SVD-CLOSED SUBGROUPS OF THE UNITARY GROUP: GENERALIZED PRINCIPAL LOGARITHMS AND MINIMIZING GEODESICS

\author{

Abstract

We study the set of generalized principal \mathfrak{g}-logarithms of any matrix belonging to a connected SVD-closed subgroup G of U_{n}, with Lie algebra \mathfrak{g}. This set is a non-empty disjoint union of a finite number of subsets diffeomorphic to homogeneous spaces, and it is related to a suitable set of minimizing geodesics. Many particular cases for the group G are explicitly analysed.

}

Contents

Introduction

1. Basic notations and some preliminary facts.
2. Commuting matrices and SVD-systems
3. SVD-closed real Lie subalgebras of $\mathfrak{g l}_{n}(\mathbb{C})$
4. \quad SVD-closed subgroups of U_{n}
5. Generalized principal \mathfrak{g}-logarithms
6. Closed subgroups of U_{n} endowed with the Frobenius metric
7. Generalized principal $\langle V\rangle_{\mathfrak{u}_{n}}$-logarithms, with $V \in U_{n}$
8. Generalized principal $\preccurlyeq Q \succcurlyeq_{\text {su }_{n}}$-logarithms, with $Q \in O_{n}$

KEyWords. Generalized principal logarithm; SVD-decomposition, SVD-closed subgroup, Frobenius metric, minimizing geodesics, (symmetric) homogeneous space.

Mathematics Subject Classification (2020): 53C30, 15B30, 22E15.
Grants: This research has been partially supported by GNSAGA-INdAM (Italy).

Introduction

If M is a matrix belonging to a connected closed subgroup G of $G L_{n}(\mathbb{C})$, having \mathfrak{g} as Lie algebra, we say that a matrix $L \in \mathfrak{g}$ is a generalized principal \mathfrak{g}-logarithm of M, if $\exp (L)=M$ and $-\pi \leq \operatorname{Im}(\lambda) \leq \pi$, for every eigenvalue λ of L; the set of all generalized principal \mathfrak{g}-logarithms of M is denoted by $\mathfrak{g}-\operatorname{plog}(M)$. Our definition relaxes the usual one of principal logarithm, which excludes the matrices $M \in G L_{n}(\mathbb{C})$ with negative eigenvalues
(see, for instance, Higham 2008, Thm. 1.31]). The usual definition implies both existence and uniqueness of a principal logarithm. In some relevant cases, matrices with negative eigenvalues and belonging to a closed subgroup G of $G L_{n}(\mathbb{C})$, have an infinite set of generalized principal \mathfrak{g}-logarithms, on which it is possible to define some natural geometric structures. We have already studied the sets $\mathfrak{s o}_{n}-p \log (M)$, if $M \in S O_{n}$, and $g l_{n}(\mathbb{R})-$ $p \log (M)$, if M is semi-simple (see Dolcetti-Pertici 2018a and Pertici 2022]). Our interest in the set \mathfrak{g}-plog (M) is related to a differential-geometric setting, which we briefly describe. Denote by ϕ the Frobenius (or Hilbert-Schmidt) positive definite real scalar product on $\mathfrak{g l}_{n}(\mathbb{C})$, defined by $\phi(A, B):=\operatorname{Re}\left(\operatorname{tr}\left(A B^{*}\right)\right)$. If G is a connected closed subgroup G of the unitary group U_{n} (with Lie algebra \mathfrak{g}), we still denote by ϕ the Riemannian metric on G, obtained by restriction of the Frobenius scalar product of $\mathfrak{g l}_{n}(\mathbb{C})$. This metric is bi-invariant on G and the corresponding geodesics are the curves $\gamma(t)=P \exp (t X)$, where $X \in \mathfrak{g}$ and $P \in G$. The set of minimizing geodesic segments of (G, ϕ) is a classical and relevant subject of investigation.
In this paper we also assume that the group G is $S V D$-closed: a condition satisfied by many closed subgroup of U_{n}. The reason is that, under this assumption, for every $P_{0}, P_{1} \in G$, the set of minimizing geodesic segments of (G, ϕ) with endpoints P_{0} and P_{1}, can be parametrized by the set of generalized principal \mathfrak{g}-logarithms of $P_{0}^{*} P_{1}$ (see Theorem6.5). Therefore, a geometric structure on \mathfrak{g}-plog $\left(P_{0}^{*} P_{1}\right)$ induces a corresponding structure on the set of minimizing geodesic segments joining P_{0} and P_{1}.
To fully illustrate the statements of the title and of the previous result, we must explain the meaning of $S V D$-closure. Any matrix $M \in \mathfrak{g l}_{n}(\mathbb{C}) \backslash\{0\}$ has a unique decomposition (called $S V D$-decomposition of M) of the form $M=\sum_{i=1}^{p} \sigma_{i} A_{i}$, where $\sigma_{1}>\sigma_{2}>\cdots>\sigma_{p}>0$ are the non-zero singular values of M, and $A_{1}, A_{2}, \cdots A_{p}$ are non-zero complex matrices (called $S V D$-components of M) such that $A_{h}^{*} A_{j}=A_{h} A_{j}^{*}=0$, for every $h \neq j$, and $A_{j} A_{j}^{*} A_{j}=A_{j}$, for every j. We say that a real Lie subalgebra \mathfrak{g} of $\mathfrak{g l}_{n}(\mathbb{C})$ is SVD-closed if, for any matrix $M \in \mathfrak{g} \backslash\{0\}$, all SVD-components of M belong to \mathfrak{g}. A closed subgroup of $G L_{n}(\mathbb{C})$ is SVD-closed if its Lie algebra is SVD-closed in $\mathfrak{g l}_{n}(\mathbb{C})$.

