it only for \mathfrak{su}_3 ; the generalization to n > 3 and the other cases go similarly.

The SVD-components of the matrix $D = \begin{pmatrix} \mathbf{i} & 0 & 0 \\ 0 & \mathbf{i} & 0 \\ 0 & 0 & -2\mathbf{i} \end{pmatrix}$ are $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -\mathbf{i} \end{pmatrix}$ and $\begin{pmatrix} \mathbf{i} & 0 & 0 \\ 0 & \mathbf{i} & 0 \\ 0 & 0 & 0 \end{pmatrix}$

(being 1 and 2 the singular values of D); since $D \in \mathfrak{su}_3$, while its SVD-components do not belong to \mathfrak{su}_3 , we can conclude that the Lie algebra \mathfrak{su}_3 is not SVD-closed.

3.8. **Proposition.** Let \mathfrak{g} be an SVD-closed real Lie subalgebra of $\mathfrak{gl}_n(\mathbb{C})$.

a) For every $W \in \mathfrak{u}_n$, we have that $\langle W \rangle_{\mathfrak{g}}$ is an SVD-closed Lie subalgebra of \mathfrak{g} .

b) If \mathfrak{g} is the Lie algebra of a closed subgroup of U_n , then every Cartan subalgebra of \mathfrak{g} is SVD-closed.

Proof. Clearly, if YW = WY then $Ye^{sW} = e^{sW}Y$, for every $s \in \mathbb{R}$; conversely, if $Ye^{sW} = e^{sW}Y$ for every $s \in \mathbb{R}$, then, differentiating with respect to s and putting s = 0, we get YW = WY. Hence $\langle W \rangle_{\mathfrak{g}} = \mathfrak{g} \cap [\bigcap_{s \in \mathbb{R}} Fix(Ad_{\exp(sW)})]$. We get (a), since $\exp(sW) \in U_n$, for every $s \in \mathbb{R}$. Part (b) follows from part (a), via [Sepanski 2007, Lemma 5.7 p. 100]. \Box

4. SVD-closed subgroups of U_n

4.1. **Remark-Definition.** We say that any subgroup of $GL_n(\mathbb{C})$ is SVD-closed if it is closed in $GL_n(\mathbb{C})$ and its Lie algebra is an SVD-closed real Lie subalgebra of $\mathfrak{gl}_n(\mathbb{C})$. Note that, by Examples 3.6 and Remarks 2.2 (b), the subgroups of U_n , defined by $\preccurlyeq V \succcurlyeq_{U_n} = \{X \in U_n : XV = V\overline{X}\} = \{X \in U_n : XVX^T = V\}$ and $\langle V \rangle_{U_n} = \{X \in U_n : XV = VX\}$, are SVD-closed, for every matrix $V \in U_n$. By Remark-Definition 3.1, the intersection of SVD-closed subgroups of $GL_n(\mathbb{C})$ is an SVDclosed subgroup of $GL_n(\mathbb{C})$; indeed, it is known that its Lie algebra is the intersection of Lie algebras of all SVD-closed subgroups ([Bourbaki 1975, Cor. 3 p. 307]). In the Sections 7 and 8, we will study the sets of generalized principal logarithms of matrices of the groups $\langle V \rangle_{U_n}$, where $V \in U_n$, and $\preccurlyeq Q \succcurlyeq_{SU_n} = \preccurlyeq Q \succcurlyeq_{U_n} \cap SU_n$, where $Q \in O_n$. Note that we can obtain some classical Lie groups as follows:

$$\begin{split} U_n &= \langle I_n \rangle_{U_n}, \quad SO_n = \preccurlyeq I_n \succcurlyeq_{SU_n}, \quad Sp_n = \preccurlyeq \Omega_n \succcurlyeq_{SU_{2n}}, \\ U_{(p,n-p)} \cap \ U_n &= \langle J^{(p,n-p)} \rangle_{U_n}, \quad SO_{(p,n-p)}(\mathbb{C}) \cap U_n = \preccurlyeq J^{(p,n-p)} \succcurlyeq_{SU_n}, \\ \text{for } p = 0, \cdots, n. \text{ We need some preliminary results.} \end{split}$$

4.2. **Proposition.** Let $V \in U_n$; denote by λ_1 (with multiplicity n_1), \cdots , λ_r (with multiplicity n_r) its distinct eigenvalues, and choose $R \in U_n$ such that $V = Ad_R\left(\bigoplus_{j=1}^r \lambda_j I_{n_j}\right)$. Then $\langle V \rangle_{U_n} = Ad_R\left(\bigoplus_{j=1}^r U_{n_j}\right)$ and it is a (compact) connected SVD-closed subgroup of U_n , whose Lie algebra is $\langle V \rangle_{u_n} = Ad_R\left(\bigoplus_{j=1}^r u_{n_j}\right)$.

Proof. The equality $\langle V \rangle_{U_n} = Ad_R \left(\bigoplus_{j=1}^r U_{n_j} \right)$ easily follows from Lemma 2.4 (b). This implies that $\langle V \rangle_{U_n}$ is compact and connected. As noted in Remark-Definition 4.1, $\langle V \rangle_{U_n}$ is SVD-closed too. Clearly, its Lie algebra is $\langle V \rangle_{\mathfrak{u}_n} = Ad_R \left(\bigoplus_{j=1}^r \mathfrak{u}_{n_j} \right)$.

4.3. Lemma. Let V any matrix of U_n . Then $\preccurlyeq V \succcurlyeq_{SU_n}$ is an SVD-closed subgroup of U_n , whose Lie algebra is $\preccurlyeq V \succcurlyeq_{u_n} = \preccurlyeq V \succcurlyeq_{su_n}$.

Proof. The Lie algebra of $\preccurlyeq V \succcurlyeq_{SU_n}$ is $\preccurlyeq V \succcurlyeq_{\mathfrak{su}_n} \subseteq \preccurlyeq V \succcurlyeq_{\mathfrak{u}_n}$ and this last is SVD-closed, so it suffices to prove the reverse inclusion. If $X \in \preccurlyeq V \succcurlyeq_{\mathfrak{u}_n}$, being $V^*XV = \overline{X}$, then X is similar to its complex conjugate \overline{X} and so, by [Horn-Johnson 2013, Cor. 3.4.1.7 p. 202], X is similar to a real matrix; therefore X has real trace; since any skew-hermitian matrix has trace with zero real part, we conclude that the trace of X is zero, i.e. $X \in \preccurlyeq V \succcurlyeq_{\mathfrak{su}_n}$. In the next results, we will need the matrices $W_{(p,q)}$, $E_{\varphi}^{(p,q)}$ and $J^{(p,q)}$ defined in Notations 1.1(a).

4.4. **Lemma.** If $p = 0, 1, \dots, n$, we have $O_{(p,n-p)}(\mathbb{C}) \cap U_n = Ad_{W_{(p,n-p)}}(O_n)$ and $SO_{(p,n-p)}(\mathbb{C}) \cap U_n = Ad_{W_{(p,n-p)}}(SO_n).$

 $\begin{array}{l} \textit{Proof. Let } W:=W_{(p,n-p)}. \text{ Then the statements follow from Remarks 2.2 (a), since } \\ \preccurlyeq I_n \succcurlyeq_{U_n} = O_n \ , \quad \preccurlyeq I_n \succcurlyeq_{SU_n} = SO_n \ , \quad \preccurlyeq J^{(p,n-p)} \succcurlyeq_{U_n} = O_{(p,n-p)}(\mathbb{C}) \cap U_n, \end{array}$

 $\preccurlyeq J^{(p,n-p)} \succcurlyeq_{SU_n} = SO_{(p,n-p)}(\mathbb{C}) \cap U_n, \quad WI_n W^T = J^{(p,n-p)} \text{ and the groups } U_n, SU_n \text{ are } Ad_W \text{-invariant.}$

4.5. Lemma. For every $\varphi \in \mathbb{R}$ and $p = 0, 1, \dots, n$, we have $\preccurlyeq E_{\varphi}^{(p,n-p)} \succcurlyeq_{U_{2n}} = Ad_{W_{(2p,2n-2p)}} (\preccurlyeq E_{\varphi}^{\oplus n} \succcurlyeq_{U_{2n}})$ and $\preccurlyeq E_{\varphi}^{(p,n-p)} \succcurlyeq_{SU_{2n}} = Ad_{W_{(2p,2n-2p)}} (\preccurlyeq E_{\varphi}^{\oplus n} \succcurlyeq_{SU_{2n}}).$

Proof. Let $W := W_{(2p,2n-2p)}$. The groups U_{2n} and SU_{2n} are Ad_W -invariant and $W E_{\varphi}^{\oplus n} W^T = E_{\varphi}^{(p,n-p)}$; hence, by Remarks 2.2 (a), we get the statements.

