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Abstract. We study the set of generalized principal g-logarithms of any ma-

trix belonging to a connected SVD-closed subgroup G of Un, with Lie algebra

g. This set is a non-empty disjoint union of a finite number of subsets diffeo-

morphic to homogeneous spaces, and it is related to a suitable set of minimizing

geodesics. Many particular cases for the group G are explicitly analysed.
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Introduction

If M is a matrix belonging to a connected closed subgroup G of GLn(C), having g as

Lie algebra, we say that a matrix L ∈ g is a generalized principal g-logarithm of M , if

exp(L) = M and −π ≤ Im(λ) ≤ π, for every eigenvalue λ of L; the set of all generalized

principal g-logarithms ofM is denoted by g–plog(M). Our definition relaxes the usual one

of principal logarithm, which excludes the matricesM ∈ GLn(C) with negative eigenvalues
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(see, for instance, [Higham 2008, Thm. 1.31]). The usual definition implies both existence

and uniqueness of a principal logarithm. In some relevant cases, matrices with negative

eigenvalues and belonging to a closed subgroup G of GLn(C), have an infinite set of

generalized principal g–logarithms, on which it is possible to define some natural geometric

structures. We have already studied the sets son–plog(M), if M ∈ SOn, and gln(R)–

plog(M), ifM is semi-simple (see [Dolcetti-Pertici 2018a] and [Pertici 2022]). Our interest

in the set g–plog(M) is related to a differential-geometric setting, which we briefly describe.

Denote by φ the Frobenius (or Hilbert-Schmidt) positive definite real scalar product on

gln(C), defined by φ(A,B) := Re(tr(AB∗)). If G is a connected closed subgroup G of

the unitary group Un (with Lie algebra g), we still denote by φ the Riemannian metric

on G, obtained by restriction of the Frobenius scalar product of gln(C). This metric is

bi-invariant on G and the corresponding geodesics are the curves γ(t) = P exp(tX), where

X ∈ g and P ∈ G. The set of minimizing geodesic segments of (G,φ) is a classical and

relevant subject of investigation.

In this paper we also assume that the group G is SVD-closed : a condition satisfied by many

closed subgroup of Un. The reason is that, under this assumption, for every P0 , P1 ∈ G,

the set of minimizing geodesic segments of (G, φ) with endpoints P0 and P1 , can be

parametrized by the set of generalized principal g–logarithms of P ∗
0
P1 (see Theorem 6.5).

Therefore, a geometric structure on g–plog(P ∗
0
P1) induces a corresponding structure on

the set of minimizing geodesic segments joining P0 and P1 .

To fully illustrate the statements of the title and of the previous result, we must explain the

meaning of SVD-closure. Any matrixM ∈ gln(C)\{0} has a unique decomposition (called

SVD-decomposition of M) of the form M =
p∑

i=1

σiAi , where σ1 > σ2 > · · · > σp > 0 are

the non-zero singular values ofM , and A1 , A2 , · · ·Ap are non-zero complex matrices (called

SVD-components ofM) such that A∗
h
Aj = AhA

∗
j
= 0, for every h 6= j, and AjA

∗
j
Aj = Aj ,

for every j. We say that a real Lie subalgebra g of gln(C) is SVD-closed if, for any matrix

M ∈ g \ {0}, all SVD-components of M belong to g. A closed subgroup of GLn(C) is

SVD-closed if its Lie algebra is SVD-closed in gln(C).

Sections 1 and 2 are devoted to recall many general basic notions and preliminary facts

on matrices. In Section 3 we discuss and determine a wide class of SVD-closed real Lie

subalgebras of gln(C). The key result is that the sets of fixed points of all automorphisms

of the real Lie algebra gln(C), commuting with the map η : A 7→ A∗ and preserving

the so-called triple Jordan product, are SVD-closed real Lie subalgebras of gln(C) (see

Proposition 3.5). In Section 4, we prove that many classical groups of matrices are SVD-

closed, as, for instance, the real general linear group GLn(R), the unitary group Un, the

special orthogonal complex group SOn(C), the symplectic groups Sp2n(C), Sp2n(R), the

generalized unitary groups U(p,n−p) and all their intersections. In particular, we analyse

the following families of SVD-closed subgroups of Un:
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〈V 〉Un
:= {X ∈ Un : XV = V X}, where V is an arbitrary unitary matrix,

4 Q <Un
:= {X ∈ Un : XQXT = Q} and 4 Q <SUn

:=4 Q <Un
∩ SUn, where Q is an

arbitrary real orthogonal matrix. Among them, we find many classical closed subgroups

of Un, as, for instance, SOn, Spn, U(p,n−p) ∩ Un and
(
SO(p,n−p)(C)

)
∩ Un.

In Section 5 we study the set g–plog(M) for a matrix M , belonging to a connected SVD-

closed subgroup G of Un, with Lie algebra g. In particular we prove that g–plog(M)

is non-empty (see Proposition 5.5) and that it is a disjoint union of a finite number

of compact submanifolds of g, each of which is diffeomorphic to a homogeneous space

(Theorem 5.7). In Section 6 we obtain some results about of the Riemannian manifold

(G,φ), where G is any connected SVD-closed subgroup of Un, and, among them, the

already mentioned Theorem 6.5. In addition, we compute the diameter of all connected

SVD-closed subgroups of Un that we considered in Section 4 (see Proposition 6.7).

The main result of Section 7 is Theorem 7.2, in which we prove that, for every V ∈ Un and

M ∈ 〈V 〉Un
, the set 〈V 〉un

–plog(M) has a finite number of components, each of which is

a simply connected compact submanifold of un, diffeomorphic to the product of suitable

complex Grassmannians. Finally, the main result of Section 8 is Theorem 8.5, which

states that, for every Q ∈ On and M ∈ 4 Q <SUn
, the set 4 Q <sun

–plog(M) has a

finite number of components, each of which is a simply connected compact submanifold of

sun, diffeomorphic to the product of suitable complex Grassmannians with the symmetric

homogeneous spaces
SO2m

Um
and

Spµ
Uµ

.

1. Basic notations and some preliminary facts.

1.1. Notations.

a) In this paper we will use many standard notations from the matrix theory and from

the theory of Lie groups and algebras.

Among these, if K is either the field of real numbers R, or the field of complex numbers

C, or the associative division algebra of quaternions H, then gln(K) denotes the real Lie

algebra of square matrices of order n and GLn(K) the Lie group of invertible matrices of

order n, both with coefficients in K. In any case, the identity matrix and the null matrix

of order n are denoted by In and by 0n , respectively, and we define also K
0 = {0} . As

usual, i is the unit imaginary number of C and j, k are the further standard imaginary

unities of H, so that i2 = j2 = k2 = −1, ij = −ji = k, jk = −kj = i, ki = −ik = j. Note

that any q ∈ H can be written in a unique way as q = z + wj with z, w ∈ C, so that the

complex field C can be identified with the set of quaternions of the form z + 0 ·j, with
z ∈ C. We denote by ez :=

+∞∑

i=0

zi

i!
the exponential of z ∈ C and, if z 6= 0, by log(z), the

unique complex logarithm of z, whose imaginary part lies in the interval (−π, π].
For every A ∈ gln(H), AT , A, A∗ := A

T
and A−1 (provided that A is invertible) are

respectively transpose, conjugate, adjoint and inverse of the matrix A and tr(A) is its
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trace. If A ∈ gln(C), det(A) denotes its determinant, while exp(A) :=
+∞∑

i=0

Ai

i!
∈ GLn(C)

denotes the exponential of the matrix A.

If M1 , · · · ,Mh are square matrices of orders r1 , · · · , rh , respectively, then M1 ⊕ · · · ⊕Mh

denotes the related block-diagonal square matrix of order r1 + · · ·+ rh . Moreover, if B is

a p× p matrix, then B⊕h denotes the ph× ph block-diagonal matrix B ⊕ · · · ⊕B
︸ ︷︷ ︸

h times

.

If S1, . . . ,Sm are sets of square matrices, then S1⊕· · ·⊕Sm denotes the set of all matrices

B1 ⊕ · · · ⊕ Bm with Bj ∈ Sj , for every j. If the sets S1, . . . ,Sm are mutually disjoint,

we write
h⊔

i=1

Si to denote their (disjoint) union.

To give a full generality to the results of this paper (and to their proofs), it is necessary

to establish agreements on the notations that we will use: if h is a non-negative integer

parameter, whenever, in any formula, we write any term as
h∑

i=1

(· · · ),
h⊕

i=1

(· · · ) or

h∏

i=1

(· · · ), we mean that, if h = 0, this sum, this direct sum or this product must not

appear in the related formula. Moreover, if Gn (for n ≥ 1) denotes any classical Lie

groups of matrices of order n, having Lie algebra gn, and if Hn is a closed subgroup of

Gn, we also assign a meaning to the expressions G0, g0,
G0

H0
, defining them all equal to

a single point Q which, conventionally, satisfies the following conditions:

λQ = Q, for every λ ∈ C; Q ⊕ B = B ⊕ Q = B, for any square matrix B;

Q⊕ S = S ⊕Q = S , for any set of square matrices S .
It is also useful to define the zero-order identity matrix I0 and M⊕0 (for every square

matrixM) both equal to this point Q and, to simplify the notations and some statements,

the complex numbers, which are not eigenvalues of a matrix M , will be called eigenvalues

of multiplicity zero of M . Furthermore, we denote:

Ω :=




0 −1

1 0



; Ωn :=




0n −In
In 0n



; hence Ω1 = Ω, while, for n ≥ 2, we have Ωn 6= Ω⊕n;

W
(p,q)

:= Ip⊕ iIq, for every p, q ≥ 0 such that p+ q ≥ 1 (W
(p,q)

is unitary and diagonal);

Eϕ :=




cos(ϕ) − sin(ϕ)

sin(ϕ) cos(ϕ)



 = cos(ϕ) I2 + sin(ϕ)Ω, with ϕ ∈ R, so Ω = E
π/2

and

E⊕h
ϕ

= cos(ϕ)I2h + sin(ϕ)Ω⊕h for every h ≥ 1;

moreover, for every p, q ≥ 0 with p+q ≥ 1, E(p,q)
ϕ

:= E⊕p
ϕ

⊕(−Eϕ)
⊕q (so E(n,0)

ϕ
= E⊕n

ϕ
)

and J(p,q) := Ip ⊕ (−Iq) = E(p,q)
0

(so J(p,0) = Ip and J(0,q) = −Iq ).

b) As usual, On := {X ∈ gln(R) : XX
T = In} is the real orthogonal group;

Un := {X ∈ gln(C) : XX
∗ = In} is the (complex) unitary group;

SOn := {X ∈ On : det(X) = 1}, SUn := {X ∈ Un : det(X) = 1} are their special

subgroups; while Un(H) := {X ∈ gln(H) : XX∗ = In} is the quaternionic unitary group.