Sections $\mathbb{1}$ and 2 are devoted to recall many general basic notions and preliminary facts on matrices. In Section 3 we discuss and determine a wide class of SVD-closed real Lie subalgebras of $\mathfrak{g l}_{n}(\mathbb{C})$. The key result is that the sets of fixed points of all automorphisms of the real Lie algebra $\mathfrak{g l}_{n}(\mathbb{C})$, commuting with the map $\eta: A \mapsto A^{*}$ and preserving the so-called triple Jordan product, are SVD-closed real Lie subalgebras of $\mathfrak{g l}_{n}(\mathbb{C})$ (see Proposition 3.5). In Section 4 , we prove that many classical groups of matrices are SVDclosed, as, for instance, the real general linear group $G L_{n}(\mathbb{R})$, the unitary group U_{n}, the special orthogonal complex group $S O_{n}(\mathbb{C})$, the symplectic groups $S p_{2 n}(\mathbb{C}), S p_{2 n}(\mathbb{R})$, the generalized unitary groups $U_{(p, n-p)}$ and all their intersections. In particular, we analyse the following families of SVD-closed subgroups of U_{n} :
$\langle V\rangle_{U_{n}}:=\left\{X \in U_{n}: X V=V X\right\}$, where V is an arbitrary unitary matrix, $\preccurlyeq Q \succcurlyeq_{U_{n}}:=\left\{X \in U_{n}: X Q X^{T}=Q\right\}$ and $\preccurlyeq Q \succcurlyeq_{S U_{n}}:=\preccurlyeq Q \succcurlyeq_{U_{n}} \cap S U_{n}$, where Q is an arbitrary real orthogonal matrix. Among them, we find many classical closed subgroups of U_{n}, as, for instance, $S O_{n}, \quad S p_{n}, \quad U_{(p, n-p)} \cap U_{n}$ and $\left(S O_{(p, n-p)}(\mathbb{C})\right) \cap U_{n}$.
In Section 5 we study the set $\mathfrak{g}-p \log (M)$ for a matrix M, belonging to a connected SVDclosed subgroup G of U_{n}, with Lie algebra \mathfrak{g}. In particular we prove that $\mathfrak{g}-\operatorname{plog}(M)$ is non-empty (see Proposition 5.5) and that it is a disjoint union of a finite number of compact submanifolds of \mathfrak{g}, each of which is diffeomorphic to a homogeneous space (Theorem 5.7). In Section 6 we obtain some results about of the Riemannian manifold (G, ϕ), where G is any connected SVD-closed subgroup of U_{n}, and, among them, the already mentioned Theorem 6.5. In addition, we compute the diameter of all connected SVD-closed subgroups of U_{n} that we considered in Section 4 (see Proposition 6.7).
The main result of Section 7 is Theorem 7.2 in which we prove that, for every $V \in U_{n}$ and $M \in\langle V\rangle_{U_{n}}$, the set $\langle V\rangle_{\mathbf{u}_{n}}-p l o g(M)$ has a finite number of components, each of which is a simply connected compact submanifold of \mathfrak{u}_{n}, diffeomorphic to the product of suitable complex Grassmannians. Finally, the main result of Section 8 is Theorem 8.5 which states that, for every $Q \in O_{n}$ and $M \in \preccurlyeq Q \succcurlyeq_{S U_{n}}$, the set $\preccurlyeq Q \succcurlyeq_{\text {su }_{n}}{ }^{-p l o g}(M)$ has a finite number of components, each of which is a simply connected compact submanifold of $\mathfrak{s u}_{n}$, diffeomorphic to the product of suitable complex Grassmannians with the symmetric homogeneous spaces $\frac{S O_{2 m}}{U_{m}}$ and $\frac{S p_{\mu}}{U_{\mu}}$.