4.6. Lemma. Fix $\varphi \in [0, 2\pi)$, with $\varphi \neq \frac{\pi}{2}$ and $\varphi \neq \frac{3}{2}\pi$; consider the matrix $E_{\varphi}^{\oplus n}$. Then a matrix $A \in \mathfrak{gl}_{2n}(\mathbb{C})$ anticommutes with $E_{\varphi}^{\oplus n}$ if and only if $A = \mathbf{0}_{2n}$.

Proof. Assume first
$$n = 1$$
, so $E_{\varphi}^{\oplus n} = E_{\varphi} = \begin{pmatrix} \cos(\varphi) & -\sin(\varphi) \\ \sin(\varphi) & \cos(\varphi) \end{pmatrix}$. If a matrix $A = \begin{pmatrix} \alpha & \beta \\ \gamma & \delta \end{pmatrix} \in \mathfrak{gl}_2(\mathbb{C})$ anticommutes with E_{φ} , then
$$\begin{cases} 2\alpha \cos(\varphi) = (\gamma - \beta)\sin(\varphi) \\ 2\delta \cos(\varphi) = (\gamma - \beta)\sin(\varphi) \\ 2\gamma \cos(\varphi) = -(\alpha + \delta)\sin(\varphi) \\ 2\beta \cos(\varphi) = (\alpha + \delta)\sin(\varphi) \end{cases}$$

Since $\cos(\varphi) \neq 0$, the previous conditions give: $\alpha = \delta$ and $\beta = -\gamma$, i.e. $A = \alpha I_2 + \gamma \Omega$. But this last matrix also commutes with the nonsingular matrix E_{φ} and so, A must be the null matrix.

If $n \geq 2$, we write any matrix of $A \in \mathfrak{gl}_{2n}(\mathbb{C})$ as $A := (A_{ij})$, with n^2 square blocks A_{ij} of order 2. A direct computation shows that, if A anticommutes with $E_{\varphi}^{\oplus n}$, then each block A_{ij} anticommutes with E_{φ} ; hence, the proof follows from the case n = 1.

4.7. **Lemma.** Fix $\varphi \in (0, 2\pi)$ with $\varphi \neq \frac{\pi}{2}$, $\varphi \neq \pi$ and $\varphi \neq \frac{3}{2}\pi$. Then we have $\preccurlyeq E_{\varphi}^{(p,n-p)} \succcurlyeq_{SU_{2n}} = \preccurlyeq E_{\varphi}^{(p,n-p)} \succcurlyeq_{U_{2n}} = Ad_{W_{(2p,2n-2p)}}(U_n)$, for every $p = 0, \dots, n$, in which we put (consistently with Remarks 1.2 (a)) $U_n = \mathfrak{gl}_n(\mathbb{C}) \cap SO_{2n} \subset SU_{2n}$.

 $\begin{array}{l} \textit{Proof.} \ \text{By Lemma 4.5, we have to prove that} \preccurlyeq E_{\varphi}^{\oplus n} \succcurlyeq_{SU_{2n}} = \preccurlyeq E_{\varphi}^{\oplus n} \succcurlyeq_{U_{2n}} = U_n. \ \text{For, a complex matrix } X = X_1 + \mathbf{i}X_2 \ (X_1, X_2 \ \text{real matrices}) \ \text{satisfies the condition} \ X E_{\varphi}^{\oplus n} = E_{\varphi}^{\oplus n} \overline{X} \ \text{if and only if } X_1 E_{\varphi}^{\oplus n} = E_{\varphi}^{\oplus n} X_1 \ \text{ and } \ X_2 E_{\varphi}^{\oplus n} = - E_{\varphi}^{\oplus n} X_2 \ \text{and, by Lemmas 4.6} \ \text{and 2.3, this is equivalent to say that} \ X \in \mathfrak{gl}_n(\mathbb{C}) \subseteq \mathfrak{gl}_{2n}(\mathbb{R}) \ (\text{and, in this case, } \det(X) \ge 0). \ \text{Hence, by Remarks 1.2 (a), we get} \ \preccurlyeq E_{\varphi}^{\oplus n} \succcurlyeq_{SU_{2n}} = \mathfrak{gl}_n(\mathbb{C}) \cap SU_{2n} = \mathfrak{gl}_n(\mathbb{C}) \cap SO_{2n} = U_n \ \text{and similarly,} \ \preccurlyeq E_{\varphi}^{\oplus n} \succcurlyeq_{U_{2n}} = \mathfrak{gl}_n(\mathbb{C}) \cap U_{2n} = \mathfrak{gl}_n(\mathbb{C}) \cap SO_{2n} = U_n. \end{array}$

4.8. Lemma. Remembering Remarks 1.2 (b), we have

 $\preccurlyeq \Omega^{\oplus n} \succcurlyeq_{{}^{SU_{2n}}} = \preccurlyeq \Omega^{\oplus n} \succcurlyeq_{{}^{U_{2n}}} = U_n(\mathbb{H}) \quad and \quad \preccurlyeq \Omega^{\oplus n} \succcurlyeq_{{}^{\mathfrak{su}_{2n}}} = \preccurlyeq \Omega^{\oplus n} \succcurlyeq_{{}^{\mathfrak{u}_{2n}}} = \mathfrak{u}_n(\mathbb{H}).$

Proof. Any matrix $X = Y + \mathbf{i}Z \in \mathfrak{gl}_{2n}(\mathbb{C})$ (with $Y, Z \in \mathfrak{gl}_{2n}(\mathbb{R})$) satisfies the condition $X \Omega^{\oplus n} = \Omega^{\oplus n} \overline{X}$ if and only if $Y \Omega^{\oplus n} = \Omega^{\oplus n} Y$ and $Z \Omega^{\oplus n} = -\Omega^{\oplus n} Z$. A direct computation shows that these conditions on Y and Z are equivalent to say that $Y = (Y_{ij})$

and $Z = (Z_{ij})$ are block matrices, whose blocks Y_{ij}, Z_{ij} are 2×2 real matrices of the form: $Y_{ij} = \begin{pmatrix} a_{ij} & -b_{ij} \\ b_{ij} & a_{ij} \end{pmatrix}$, $Z_{ij} = \begin{pmatrix} c_{ij} & d_{ij} \\ d_{ij} & -c_{ij} \end{pmatrix}$, for $i, j = 1, \cdots, n$. These last conditions are equivalent to say that $X = (X_{ij})$ is a block matrix, with n^2 blocks of the form: $X_{ij} = \begin{pmatrix} z_{ij} & -w_{ij} \\ \overline{w}_{ij} & \overline{z}_{ij} \end{pmatrix}$, and, by Remarks 1.2 (b), this is equivalent to say that $X \in \mathfrak{gl}_n(\mathbb{H})$. Hence $\preccurlyeq \Omega^{\oplus n} \succcurlyeq_{SU_{2n}} = SU_{2n} \cap \mathfrak{gl}_n(\mathbb{H}) = U_n(\mathbb{H}) = U_{2n} \cap \mathfrak{gl}_n(\mathbb{H}) = \preccurlyeq \Omega^{\oplus n} \succcurlyeq_{U_{2n}}$ and, by Remarks 2.2 (b), we also get $\preccurlyeq \Omega^{\oplus n} \succcurlyeq_{su_{2n}} = \preccurlyeq \Omega^{\oplus n} \succcurlyeq_{u_{2n}} = \mathfrak{u}_n(\mathbb{H})$.

4.9. **Remarks.** a) For any $Q \in O_n$, there exists a matrix $A \in O_n$ such that $Q = Ad_A(\mathcal{J}) = A\mathcal{J}A^T$, where \mathcal{J} is a matrix of the form $\mathcal{J} := J^{(p,q)} \oplus \left(\bigoplus_{j=1}^h E_{\varphi_j}^{(\mu_j, \nu_j)}\right) \oplus \Omega^{\oplus k}$,

with $0 < \varphi_1 < \varphi_2 < \cdots < \varphi_h < \frac{\pi}{2}$; $p+q+2\sum_{j=1}^h (\mu_j + \nu_j) + 2k = n$; $p,q,k,\mu_j,\nu_j \ge 0$; $\mu_j + \nu_j \ge 1$ (see for instance [Dolcetti-Pertici 2021, Rem.-Def. 1.8], where we called \mathcal{J} the *real Jordan auxiliary form* of Q). Hence the (possible) eigenvalues of Q and their multiplicities are the following: 1 of multiplicity $p \ge 0$; -1 of multiplicity $q \ge 0$; $\pm \mathbf{i}$ both of multiplicity $k \ge 0$; when h > 0, $e^{\pm \mathbf{i}\varphi_j}$ both of multiplicity $\mu_j \ge 0$ and $e^{\pm \mathbf{i}(\pi - \varphi_j)} = -e^{\mp \mathbf{i}\varphi_j}$ both of multiplicity $\nu_j \ge 0$, for every $j = 1, \cdots, h$. The condition $\mu_j + \nu_j \ge 1$ is equivalent to say that $e^{\pm \mathbf{i}\varphi_j}$ or $e^{\pm \mathbf{i}(\pi - \varphi_j)}$ (and possibly both) are effective eigenvalues of Q.

b) If $Q, A, \mathcal{J} \in O_n$ are as in (a), we have $Ad_A(I_1 \oplus (-I_{(n-1)})) \in \exists Q \succeq_{SU_n}$ if and only if n is odd. Indeed, if n is odd, the real matrix Q has at least one real eigenvalue.