Note that the identification (recalled in (a)) of C as a subalgebra of H, allows to identify

Un with a subgroup of Un(H). In this paper this identification is always implied and not

explicitly indicated. Furthermore, for every p, q ≥ 0, with p+ q ≥ 1,



GENERALIZED PRINCIPAL LOGARITHMS 5

O(p,q)(C) := {X ∈ gl(p+q)(C) : XJ
(p,q)XT = J(p,q)},

SO(p,q)(C) := {X ∈ O(p,q)(C) : det(X) = 1},
O(p,q) := O(p,q)(C) ∩ gl(p+q)(R), SO(p,q) := SO(p,q)(C) ∩ gl(p+q)(R),

are the complex and real indefinite orthogonal groups, with their special subgroups;

U(p,q) := {X ∈ gl(p+q)(C) : XJ(p,q)X∗ = J(p,q)} is the indefinite unitary group. Finally

Sp2n(C) := {X ∈ gl2n(C) : XΩnX
T = Ωn} and Sp2n(R) := Sp2n(C) ∩ gl2n(R) are,

respectively, the complex and real symplectic groups; while Spn := Sp2n(C)∩U2n is the

compact symplectic group. Of course, all the previous are real Lie groups of matrices.

We recall that a well-known Cartan theorem states that a subgroup H of a given Lie group

G is closed if and only if it is an embedded real submanifold of G. Of course, if the Lie

group G is compact, then every closed subgroup of G is compact too.

If G is any Lie group and P ∈ G, then TP (G) denotes the tangent space of G at P .

c) The Lie algebras related to the previous Lie groups are denoted by:

son = {A ∈ gln(R) : A = −AT }, the Lie algebra of both On and SOn;

un = {A ∈ gln(C) : A = −A∗}, the Lie algebra of Un;

sun = {A ∈ gln(C) : A = −A∗, tr(A) = 0}, the Lie algebra of SUn;

un(H) = {A ∈ gln(H) : A = −A∗}, the Lie algebra of Un(H).

The Lie algebras of the remaining Lie groups will be denoted by the corresponding small

gothic letters: for instance, so(p,q)(C) and spn are the Lie algebras of SO(p,q)(C) and of

Spn, respectively.

d) If B ∈ GLn(C), we denote by AdB the map from gln(C) onto itself, defined by

AdB : A 7→ AdB (A) := BAB−1. Note that AdB commutes with the exponential map. In

this paper, we will still denote by AdB the restriction of this map to any subset of gln(C).

We indicate with τ , µ and η the maps from gln(C) onto itself, given by: τ : A 7→ AT ,

µ : A 7→ A, η : A 7→ A∗. The maps µ, −τ , −η and AdB (with B ∈ GLn(C)) are

automorphisms of the real Lie algebra gln(C); furthermore, the automorphisms µ, −τ , −η
are involutive, mutually commuting and the composition of any two of them is the third

automorphism; hence the group generated by µ, −τ , −η is isomorphic to Z2 ⊕ Z2 .

e) We denote by φ the Frobenius (or Hilbert-Schmidt) positive definite real scalar product

on gln(C), defined by φ(A,B) := Re(tr(AB∗)), and we denote by ‖A‖φ :=
√
φ(A,A) =

√
tr(AA∗), the related Frobenius norm. Note that, if A ∈ un, then ‖A‖2

φ
= −tr(A2).

Since the eigenvalues of the skew-hermitian matrix A are purely imaginary, we also get

‖A‖φ =
√

−tr(A2) =

√
n∑

j=1

|λj |2, where λ1 , · · · , λn are the n eigenvalues of A.

1.2. Remarks. a) The map ρ : C → gl2(R), given by ρ(z) := Re(z)I2 + Im(z)Ω =



Re(z) −Im(z)

Im(z) Re(z)



, is a monomorphism of R-algebras, such that ρ(z) = ρ(z)T and such

that ρ(z) ∈ GL2(R) as soon as z 6= 0. More generally, for any h ≥ 1, we denote again
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by ρ the mapping: glh(C) → gl2h(R), which maps the h × h complex matrix Z = (zij)

to the block matrix ρ(Z) = (ρ(zij)) ∈ gl2h(R), having h
2 blocks of order 2 × 2. We say

that ρ is the decomplexification map. It is not hard to prove that, if λ1, · · · , λh are the

h eigenvalues of any matrix Z ∈ glh(C), then λ1, λ1, · · · , λh, λh are the 2h eigenvalues of

ρ(Z) ∈ gl2h(R) and that ρ is a monomorphism of R-algebras, whose restriction to GLh(C)

is a monomorphism of Lie groups, having as image ρ
(
glh(C)

)
∩ GL2h(R). We have also

ρ(Z∗) = ρ(Z)T ; so, the restriction of ρ to Uh is a monomorphism of Lie groups and

ρ
(
Uh

)
= ρ

(
glh(C)

)
∩ SO2h. From now on, to simplify the notations, the map ρ will be

omitted, hence we will regard the real Lie algebra glh(C) as Lie subalgebra of gl2h(R), the

Lie groups GLh(C) and Uh as closed subgroups of GL2h(R) and SO2h, respectively; in

particular we will write Uh = glh(C) ∩ SO2h.

b) We denote by Ψ : H → gl2(C) the map: z + wj 7→ Ψ(z + wj) :=




z −w
w z



, where

z, w ∈ C ; this map is a monomorphism of R-algebras. Note that, for every q ∈ H, we

have Ψ(q) = (Ψ(q))∗. It is possible to extend this map to a monomorphism of R-algebras

(still denoted by the same symbol) Ψ : glh(H) → gl2h(C) (h ≥ 1), which maps the h× h

quaternion matrix Q = (qij ) to the block matrix Ψ(Q) =
(
Ψ(qij )

)
∈ gl2h(C), having

h2 blocks of order 2 × 2. It can be easily checked that we have Ψ(A∗) = (Ψ(A))∗ and

(Ω⊕h)Ψ(A∗)(Ω⊕h)T = (Ψ(A))T , for every A ∈ glh(H). Moreover, Ψ maps GLh(H) into

GL2h(C) and Uh(H) into U2h; both restrictions GLh(H) → GL2h(C) and Uh(H) → U2h

are monomorphisms of Lie groups. Hence, up to the isomorphim Ψ, we will consider

glh(H) as real Lie subalgebra of gl2h(C), GLh(H) as closed subgroup of GL2h(C) and

Uh(H) as closed subgroup of U2h.

Note also that the monomorphism Ψ maps the closed subgroup Uh of Uh(H) onto a closed

subgroup of Ψ(Uh(H)) ⊂ U2h, so that the elements of Ψ(Uh) are the 2h × 2h complex

unitary matrices, having h2 blocks Zij of the form: Zij =




zij 0

0 zij



, with zij ∈ C.

As in the case of the map ρ, from now on, to simplify the notations, we will omit to

indicate the map Ψ and so, for instance, we will simply write Uh(H) = U2h ∩ glh(H) and

uh(H) = u2h ∩ glh(H). From this last equality, we easily get that every matrix of uh(H)

has trace 0. Therefore, since Uh(H) = exp
(
uh(H)

)
, the group Uh(H) is contained in SU2h,

hence Uh(H) = SU2h ∩ glh(H) and uh(H) = su2h ∩ glh(H).

c) Fixed n ≥ 1, for any i, j = 1, · · · , 2n, let W (i, j) be the square matrix of order 2n,

having 1 at the entry (i, j) and 0 elsewhere, and let B be the 2n× 2n real matrix defined

by B :=
n∑

j=1

(
W (j, 2j − 1) +W (n+ j, 2j)

)
. Since W (i, j)W (h, k) = δjhW (i, k), it is easy

to check that B is an orthogonal matrix such that BTΩnB = Ω⊕n ; from this, one can get

that X belongs to Un(H) if and only if BXBT belongs to Spn , i.e. AdB

(
Un(H)

)
= Spn.

It is also easy to check that AdB maps the closed subgroup Un of Un(H) onto the closed
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subgroup of Spn of matrices of the form A⊕A with A ∈ Un. Hence Un can be regarded as

the closed subgroup of Spn of matrices of this form, and so, the simply connected compact

symmetric homogeneous space
Spn
Un

, obtained in this way , is diffeomorphic to
Un(H)

Un
.

d) Let Φ be the automorphism of R-algebra H, defined by Φ(t+xi+yj+zk) = t+yi+xj−zk,
for every t, x, y, z ∈ R. We have: Φ(q) = Φ(q), for every q ∈ H. Acting on each single entry

of the matrix, this map induces an automorphism (still denoted by Φ) of the R-algebra

gln(H). Since Φ(A∗) = Φ(A)∗, for every A ∈ gln(H), the restriction of Φ to Un(H) is

an automorphism of Lie group Un(H), which maps Un onto a closed subgroup of Un(H).

Hence the homogeneous space
Un(H)

Φ(Un)
is diffeomorphic to

Un(H)

Un
and, by (c), also to

Spn
Un

.

Remembering (b), up to the map Ψ, the subgroup Φ(Un) of Un(H) can be identified with

the subgroup of U2n, whose elements are the 2n× 2n special orthogonal matrices, having

n2 real blocks Uij of the form: Uij =




xij −yij
yij xij



. Note that, remembering (a), the

restriction of Φ to Un agrees with the restriction to Un of the decomplexification map ρ.

2. Commuting matrices and SVD-systems

2.1. Notation. Let S ⊆ gln(C) and M ∈ gln(C). We denote

〈M〉S := {X ∈ S : XM =MX} and 4M <S := {X ∈ S : XM =MX}.

2.2. Remarks. a) Let A ∈ Un , M ∈ gln(C) and S ⊆ gln(C). It is easy to check that

AdA

(
4 M <

S

)
= 4 AMAT

<
Ad

A
(S)

.