1. Basic notations and some preliminary facts.

1.1. Notations.

a) In this paper we will use many standard notations from the matrix theory and from the theory of Lie groups and algebras.
Among these, if \mathbb{K} is either the field of real numbers \mathbb{R}, or the field of complex numbers \mathbb{C}, or the associative division algebra of quaternions \mathbb{H}, then $\mathfrak{g l}_{n}(\mathbb{K})$ denotes the real Lie algebra of square matrices of order n and $G L_{n}(\mathbb{K})$ the Lie group of invertible matrices of order n, both with coefficients in \mathbb{K}. In any case, the identity matrix and the null matrix of order n are denoted by I_{n} and by $\mathbf{0}_{n}$, respectively, and we define also $\mathbb{K}^{0}=\{0\}$. As usual, \mathbf{i} is the unit imaginary number of \mathbb{C} and \mathbf{j}, \mathbf{k} are the further standard imaginary unities of \mathbb{H}, so that $\mathbf{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=-1, \mathbf{i} \mathbf{j}=-\mathbf{j} \mathbf{i}=\mathbf{k}, \mathbf{j} \mathbf{k}=-\mathbf{k j}=\mathbf{i}, \mathbf{k i}=-\mathbf{i} \mathbf{k}=\mathbf{j}$. Note that any $q \in \mathbb{H}$ can be written in a unique way as $q=z+w \mathbf{j}$ with $z, w \in \mathbb{C}$, so that the complex field \mathbb{C} can be identified with the set of quaternions of the form $z+0 \cdot \mathbf{j}$, with $z \in \mathbb{C}$. We denote by $e^{z}:=\sum_{i=0}^{+\infty} \frac{z^{i}}{i!}$ the exponential of $z \in \mathbb{C}$ and, if $z \neq 0$, by $\log (z)$, the unique complex logarithm of z, whose imaginary part lies in the interval $(-\pi, \pi]$.
For every $A \in \mathfrak{g l}_{n}(\mathbb{H}), A^{T}, \bar{A}, A^{*}:=\bar{A}^{T}$ and A^{-1} (provided that A is invertible) are respectively transpose, conjugate, adjoint and inverse of the matrix A and $\operatorname{tr}(A)$ is its
trace. If $A \in \mathfrak{g l}_{n}(\mathbb{C}), \operatorname{det}(A)$ denotes its determinant, while $\exp (A):=\sum_{i=0}^{+\infty} \frac{A^{i}}{i!} \in G L_{n}(\mathbb{C})$ denotes the exponential of the matrix A.
If M_{1}, \cdots, M_{h} are square matrices of orders r_{1}, \cdots, r_{h}, respectively, then $M_{1} \oplus \cdots \oplus M_{h}$ denotes the related block-diagonal square matrix of order $r_{1}+\cdots+r_{h}$. Moreover, if B is a $p \times p$ matrix, then $B^{\oplus h}$ denotes the $p h \times p h$ block-diagonal matrix $\underbrace{B \oplus \cdots \oplus B}_{h \text { times }}$,
If $\mathcal{S}_{1}, \ldots, \mathcal{S}_{m}$ are sets of square matrices, then $\mathcal{S}_{1} \oplus \cdots \oplus \mathcal{S}_{m}$ denotes the set of all matrices $B_{1} \oplus \cdots \oplus B_{m}$ with $B_{j} \in \mathcal{S}_{j}$, for every j. If the sets $\mathcal{S}_{1}, \ldots, \mathcal{S}_{m}$ are mutually disjoint, we write $\bigsqcup_{i=1}^{h} S_{i}$ to denote their (disjoint) union.
To give a full generality to the results of this paper (and to their proofs), it is necessary to establish agreements on the notations that we will use: if h is a non-negative integer parameter, whenever, in any formula, we write any term as $\sum_{i=1}^{h}(\cdots), \bigoplus_{i=1}^{h}(\cdots)$ or $\prod_{i=1}^{h}(\cdots)$, we mean that, if $h=0$, this sum, this direct sum or this product must not appear in the related formula. Moreover, if G_{n} (for $n \geq 1$) denotes any classical Lie groups of matrices of order n, having Lie algebra \mathfrak{g}_{n}, and if H_{n} is a closed subgroup of G_{n}, we also assign a meaning to the expressions $G_{0}, \mathfrak{g}_{0}, \frac{G_{0}}{H_{0}}$, defining them all equal to a single point \mathcal{Q} which, conventionally, satisfies the following conditions:
$\lambda \mathcal{Q}=\mathcal{Q}$, for every $\lambda \in \mathbb{C} ; \quad \mathcal{Q} \oplus B=B \oplus \mathcal{Q}=B$, for any square matrix B; $\mathcal{Q} \oplus \mathcal{S}=\mathcal{S} \oplus \mathcal{Q}=\mathcal{S}$, for any set of square matrices \mathcal{S}.
It is also useful to define the zero-order identity matrix I_{0} and $M^{\oplus 0}$ (for every square matrix M) both equal to this point \mathcal{Q} and, to simplify the notations and some statements, the complex numbers, which are not eigenvalues of a matrix M, will be called eigenvalues of multiplicity zero of M. Furthermore, we denote:
$\Omega:=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right) ; \Omega_{n}:=\left(\begin{array}{cc}\mathbf{0}_{n} & -I_{n} \\ I_{n} & \mathbf{0}_{n}\end{array}\right) ;$ hence $\Omega_{1}=\Omega$, while, for $n \geq 2$, we have $\Omega_{n} \neq \Omega^{\oplus n} ;$ $W_{(p, q)}:=I_{p} \oplus \mathbf{i} I_{q}$, for every $p, q \geq 0$ such that $p+q \geq 1$ ($W_{(p, q)}$ is unitary and diagonal); $E_{\varphi}:=\left(\begin{array}{cc}\cos (\varphi) & -\sin (\varphi) \\ \sin (\varphi) & \cos (\varphi)\end{array}\right)=\cos (\varphi) I_{2}+\sin (\varphi) \Omega$, with $\varphi \in \mathbb{R}$, so $\Omega=E_{\pi / 2}$ and $E_{\varphi}^{\oplus h}=\cos (\varphi) I_{2 h}+\sin (\varphi) \Omega^{\oplus h}$ for every $h \geq 1 ;$
moreover, for every $p, q \geq 0$ with $p+q \geq 1, \quad E_{\varphi}^{(p, q)}:=E_{\varphi}^{\oplus p} \oplus\left(-E_{\varphi}\right)^{\oplus q}\left(\right.$ so $E_{\varphi}^{(n, 0)}=E_{\varphi}^{\oplus n}$) and $J^{(p, q)}:=I_{p} \oplus\left(-I_{q}\right)=E_{0}^{(p, q)} \quad\left(\right.$ so $J^{(p, 0)}=I_{p}$ and $\left.J^{(0, q)}=-I_{q}\right)$.
b) As usual, $O_{n}:=\left\{X \in g l_{n}(\mathbb{R}): X X^{T}=I_{n}\right\}$ is the real orthogonal group; $U_{n}:=\left\{X \in \mathfrak{g l}_{n}(\mathbb{C}): X X^{*}=I_{n}\right\}$ is the (complex) unitary group; $S O_{n}:=\left\{X \in O_{n}: \operatorname{det}(X)=1\right\}, S U_{n}:=\left\{X \in U_{n}: \operatorname{det}(X)=1\right\}$ are their special subgroups; while $U_{n}(\mathbb{H}):=\left\{X \in \mathfrak{g l}_{n}(\mathbb{H}): X X^{*}=I_{n}\right\}$ is the quaternionic unitary group. Note that the identification (recalled in (a)) of \mathbb{C} as a subalgebra of \mathbb{H}, allows to identify U_{n} with a subgroup of $U_{n}(\mathbb{H})$. In this paper this identification is always implied and not explicitly indicated. Furthermore, for every $p, q \geq 0$, with $p+q \geq 1$,

```
\(O_{(p, q)}(\mathbb{C}):=\left\{X \in \mathfrak{g l}_{(p+q)}(\mathbb{C}): X J^{(p, q)} X^{T}=J^{(p, q)}\right\}\),
\(S O_{(p, q)}(\mathbb{C}):=\left\{X \in O_{(p, q)}(\mathbb{C}): \operatorname{det}(X)=1\right\}\),
\(O_{(p, q)}:=O_{(p, q)}(\mathbb{C}) \cap \mathfrak{g l}_{(p+q)}(\mathbb{R}), \quad S O_{(p, q)}:=S O_{(p, q)}(\mathbb{C}) \cap \mathfrak{g l} l_{(p+q)}(\mathbb{R})\),
```