4.10. **Proposition.** Let $Q \in O_n$; denote its eigenvalues (with their multiplicities) and the matrices $A, \mathcal{J} \in O_n$ as in Remarks 4.9 (a). If Z is the $n \times n$ unitary matrix defined by $Z := A\left(W_{(p,q)} \oplus \left[\bigoplus_{j=1}^{h} W_{(2\mu_j, 2\nu_j)}\right] \oplus I_{2k}\right)$, then $\exists Q \succcurlyeq_{U_n} = Ad_Z\left(O_{(p+q)} \oplus \left[\bigoplus_{j=1}^{h} U_{(\mu_j + \nu_j)}\right] \oplus U_k(\mathbb{H})\right)$, $\exists Q \succcurlyeq_{SU_n} = Ad_Z\left(SO_{(p+q)} \oplus \left[\bigoplus_{j=1}^{h} U_{(\mu_j + \nu_j)}\right] \oplus U_k(\mathbb{H})\right)$, and they are (compact) SVD-closed subgroups of U_n , whose common Lie algebra is $\exists Q \succcurlyeq_{su_n} = \exists Q \succcurlyeq_{u_n} = Ad_Z\left(\mathfrak{so}_{(p+q)} \oplus \left[\bigoplus_{j=1}^{h} \mathfrak{u}_{(\mu_j + \nu_j)}\right] \oplus \mathfrak{u}_k(\mathbb{H})\right)$. The group $\exists Q \succcurlyeq_{U_n}$ is connected if Q has no real eigenvalues, otherwise it has two connected components. In any case, $\exists Q \succcurlyeq_{SU_n}$ is the connected component of $\exists Q \succcurlyeq_{U_n}$ containing the identity I_n .

Proof. From Remark-Definition 4.1 and Lemma 4.3, it follows that the groups $\preccurlyeq Q \succcurlyeq_{U_n}$ and $\preccurlyeq Q \succcurlyeq_{SU_n}$ are SVD-closed and their common Lie algebras is $\preccurlyeq Q \succcurlyeq_{u_n} = \preccurlyeq Q \succcurlyeq_{su_n}$. By Remarks 2.2 (a), we have $\preccurlyeq Q \succcurlyeq_{U_n} = Ad_A(\preccurlyeq \mathcal{J} \succcurlyeq_{U_n}), \ \preccurlyeq Q \succcurlyeq_{SU_n} = Ad_A(\preccurlyeq \mathcal{J} \succcurlyeq_{SU_n})$. Now we determine the groups $\preccurlyeq \mathcal{J} \succcurlyeq_{U_n}$ and $\preccurlyeq \mathcal{J} \succcurlyeq_{SU_n}$. A matrix $X = X_1 + \mathbf{i}X_2 \in \mathfrak{gl}_n(\mathbb{C})$ (with $X_1, X_2 \in \mathfrak{gl}_n(\mathbb{R})$) satisfies the condition $X\mathcal{J} = \mathcal{J}\overline{X}$ if and only if $X_1\mathcal{J} = \mathcal{J}X_1$ and $X_2\mathcal{J} = -\mathcal{J}X_2$. By Lemma 2.4 (b), the condition $X_1\mathcal{J} = \mathcal{J}X_1$ implies that
$$\begin{split} X_1 &= Y_0 \oplus \left[\bigoplus_{j=1}^h Y_j \right] \oplus Y_{(h+1)}, \quad \text{where } Y_0 \in \mathfrak{gl}_{(p+q)}(\mathbb{R}), \quad Y_j \in \mathfrak{gl}_{(2\mu_j + 2\nu_j)}(\mathbb{R}) \text{ for every } \\ j &= 1, \cdots, h \quad \text{and} \quad Y_{(h+1)} \in \mathfrak{gl}_{2k}(\mathbb{R}). \text{ By Lemma 2.4 (a), the condition } X_2 \mathcal{J} = -\mathcal{J}X_2 \\ \text{implies that also the matrix } X_2 \text{ must be block-diagonal, with blocks of the same type as the blocks of } X_1. \text{ Therefore, if } X \text{ satisfies the condition } X\mathcal{J} = \mathcal{J}\overline{X}, \text{ then } X \text{ is block-diagonal with similar blocks, this time complex instead of real. Of course, } X \text{ is unitary if and only if each single block is unitary too. Then, setting } U = W_{(p,q)} \oplus \left[\bigoplus_{j=1}^h W_{(2\mu_j, 2\nu_j)} \right] \oplus I_{2k} \text{ and taking into account also Lemmas 4.4, 4.7 and 4.8 , we obtain } \\ \preccurlyeq \mathcal{J} \succcurlyeq_{U_n} = \preccurlyeq J^{(p,q)} \succcurlyeq_{U_{(p+q)}} \oplus \left[\bigoplus_{j=1}^h \preccurlyeq E_{\varphi_j}^{(\mu_j,\nu_j)} \succcurlyeq_{U_{(2\mu_j+2\nu_j)}} \right] \oplus \preccurlyeq \Omega^{\oplus k} \succcurlyeq_{U_{2k}} = \\ \preccurlyeq J^{(p,q)} \succcurlyeq_{U_{(p+q)}} \oplus \left[\bigoplus_{j=1}^h \preccurlyeq E_{\varphi_j}^{(\mu_j,\nu_j)} \succcurlyeq_{SU_{(2\mu_j+2\nu_j)}} \right] \oplus \preccurlyeq \Omega^{\oplus k} \succcurlyeq_{SU_{2k}} = \\ Ad_U \left(O_{(p+q)} \oplus \left[\bigoplus_{j=1}^h U_{(\mu_j+\nu_j)} \right] \oplus U_k(\mathbb{H}) \right); \\ \preccurlyeq \mathcal{J} \succcurlyeq_{SU_n} = \preccurlyeq J^{(p,q)} \succcurlyeq_{SU_{(p+q)}} \oplus \left[\bigoplus_{j=1}^h \preccurlyeq E_{\varphi_j}^{(\mu_j,\nu_j)} \succcurlyeq_{SU_{(2\mu_j+2\nu_j)}} \right] \oplus \preccurlyeq \Omega^{\oplus k} \succcurlyeq_{SU_{2k}} = \\ Ad_U \left(SO_{(p+q)} \oplus \left[\bigoplus_{j=1}^h U_{(\mu_j+\nu_j)} \right] \oplus U_k(\mathbb{H}) \right). \end{split}$$

From these equalities, easily follow the statements that still remain to be proved. \Box

5. GENERALIZED PRINCIPAL g-LOGARITHMS

5.1. **Definition.** Let G be a connected closed subgroup of $GL_n(\mathbb{C})$, whose Lie algebra is $\mathfrak{g} \subseteq \mathfrak{gl}_n(\mathbb{C})$. If $M \in G$, we say that a matrix $L \in \mathfrak{g}$ is a generalized principal \mathfrak{g} -logarithm of M, if $\exp(L) = M$ and $-\pi \leq Im(\lambda) \leq \pi$, for every eigenvalue λ of L.

We denote by \mathfrak{g} -plog(M) the set of all generalized principal \mathfrak{g} -logarithms of any $M \in G$.

5.2. **Remarks.** a) In Introduction, we compared the previous definition with the usual definition of *principal logarithm* of a matrix $M \in GL_n(\mathbb{C})$ without negative eigenvalues, in which case the set $\mathfrak{gl}_n(\mathbb{C})$ -*plog*(M) consists of a unique matrix ([Higham 2008, Thm. 1.31]). b) If G is any connected closed subgroup of $GL_n(\mathbb{C})$, with Lie algebra $\mathfrak{g} \subseteq \mathfrak{gl}_n(\mathbb{C})$, then $\rho(G)$ is a connected closed subgroup of $GL_{2n}(\mathbb{R}) \subset GL_{2n}(\mathbb{C})$, having $\rho(\mathfrak{g}) \subset \mathfrak{gl}_{2n}(\mathbb{R}) \subset \mathfrak{gl}_{2n}(\mathbb{C})$ as Lie algebra, where ρ is the decomplexification map. Remembering the relationship between the eigenvalues of Z and $\rho(Z)$ (see Remarks 1.2 (a)), we easily get that $\rho(\mathfrak{g}-plog(M)) = \rho(\mathfrak{g})-plog(\rho(M))$, for every $M \in G$.