In particular, if A ∈ On, we get AdA

(
4M <

S

)
= 4 AdA(M) <

Ad
A
(S)

.

b) Let G be a closed subgroup of GLn(C), having g ⊆ gln(C) as Lie algebra and let M

be any matrix in gln(C). Then 〈M〉G and 4M <G are closed subgroups of G, whose Lie

algebras are 〈M〉g and 4M <g , respectively.

2.3. Lemma. a) Let ϕ ∈ R, ϕ 6= kπ, k ∈ Z. Any matrix of gl2n(C) commutes with E⊕n
ϕ

if and only if it commutes with Ω⊕n, i.e. 〈E⊕n
ϕ

〉
gl2n(C)

= 〈Ω⊕n〉
gl2n(C)

.

b) Let S be any subset of gl2n(C), then 〈Ω⊕n〉S consists of the matrices of S, having n2

blocks of the form: Xij =




aij −bij
bij aij



, with aij , bij ∈ C.

Proof. Part (a) is trivial and follows from E⊕n
ϕ

= cos(ϕ)I2n + sin(ϕ)Ω⊕n and sin(ϕ) 6= 0.

For part (b), we can write an arbitrary matrix of S in n2 blocks, Xij , each of them of

order 2. We easily get that such a matrix commutes with Ω⊕n if and only if each block

commutes with Ω, i. e. if and only if each Xij is of the form stated in (b). �

2.4. Lemma. Let D :=
s⊕

j=1

Dj ∈ gln(C) be a block diagonal matrix, with Dj ∈ gln
j
(C)

simisimple matrices. Denote by Sj and by −Sj (j = 1, · · · , s), respectively, the set of the

eigenvalues of Dj and the sets of their opposites.
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a) Assume that Si ∩ (−Sj ) = ∅ as soon as i 6= j. Then a matrix A ∈ gln(C) anticommutes

with D if and only if A =
s⊕

j=1

Aj , where each Aj belongs to gln
j
(C) and anticommutes

with Dj .

b) Assume that Si ∩ Sj = ∅ as soon as i 6= j. Then a matrix A ∈ gln(C) commutes with

D if and only if A =
s⊕

j=1

Aj , where each Aj belongs to gln
j
(C) and commutes with Dj .

Proof. We proof only part (a), being part (b) similar and easier.

We write the matrix A in blocks A = (Aij ), consistent with the block structure of D,

so the condition AD = −DA is equivalent to AijDj = −DiAij , for i, j = 1, · · · , n.
Assume i 6= j and let B be a basis of Cn

j , consisting of eigenvectors of Dj . If v ∈ B,
with associated eigenvalue λ, then Di(Aijv) = −AijDj v = −λ(Aijv). This implies that

Aijv = 0, otherwise (against the assumptions made) −λ would be eigenvalue of Di. This

holds for every v ∈ B and so, Aij = 0, as soon as i 6= j. Therefore A =
s⊕

j=1

Ajj , where

each Ajj anticommutes with Dj . The converse is trivial. �

2.5. Remark-Definition. If M ∈ gln(C) and G is a closed subgroup of GLn(C), we call

Ad(G)-orbit of M , denoted by Ad
(
G
)
(M), the set {AdB (M) = BMB−1 : B ∈ G}.

It is well-known that each orbit Ad
(
G
)
(M) is an immersed submanifold of gln(C), diffeo-

morphic to the homogeneous space
G

〈M〉G
, being 〈M〉G the isotropy subgroup of M with

respect to the action of G; furthermore, if G is compact, then Ad
(
G
)
(M) is a compact

(embedded) submanifold of gln(C) (see, for instance, [EoM-Orbit]).

2.6. Remarks-Definitions. A non-empty family of matrices A1 , · · · , Ap ∈ gln(C)\{0} is

said to be an SVD-system, if A∗
h
Aj = AhA

∗
j
= 0, for every h 6= j, and AjA

∗
j
Aj = Aj ,

for every j = 1, · · · , p . Note that, if A1 , · · · , Ap is an SVD-system, then

a) the matrices A1 , · · · , Ap are linearly independent over C;

b) c1A1 , c2A2 , · · · , cpAp is still an SVD-system, if cj ∈ C and |cj | = 1, for j = 1, · · · , p.
We call SVD-decomposition ofM ∈ gln(C)\{0}, any decomposition M =

p∑

j=1

σjAj , where

A1 , · · · , Ap ∈ gln(C) \ {0} form an SVD-system and σ1 > σ2 > · · · > σp > 0 are positive

real numbers. Any matrixM ∈ gln(C)\{0} has an SVD-decompositionM =
p∑

j=1

σjAj and

this decomposition is unique, i.e. if M =
q∑

h=1

τhBh is another SVD-decomposition, then

p = q, σj = τj and Aj = Bj for every j = 1, · · · , p. The positive numbers σ1 , σ2 , . . . , σp

are the distinct square roots of the non-zero eigenvalues of M∗M ; they are known as

the non-zero singular values of M . We say that the matrices A1 , · · ·Ap are the SVD-

components ofM . For more information, see for instance [Horn-Johnson 2013, Thm. 2.6.3],

[Ottaviani-Paoletti 2015, Thm.3.4] and also [Dolcetti-Pertici 2017, § 4].

2.7. Lemma. Let A1 , · · · , Ap be an SVD-system of skew-hermitian matrices of order n,

let θ1 > θ2 > · · · > θp be real numbers and denote M :=
p∑

j=1

θjAj . Then
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a) the eigenvalues of Aj are: i with multiplicity µj ≥ 0, −i with multiplicity νj ≥ 0

(where µj + νj ≥ 1) and 0 with multiplicity n− (µj + νj ) ≥ 0, for every j = 1, · · · , p;
b) the distinct eigenvalues of M are iθj with multiplicity µj ≥ 0, −iθj with multiplicity

νj ≥ 0 (for j = 1, · · · , p and
p∑

j=1

(µj +νj ) ≥ p), and 0 with multiplicity n−
p∑

j=1

(µj +νj ) ≥ 0.

Proof. Since A1 , · · · , Ap is an SVD-system of skew-hermitian matrices, each matrix Aj

satisfies the matrix equation X3 +X = 0. This allows to obtain (a).

We have AhAj = −AhA
∗
j
= 0, for every h 6= j; these conditions imply that, if v is an

eigenvector of Aj associated with the eigenvalue i or −i, then Ahv = 0, for every j 6= h.

Moreover the same conditions give, in particular, that the matrices Ah and Aj commute,

hence A1 , · · · , Ap are simultaneously diagonalizable (together with M) by means of a

unitary matrix (see for instance [Horn-Johnson 2013, Thm. 2.5.5 p. 135]). Using a common

(orthonormal) basis of eigenvectors, we easily obtain (b). �

2.8. Lemma. Let A1 , A2 , · · · , Ap be an SVD-system of skew-hermitian matrices of order

n and let α1 , α2 , · · · , αp be complex numbers. Then

exp(
p∑

j=1

αjAj ) = In +
p∑

j=1

[
sin(αj )Aj + (1− cos(αj ))A

2
j

]
.

Proof. Since A1 , A2 , · · · , Ap are skew-hermitian, as in the proof of Lemma 2.7, the proper-

ties of being an SVD-system give: AhAj = 0, for h 6= j (so Ah and Aj commute), and A3
j
=

−Aj , for every j. Hence (αjAj )
2k−1 = (−1)k−1α2k−1

j
Aj and (αjAj )

2k = (−1)k−1α2k
j
A2

j
,

for every j = 1, · · · , p and for every k ≥ 1. Therefore: exp(
p∑

j=1

αjAj ) =
p∏

j=1

exp(αjAj ) =

p∏

j=1

[
In + sin(αj )Aj + (1− cos(αj ))A

2
j

]
= In +

p∑

j=1

[
sin(αj )Aj + (1− cos(αj ))A

2
j

]
. �

2.9. Remark. Lemma 2.8 gives one of the possible generalizations of the classical Ro-

drigues’ formula (see [Gallier-Xu 2002, Thm. 2.2] and [Dolcetti-Pertici 2018b, Ex. 4.11]).

Note also that, from this Lemma, we obtain exp(αΩ) = Eα , for every α ∈ R.

3. SVD-closed real Lie subalgebras of gln(C)

3.1. Remark-Definition. We say that a real Lie subalgebra g of gln(C) is SVD-closed if

all SVD-components of every matrix of g \ {0} belong to g.

Note that any intersection of SVD-closed real Lie subalgebras of gln(C) is an SVD-closed

real Lie subalgebra of gln(C).

3.2. Notation. We denote by An the group, whose elements are the automorphisms f of

the real Lie algebra gln(C), such that

i) f ◦ η = η ◦ f (i.e. f(A∗) = f(A)∗, for every A ∈ gln(C));

ii) f(ABA) = f(A)f(B)f(A), for every A,B ∈ gln(C) (i.e. f preserves the so-called

Jordan triple product).

3.3. Lemma. The elements of An are precisely the following maps:
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(1) X 7→ AdV (X) = V XV ∗, (2) X 7→
(
AdV ◦ µ

)
(X) = V XV ∗,

(3) X 7→
(
AdV ◦ (−τ )

)
(X) = −V XTV ∗, (4) X 7→

(
AdV ◦ (−η)

)
(X) = −V X∗V ∗,

for every V ∈ Un.

Proof. It is easy to check that the previous maps are elements of An .

For the converse, consider the decomposition gln(C) = Hn ⊕ un, where Hn is the real

vector subspace of gln(C) of hermitian matrices, so that every matrix Z ∈ gln(C) can be

uniquely written as Z =
Z + Z∗

2
+
Z − Z∗

2
, with

Z + Z∗

2
∈ Hn and

Z − Z∗

2
∈ un; let

f ∈ An and denote by f1 and by f2 the restrictions of f to Hn and to un, respectively.

Since f ◦ η = η ◦ f , we have f1(Hn) = Hn and f2(un) = un. By [An-Hou 2006, Thm. 2.1],

there exists a unitary matrix V ∈ Un such that we have

either f1 = AdV or f1 = −AdV or f1 = AdV ◦ µ or f1 = −AdV ◦ µ.
In particular, this implies f(In) = ±In .
Now we denote M := iIn and N := In − M = (1 − i)In , so that NYN = −2iY , for

every Y ∈ gln(C). Since f is an automorphism of the Lie algebra gln(C) and M belongs

to its center Z, then also f(M) belongs to Z, i.e. f(M) = λIn for some λ ∈ C. Since

f preserves the Jordan triple product, we get: −f(In) = f(MInM) = λ2f(In). Hence

λ = ±i, so that f(N ) = f(In) − f(M) = (ε1 + ε2 i)In , where ε1 , ε2 = ±1; from this

we get f(N )2 = 2εiIn , where ε = ±1. Fixed Y ∈ un, we have (iY )∗ = iY and, so,

NYN = −2iY ∈ Hn. Remembering that f preserves the Jordan triple product, we get

−2f1(iY ) = f1(NYN ) = f(N )f2(Y )f(N ) = 2εif2(Y ) and this gives f2(Y ) = εif1(iY ).