are the complex and real indefinite orthogonal groups, with their special subgroups; $U_{(p, q)}:=\left\{X \in \mathfrak{g l}_{(p+q)}(\mathbb{C}): X J^{(p, q)} X^{*}=J^{(p, q)}\right\}$ is the indefinite unitary group. Finally $S p_{2 n}(\mathbb{C}):=\left\{X \in \mathfrak{g l}_{2 n}(\mathbb{C}): X \Omega_{n} X^{T}=\Omega_{n}\right\} \quad$ and $\quad S p_{2 n}(\mathbb{R}):=S p_{2 n}(\mathbb{C}) \cap \mathfrak{g l}_{2 n}(\mathbb{R})$ are, respectively, the complex and real symplectic groups; while $S p_{n}:=S p_{2 n}(\mathbb{C}) \cap U_{2 n}$ is the compact symplectic group. Of course, all the previous are real Lie groups of matrices.
We recall that a well-known Cartan theorem states that a subgroup H of a given Lie group G is closed if and only if it is an embedded real submanifold of G. Of course, if the Lie group G is compact, then every closed subgroup of G is compact too.
If G is any Lie group and $P \in G$, then $T_{P}(G)$ denotes the tangent space of G at P.
c) The Lie algebras related to the previous Lie groups are denoted by:
$\mathfrak{s o}_{n}=\left\{A \in g l_{n}(\mathbb{R}): A=-A^{T}\right\}$, the Lie algebra of both O_{n} and $S O_{n} ;$
$\mathfrak{u}_{n}=\left\{A \in \mathfrak{g l}_{n}(\mathbb{C}): A=-A^{*}\right\}$, the Lie algebra of $U_{n} ;$
$\mathfrak{s u}_{n}=\left\{A \in \mathfrak{g l}_{n}(\mathbb{C}): A=-A^{*}, \operatorname{tr}(A)=0\right\}$, the Lie algebra of $S U_{n} ;$
$\mathfrak{u}_{n}(\mathbb{H})=\left\{A \in \mathfrak{g l}_{n}(\mathbb{H}): A=-A^{*}\right\}$, the Lie algebra of $U_{n}(\mathbb{H})$.
The Lie algebras of the remaining Lie groups will be denoted by the corresponding small gothic letters: for instance, $\mathfrak{s o}_{(p, q)}(\mathbb{C})$ and $\mathfrak{s p}_{n}$ are the Lie algebras of $S O_{(p, q)}(\mathbb{C})$ and of $S p_{n}$, respectively.
d) If $B \in G L_{n}(\mathbb{C})$, we denote by $A d_{B}$ the map from $\mathfrak{g l}_{n}(\mathbb{C})$ onto itself, defined by $A d_{B}: A \mapsto A d_{B}(A):=B A B^{-1}$. Note that $A d_{B}$ commutes with the exponential map. In this paper, we will still denote by $A d_{B}$ the restriction of this map to any subset of $\mathfrak{g l}_{n}(\mathbb{C})$. We indicate with τ, μ and η the maps from $\mathfrak{g l}_{n}(\mathbb{C})$ onto itself, given by: $\tau: A \mapsto A^{T}$, $\mu: A \mapsto \bar{A}, \quad \eta: A \mapsto A^{*}$. The maps $\mu,-\tau,-\eta$ and $A d_{B}$ (with $B \in G L_{n}(\mathbb{C})$) are automorphisms of the real Lie algebra $\mathfrak{g l}_{n}(\mathbb{C})$; furthermore, the automorphisms $\mu,-\tau,-\eta$ are involutive, mutually commuting and the composition of any two of them is the third automorphism; hence the group generated by $\mu,-\tau,-\eta$ is isomorphic to $\mathbb{Z}_{2} \oplus \mathbb{Z}_{2}$.
e) We denote by ϕ the Frobenius (or Hilbert-Schmidt) positive definite real scalar product on $\mathfrak{g l}_{n}(\mathbb{C})$, defined by $\phi(A, B):=\operatorname{Re}\left(\operatorname{tr}\left(A B^{*}\right)\right)$, and we denote by $\|A\|_{\phi}:=\sqrt{\phi(A, A)}=$ $\sqrt{\operatorname{tr}\left(A A^{*}\right)}$, the related Frobenius norm. Note that, if $A \in \mathfrak{u}_{n}$, then $\|A\|_{\phi}^{2}=-\operatorname{tr}\left(A^{2}\right)$. Since the eigenvalues of the skew-hermitian matrix A are purely imaginary, we also get $\|A\|_{\phi}=\sqrt{-\operatorname{tr}\left(A^{2}\right)}=\sqrt{\sum_{j=1}^{n}\left|\lambda_{j}\right|^{2}}$, where $\lambda_{1}, \cdots, \lambda_{n}$ are the n eigenvalues of A.