5.3. Lemma. Let G, H be connected closed subgroups of $GL_n(\mathbb{C})$ such that $G = Ad_A(H)$, for some $A \in GL_n(\mathbb{C})$, and let $\mathfrak{g}, \mathfrak{h} \subseteq \mathfrak{gl}_n(\mathbb{C})$ be their Lie algebras, respectively. Then $Ad_A(\mathfrak{h}\text{-}plog(M)) = \mathfrak{g}\text{-}plog(Ad_A(M))$, for every $M \in H$. In particular, if G is any connected closed subgroup of $GL_n(\mathbb{C})$, we have $Ad_A(\mathfrak{g}\text{-}plog(M)) = \mathfrak{g}\text{-}plog(Ad_A(M))$, for every $A, M \in G$.

Proof. Note that $G = Ad_A(H)$ implies that $\mathfrak{g} = Ad_A(\mathfrak{h})$. Hence $B \in \mathfrak{g}$ if and only if $A^{-1}BA \in \mathfrak{h}$. Since B and $A^{-1}BA$ are similar and $\exp(B) = AMA^{-1}$ if and only if $\exp(A^{-1}BA) = M$, we get: $B \in \mathfrak{g}$ -plog $(Ad_A(M))$ if and only if $A^{-1}BA \in \mathfrak{h}$ -plog(M). \Box

5.4. **Remark.** The eigenvalues of any skew-hermitian matrix A are purely imaginary; so, the generalized principal \mathfrak{u}_n -logarithms of any $M \in U_n$ are the skew-hermitian logarithms of M, whose eigenvalues all have modulus in $[0, \pi]$. Note that, since all the eigenvalues of any $M \in U_n$ have modulus 1, the only possible negative eigenvalue of such M is -1.

In this Section, given any unitary matrix M of order n, we will denote its eigenvalues by $e^{\mathbf{i}\theta_1}$ with multiplicity m_1 , $e^{\mathbf{i}\theta_2}$ with multiplicity m_2 , up to $e^{\mathbf{i}\theta_p}$ with multiplicity m_p , where $\pi \geq \theta_1 > \theta_2 > \cdots > \theta_p > -\pi$ and $n = \sum_{j=1}^p m_j$. If -1 is not an eigenvalue of M (i.e. if $\theta_1 < \pi$), then the eigenvalues of the unique generalized principal $\mathfrak{gl}_n(\mathbb{C})$ -logarithm of M are exactly: $\mathbf{i}\theta_1$ with multiplicity m_1 , $\mathbf{i}\theta_2$ with multiplicity m_2 , up to $\mathbf{i}\theta_p$ with multiplicity m_p . Instead, if -1 is an eigenvalue of M (i.e. if $\theta_1 = \pi$), then the eigenvalues of any generalized principal $\mathfrak{gl}_n(\mathbb{C})$ -logarithm Y of M are exactly: $\mathbf{i}\pi$ of multiplicity h, $-\mathbf{i}\pi$ of multiplicity m_1-h (for some $h \in \{0, 1, \cdots, m_1\}$ depending on Y), $\mathbf{i}\theta_2$ with multiplicity m_2 , up to $\mathbf{i}\theta_p$ with multiplicity m_p . Note that, if Y is any generalized principal \mathfrak{u}_n -logarithm of M, in any case we have $||Y||_{\phi}^2 = -tr(Y^2) = \sum_{j=1}^n m_j \theta_j^2 = \sum_{j=1}^n m_j |\log(e^{\mathbf{i}\theta_j})|^2$.

5.5. **Proposition.** Let G be a connected SVD-closed subgroup of U_n , whose Lie algebra is $\mathfrak{g} \subseteq \mathfrak{u}_n$. Then

a) \mathfrak{g} -plog $(M) \neq \emptyset$, for every $M \in G$ and, furthermore, if -1 is not an eigenvalue of M, then \mathfrak{g} -plog(M) consists of a single element;

b) If $Y \in \mathfrak{g}-plog(M)$, then $||Y||_{\phi} \leq ||X||_{\phi}$, for every $X \in \mathfrak{g}$ such that $\exp(X) = M$; moreover the equality holds if and only if $X \in \mathfrak{g}-plog(M)$.

Proof. a) If $M = I_n$, it is clear that \mathfrak{g} -plog $(M) = \{\mathbf{0}_n\}$ and the statement holds true. Fix $M \in G \setminus \{I_n\}$ and denote its eigenvalues as in Remark 5.4. Since G is compact and connected, we can choose a skew-hermitian matrix $X \in \mathfrak{g} \setminus \{\mathbf{0}_n\}$ such that $\exp(X) = M$ (see, for instance, [Bröcker-tomDieck 1985, Ch. IV Thm. 2.2]). Then, the n eigenvalues of $X \text{ are } \mathbf{i}(\theta_1 + 2k_{1,1}\pi), \mathbf{i}(\theta_1 + 2k_{1,2}\pi), \cdots, \mathbf{i}(\theta_1 + 2k_{1,m_1}\pi); \mathbf{i}(\theta_2 + 2k_{2,1}\pi), \cdots, \mathbf{i}(\theta_2 + 2k_{2,m_2}\pi);$...; up to $\mathbf{i}(\theta_p + 2k_{p,1}\pi), \dots, \mathbf{i}(\theta_p + 2k_{p,m_n}\pi)$, where $k_{h,j} \in \mathbb{Z}$, for every h, j. We also denote by $\sigma_1 > \sigma_2 > \cdots > \sigma_s > 0$ the distinct non-zero singular values of X. Since $X \in \mathfrak{u}_n$, there exist $\psi_h \in \{\theta_1, \cdots, \theta_p\}$ and $t_h \in \mathbb{Z}$ such that $\sigma_h = |\psi_h + 2t_h\pi|$, for every $h = 1, \cdots, s$. If $X = \sum_{h=1}^{s} |\psi_h + 2t_h \pi | X_h$ is the SVD-decomposition of X, then every SVDcomponent X_h of X belongs to \mathfrak{g} , because G is SVD-closed. Of course, for $h = 1, \dots, s$, we have $|\psi_h + 2t_h \pi| = \pm (\psi_h + 2t_h \pi)$, and so $X = \sum_{h=1}^s (\psi_h + 2t_h \pi) Y_h = \sum_{i=1}^s \psi_h Y_h + \sum_{i=1}^s 2\pi t_h Y_h$, where $Y_h = \pm X_h$. Note that, by Remarks-Definitions 2.6 (b), $\{Y_h\}_{1 \le h \le s}$ is still an SVDsystem of elements of $\mathfrak g$. Taking into account Lemma 2.8 and the mutual commutativity of the Y_h 's, we have: $M = \exp(X) = \exp(\sum_{h=1}^{s} \psi_h Y_h) \exp(\sum_{i=1}^{s} 2\pi l_h Y_h) = \exp(\sum_{h=1}^{s} \psi_h Y_h).$ So, if we denote $Y := \sum_{k=1}^{s} \psi_{k} Y_{k}$, we have $Y \in \mathfrak{g}$ and $M = \exp(Y)$. By Lemma 2.7, every non-zero eigenvalue of Y is of the form $\pm i\theta_h$, for some $h = 1, \dots, p$; hence Y is a

b) Let $X \in \mathfrak{g}$ any logarithm of M, with eigenvalues as in (a), and let $Y \in \mathfrak{g}$ -plog(M). Then, $\|X\|_{\phi}^{2} = -tr(X^{2}) = \sum_{j=1}^{p} \sum_{r=1}^{m_{j}} (\theta_{j} + 2k_{j,r}\pi)^{2} = \sum_{j=1}^{p} m_{j}\theta_{j}^{2} + 4\pi \sum_{j=1}^{p} \sum_{r=1}^{m_{j}} k_{j,r}(\theta_{j} + k_{j,r}\pi) = -tr(Y^{2}) + 4\pi \sum_{j=1}^{p} \sum_{r=1}^{m_{j}} k_{j,r}(\theta_{j} + k_{j,r}\pi) = \|Y\|_{\phi}^{2} + 4\pi \sum_{j=1}^{p} \sum_{r=1}^{m_{j}} k_{j,r}(\theta_{j} + k_{j,r}\pi) \quad (\text{with } k_{j,r} \in \mathbb{Z}).$ If $\theta_{j} \in (-\pi, \pi)$, we easily get $k_{j,r}(\theta_{j} + k_{j,r}\pi) \ge 0$, with equality if and only if $k_{j,r} = 0$. If $\theta_{1} = \pi$, clearly we get $k_{1,r}(\theta_{1} + k_{1,r}\pi) = \pi k_{1,r}(1 + k_{1,r}) \ge 0$, with equality if and only if either $k_{1,r} = -1$ or $k_{1,r} = 0$. Since the case $k_{1,r} = -1$ gives $-\mathbf{i}\pi$ as eigenvalue of X, we can conclude that $\|X\|_{\phi}^{2} \ge \|Y\|_{\phi}^{2}$, and the equality holds if and only if the possible eigenvalues of X are only $-\mathbf{i}\pi$ and $\mathbf{i}\theta_{j}$ $(1 \le j \le p)$, i.e. if and only if $X \in G \in \mathfrak{g}$ -plog(M).