This last equality implies that f(Z) =
1

2

[
f1(Z+Z

∗)+εif1(iZ−iZ∗)
]
, for every Z ∈ gln(C).

Taking into account the four possible expressions for f1 (and the fact that ε = ±1), easy

computations allow to obtain the following eight possible expressions for f :

±AdV , ±AdV ◦ µ, ±AdV ◦ η, ±AdV ◦ τ .
But −AdV , −AdV ◦µ, AdV ◦ η, AdV ◦ τ are not automorphisms of the real Lie algebra

gln(C), while the remaining four are the expressions for f in the statement. �

3.4. Remark. If f ∈ An , then either f(XY ) = f(X)f(Y ) for every X,Y ∈ gln(C) (in the

cases (1) and (2) of Lemma 3.3) or f(XY ) = −f(Y )f(X) for every X,Y ∈ gln(C) (in the

remaining cases (3) and (4)).

3.5. Proposition. For every f ∈ An , the set Fix(f) := {M ∈ gln(C) : f(M) = M} is

an SVD-closed real Lie subalgebra of gln(C).

Proof. Choose an element f of An ; Fix(f) is a real Lie subalgebra of gln(C), since f is an

automorphism of the real Lie algebra gln(C). Hence it suffices to prove that Fix(f) is SVD-

closed. Let M =
p∑

i=1

σiAi be a matrix of Fix(f) \ {0}, with its SVD-decomposition; since

f is R-linear, we haveM = f(M) =
p∑

i=1

σif(Ai). By conditions (i), (ii) of Notation 3.2, we

have f(Ai)f(Ai)
∗f(Ai) = f(AiA

∗
i
Ai) = f(Ai), for i = 1, · · · , p. Furthermore, by Remark
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3.4, f(Ai)f(Aj )
∗ equals either f(AiA

∗
j
) or −f(A∗

j
Ai) and, in both cases, f(Ai)f(Aj )

∗ = 0,

if i 6= j. Similarly, we get f(Ai)
∗f(Aj ) = 0, if i 6= j. Hence

p∑

i=1

σif(Ai) is another SVD-

decomposition of M ; by uniqueness, we get f(Ai) = Ai , so every Ai ∈ Fix(f). �

3.6. Examples. From Proposition 3.5 and from Lemma 3.3, we obtain that, for every

V ∈ Un, the following are SVD-closed real Lie subalgebras of gln(C):

Fix
(
AdV

)
= 〈V 〉

gln(C)
; Fix

(
AdV ◦ µ

)
=4 V <

gln(C)
; Fix

(
AdV ◦ (−τ )

)
;

Fix
(
AdV ◦ (−η)

)
(note that, if V = In , we have Fix(−η) = un).

Taking into account Remark-Definition 3.1, we obtain that

〈V 〉g = 〈V 〉
gln(C)

∩ g and 4 V <g = 4 V <
gln(C)

∩ g

are SVD-closed real Lie subalgebras of g, for every V ∈ Un, and for every SVD-closed real

Lie subalgebra g of gln(C). In particular, for g = un, we deduce that

Fix
(
AdV ◦ (−η)

)
∩ un = Fix

(
AdV

)
∩ un = 〈V 〉un

and

Fix
(
AdV ◦ (−τ )

)
∩ un = Fix

(
AdV ◦ µ

)
∩ un =4 V <un

are SVD-closed Lie subalgebras of un, for every V ∈ Un.

Other particular SVD-closed real Lie subalgebras of gln(C) are the following:

gln(R) = Fix(µ); son(C) = Fix(−τ ); son = un ∩ gln(R);
sp2n(C) = Fix

(
AdΩn

◦ (−τ )
)
; spn = sp2n(C) ∩ u2n; su2 = sp2(C) ∩ u2;

sp2n(R) = sp2n(C) ∩ gln(R); u(p,q) = Fix
(
Ad

J(p,q)
◦ (−η)

)
;

so(p,q)(C) = Fix
(
Ad

J(p,q)
◦ (−τ )

)
; so(p,q) = so(p,q)(C) ∩ gl(p+q)(R).

3.7. Remark. If n ≥ 3, the following are not SVD-closed real Lie subalgebras of gln(C):

sun, sln(C) = {M ∈ gln(C) : tr(M) = 0}, sln(R) := sln(C) ∩ gln(R).
We check it only for su3; the generalization to n > 3 and the other cases go similarly.

The SVD-components of the matrixD =








i 0 0

0 i 0

0 0 −2i








are








0 0 0

0 0 0

0 0 −i








and








i 0 0

0 i 0

0 0 0








(being 1 and 2 the singular values of D); since D ∈ su3, while its SVD-components do not

belong to su3, we can conclude that the Lie algebra su3 is not SVD-closed.

3.8. Proposition. Let g be an SVD-closed real Lie subalgebra of gln(C).

a) For every W ∈ un, we have that 〈W 〉g is an SVD-closed Lie subalgebra of g.

b) If g is the Lie algebra of a closed subgroup of Un, then every Cartan subalgebra of g is

SVD-closed.

Proof. Clearly, if YW =WY then Y esW = esWY , for every s ∈ R; conversely, if Y esW =

esWY for every s ∈ R, then, differentiating with respect to s and putting s = 0, we get

YW = WY . Hence 〈W 〉g = g ∩
[ ⋂

s∈R

Fix
(
Ad

exp(sW )

)]
. We get (a), since exp(sW ) ∈ Un,

for every s ∈ R. Part (b) follows from part (a), via [Sepanski 2007, Lemma5.7 p. 100]. �
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4. SVD-closed subgroups of Un

4.1. Remark-Definition. We say that any subgroup of GLn(C) is SVD-closed if it is

closed in GLn(C) and its Lie algebra is an SVD-closed real Lie subalgebra of gln(C). Note

that, by Examples 3.6 and Remarks 2.2 (b), the subgroups of Un, defined by

4 V <Un
= {X ∈ Un : XV = V X} = {X ∈ Un : XVXT = V } and

〈V 〉Un
= {X ∈ Un : XV = V X}, are SVD-closed, for every matrix V ∈ Un.

By Remark-Definition 3.1, the intersection of SVD-closed subgroups of GLn(C) is an SVD-

closed subgroup of GLn(C); indeed, it is known that its Lie algebra is the intersection of

Lie algebras of all SVD-closed subgroups ([Bourbaki 1975, Cor. 3 p. 307]). In the Sections

7 and 8, we will study the sets of generalized principal logarithms of matrices of the groups

〈V 〉Un
, where V ∈ Un, and 4 Q <SUn

= 4 Q <Un
∩ SUn, where Q ∈ On.

Note that we can obtain some classical Lie groups as follows:

Un = 〈In〉Un
, SOn = 4 In <SUn

, Spn = 4 Ωn <SU2n
,

U(p,n−p) ∩ Un = 〈J(p,n−p)〉Un
, SO(p,n−p)(C) ∩ Un = 4 J(p,n−p) <SUn

,

for p = 0, · · · , n. We need some preliminary results.

4.2. Proposition. Let V ∈ Un; denote by λ1 (with multiplicity n1), · · · , λr (with mul-

tiplicity nr ) its distinct eigenvalues, and choose R ∈ Un such that V = AdR

( r⊕

j=1

λj Inj

)
.

Then 〈V 〉Un
= AdR

(⊕r
j=1 Un

j

)
and it is a (compact) connected SVD-closed subgroup of

Un, whose Lie algebra is 〈V 〉un
= AdR

(⊕r
j=1 unj

)
.

Proof. The equality 〈V 〉Un
= AdR

(⊕r
j=1 Un

j

)
easily follows from Lemma 2.4 (b). This

implies that 〈V 〉Un
is compact and connected. As noted in Remark-Definition 4.1, 〈V 〉Un

is SVD-closed too. Clearly, its Lie algebra is 〈V 〉un
= AdR

(⊕r
j=1 unj

)
. �

4.3. Lemma. Let V any matrix of Un. Then 4 V <SUn
is an SVD-closed subgroup of

Un, whose Lie algebra is 4 V <un
= 4 V <sun

.

Proof. The Lie algebra of 4 V <SUn
is 4 V <sun

⊆ 4 V <un
and this last is SVD-closed,

so it suffices to prove the reverse inclusion. IfX ∈ 4 V <un
, being V ∗XV = X, thenX is

similar to its complex conjugate X and so, by [Horn-Johnson 2013, Cor. 3.4.1.7 p. 202], X

is similar to a real matrix; therefore X has real trace; since any skew-hermitian matrix has

trace with zero real part, we conclude that the trace of X is zero, i.e. X ∈ 4 V <sun
. �

In the next results, we will need the matrices W
(p,q)

, E(p,q)
ϕ

and J(p,q) defined in

Notations 1.1(a).

4.4. Lemma. If p = 0, 1, · · · , n , we have O(p,n−p)(C) ∩ Un = AdW
(p,n−p)

(On) and

SO(p,n−p)(C) ∩ Un = AdW
(p,n−p)

(SOn).

Proof. Let W :=W
(p,n−p)

. Then the statements follow from Remarks 2.2 (a), since

4 In <Un
= On , 4 In <SUn

= SOn , 4 J(p,n−p)
<Un

= O(p,n−p)(C) ∩ Un,
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4 J(p,n−p)
<SUn

= SO(p,n−p)(C) ∩ Un, WInW
T = J(p,n−p) and the groups Un, SUn are

AdW -invariant. �

4.5. Lemma. For every ϕ ∈ R and p = 0, 1, · · · , n, we have

4 E(p,n−p)
ϕ

<U2n
= AdW

(2p,2n−2p)
( 4 E⊕n

ϕ
<U2n

) and

4 E(p,n−p)
ϕ

<SU2n
= AdW

(2p,2n−2p)
( 4 E⊕n

ϕ
<SU2n

).