1.2. Remarks. a) The map $\rho: \mathbb{C} \rightarrow \mathfrak{g l}_{2}(\mathbb{R})$, given by $\rho(z):=\operatorname{Re}(z) I_{2}+\operatorname{Im}(z) \Omega=$ $\left(\begin{array}{cc}\operatorname{Re}(z) & -\operatorname{Im}(z) \\ \operatorname{Im}(z) & \operatorname{Re}(z)\end{array}\right)$, is a monomorphism of \mathbb{R}-algebras, such that $\rho(\bar{z})=\rho(z)^{T}$ and such that $\rho(z) \in G L_{2}(\mathbb{R})$ as soon as $z \neq 0$. More generally, for any $h \geq 1$, we denote again
by ρ the mapping: $\mathfrak{g l}_{h}(\mathbb{C}) \rightarrow \mathfrak{g l}_{2 h}(\mathbb{R})$, which maps the $h \times h$ complex matrix $Z=\left(z_{i j}\right)$ to the block matrix $\rho(Z)=\left(\rho\left(z_{i j}\right)\right) \in \mathfrak{g l}_{2 h}(\mathbb{R})$, having h^{2} blocks of order 2×2. We say that ρ is the decomplexification map. It is not hard to prove that, if $\lambda_{1}, \cdots, \lambda_{h}$ are the h eigenvalues of any matrix $Z \in \mathfrak{g l}_{h}(\mathbb{C})$, then $\lambda_{1}, \bar{\lambda}_{1}, \cdots, \lambda_{h}, \bar{\lambda}_{h}$ are the $2 h$ eigenvalues of $\rho(Z) \in \mathfrak{g l}_{2 h}(\mathbb{R})$ and that ρ is a monomorphism of \mathbb{R}-algebras, whose restriction to $G L_{h}(\mathbb{C})$ is a monomorphism of Lie groups, having as image $\rho\left(\mathfrak{g l}_{h}(\mathbb{C})\right) \cap G L_{2 h}(\mathbb{R})$. We have also $\rho\left(Z^{*}\right)=\rho(Z)^{T}$; so, the restriction of ρ to U_{h} is a monomorphism of Lie groups and $\rho\left(U_{h}\right)=\rho\left(\mathfrak{g l}_{h}(\mathbb{C})\right) \cap S O_{2 h}$. From now on, to simplify the notations, the map ρ will be omitted, hence we will regard the real Lie algebra $\mathfrak{g l}_{h}(\mathbb{C})$ as Lie subalgebra of $\mathfrak{g l}_{2 h}(\mathbb{R})$, the Lie groups $G L_{h}(\mathbb{C})$ and U_{h} as closed subgroups of $G L_{2 h}(\mathbb{R})$ and $S O_{2 h}$, respectively; in particular we will write $U_{h}=\mathfrak{g l}_{h}(\mathbb{C}) \cap S O_{2 h}$.
b) We denote by $\Psi: \mathbb{H} \rightarrow \mathfrak{g l}_{2}(\mathbb{C})$ the map: $z+w \mathbf{j} \mapsto \Psi(z+w \mathbf{j}):=\left(\begin{array}{cc}z & -w \\ \bar{w} & \bar{z}\end{array}\right)$, where $z, w \in \mathbb{C}$; this map is a monomorphism of \mathbb{R}-algebras. Note that, for every $q \in \mathbb{H}$, we have $\Psi(\bar{q})=(\Psi(q))^{*}$. It is possible to extend this map to a monomorphism of \mathbb{R}-algebras (still denoted by the same symbol) $\Psi: \mathfrak{g l}_{h}(\mathbb{H}) \rightarrow \mathfrak{g l}_{2 h}(\mathbb{C}) \quad(h \geq 1)$, which maps the $h \times h$ quaternion matrix $Q=\left(q_{i j}\right)$ to the block matrix $\Psi(Q)=\left(\Psi\left(q_{i j}\right)\right) \in \mathfrak{g l}_{2 h}(\mathbb{C})$, having h^{2} blocks of order 2×2. It can be easily checked that we have $\Psi\left(A^{*}\right)=(\Psi(A))^{*}$ and $\left(\Omega^{\oplus h}\right) \Psi\left(A^{*}\right)\left(\Omega^{\oplus h}\right)^{T}=(\Psi(A))^{T}$, for every $A \in \mathfrak{g l}_{h}(\mathbb{H})$. Moreover, Ψ maps $G L_{h}(\mathbb{H})$ into $G L_{2 h}(\mathbb{C})$ and $U_{h}(\mathbb{H})$ into $U_{2 h}$; both restrictions $G L_{h}(\mathbb{H}) \rightarrow G L_{2 h}(\mathbb{C})$ and $U_{h}(\mathbb{H}) \rightarrow U_{2 h}$ are monomorphisms of Lie groups. Hence, up to the isomorphim Ψ, we will consider $\mathfrak{g l}_{h}(\mathbb{H})$ as real Lie subalgebra of $\mathfrak{g l}_{2 h}(\mathbb{C}), \quad G L_{h}(\mathbb{H})$ as closed subgroup of $G L_{2 h}(\mathbb{C})$ and $U_{h}(\mathbb{H})$ as closed subgroup of $U_{2 h}$.