5.6. **Remark.** Assume that $n \geq 3$. As noted in Remark 3.7, SU_n is not SVD-closed. Moreover there are matrices $M \in SU_n$ such that $\mathfrak{su}_n - plog(M) = \emptyset$. This is the case of $M = e^{2\pi \mathbf{i}/n}I_n$. Indeed, -1 is not an eigenvalue of M (since $n \geq 3$), and hence, the unique generalized principal $\mathfrak{gl}_n(\mathbb{C})$ -logarithm of M is $L := \frac{2\pi \mathbf{i}}{n}I_n$, whose trace is $2\pi \mathbf{i} \neq 0$, so $L \notin \mathfrak{su}_n$. Hence, the SVD-closure condition in Proposition 5.5 cannot be removed.

5.7. **Theorem.** Let G be a connected SVD-closed subgroup of U_n , whose Lie algebra is $\mathfrak{g} \subseteq \mathfrak{u}_n$; let $M \in G$ and let T be a maximal torus of G containing M, with Lie algebra \mathfrak{t} . Then there are $L_1, \dots, L_s \in \mathfrak{t}$ -plog(M) ($s \geq 1$) such that \mathfrak{g} -plog $(M) = \bigsqcup_{j=1}^s Ad(\langle M \rangle_G)(L_j)$. Furthermore, each set $Ad(\langle M \rangle_G)(L_j)$ is a compact submanifold of \mathfrak{g} , diffeomorphic to the homogeneous space $\frac{\langle M \rangle_G}{\langle L_1 \rangle_G}$.

Proof. By Proposition 3.8 (b), T is SVD-closed, being \mathfrak{t} a Cartan subalgebra of \mathfrak{g} ; so, by Proposition 5.5 (a), there exists a matrix $L \in \mathfrak{t}$ -plog(M). Furthermore, the exponential map exp : $\mathfrak{t} \to T$ is a Lie group homomorphism (considering \mathfrak{t} as an additive Lie group), so it is a covering map (see, for instance, [Alexandrino-Bettiol 2015, Prop. 1.24]) and the fiber exp⁻¹(M) is discrete. By Proposition 5.5 (b), the set \mathfrak{t} -plog(M) is the intersection between exp⁻¹(M) and the sphere { $W \in \mathfrak{t} : ||W||_{\phi} = ||L||_{\phi}$ }, therefore it is finite. We can choose a non-empty subset { L_1, \dots, L_s } of \mathfrak{t} -plog(M) such that $L_h \notin Ad(\langle M \rangle_G)(L_i)$, if $h \neq i$, and such that every $L \in \mathfrak{t}$ -plog(M) belongs to $Ad(\langle M \rangle_G)(L_j)$, for some $j \in \{1, \dots, s\}$; it is clear that $Ad(\langle M \rangle_G)(L_h) \cap Ad(\langle M \rangle_G)(L_i) = \emptyset$, for every $h \neq i$.

We now prove the set equality of the statement.

If $X = Ad_{K}(L_{h})$, with $K \in \langle M \rangle_{G}$, for some $h \in \{1, \dots, s\}$, then clearly $X \in \mathfrak{g}$ -plog(M). Conversely, let $Y \in \mathfrak{g}$ -plog(M). By [Sepanski 2007, Thm. 5.9 p. 101], there exists $Q \in G$ such that $Ad_{Q}(Y) \in \mathfrak{t}$, so that $\exp(Ad_{Q}(Y)) = Ad_{Q}(M) \in T$. By [Bröcker-tomDieck 1985, Lemma 2.5 p. 166], there exists H in the normalizer of T in G such that $Ad_{H}(Ad_{Q}(M)) = M$. Since $Ad_{H}(\mathfrak{t}) = \mathfrak{t}$, we have $Ad_{H}(Ad_{Q}(Y)) \in \mathfrak{t}$, with $\exp[Ad_{H}(Ad_{Q}(Y))] = M$; so $Ad_{H}(Ad_{Q}(Y)) \in \mathfrak{t}$ -plog(M). Hence, there exist $j \in \{1, \dots, s\}$ and $P \in \langle M \rangle_{G}$ such that
$$\begin{split} Ad_{H}\big(Ad_{Q}(Y)\big) &= Ad_{P}(L_{j}), \text{ and so, } Y = Ad_{K}(L_{j}), \text{ with } K := Q^{*}H^{*}P \in G. \text{ Since } M = exp(Y) = exp(L_{j}), \text{ we get } M = Ad_{K}(M), \text{ i.e. } K \in \langle M \rangle_{G}, \text{ and hence } Y \in Ad\big(\langle M \rangle_{G}\big)(L_{j}). \end{split}$$
We conclude by Remark-Definition 2.5, since $\langle M \rangle_{G}$ is compact and $\langle L_{j} \rangle_{G} \subseteq \langle M \rangle_{G}. \Box$

6. Closed subgroups of U_n endowed with the Frobenius metric

6.1. **Remark-Definition.** In this Section we consider an arbitrary closed subgroup G of U_n and we still denote by ϕ the Riemannian metric on G, obtained by restriction of the Frobenius scalar product of $\mathfrak{gl}_n(\mathbb{C})$ (remember Notations 1.1 (e)). It is easy to check that the metric ϕ (called the *Frobenius metric* of G) is bi-invariant on G and that we have $\phi_A(X,Y) = -tr(A^*XA^*Y)$, for every $A \in G$ and for every $X, Y \in T_A(G)$. We denote by $d := d_{(G,\phi)}$ the distance on G induced by ϕ and by $\delta(G,\phi)$ the diameter of G with respect to d. Of course $\delta(G,\phi) < +\infty$, because G is compact.

6.2. **Proposition.** Let G be a closed subgroup of U_n and let $\mathfrak{g} \subseteq \mathfrak{u}_n$ be its Lie algebra. Then (G, ϕ) is a globally symmetric Riemannian manifold with non-negative sectional curvature, whose Levi-Civita connection agrees with the 0-connection of Cartan-Schouten of G. The geodesics of (G, ϕ) are the curves $\gamma(t) = P \exp(tX)$, for every $X \in \mathfrak{g}$ and $P \in G$; furthermore (G, ϕ) is a totally geodesic submanifold of (U_n, ϕ) .

For a proof of Proposition 6.2, we refer, for instance, to [Alexandrino-Bettiol 2015, §2.2].

6.3. **Proposition.** Let G be a connected closed subgroup of U_n and let $\mathfrak{g} \subseteq \mathfrak{u}_n$ be its Lie algebra. Then, for every $P_0, P_1 \in G$, the distance $d(P_0, P_1)$ is equal to the minimum of the set $\{ \|X\|_{\phi} : X \in \mathfrak{g} \text{ and } \exp(X) = P_0^* P_1 \}.$

Proof. Any geodesic segment γ joining P_0 and P_1 can be parametrized by $\gamma(t) = P_0 \exp(tX)$ $(t \in [0, 1])$, with $X \in \mathfrak{g}$, $\exp(X) = P_0^* P_1$, and its length is $\sqrt{-tr(X^2)} = ||X||_{\phi}$; so, we conclude by the Hopf-Rinow theorem (see, for instance, [Alexandrino-Bettiol 2015, p. 31]). \Box

6.4. **Remark.** Let G be a connected closed subgroup of U_n such that $-I_n \in G$. Then $\delta(G,\phi) \ge \sqrt{n}\pi$. Indeed, if $\exp(X) = -I_n$, with $X \in \mathfrak{g} \subseteq \mathfrak{u}_n$, the eigenvalues of X are of the form $(2k_j + 1)\pi \mathbf{i}$, with $k_j \in \mathbb{Z}$, so $\|X\|_{\phi} = \sqrt{-tr(X^2)} = \sqrt{\sum_{j=1}^n (2k_j + 1)^2} \cdot \pi \ge \sqrt{n}\pi$. Hence, by Proposition 6.3, we have $\delta(G,\phi) \ge d(I_n, -I_n) \ge \sqrt{n}\pi$.

6.5. **Theorem.** Let G be a connected SVD-closed subgroup of U_n with Lie algebra $\mathfrak{g} \subseteq \mathfrak{u}_n$. Let $P_0, P_1 \in G$ and let μ_1, \dots, μ_n be the n eigenvalues of $P_0^* P_1$. Then a) $d(P_0, P_1) = \sqrt{\sum_{j=1}^n |\log(\mu_j)|^2}$;

b) the map: $X \mapsto \gamma(t) := P_0 \exp(tX)$ $(0 \le t \le 1)$ is a bijection from \mathfrak{g} -plog $(P_0^*P_1)$ onto the set of minimizing geodesic segments of (G, ϕ) , with endpoints P_0 and P_1 .

Proof. Part (a) follows from Propositions 6.3, 5.5 and Remark 5.4; we also get (b), since the geodesic path: $t \mapsto P_0 \exp(tX)$ is minimizing if and only if $X \in \mathfrak{g}$ -plog $(P_0^*P_1)$.