Proof. Let W :=W
(2p,2n−2p)

. The groups U2n and SU2n are AdW -invariant and

W E⊕n
ϕ

W T = E(p,n−p)
ϕ

; hence, by Remarks 2.2 (a), we get the statements . �

4.6. Lemma. Fix ϕ ∈ [0, 2π), with ϕ 6= π

2
and ϕ 6= 3

2
π; consider the matrix E⊕n

ϕ
. Then

a matrix A ∈ gl2n(C) anticommutes with E⊕n
ϕ

if and only if A = 02n .

Proof. Assume first n = 1, so E⊕n
ϕ

= Eϕ =




cos(ϕ) − sin(ϕ)

sin(ϕ) cos(ϕ)



. If a matrix

A =




α β

γ δ



 ∈ gl2(C) anticommutes with Eϕ , then







2α cos(ϕ) = (γ − β) sin(ϕ)

2δ cos(ϕ) = (γ − β) sin(ϕ)

2γ cos(ϕ) = −(α+ δ) sin(ϕ)

2β cos(ϕ) = (α+ δ) sin(ϕ)

.

Since cos(ϕ) 6= 0, the previous conditions give: α = δ and β = −γ, i.e. A = αI2 + γΩ.

But this last matrix also commutes with the nonsingular matrix Eϕ and so, A must be

the null matrix.

If n ≥ 2, we write any matrix of A ∈ gl2n(C) as A := (Aij ), with n
2 square blocks Aij of

order 2. A direct computation shows that, if A anticommutes with E⊕n
ϕ

, then each block

Aij anticommutes with Eϕ ; hence, the proof follows from the case n = 1. �

4.7. Lemma. Fix ϕ ∈ (0, 2π) with ϕ 6= π

2
, ϕ 6= π and ϕ 6= 3

2
π. Then we have

4 E(p,n−p)
ϕ

<SU2n
= 4 E(p,n−p)

ϕ
<U2n

= AdW
(2p,2n−2p)

(Un), for every p = 0, · · · , n,
in which we put (consistently with Remarks 1.2 (a)) Un = gln(C) ∩ SO2n ⊂ SU2n.

Proof. By Lemma 4.5, we have to prove that 4 E⊕n
ϕ

<SU2n
= 4 E⊕n

ϕ
<U2n

= Un. For, a

complex matrix X = X1 + iX2 (X1 , X2 real matrices) satisfies the condition X E⊕n
ϕ

=

E⊕n
ϕ
X if and only if X1 E

⊕n
ϕ

= E⊕n
ϕ
X1 and X2 E

⊕n
ϕ

= −E⊕n
ϕ
X2 and, by Lemmas 4.6

and 2.3, this is equivalent to say thatX ∈ gln(C) ⊆ gl2n(R) (and, in this case, det(X) ≥ 0).

Hence, by Remarks 1.2 (a), we get 4 E⊕n
ϕ

<SU2n
= gln(C) ∩ SU2n = gln(C) ∩ SO2n = Un

and similarly, 4 E⊕n
ϕ

<U2n
= gln(C) ∩ U2n = gln(C) ∩ SO2n = Un. �

4.8. Lemma. Remembering Remarks 1.2 (b), we have

4 Ω⊕n
<SU2n

= 4 Ω⊕n
<U2n

= Un(H) and 4 Ω⊕n
<su2n

= 4 Ω⊕n
<u2n

= un(H).

Proof. Any matrix X = Y + iZ ∈ gl2n(C) (with Y,Z ∈ gl2n(R)) satisfies the condition

X Ω⊕n = Ω⊕nX if and only if Y Ω⊕n = Ω⊕nY and ZΩ⊕n = −Ω⊕nZ. A direct com-

putation shows that these conditions on Y and Z are equivalent to say that Y = (Yij )
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and Z = (Zij ) are block matrices, whose blocks Yij , Zij are 2 × 2 real matrices of the

form: Yij =




aij −bij
bij aij



 , Zij =




cij dij

dij −cij



, for i, j = 1, · · · , n. These last condi-

tions are equivalent to say that X = (Xij ) is a block matrix, with n2 blocks of the form:

Xij =




zij −wij

wij zij



 , and, by Remarks 1.2 (b), this is equivalent to say that X ∈ gln(H).

Hence 4 Ω⊕n
<SU2n

= SU2n ∩ gln(H) = Un(H) = U2n ∩ gln(H) = 4 Ω⊕n
<U2n

and,

by Remarks 2.2 (b), we also get 4 Ω⊕n
<su2n

= 4 Ω⊕n
<u2n

= un(H). �

4.9. Remarks. a) For anyQ ∈ On, there exists a matrix A ∈ On such thatQ = AdA(J ) =

AJAT , where J is a matrix of the form J := J(p,q) ⊕
( h⊕

j=1

E
(µ

j
, ν

j
)

ϕ
j

)
⊕ Ω⊕k,

with 0 < ϕ1 < ϕ2 < · · · < ϕh <
π

2
; p+ q + 2

h∑

j=1

(µj + νj ) + 2k = n; p, q, k, µj , νj ≥ 0;

µj + νj ≥ 1 (see for instance [Dolcetti-Pertici 2021, Rem.-Def. 1.8], where we called

J the real Jordan auxiliary form of Q). Hence the (possible) eigenvalues of Q and their

multiplicities are the following: 1 of multiplicity p ≥ 0; −1 of multiplicity q ≥ 0; ±i both of

multiplicity k ≥ 0; when h > 0, e
±iϕ

j both of multiplicity µj ≥ 0 and e
±i(π−ϕ

j
)
= −e∓iϕ

j

both of multiplicity νj ≥ 0, for every j = 1, · · · , h. The condition µj +νj ≥ 1 is equivalent

to say that e
±iϕ

j or e
±i(π−ϕ

j
)
(and possibly both) are effective eigenvalues of Q.

b) If Q,A,J ∈ On are as in (a), we have AdA

(
I1 ⊕ (−I

(n−1)

)
) ∈ 4 Q <SUn

if and only if

n is odd. Indeed, if n is odd, the real matrix Q has at least one real eigenvalue.

4.10. Proposition. Let Q ∈ On; denote its eigenvalues (with their multiplicities) and the

matrices A,J ∈ On as in Remarks 4.9 (a). If Z is the n× n unitary matrix defined by

Z := A

(

W(p,q) ⊕
[

h⊕

j=1

W(2µ
j
,2ν

j
)

]

⊕ I2k

)

, then

4 Q <Un
= AdZ

(

O(p+q) ⊕
[

h⊕

j=1

U(µ
j
+ν

j
)

]

⊕ Uk(H)

)

,

4 Q <SUn
= AdZ

(

SO(p+q) ⊕
[

h⊕

j=1

U(µ
j
+ν

j
)

]

⊕ Uk(H)

)

,

and they are (compact) SVD-closed subgroups of Un, whose common Lie algebra is

4 Q <sun
= 4 Q <un

= AdZ

(

so(p+q) ⊕
[

h⊕

j=1

u(µ
j
+ν

j
)

]

⊕ uk(H)

)

.

The group 4 Q <Un
is connected if Q has no real eigenvalues, otherwise it has two

connected components. In any case, 4 Q <SUn
is the connected component of 4 Q <Un

containing the identity In .

Proof. From Remark-Definition 4.1 and Lemma 4.3, it follows that the groups 4 Q <Un

and 4 Q <SUn
are SVD-closed and their common Lie algebras is 4 Q <un

= 4 Q <sun
.

By Remarks 2.2 (a), we have 4 Q <Un
= AdA(4 J <Un

), 4 Q <SUn
= AdA(4 J <SUn

).

Now we determine the groups 4 J <Un
and 4 J <SUn

. A matrix X = X1 + iX2 ∈ gln(C)

(with X1 , X2 ∈ gln(R)) satisfies the condition XJ = JX if and only if X1J = JX1 and

X2J = −JX2 . By Lemma 2.4 (b), the condition X1J = JX1 implies that
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X1 = Y0 ⊕
[
⊕h

j=1 Yj

]

⊕Y
(h+1)

, where Y0 ∈ gl(p+q)(R), Yj ∈ gl(2µ
j
+2ν

j
)(R) for every

j = 1, · · · , h and Y
(h+1)

∈ gl2k(R). By Lemma 2.4 (a), the condition X2J = −JX2

implies that also the matrixX2 must be block-diagonal, with blocks of the same type as the

blocks of X1 . Therefore, if X satisfies the condition XJ = JX, then X is block-diagonal

with similar blocks, this time complex instead of real. Of course, X is unitary if and only

if each single block is unitary too. Then, setting U =W(p,q) ⊕
[

h⊕

j=1

W(2µ
j
,2ν

j
)

]

⊕ I2k and

taking into account also Lemmas 4.4, 4.7 and 4.8 , we obtain

4 J <Un
= 4 J(p,q) <U(p+q)

⊕
[

h⊕

j=1

4 E(µj ,νj)
ϕ
j

<U(2µ
j
+2ν

j
)

]

⊕ 4 Ω⊕k <U2k
=

4 J(p,q)
<U(p+q)

⊕
[

h⊕

j=1

4 E(µj ,νj)
ϕ
j

<SU(2µ
j
+2ν

j
)

]

⊕ 4 Ω⊕k
<SU2k

=

AdU

(

O(p+q) ⊕
[

h⊕

j=1

U(µ
j
+ν

j
)

]

⊕ Uk(H)

)

;

4 J <SUn
= 4 J(p,q)

<SU(p+q)
⊕
[

h⊕

j=1

4 E(µj ,νj)
ϕ
j

<SU(2µ
j
+2ν

j
)

]

⊕ 4 Ω⊕k
<SU2k

=

AdU

(

SO(p+q) ⊕
[

h⊕

j=1

U(µ
j
+ν

j
)

]

⊕ Uk(H)

)

.

From these equalities, easily follow the statements that still remain to be proved. �

5. Generalized principal g-logarithms

5.1. Definition. Let G be a connected closed subgroup of GLn(C), whose Lie algebra is

g ⊆ gln(C) . If M ∈ G, we say that a matrix L ∈ g is a generalized principal g-logarithm

of M , if exp(L) =M and −π ≤ Im(λ) ≤ π, for every eigenvalue λ of L.

We denote by g–plog(M) the set of all generalized principal g-logarithms of any M ∈ G.