Note also that the monomorphism Ψ maps the closed subgroup U_{h} of $U_{h}(\mathbb{H})$ onto a closed subgroup of $\Psi\left(U_{h}(\mathbb{H})\right) \subset U_{2 h}$, so that the elements of $\Psi\left(U_{h}\right)$ are the $2 h \times 2 h$ complex unitary matrices, having h^{2} blocks $Z_{i j}$ of the form: $Z_{i j}=\left(\begin{array}{cc}z_{i j} & 0 \\ 0 & \bar{z}_{i j}\end{array}\right)$, with $z_{i j} \in \mathbb{C}$.
As in the case of the map ρ, from now on, to simplify the notations, we will omit to indicate the map Ψ and so, for instance, we will simply write $U_{h}(\mathbb{H})=U_{2 h} \cap \mathfrak{g l}_{h}(\mathbb{H})$ and $\mathfrak{u}_{h}(\mathbb{H})=\mathfrak{u}_{2 h} \cap \mathfrak{g l}_{h}(\mathbb{H})$. From this last equality, we easily get that every matrix of $\mathfrak{u}_{h}(\mathbb{H})$ has trace 0 . Therefore, since $U_{h}(\mathbb{H})=\exp \left(\mathfrak{u}_{h}(\mathbb{H})\right)$, the group $U_{h}(\mathbb{H})$ is contained in $S U_{2 h}$, hence $U_{h}(\mathbb{H})=S U_{2 h} \cap \mathfrak{g l}_{h}(\mathbb{H})$ and $\mathfrak{u}_{h}(\mathbb{H})=\mathfrak{s u}_{2 h} \cap \mathfrak{g l}_{h}(\mathbb{H})$.
c) Fixed $n \geq 1$, for any $i, j=1, \cdots, 2 n$, let $W(i, j)$ be the square matrix of order $2 n$, having 1 at the entry (i, j) and 0 elsewhere, and let B be the $2 n \times 2 n$ real matrix defined by $B:=\sum_{j=1}^{n}(W(j, 2 j-1)+W(n+j, 2 j))$. Since $W(i, j) W(h, k)=\delta_{j h} W(i, k)$, it is easy to check that B is an orthogonal matrix such that $B^{T} \Omega_{n} B=\Omega^{\oplus n}$; from this, one can get that X belongs to $U_{n}(\mathbb{H})$ if and only if $B X B^{T}$ belongs to $S p_{n}$, i.e. $A d_{B}\left(U_{n}(\mathbb{H})\right)=S p_{n}$. It is also easy to check that $A d_{B}$ maps the closed subgroup U_{n} of $U_{n}(\mathbb{H})$ onto the closed
subgroup of $S p_{n}$ of matrices of the form $A \oplus \bar{A}$ with $A \in U_{n}$. Hence U_{n} can be regarded as the closed subgroup of $S p_{n}$ of matrices of this form, and so, the simply connected compact symmetric homogeneous space $\frac{S p_{n}}{U_{n}}$, obtained in this way, is diffeomorphic to $\frac{U_{n}(\mathbb{H})}{U_{n}}$. d) Let Φ be the automorphism of \mathbb{R}-algebra \mathbb{H}, defined by $\Phi(t+x \mathbf{i}+y \mathbf{j}+z \mathbf{k})=t+y \mathbf{i}+x \mathbf{j}-z \mathbf{k}$, for every $t, x, y, z \in \mathbb{R}$. We have: $\Phi(\bar{q})=\overline{\Phi(q)}$, for every $q \in \mathbb{H}$. Acting on each single entry of the matrix, this map induces an automorphism (still denoted by Φ) of the \mathbb{R}-algebra $\mathfrak{g l}_{n}(\mathbb{H})$. Since $\Phi\left(A^{*}\right)=\Phi(A)^{*}$, for every $A \in \mathfrak{g l}_{n}(\mathbb{H})$, the restriction of Φ to $U_{n}(\mathbb{H})$ is an automorphism of Lie group $U_{n}(\mathbb{H})$, which maps U_{n} onto a closed subgroup of $U_{n}(\mathbb{H})$. Hence the homogeneous space $\frac{U_{n}(\mathbb{H})}{\Phi\left(U_{n}\right)}$ is diffeomorphic to $\frac{U_{n}(\mathbb{H})}{U_{n}}$ and, by (c), also to $\frac{S p_{n}}{U_{n}}$. Remembering (b), up to the map Ψ, the subgroup $\Phi\left(U_{n}\right)$ of $U_{n}(\mathbb{H})$ can be identified with the subgroup of $U_{2 n}$, whose elements are the $2 n \times 2 n$ special orthogonal matrices, having n^{2} real blocks $U_{i j}$ of the form: $U_{i j}=\left(\begin{array}{cc}x_{i j} & -y_{i j} \\ y_{i j} & x_{i j}\end{array}\right)$. Note that, remembering (a), the restriction of Φ to U_{n} agrees with the restriction to U_{n} of the decomplexification map ρ.