6.6. Corollary. Let G be a connected SVD-closed subgroup of U_n . Then

a) $\delta(G, \phi) \leq \sqrt{n} \pi$ and the equality holds if and only if $-I_n \in G$;

 $b) \ \text{if} \ -I_n \in G, \ we \ have \ d(P_0,P_1) = \delta(G,\phi) \ (with \ P_0,P_1 \in G) \ \text{if and only if} \ P_1 = -P_0.$

Proof. By Theorem 6.5 (a), we easily get the inequality in (a), while, if $-I_n \in G$, the equality follows from Remark 6.4. Conversely, assume that the equality holds. Since G is compact, by Theorem 6.5, there exist $P_0, P_1 \in G$ such that $\sqrt{n\pi} = d(P_0, P_1) = \sqrt{\sum_{j=1}^{n} |\log(\mu_j)|^2}$, where μ_1, \cdots, μ_n are the eigenvalues of $P_0^* P_1 \in G \subseteq U_n$. Hence, for every $j = 1, \cdots, n$, we have $|\mu_j| = 1$, and so, $\log(\mu_j) = \mathbf{i}\theta$, with $\theta \in (-\pi, \pi]$. The above equality implies: $\log(\mu_j) = \mathbf{i}\pi$, so $\mu_j = -1$, for every j, and from this: $P_0^* P_1 = -I_n \in G$. From these arguments, we also easily obtain part (b).

6.7. **Proposition.** a) $\delta(\langle V \rangle_{U_n}, \phi) = \sqrt{n \pi}$, for every $V \in U_n$ and for every integer $n \ge 1$; b) $\delta(\preccurlyeq Q \succcurlyeq_{SU_n}, \phi) = \sqrt{n \pi}$, for every $Q \in O_n$ and for every even integer $n \ge 2$; c) $\delta(\preccurlyeq Q \succcurlyeq_{SU_n}, \phi) = \sqrt{n - 1 \pi}$, for every $Q \in O_n$ and for every odd integer $n \ge 1$.

Proof. Parts a) and b) follow from Corollary 6.6 (a) (taking into account also Propositions 4.2 and 4.10), since, in both cases, the groups are connected, SVD-closed and contain $-I_n$. c) If n is odd, by Remarks 4.9 (b), we have $P = Ad_A(I_1 \oplus (-I_{(n-1)})) \in \exists Q \succeq_{SU_n}$ (with $A \in O_n$); hence, from Theorem 6.5 (a), we get $\delta(\exists Q \succeq_{SU_n}, \phi) \ge d(I_n, P) = \sqrt{n-1}\pi$. Now let P_0, P_1 be arbitrary elements of $\exists Q \succeq_{SU_n}$. Since n is odd, by Proposition 4.10, the matrix $P_0^*P_1 \in \exists Q \succeq_{SU_n}$ has 1 as eigenvalue; so, from Theorem 6.5 (a), we get $d(P_0, P_1) \le \sqrt{n-1}\pi$ and then (c) holds.

6.8. **Remarks.** a) Remembering Remark-Definition 4.1 and Lemma 4.8, from Proposition 6.7, we deduce the following facts: the diameter of the groups U_n and $U_{(p,n-p)} \cap U_n$ $(p = 0, \dots, n)$ is $\sqrt{n\pi}$ (for $n \ge 1$); the diameter of Sp_n and $U_n(\mathbb{H})$ is $\sqrt{2n\pi}$ (for $n \ge 1$); the diameter of SO_n and $SO_{(p,n-p)}(\mathbb{C}) \cap U_n$ $(p = 0, \dots, n)$ is $\sqrt{n\pi}$, for every even integer $n \ge 2$; while the diameter of the groups SO_n , $SO_{(p,n-p)}(\mathbb{C}) \cap U_n$ $(p = 0, \dots, n)$, is equal to $\sqrt{n-1\pi}$, when the integer $n \ge 1$ is odd (see also [Dolcetti-Pertici 2018a, Cor. 4.12]). b) There are examples of connected closed subgroups G of U_n such that $-I_n \in G$ and $\delta(G, \phi) > \sqrt{n\pi}$. For instance, denoted by G the one-parameter subgroup of U_2 , given by $\exp(t\Delta)$ $(t \in \mathbb{R})$, where Δ is the diagonal matrix with eigenvalues $\pi \mathbf{i}$ and $3\pi \mathbf{i}$, it is easy to check that G is compact, not SVD-closed, $-I_2 \in G$ and $\delta(G, \phi) = d(I_2, -I_2) = \sqrt{10\pi}$.

7. Generalized principal $\langle V \rangle_{u_n}$ -logarithms, with $V \in U_n$

7.1. **Proposition.** Let $M \in U_n$ and $\zeta \ge 0$ be the multiplicity of -1 as eigenvalue of M. Then \mathfrak{u}_n -plog(M) is disjoint union of $\zeta+1$ compact submanifolds of \mathfrak{u}_n , called $\mathcal{W}_0, \cdots, \mathcal{W}_{\zeta}$, such that \mathcal{W}_j is diffeomorphic to the complex Grassmannian $\mathbf{Gr}(j; \mathbb{C}^{\zeta})$, for $j = 0, \cdots, \zeta$.

Proof. If $\zeta = 0$, the statement is true, since $\mathfrak{u}_n - plog(M)$ and $\mathbf{Gr}(0; \mathbb{C}^0)$ reduce to a point.

Assume now $\zeta \geq 1$. Let us denote the eigenvalues of M as in Remark 5.4, with $\theta_1 = \pi$ and $\zeta = m_1$. It is well-known that M can be diagonalized by means of a unitary matrix; hence, by Lemma 5.3, we can assume $M = (-I_{\zeta}) \oplus (\bigoplus_{j=2}^{p} e^{\mathbf{i}\theta_j} I_{m_j})$, so that, by Lemma 2.4 (b), we have $\langle M \rangle_{U_n} = U_{\zeta} \oplus (\bigoplus_{j=2}^{p} U_{m_j})$. Let T denote the maximal torus of U_n , passing through M, consisting of all unitary diagonal matrices, whose Lie algebra is the Cartan subalgebra t of \mathfrak{u}_n , consisting of all skew-hermitian diagonal matrices (see, for instance, [Sepanski 2007, p. 98]). Since $|\theta_j| < \pi$, for every $j \geq 2$, we have that t-plog(M) is the set of the 2^{ζ} elements of the form $D \oplus (\bigoplus_{j=2}^{p} \mathbf{i}\theta_j I_{m_j})$, where D is any diagonal matrix of order ζ , having each diagonal element equal to either $\mathbf{i}\pi$ or $-\mathbf{i}\pi$. We denote $D_j := (\mathbf{i}\pi I_j) \oplus (-\mathbf{i}\pi I_{(\zeta-j)})$ and $L_j := D_j \oplus (\bigoplus_{j=2}^{p} \mathbf{i}\theta_j I_{m_j})$, so that $\langle L_j \rangle_{U_n} = U_j \oplus U_{(\zeta-j)} \oplus (\bigoplus_{j=2}^{p} U_{m_j})$, for $j = 0, \dots, \zeta$. Clearly, each matrix of t-plog(M) belongs to the $Ad(\langle M \rangle_{U_n})$ -orbit of a unique L_j . Denoted $\mathcal{W}_j := Ad(\langle M \rangle_{U_n})(L_j)$, by Theorem 5.7 we get: $\mathfrak{u}_n \text{-}plog(M) = \coprod_{j=0}^{\zeta} \mathcal{W}_j$, with \mathcal{W}_j compact

submanifolds of \mathfrak{u}_n , diffeomorphic to $\frac{\langle M \rangle_{U_n}}{\langle L_j \rangle_{U_n}} = \frac{U_{\zeta} \oplus (\bigoplus_{j=2}^p U_{m_j})}{U_j \oplus U_{(\zeta-j)} \oplus (\bigoplus_{j=2}^p U_{m_j})} \simeq \frac{U_{\zeta}}{U_j \oplus U_{(\zeta-j)}},$

and it is well-known that this last homogeneous space is diffeomorphic to the complex Grassmannian $\mathbf{Gr}(j; \mathbb{C}^{\zeta})$, for $j = 0, \dots, \zeta$.

7.2. **Theorem.** Let $V \in U_n$; denote by λ_1 (with multiplicity n_1), \cdots , λ_r (with multiplicity n_r) its distinct eigenvalues, and choose $R \in U_n$ such that $V = Ad_R \left(\bigoplus_{j=1}^r \lambda_j I_{n_j} \right)$. Then a) $M \in \langle V \rangle_{U_n}$ if and only if $M = Ad_R \left(\bigoplus_{j=1}^r M_j \right)$, with $M_j \in U_{n_j}$, for $j = 1, \cdots, r$; b) if $M = Ad_R \left(\bigoplus_{j=1}^r M_j \right) \in \langle V \rangle_{U_n}$ (with $M_j \in U_{n_j}$), and $\zeta_j \ge 0$ is the multiplicity of -1 as eigenvalue of M_j ($1 \le j \le r$), then the set $\langle V \rangle_{\mathfrak{u}_n}$ -plog(M) has $\prod_{j=1}^r (\zeta_j + 1)$ connected components, called $\mathcal{Z}(k_1, \cdots, k_r)$ (for $k_j = 0, 1, \cdots, \zeta_j$ and $j = 1, \cdots, r$); each component $\mathcal{Z}(k_1, \cdots, k_r)$ is a simply connected compact submanifold of \mathfrak{u}_n , diffeomorphic to the product of complex Grassmannians $\prod_{j=1}^r \mathbf{Gr}(k_j; \mathbb{C}^{\zeta_j})$.