5.2. Remarks. a) In Introduction, we compared the previous definition with the usual

definition of principal logarithm of a matrixM ∈ GLn(C) without negative eigenvalues, in

which case the set gln(C)–plog(M) consists of a unique matrix ([Higham 2008, Thm. 1.31]).

b) IfG is any connected closed subgroup ofGLn(C), with Lie algebra g ⊆ gln(C), then ρ(G)

is a connected closed subgroup of GL2n(R) ⊂ GL2n(C), having ρ(g) ⊂ gl2n(R) ⊂ gl2n(C)

as Lie algebra, where ρ is the decomplexification map. Remembering the relationship

between the eigenvalues of Z and ρ(Z) (see Remarks 1.2 (a)), we easily get that

ρ
(
g–plog(M)

)
= ρ(g)–plog(ρ(M)), for every M ∈ G.

5.3. Lemma. Let G,H be connected closed subgroups of GLn(C) such that G = AdA(H),

for some A ∈ GLn(C), and let g, h ⊆ gln(C) be their Lie algebras, respectively. Then

AdA(h–plog(M)) = g–plog(AdA(M)), for every M ∈ H.

In particular, if G is any connected closed subgroup of GLn(C), we have

AdA(g–plog(M)) = g–plog(AdA(M)), for every A,M ∈ G.

Proof. Note that G = AdA(H) implies that g = AdA(h). Hence B ∈ g if and only if

A−1BA ∈ h. Since B and A−1BA are similar and exp(B) = AMA−1 if and only if

exp(A−1BA) =M , we get: B ∈ g–plog(AdA(M)) if and only if A−1BA ∈ h–plog(M). �
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5.4. Remark. The eigenvalues of any skew-hermitian matrix A are purely imaginary; so,

the generalized principal un-logarithms of any M ∈ Un are the skew-hermitian logarithms

of M , whose eigenvalues all have modulus in [0, π]. Note that, since all the eigenvalues of

any M ∈ Un have modulus 1, the only possible negative eigenvalue of such M is −1.

In this Section, given any unitary matrix M of order n, we will denote its eigenvalues by

eiθ1 with multiplicity m1 , e
iθ

2 with multiplicity m2 , up to eiθp with multiplicity mp , where

π ≥ θ1 > θ2 > · · · > θp > −π and n =
p∑

j=1

mj . If −1 is not an eigenvalue of M (i.e. if

θ1 < π), then the eigenvalues of the unique generalized principal gln(C)-logarithm of M

are exactly: iθ1 with multiplicity m1 , iθ2 with multiplicity m2 , up to iθp with multiplicity

mp . Instead, if −1 is an eigenvalue of M (i.e. if θ1 = π), then the eigenvalues of any

generalized principal gln(C)-logarithm Y of M are exactly: iπ of multiplicity h, −iπ of

multiplicitym1−h (for some h ∈ {0, 1, · · · ,m1} depending on Y ), iθ2 with multiplicitym2 ,

up to iθp with multiplicity mp . Note that, if Y is any generalized principal un-logarithm

of M , in any case we have ‖Y ‖2
φ
= −tr(Y 2) =

n∑

j=1

mjθ
2
j

=
n∑

j=1

mj | log(eiθj )|2.

5.5. Proposition. Let G be a connected SVD-closed subgroup of Un, whose Lie algebra is

g ⊆ un. Then

a) g–plog(M) 6= ∅, for every M ∈ G and, furthermore, if −1 is not an eigenvalue of M ,

then g–plog(M) consists of a single element;

b) If Y ∈ g–plog(M), then ‖Y ‖φ ≤ ‖X‖φ , for every X ∈ g such that exp(X) = M ;

moreover the equality holds if and only if X ∈ g–plog(M).

Proof. a) If M = In , it is clear that g–plog(M) = {0n} and the statement holds true.

Fix M ∈ G \ {In} and denote its eigenvalues as in Remark 5.4. Since G is compact and

connected, we can choose a skew-hermitian matrix X ∈ g \ {0n} such that exp(X) = M

(see, for instance, [Bröcker-tomDieck 1985, Ch. IV Thm. 2.2]). Then, the n eigenvalues of

X are i(θ1+2k1,1π), i(θ1+2k1,2π), · · · , i(θ1+2k1,m
1
π); i(θ2+2k2,1π), · · · , i(θ2+2k2,m

2
π);

· · · ; up to i(θp + 2kp,1π), · · · , i(θp + 2kp,mp
π), where kh,j ∈ Z, for every h, j. We also

denote by σ1 > σ2 > · · · > σs > 0 the distinct non-zero singular values of X. Since

X ∈ un, there exist ψh ∈ {θ1 , · · · , θp} and th ∈ Z such that σh = |ψh + 2thπ|, for every

h = 1, · · · , s. If X =
s∑

h=1

|ψh +2thπ|Xh is the SVD-decomposition of X, then every SVD-

component Xh of X belongs to g, because G is SVD-closed. Of course, for h = 1, · · · , s, we
have |ψh +2thπ| = ±(ψh +2thπ), and so X =

s∑

h=1

(ψh +2thπ)Yh =
s∑

i=1

ψhYh +
s∑

i=1

2πthYh ,

where Yh = ±Xh . Note that, by Remarks-Definitions 2.6 (b), {Yh}1≤h≤s
is still an SVD-

system of elements of g . Taking into account Lemma 2.8 and the mutual commutativity

of the Yh ’s, we have: M = exp(X) = exp(
s∑

h=1

ψhYh) exp(
s∑

i=1

2πlhYh) = exp(
s∑

h=1

ψhYh).

So, if we denote Y :=
s∑

h=1

ψhYh , we have Y ∈ g and M = exp(Y ). By Lemma 2.7, every

non-zero eigenvalue of Y is of the form ±iθ
h
, for some h = 1, · · · , p ; hence Y is a
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generalized principal g-logarithm of M . By Remarks 5.2 (a), if −1 is not an eigenvalue

of M , the set g–plog(M) necessarily reduces to the single matrix Y .

b) Let X ∈ g any logarithm of M , with eigenvalues as in (a), and let Y ∈ g–plog(M).

Then, ‖X‖2
φ
= −tr(X2) =

p∑

j=1

m
j∑

r=1

(θj +2kj,rπ)
2 =

p∑

j=1

mjθ
2
j
+4π

p∑

j=1

m
j∑

r=1

kj,r (θj + kj,rπ) =

−tr(Y 2) + 4π
p∑

j=1

m
j∑

r=1

kj,r (θj + kj,rπ) = ‖Y ‖2
φ
+4π

p∑

j=1

m
j∑

r=1

kj,r (θj + kj,rπ) (with kj,r ∈ Z).

If θj ∈ (−π, π), we easily get kj,r (θj + kj,rπ) ≥ 0, with equality if and only if kj,r = 0.

If θ1 = π, clearly we get k1,r (θ1 + k1,rπ) = πk1,r (1+ k1,r ) ≥ 0, with equality if and only if

either k1,r = −1 or k1,r = 0. Since the case k1,r = −1 gives −iπ as eigenvalue ofX, we can

conclude that ‖X‖2
φ
≥ ‖Y ‖2

φ
, and the equality holds if and only if the possible eigenvalues

of X are only −iπ and iθj (1 ≤ j ≤ p), i.e. if and only if X ∈ G ∈ g–plog(M). �

5.6. Remark. Assume that n ≥ 3. As noted in Remark 3.7, SUn is not SVD-closed.

Moreover there are matrices M ∈ SUn such that sun–plog(M) = ∅. This is the case of

M = e2πi/nIn . Indeed, −1 is not an eigenvalue of M (since n ≥ 3), and hence, the unique

generalized principal gln(C)–logarithm of M is L :=
2πi

n
In , whose trace is 2πi 6= 0, so

L /∈ sun. Hence, the SVD-closure condition in Proposition 5.5 cannot be removed.

5.7. Theorem. Let G be a connected SVD-closed subgroup of Un, whose Lie algebra is

g ⊆ un; let M ∈ G and let T be a maximal torus of G containing M , with Lie algebra t.

Then there are L1 , · · · , Ls ∈ t–plog(M) (s ≥ 1) such that g–plog(M) =
s⊔

j=1

Ad
(
〈M〉G

)
(Lj ).

Furthermore, each set Ad
(
〈M〉G

)
(Lj ) is a compact submanifold of g, diffeomorphic to the

homogeneous space
〈M〉G
〈Lj〉G

.

Proof. By Proposition 3.8 (b), T is SVD-closed, being t a Cartan subalgebra of g; so, by

Proposition 5.5 (a), there exists a matrix L ∈ t–plog(M). Furthermore, the exponential

map exp : t → T is a Lie group homomorphism (considering t as an additive Lie group), so

it is a covering map (see, for instance, [Alexandrino-Bettiol 2015, Prop. 1.24]) and the fiber

exp−1(M) is discrete. By Proposition 5.5 (b), the set t–plog(M) is the intersection between

exp−1(M) and the sphere {W ∈ t : ‖W ‖φ = ‖L‖φ}, therefore it is finite. We can choose

a non-empty subset {L1 , · · · , Ls} of t–plog(M) such that Lh /∈ Ad
(
〈M〉G

)
(Li), if h 6= i,

and such that every L ∈ t–plog(M) belongs to Ad
(
〈M〉G

)
(Lj ), for some j ∈ {1, · · · , s}; it

is clear that Ad
(
〈M〉G

)
(Lh)

⋂
Ad

(
〈M〉G

)
(Li) = ∅, for every h 6= i.

We now prove the set equality of the statement.

If X = AdK (Lh), with K ∈ 〈M〉G , for some h ∈ {1, · · · , s}, then clearly X ∈ g–plog(M).

Conversely, let Y ∈ g–plog(M). By [Sepanski 2007, Thm. 5.9 p. 101], there exists Q ∈ G

such that AdQ(Y ) ∈ t, so that exp(AdQ(Y )) = AdQ(M) ∈ T . By [Bröcker-tomDieck 1985,

Lemma2.5 p. 166], there exists H in the normalizer of T in G such that AdH

(
AdQ(M)

)
=

M . Since AdH (t) = t, we have AdH

(
AdQ(Y )

)
∈ t, with exp

[
AdH

(
AdQ(Y )

)]
= M ; so

AdH

(
AdQ(Y )

)
∈ t–plog(M). Hence, there exist j ∈ {1, · · · , s} and P ∈ 〈M〉G such that
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AdH

(
AdQ(Y )

)
= AdP (Lj ), and so, Y = AdK (Lj ), with K := Q∗H∗P ∈ G. Since M =

exp(Y ) = exp(Lj ), we getM = AdK (M), i.e. K ∈ 〈M〉G , and hence Y ∈ Ad
(
〈M〉G

)
(Lj ).