Proof. Part (a) follows directly from Proposition 4.2. We now prove part (b). By Lemma 5.3, we can assume $V = \bigoplus_{j=1}^r \lambda_j I_{n_j}$ (i.e. $R = I_n$) and, so, again by Proposition 4.2, we have $\langle V \rangle_{U_n} = \bigoplus_{j=1}^r U_{n_j}$, $\langle V \rangle_{\mathfrak{u}_n} = \bigoplus_{j=1}^r \mathfrak{u}_{n_j}$ and $M = \bigoplus_{j=1}^r M_j$. From this, it follows that $L \in \langle V \rangle_{\mathfrak{u}_n} - plog(M)$ if and only if $L = L_1 \oplus \cdots \oplus L_r$, where $L_j \in \mathfrak{u}_{n_j} - plog(M_j)$, for every $j = 1, \cdots, r$. This implies that $\langle V \rangle_{\mathfrak{u}_n} - plog(M) = \bigoplus_{j=1}^r \mathfrak{u}_{n_j} - plog(M_j)$. From Proposition 7.1, we get that the set $\mathfrak{u}_{n_j} - plog(M_j)$ is disjoint union of $\zeta_j + 1$ compact

submanifolds of \mathfrak{u}_{n_j} , called $\mathcal{W}_{j0}, \dots, \mathcal{W}_{j\zeta_j}$, where \mathcal{W}_{jk} is diffeomorphic to the complex Grassmannian $\mathbf{Gr}(k; \mathbb{C}^{\zeta_j})$, for every $k = 0, \dots, \zeta_j$ and $j = 1, \dots, r$. Hence:

$$\langle V \rangle_{\mathfrak{u}_n} - plog(M) = \bigoplus_{j=1}^r \left(\bigsqcup_{k_j=0}^{\varsigma_j} \mathcal{W}_{jk_j} \right) = \bigsqcup_{0 \le k_1 \le \zeta_1, \cdots, 0 \le k_r \le \zeta_r} \bigoplus_{j=1}^r \mathcal{W}_{jk_j}, \text{ where each } \bigoplus_{j=1}^r \mathcal{W}_{jk_j}$$

is a connected component of $\langle V \rangle_{\mathfrak{u}_n} \operatorname{-plog}(M)$ and a compact submanifold of \mathfrak{u}_n , diffeomorphic to the product $\prod_{j=1}^r \operatorname{\mathbf{Gr}}(k_j; \mathbb{C}^{\zeta_j})$. The total number of these components is $\prod_{j=1}^r (\zeta_j + 1)$. Setting $\mathcal{Z}(k_1, \cdots, k_r) := \bigoplus_{j=1}^r \mathcal{W}_{jk_j}$ (for all possible indices), we obtain (b). \Box

8. Generalized principal $\preccurlyeq Q \succeq_{\mathfrak{su}_n}$ -logarithms, with $Q \in O_n$

8.1. **Remark.** By Lemma 4.8, we have $U_n(\mathbb{H}) = \preccurlyeq \Omega^{\oplus n} \succeq_{SU_{2n}}$. Then, arguing as in the proof of Lemma 4.3, it is easy to show that any matrix $M \in U_n(\mathbb{H})$ is similar to a real matrix; so, if -1 is an eigenvalue of $M \in U_n(\mathbb{H})$, its multiplicity is even and the eigenvalues of M can be listed as follows: -1 with multiplicity $2\mu \ge 2$, $e^{\pm i\eta_1}$ both with multiplicity μ_1 , $e^{\pm i\eta_2}$ both with multiplicity μ_2 , \cdots , up to $e^{\pm i\eta_q}$ both with multiplicity μ_q $(q \ge 0)$, where $\pi > \eta_1 > \eta_2 > \cdots > \eta_q \ge 0$, with the agreement that, if $\eta_q = 0$, the multiplicity of the corresponding eigenvalue 1 is $2\mu_q$. In any case we have: $\mu + \sum_{i=1}^q \mu_i = n$.

8.2. **Proposition.** Let $M \in U_n(\mathbb{H})$; denote by $2\mu \ge 0$ the multiplicity of -1 as eigenvalue of M. Then $\mathfrak{u}_n(\mathbb{H})$ -plog(M) is a simply connected compact submanifold of $\mathfrak{u}_n(\mathbb{H})$, diffeomorphic to the symmetric homogeneous space $\frac{U_{\mu}(\mathbb{H})}{U_{\mu}} \simeq \frac{Sp_{\mu}}{U_{\mu}}$.

Proof. If μ = 0 (i.e. if −1 is not an eigenvalue of *M*), the statement is true, remembering Notations 1.1 (a) and Proposition 5.5 (a). Assume now μ ≥ 1. It is easy to show that the group $T = \{ \bigoplus_{j=1}^{n} E_{\theta_j} : \theta_1, \dots \theta_n \in \mathbb{R} \}$ is a maximal torus of $U_n(\mathbb{H})$, whose Lie algebra is $\mathfrak{t} = \{ \bigoplus_{j=1}^{n} \theta_j \Omega : \theta_1, \dots \theta_n \in \mathbb{R} \}$. We denote the eigenvalues of *M* and their multiplicities as in Remark 8.1; then, by [Sepanski 2007, Thm. 5.12 (a)], there exists $K \in U_n(\mathbb{H})$ such that $M = Ad_K \left((-I_{2\mu}) \oplus (\bigoplus_{j=1}^{q} E_{\eta_j}^{\oplus \mu_j}) \right)$. By Lemma 5.3, we can assume $K = I_{2n}$; hence, by Remark 2.9, the set \mathfrak{t} -plog(*M*) consists of the 2^μ elements of the form $\left(\bigoplus_{h=1}^{\mu} (\epsilon_h \pi \Omega) \right) \oplus \left(\bigoplus_{j=1}^{q} (\eta_j \Omega)^{\oplus \mu_j} \right)$, where each ϵ_h is either 1 or −1. All these elements belong to the same $Ad(\langle M \rangle_{U_n(\mathbb{H})})$ -orbit. Indeed, it suffices to remark that the matrix $\Psi(\mathbf{k}) = \left(\begin{array}{c} 0 & -\mathbf{i} \\ -\mathbf{i} & 0 \end{array} \right)$ satisfies $\Psi(\mathbf{k}) \Omega \Psi(\mathbf{k})^* = -\Omega$. Hence, by Theorem 5.7, $\mathfrak{u}_n(\mathbb{H})$ -plog(*M*) is a compact submanifold of $\mathfrak{u}_n(\mathbb{H})$, diffeomorphic to the homogeneous space $\frac{\langle M \rangle_{U_n(\mathbb{H})}}{\langle L \rangle_{U_n(\mathbb{H})}}$, where $L := (\pi \Omega)^{\oplus \mu} \oplus \left(\bigoplus_{j=1}^{q} (\eta_j \Omega)^{\oplus \mu_j} \right)$. Recalling Remarks 1.2 (c), (d), we get the statement, since we have $\langle M \rangle_{U_n(\mathbb{H})} = U_\mu(\mathbb{H}) \oplus \left(\bigoplus_{j=1}^{q} \Phi(U_{\mu_j}) \right)$ and $\langle L \rangle_{U_n(\mathbb{H})} = \Phi(U_\mu) \oplus \left(\bigoplus_{j=1}^{q} \Phi(U_{\mu_j}) \right)$.

8.3. **Remark.** In Remarks 1.2 (c), we have seen that we have $Ad_B(U_n(\mathbb{H})) = Sp_n$, with $B \in O_{2n}$; so, by Lemma 5.3, we obtain \mathfrak{sp}_n -plog $(M) = Ad_B[\mathfrak{u}_n(\mathbb{H})-plog(Ad_{B^T}(M))]$, for every $M \in Sp_n$. Hence, by Proposition 8.2, we conclude that the set \mathfrak{sp}_n -plog(M) is a simply connected compact submanifold of \mathfrak{sp}_n , diffeomorphic to the symmetric space $\frac{Sp_\mu}{U_\mu}$, where $2\mu \ge 0$ is the multiplicity of -1 as eigenvalue of M, for every $M \in Sp_n$.