We conclude by Remark-Definition 2.5, since 〈M〉G is compact and 〈Lj〉G ⊆ 〈M〉G . �

6. Closed subgroups of Un endowed with the Frobenius metric

6.1. Remark-Definition. In this Section we consider an arbitrary closed subgroup G of

Un and we still denote by φ the Riemannian metric on G, obtained by restriction of the

Frobenius scalar product of gln(C) (remember Notations 1.1 (e)). It is easy to check that

the metric φ (called the Frobenius metric of G) is bi-invariant on G and that we have

φA(X,Y ) = −tr(A∗XA∗Y ), for every A ∈ G and for every X,Y ∈ TA(G). We denote by

d := d
(G,φ)

the distance on G induced by φ and by δ(G,φ) the diameter of G with respect

to d. Of course δ(G,φ) < +∞, because G is compact.

6.2. Proposition. Let G be a closed subgroup of Un and let g ⊆ un be its Lie algebra.

Then (G,φ) is a globally symmetric Riemannian manifold with non-negative sectional

curvature, whose Levi-Civita connection agrees with the 0-connection of Cartan-Schouten

of G. The geodesics of (G,φ) are the curves γ(t) = P exp(tX), for every X ∈ g and

P ∈ G; furthermore (G, φ) is a totally geodesic submanifold of (Un, φ).

For a proof of Proposition 6.2, we refer, for instance, to [Alexandrino-Bettiol 2015, § 2.2].

6.3. Proposition. Let G be a connected closed subgroup of Un and let g ⊆ un be its Lie

algebra. Then, for every P0 , P1 ∈ G, the distance d(P0 , P1) is equal to the minimum of

the set { ‖X‖φ : X ∈ g and exp(X) = P ∗
0
P1 }.

Proof. Any geodesic segment γ joining P0 and P1 can be parametrized by γ(t) = P0 exp(tX)

(t ∈ [0, 1]), with X ∈ g, exp(X) = P ∗
0
P1 , and its length is

√
−tr(X2) = ‖X‖φ ; so, we con-

clude by the Hopf-Rinow theorem (see, for instance, [Alexandrino-Bettiol 2015, p. 31]). �

6.4. Remark. Let G be a connected closed subgroup of Un such that −In ∈ G. Then

δ(G,φ) ≥ √
nπ. Indeed, if exp(X) = −In , with X ∈ g ⊆ un, the eigenvalues of X are of

the form (2kj + 1)πi, with kj ∈ Z, so ‖X‖φ =
√

−tr(X2) =

√
n∑

j=1

(2kj + 1)2 · π ≥ √
nπ.

Hence, by Proposition 6.3, we have δ(G,φ) ≥ d(In ,−In) ≥
√
nπ.

6.5. Theorem. Let G be a connected SVD-closed subgroup of Un with Lie algebra g ⊆ un.

Let P0 , P1 ∈ G and let µ1 , · · · , µn be the n eigenvalues of P ∗
0
P1 . Then

a) d(P0 , P1) =

√
n∑

j=1

| log(µj )|2 ;

b) the map: X 7→ γ(t) := P0 exp(tX) (0 ≤ t ≤ 1) is a bijection from g–plog(P ∗
0
P1)

onto the set of minimizing geodesic segments of (G,φ), with endpoints P0 and P1 .

Proof. Part (a) follows from Propositions 6.3, 5.5 and Remark 5.4; we also get (b), since

the geodesic path: t 7→ P0 exp(tX) is minimizing if and only if X ∈ g–plog(P ∗
0
P1). �
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6.6. Corollary. Let G be a connected SVD-closed subgroup of Un. Then

a) δ(G,φ) ≤ √
nπ and the equality holds if and only if −In ∈ G;

b) if −In ∈ G, we have d(P0 , P1) = δ(G,φ) (with P0 , P1 ∈ G) if and only if P1 = −P0 .

Proof. By Theorem 6.5 (a), we easily get the inequality in (a), while, if −In ∈ G, the

equality follows from Remark 6.4. Conversely, assume that the equality holds. Since

G is compact, by Theorem 6.5, there exist P0 , P1 ∈ G such that
√
nπ = d(P0 , P1) =

√
n∑

j=1

| log(µj )|2, where µ1 , · · · , µn are the eigenvalues of P ∗
0
P1 ∈ G ⊆ Un. Hence, for

every j = 1, · · · , n, we have |µj | = 1, and so, log(µj ) = iθ, with θ ∈ (−π, π]. The above

equality implies: log(µj ) = iπ, so µj = −1, for every j, and from this: P ∗
0
P1 = −In ∈ G.

From these arguments, we also easily obtain part (b). �

6.7. Proposition. a) δ(
〈
V 〉Un

, φ
)
=

√
nπ, for every V ∈ Un and for every integer n ≥ 1;

b) δ
(
4 Q <SUn

, φ
)
=

√
nπ, for every Q ∈ On and for every even integer n ≥ 2 ;

c) δ
(
4 Q <SUn

, φ
)
=

√
n− 1 π, for every Q ∈ On and for every odd integer n ≥ 1 .

Proof. Parts a) and b) follow from Corollary 6.6 (a) (taking into account also Propositions

4.2 and 4.10), since, in both cases, the groups are connected, SVD-closed and contain −In .
c) If n is odd, by Remarks 4.9 (b), we have P = AdA

(
I1 ⊕ (−I

(n−1)

)
) ∈ 4 Q <SUn

(with

A ∈ On); hence, from Theorem 6.5 (a), we get δ
(
4 Q <SUn

, φ
)
≥ d(In , P ) =

√
n− 1π.

Now let P0 , P1 be arbitrary elements of 4 Q <SUn
. Since n is odd, by Proposition 4.10,

the matrix P ∗
0
P1 ∈ 4 Q <SUn

has 1 as eigenvalue; so, from Theorem 6.5 (a), we get

d(P0 , P1) ≤
√
n− 1 π and then (c) holds. �

6.8. Remarks. a) Remembering Remark-Definition 4.1 and Lemma 4.8, from Proposition

6.7, we deduce the following facts: the diameter of the groups Un and U(p,n−p) ∩ Un

(p = 0, · · · , n) is √nπ (for n ≥ 1); the diameter of Spn and Un(H) is
√
2n π (for n ≥ 1);

the diameter of SOn and SO(p,n−p)(C)∩Un (p = 0, · · · , n) is √nπ, for every even integer

n ≥ 2; while the diameter of the groups SOn, SO(p,n−p)(C)∩Un (p = 0, · · · , n), is equal
to

√
n− 1π, when the integer n ≥ 1 is odd (see also [Dolcetti-Pertici 2018a, Cor. 4.12]).

b) There are examples of connected closed subgroups G of Un such that −In ∈ G and

δ(G,φ) >
√
nπ. For instance, denoted by G the one-parameter subgroup of U2, given by

exp(t∆) (t ∈ R), where ∆ is the diagonal matrix with eigenvalues πi and 3πi, it is easy to

check that G is compact, not SVD-closed, −I2 ∈ G and δ(G,φ) = d(I2 ,−I2) =
√
10 π.

7. Generalized principal 〈V 〉un
–logarithms, with V ∈ Un

7.1. Proposition. Let M ∈ Un and ζ ≥ 0 be the multiplicity of −1 as eigenvalue of M .

Then un–plog(M) is disjoint union of ζ+1 compact submanifolds of un, called W0 , · · · ,Wζ ,

such that Wj is diffeomorphic to the complex Grassmannian Gr(j;Cζ), for j = 0, · · · , ζ.

Proof. If ζ = 0, the statement is true, since un–plog(M) and Gr(0;C0) reduce to a point.
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Assume now ζ ≥ 1. Let us denote the eigenvalues ofM as in Remark 5.4, with θ1 = π and

ζ = m1 . It is well-known thatM can be diagonalized by means of a unitary matrix; hence,

by Lemma 5.3, we can assume M = (−Iζ )⊕ (
p⊕

j=2

e
iθ

j Im
j
), so that, by Lemma 2.4 (b), we

have 〈M〉Un
= Uζ⊕(

p⊕

j=2

Um
j
). Let T denote the maximal torus of Un, passing throughM ,

consisting of all unitary diagonal matrices, whose Lie algebra is the Cartan subalgebra t of

un, consisting of all skew-hermitian diagonal matrices (see, for instance, [Sepanski 2007,

p. 98]). Since |θj | < π, for every j ≥ 2, we have that t–plog(M) is the set of the 2ζ

elements of the form D ⊕ (
p⊕

j=2

iθj Imj
), where D is any diagonal matrix of order ζ, having

each diagonal element equal to either iπ or −iπ. We denote Dj := (iπIj) ⊕ (−iπI
(ζ−j)

)

and Lj := Dj ⊕ (
p⊕

j=2

iθjImj
), so that 〈Lj〉Un

= Uj ⊕ U(ζ−j) ⊕ (
p⊕

j=2

Um
j
), for j = 0, · · · , ζ.

Clearly, each matrix of t–plog(M) belongs to the Ad
(
〈M〉Un

)
-orbit of a unique Lj . Denoted

Wj := Ad
(
〈M〉Un

)
(Lj ), by Theorem 5.7 we get: un–plog(M) =

ζ⊔

j=0

Wj , with Wj compact

submanifolds of un, diffeomorphic to
〈M〉Un

〈Lj 〉Un

=

Uζ ⊕ (
p⊕

j=2

Um
j
)

Uj ⊕ U(ζ−j) ⊕ (
p⊕

j=2

Um
j
)

≃ Uζ

Uj ⊕ U(ζ−j)

,

and it is well-known that this last homogeneous space is diffeomorphic to the complex

Grassmannian Gr(j;Cζ), for j = 0, · · · , ζ. �

7.2. Theorem. Let V ∈ Un; denote by λ1 (with multiplicity n1), · · · , λr (with multiplicity

nr ) its distinct eigenvalues, and choose R ∈ Un such that V = AdR

( r⊕

j=1

λj Inj

)
. Then

a) M ∈ 〈V 〉Un
if and only if M = AdR

( r⊕

j=1

Mj

)
, with Mj ∈ Un

j
, for j = 1, · · · , r;

b) if M = AdR

( r⊕

j=1

Mj

)
∈ 〈V 〉Un

(with Mj ∈ Un
j
), and ζj ≥ 0 is the multiplicity

of −1 as eigenvalue of Mj (1 ≤ j ≤ r), then the set 〈V 〉un
−plog(M) has

r∏

j=1

(ζj + 1)

connected components, called Z(k1 , · · · , kr) (for kj = 0, 1, · · · , ζj and j = 1, · · · , r); each
component Z(k1 , · · · , kr) is a simply connected compact submanifold of un, diffeomorphic

to the product of complex Grassmannians
r∏

j=1

Gr(kj ;C
ζ
j ).

Proof. Part (a) follows directly from Proposition 4.2. We now prove part (b). By Lemma

5.3, we can assume V =
r⊕

j=1

λj Inj (i.e. R = In) and, so, again by Proposition 4.2, we

have 〈V 〉Un
=

r⊕

j=1

Un
j
, 〈V 〉un

=
r⊕

j=1

un
j

and M =
r⊕

j=1

Mj . From this, it follows that

L ∈ 〈V 〉un
–plog(M) if and only if L = L1 ⊕ · · · ⊕ Lr , where Lj ∈ un

j
–plog(Mj ), for every

j = 1, · · · , r. This implies that 〈V 〉un
–plog(M) =

r⊕

j=1

un
j
–plog(Mj ).

From Proposition 7.1, we get that the set un
j
–plog(Mj ) is disjoint union of ζj +1 compact

submanifolds of un
j
, called Wj0 , · · · ,Wjζj

, where Wjk is diffeomorphic to the complex

Grassmannian Gr(k;C
ζ
j ), for every k = 0, · · · , ζj and j = 1, · · · , r. Hence:

〈V 〉un
–plog(M) =

r⊕

j=1

(
ζ
j⊔

kj=0

Wjkj

)
=

⊔

0≤k
1
≤ζ

1
,··· ,0≤kr≤ζr

r⊕

j=1

Wjkj
, where each

r⊕

j=1

Wjkj
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is a connected component of 〈V 〉un
–plog(M) and a compact submanifold of un, diffeomor-

phic to the product
r∏

j=1

Gr(kj ;C
ζ
j ). The total number of these components is

r∏

j=1

(ζj +1).

Setting Z(k1 , · · · , kr) :=
r⊕

j=1

Wjkj
(for all possible indices), we obtain (b). �

8. Generalized principal 4 Q <sun
–logarithms, with Q ∈ On

8.1. Remark. By Lemma 4.8, we have Un(H) =4 Ω⊕n
<SU2n

. Then, arguing as in the

proof of Lemma 4.3, it is easy to show that any matrix M ∈ Un(H) is similar to a real

matrix; so, if −1 is an eigenvalue ofM ∈ Un(H), its multiplicity is even and the eigenvalues

of M can be listed as follows: −1 with multiplicity 2µ ≥ 2, e±iη
1 both with multiplicity

µ1 , e
±iη

2 both with multiplicity µ2 , · · · , up to e±iηq both with multiplicity µq (q ≥ 0),

where π > η1 > η2 > · · · > ηq ≥ 0, with the agreement that, if ηq = 0, the multiplicity of

the corresponding eigenvalue 1 is 2µq . In any case we have: µ+
q∑

j=1

µj = n.

8.2. Proposition. Let M ∈ Un(H); denote by 2µ ≥ 0 the multiplicity of −1 as eigen-

value of M . Then un(H)–plog(M) is a simply connected compact submanifold of un(H),

diffeomorphic to the symmetric homogeneous space
Uµ(H)

Uµ
≃ Spµ

Uµ
.

Proof. If µ = 0 (i.e. if −1 is not an eigenvalue of M), the statement is true, remembering

Notations 1.1 (a) and Proposition 5.5 (a). Assume now µ ≥ 1. It is easy to show that the

group T =
{ n⊕

j=1

Eθ
j
: θ1 , · · · θn ∈ R

}
is a maximal torus of Un(H), whose Lie algebra is

t =
{ n⊕

j=1

θjΩ : θ1 , · · · θn ∈ R
}
. We denote the eigenvalues of M and their multiplicities

as in Remark 8.1; then, by [Sepanski 2007, Thm. 5.12 (a)], there exists K ∈ Un(H) such

that M = AdK

(
(−I2µ)⊕ (

q⊕

j=1

E
⊕µ

j
η
j

)
)
. By Lemma 5.3, we can assume K = I2n ; hence, by

Remark 2.9, the set t–plog(M) consists of the 2µ elements of the form
( µ⊕

h=1

(ǫhπΩ)
)
⊕
( q⊕

j=1

(ηjΩ)
⊕µj

)
, where each ǫh is either 1 or −1. All these elements belong

to the same Ad
(
〈M〉

Un(H)

)
-orbit. Indeed, it suffices to remark that the matrix Ψ(k) =




0 −i

−i 0



 satisfies Ψ(k)ΩΨ(k)∗ = −Ω. Hence, by Theorem 5.7, un(H)–plog(M) is a

compact submanifold of un(H), diffeomorphic to the homogeneous space
〈M〉

Un(H)

〈L〉
Un(H)

, where

L := (πΩ)⊕µ⊕
( q⊕

j=1

(ηjΩ)
⊕µj

)
. Recalling Remarks 1.2 (c), (d), we get the statement, since

we have 〈M〉
Un(H)

= Uµ(H)⊕
( q⊕

j=1

Φ(Uµ
j
)
)

and 〈L〉
Un(H)

= Φ(Uµ)⊕
( q⊕

j=1

Φ(Uµ
j
)
)
. �

8.3. Remark. In Remarks 1.2 (c), we have seen that we have AdB

(
Un(H)

)
= Spn, with

B ∈ O2n; so, by Lemma 5.3, we obtain spn–plog(M) = AdB
[
un(H)–plog(Ad

BT (M))
]
, for

every M ∈ Spn. Hence, by Proposition 8.2, we conclude that the set spn–plog(M) is a

simply connected compact submanifold of spn, diffeomorphic to the symmetric space
Spµ
Uµ

,

where 2µ ≥ 0 is the multiplicity of −1 as eigenvalue of M , for every M ∈ Spn.



22 DONATO PERTICI AND ALBERTO DOLCETTI

8.4. Proposition. Let M ∈ SO(p,n−p)(C) ∩ Un (p = 0, · · · , n) and denote by 2m ≥ 0

the multiplicity of −1 as eigenvalue of M . Then the set
(
so(p,n−p)(C) ∩ un

)
–plog(M) is

a compact submanifold of sun, diffeomorphic to the homogeneous space
O2m

Um
; hence, if

m ≥ 1, this set has two connected components, both diffeomorphic to the simply connected

compact symmetric homogeneous space
SO2m

Um
.

Proof. By Lemmas 4.4 and 5.3, we can assume p = n, so that SO(p,n−p)(C)∩Un = SOn,

and, in this case, the Proposition has already been proved in [Dolcetti-Pertici 2018a, §3]

and in [Pertici 2022, Thm. 4.7]. A further proof can be deduced from Theorem 5.7, but,

for the sake of brevity, we omit it. �

8.5. Theorem. Let Q ∈ On, and assume that Q has, as real Jordan form, the matrix

J := J(p,q) ⊕
( h⊕

j=1

E
(µ

j
, ν

j
)

ϕ
j

)
⊕Ω⊕k, with 0 < ϕ1 < ϕ2 < · · · < ϕh <

π

2
,

p + q + 2
h∑

j=1

(µj + νj ) + 2k = n, p, q, k, µj , νj ≥ 0, µj + νj ≥ 1, and choose A ∈ On

such that Q = AdA(J ) = AJAT . Let Z be the n× n unitary matrix defined by

Z := A

(

W(p,q) ⊕
[

h⊕

j=1

W(2µ
j
,2ν

j
)

]

⊕ I2k

)

. Then

a) M ∈ 4 Q <SUn
if and only if M = AdZ

[

N ⊕
(

h⊕

j=1

Mj

)

⊕R

]

, where

N ∈ SO(p+q), R ∈ Uk(H) and Mj ∈ U(µ
j
+ν

j
), for j = 1, · · · , h.

b) IfM = AdZ

[

N⊕
(

h⊕

j=1

Mj

)

⊕R
]

∈ 4 Q <SUn
, denote by 2m ≥ 0 the multiplicity of −1

as eigenvalue of N , by ζj ≥ 0 the multiplicity of −1 as eigenvalue of Mj (for 1 ≤ j ≤ h)

and by 2µ ≥ 0 the multiplicity of −1 as eigenvalue of R. Then we have

4 Q <sun
–plog(M) =

⊔

0≤l1≤ζ1 ,··· ,0≤l
h
≤ζ

h

V(l1 , · · · , lh),

where each V(l1 , · · · , lh) is a compact submanifold of sun, diffeomorphic to the product

O2m

Um
×

[
h∏

j=1

Gr
(
lj ;C

ζ
j
)
]

× Spµ
Uµ

.

If −1 is not an eigenvalue of N (i.e. if m = 0), then each V(l1 , · · · , lh) is connected and

4 Q <sun
–plog(M) has

h∏

j=1

(ζj + 1) components; while, if −1 is an eigenvalue of N (i.e.

if m ≥ 1), then each V(l1 , · · · , lh) has two connected components, both diffeomorphic to

SO2m

Um
×

[
h∏

j=1

Gr
(
lj ;C

ζ
j
)
]

× Spµ
Uµ

, so 4 Q <sun
–plog(M) has 2

h∏

j=1

(ζj + 1) components.

In any case, all components of 4 Q <sun
–plog(M) are simply connected, compact and

diffeomorphic to a symmetric homogeneous space.

Proof. Part (a) follows directly from Proposition 4.10. By Lemma 5.3, we can assume

4 Q <SUn
= SO(p+q) ⊕

[
h⊕

j=1

U(µ
j
+ν

j
)

]

⊕ Uk(H) and M = N ⊕
(

h⊕

j=1

Mj

)

⊕R.

Therefore, arguing as in the proof of Theorem 7.2, we get 4 Q <sun
–plog(M) =

[

so(p+q)–plog(N)

]

⊕
[

h⊕

j=1

u(µ
j
+ν

j
)–plog(Mj )

]

⊕
[

uk(H)–plog(R)

]

.

Hence we get (b), by means of Propositions 8.2, 8.4 and 7.1, via Remarks 5.2 (b). �
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