8.4. **Proposition.** Let $M \in SO_{(p,n-p)}(\mathbb{C}) \cap U_n$ $(p = 0, \dots, n)$ and denote by $2m \ge 0$ the multiplicity of -1 as eigenvalue of M. Then the set $(\mathfrak{so}_{(p,n-p)}(\mathbb{C}) \cap \mathfrak{u}_n)$ -plog(M) is a compact submanifold of \mathfrak{su}_n , diffeomorphic to the homogeneous space $\frac{O_{2m}}{U_m}$; hence, if $m \ge 1$, this set has two connected components, both diffeomorphic to the simply connected compact symmetric homogeneous space $\frac{SO_{2m}}{U_m}$.

Proof. By Lemmas 4.4 and 5.3, we can assume p = n, so that $SO_{(p,n-p)}(\mathbb{C}) \cap U_n = SO_n$, and, in this case, the Proposition has already been proved in [Dolcetti-Pertici 2018a, §3] and in [Pertici 2022, Thm. 4.7]. A further proof can be deduced from Theorem 5.7, but, for the sake of brevity, we omit it.

8.5. **Theorem.** Let $Q \in O_n$, and assume that Q has, as real Jordan form, the matrix $\mathcal{J} := J^{(p,q)} \oplus \left(\bigoplus_{j=1}^{h} E_{\varphi_j}^{(\mu_j, \nu_j)} \right) \oplus \Omega^{\oplus k}$, with $0 < \varphi_1 < \varphi_2 < \dots < \varphi_h < \frac{\pi}{2}$, $p + q + 2 \sum_{j=1}^{h} (\mu_j + \nu_j) + 2k = n, \quad p, q, k, \mu_j, \nu_j \ge 0, \quad \mu_j + \nu_j \ge 1$, and choose $A \in O_n$ such that $Q = Ad_A(\mathcal{J}) = A\mathcal{J}A^T$. Let Z be the $n \times n$ unitary matrix defined by $Z := A\left(W_{(p,q)} \oplus \left[\bigoplus_{j=1}^{h} W_{(2\mu_j, 2\nu_j)} \right] \oplus I_{2k} \right)$. Then a) $M \in \preccurlyeq Q \succcurlyeq_{SU_n}$ if and only if $M = Ad_Z \left[N \oplus \left(\bigoplus_{j=1}^{h} M_j \right) \oplus R \right]$, where $N \in SO_{(p+q)}, \quad R \in U_k(\mathbb{H}) \quad and \quad M_j \in U_{(\mu_j + \nu_j)}, \quad for \ j = 1, \cdots, h.$ b) If $M = Ad_Z \left[N \oplus \left(\bigoplus_{j=1}^{h} M_j \right) \oplus R \right] \in \preccurlyeq Q \succcurlyeq_{SU_n}$, denote by $2m \ge 0$ the multiplicity of -1as eigenvalue of N, by $\zeta_j \ge 0$ the multiplicity of -1 as eigenvalue of M_j (for $1 \le j \le h$) and by $2\mu \ge 0$ the multiplicity of -1 as eigenvalue of R. Then we have

$$\preccurlyeq Q \succcurlyeq_{\mathfrak{su}_n} - plog(M) = \bigsqcup_{0 \leq l_1 \leq \zeta_1, \cdots, 0 \leq l_h \leq \zeta_h} \mathcal{V}(l_1, \cdots, l_h),$$

where each $\mathcal{V}(l_1, \dots, l_h)$ is a compact submanifold of \mathfrak{su}_n , diffeomorphic to the product $\frac{O_{2m}}{U_m} \times \left[\prod_{j=1}^h \mathbf{Gr}(l_j; \mathbb{C}^{\zeta_j})\right] \times \frac{Sp_{\mu}}{U_{\mu}}$. If -1 is not an eigenvalue of N (i.e. if m = 0), then each $\mathcal{V}(l_1, \dots, l_h)$ is connected and $\preccurlyeq Q \succcurlyeq_{\mathfrak{su}_n} - plog(M)$ has $\prod_{j=1}^h (\zeta_j + 1)$ components; while, if -1 is an eigenvalue of N (i.e. if $m \ge 1$), then each $\mathcal{V}(l_1, \dots, l_h)$ has two connected components, both diffeomorphic to $\frac{SO_{2m}}{U_m} \times \left[\prod_{j=1}^h \mathbf{Gr}(l_j; \mathbb{C}^{\zeta_j})\right] \times \frac{Sp_{\mu}}{U_{\mu}}$, so $\preccurlyeq Q \succcurlyeq_{\mathfrak{su}_n} - plog(M)$ has $2 \prod_{j=1}^h (\zeta_j + 1)$ components. In any case, all components of $\preccurlyeq Q \succcurlyeq_{\mathfrak{su}_n} - plog(M)$ are simply connected, compact and

diffeomorphic to a symmetric homogeneous space.

Proof. Part (a) follows directly from Proposition 4.10. By Lemma 5.3, we can assume $\preccurlyeq Q \succcurlyeq_{SU_n} = SO_{(p+q)} \oplus \left[\bigoplus_{j=1}^{h} U_{(\mu_j + \nu_j)} \right] \oplus U_k(\mathbb{H}) \text{ and } M = N \oplus \left(\bigoplus_{j=1}^{h} M_j \right) \oplus R.$ Therefore, arguing as in the proof of Theorem 7.2, we get $\preccurlyeq Q \succcurlyeq_{\mathfrak{su}_n} \operatorname{-plog}(M) =$ $\left[\mathfrak{so}_{(p+q)} \operatorname{-plog}(N) \right] \oplus \left[\bigoplus_{j=1}^{h} \mathfrak{u}_{(\mu_j + \nu_j)} \operatorname{-plog}(M_j) \right] \oplus \left[\mathfrak{u}_k(\mathbb{H}) \operatorname{-plog}(R) \right].$ Hence we get (b), by means of Propositions 8.2, 8.4 and 7.1, via Remarks 5.2 (b). □

References

- [Alexandrino-Bettiol 2015] ALEXANDRINO Marcos M., BETTIOL Renato G., Lie groups and geometric aspects of isometric actions, 2015, Springer, Cham.
- [An-Hou 2006] AN Runling, HOU Jinchuan, "Additivity of Jordan multiplicative maps on Jordan operator algebras", *Taiwanese J. Math.* 10 (2006), no. 1, 45–64.
- [Bröcker-tomDieck 1985], BRÖCKER Theodor, TOM DIECK Tammo, Representations of Compact Lie Groups, 1985, Springer-Verlag, New York.
- [Bourbaki 1975], BOURBAKI Nicolas, Elements of Mathematics. Lie Groups and Lie Algebras. Part I: Chapters 1-3, 1975, Addison-Wesley Publishing Company, Reading, Massachusetts.
- [Dolcetti-Pertici 2017] DOLCETTI Alberto, PERTICI Donato, "Some remarks on the Jordan-Chevalley decomposition", *São Paulo J. Math. Sci.* (2017), 11(2): 385–404.
- [Dolcetti-Pertici 2018a] DOLCETTI Alberto, PERTICI Donato, "Skew symmetric logarithms and geodesics on $O_n(\mathbb{R})$ ", Adv. Geom. 2018; 18(4): 495–507.
- [Dolcetti-Pertici 2018b] DOLCETTI Alberto, PERTICI Donato, "Some additive decompositions of semisimple matrices", Rend. Istit. Mat. Univ. Trieste, Vol. 50 (2018), 47–63.
- [Dolcetti-Pertici 2021] DOLCETTI Alberto, PERTICI Donato, "Elliptic isometries of the manifold of positive definite real matrices with the trace metric", *Rend. Circ. Mat. Palermo Series* 2 (2021) 70 : 575–592.
- [EoM-Orbit] "Orbit", Encyclopedia of Mathematics,
- URL: http://encyclopediaofmath.org/index.php?title=Orbit&oldid=48062 (accessed on 2 November 2022).
- [Gallier-Xu 2002] GALLIER Jean, XU Dianna, "Computing exponentials of skew-symmetric matrices and logarithms of orthogonal matrices", *International Journal of Robotics and Automation*, Vol. 17, No. 4, 2002, 10–20.
- [Higham 2008] HIGHAM Nicholas J., *Functions of Matrices. Theory and Computation*, 2008, SIAM Society for Industrial and Applied Mathematics, Phildelphia.
- [Horn-Johnson 2013] HORN Roger A., JOHNSON Charles R., Matrix analysis, Second Edition, 2013, Cambridge University Press, Cambridge.
- [Ottaviani-Paoletti 2015] OTTAVIANI Giorgio, PAOLETTI Raffaella, "A geometric perspective on the Singular Value Decomposition", in *Rend. Istit. Mat. Univ. Trieste*, Vol. 47 (2015), 107– 125.
- [Pertici 2022] PERTICI Donato, "Real logarithms of semi-simple matrices", https://doi.org/10.48550/arXiv.2209.06033 (accessed on 2 November 2022)
- [Sepanski 2007] SEPANSKI Mark R., Compact Lie groups, 2007, GTM 235, Springer, New York.