2. Commuting matrices and SVD-systems

2.1. Notation. Let $\mathcal{S} \subseteq \mathfrak{g l}_{n}(\mathbb{C})$ and $M \in \mathfrak{g l}_{n}(\mathbb{C})$. We denote
$\langle M\rangle_{\mathcal{S}}:=\{X \in \mathcal{S}: X M=M X\} \quad$ and $\quad \preccurlyeq M \succcurlyeq_{\mathcal{S}}:=\{X \in \mathcal{S}: X M=M \bar{X}\}$.
2.2. Remarks. a) Let $A \in U_{n}, M \in \mathfrak{g l}_{n}(\mathbb{C})$ and $\mathcal{S} \subseteq \mathfrak{g l}_{n}(\mathbb{C})$. It is easy to check that $A d_{A}\left(\preccurlyeq M \succcurlyeq_{\mathcal{S}}\right)=\preccurlyeq A M A^{T} \succcurlyeq_{A_{A}(\mathcal{S})}$.
In particular, if $A \in O_{n}$, we get $A d_{A}\left(\preccurlyeq M \succcurlyeq_{\mathcal{S}}\right)=\preccurlyeq A d_{A}(M) \succcurlyeq_{A d_{A}(\mathcal{S})}$.
b) Let G be a closed subgroup of $G L_{n}(\mathbb{C})$, having $\mathfrak{g} \subseteq \mathfrak{g l}_{n}(\mathbb{C})$ as Lie algebra and let M be any matrix in $\mathfrak{g l}_{n}(\mathbb{C})$. Then $\langle M\rangle_{G}$ and $\preccurlyeq M \succcurlyeq_{G}$ are closed subgroups of G, whose Lie algebras are $\langle M\rangle_{\mathfrak{g}}$ and $\preccurlyeq M \succcurlyeq_{\mathfrak{g}}$, respectively.
2.3. Lemma. a) Let $\varphi \in \mathbb{R}, \varphi \neq k \pi, k \in \mathbb{Z}$. Any matrix of $\mathfrak{g l}_{2 n}(\mathbb{C})$ commutes with $E_{\varphi}^{\oplus n}$ if and only if it commutes with $\Omega^{\oplus n}$, i.e. $\left\langle E_{\varphi}^{\oplus n}\right\rangle_{\mathfrak{g l}_{2 n}(\mathrm{C})}=\left\langle\Omega^{\oplus n}\right\rangle_{\mathfrak{g l}_{2 n}(\mathrm{C})}$.
b) Let \mathcal{S} be any subset of $\mathfrak{g l}_{2 n}(\mathbb{C})$, then $\left\langle\Omega^{\oplus n}\right\rangle_{\mathcal{S}}$ consists of the matrices of \mathcal{S}, having n^{2} blocks of the form: $X_{i j}=\left(\begin{array}{cc}a_{i j} & -b_{i j} \\ b_{i j} & a_{i j}\end{array}\right)$, with $a_{i j}, b_{i j} \in \mathbb{C}$.

Proof. Part (a) is trivial and follows from $E_{\varphi}^{\oplus n}=\cos (\varphi) I_{2 n}+\sin (\varphi) \Omega^{\oplus n}$ and $\sin (\varphi) \neq 0$. For part (b), we can write an arbitrary matrix of \mathcal{S} in n^{2} blocks, $X_{i j}$, each of them of order 2. We easily get that such a matrix commutes with $\Omega^{\oplus n}$ if and only if each block commutes with Ω, i. e. if and only if each $X_{i j}$ is of the form stated in (b).
2.4. Lemma. Let $D:=\bigoplus_{j=1}^{s} D_{j} \in \mathfrak{g l}_{n}(\mathbb{C})$ be a block diagonal matrix, with $D_{j} \in \mathfrak{g l}_{n_{j}}(\mathbb{C})$ simisimple matrices. Denote by S_{j} and by $-S_{j}(j=1, \cdots, s)$, respectively, the set of the eigenvalues of D_{j} and the sets of their opposites.
a) Assume that $S_{i} \cap\left(-S_{j}\right)=\emptyset$ as soon as $i \neq j$. Then a matrix $A \in \mathfrak{g l}_{n}(\mathbb{C})$ anticommutes with D if and only if $A=\bigoplus_{j=1}^{s} A_{j}$, where each A_{j} belongs to $\mathfrak{g l}_{n_{j}}(\mathbb{C})$ and anticommutes with D_{j}.
b) Assume that $S_{i} \cap S_{j}=\emptyset$ as soon as $i \neq j$. Then a matrix $A \in \mathfrak{g l}_{n}(\mathbb{C})$ commutes with D if and only if $A=\bigoplus_{j=1}^{s} A_{j}$, where each A_{j} belongs to $\mathfrak{g l}_{n_{j}}(\mathbb{C})$ and commutes with D_{j}.

Proof. We proof only part (a), being part (b) similar and easier.
We write the matrix A in blocks $A=\left(A_{i j}\right)$, consistent with the block structure of D, so the condition $A D=-D A$ is equivalent to $A_{i j} D_{j}=-D_{i} A_{i j}$, for $i, j=1, \cdots, n$. Assume $i \neq j$ and let \mathcal{B} be a basis of $\mathbb{C}^{n_{j}}$, consisting of eigenvectors of D_{j}. If $v \in \mathcal{B}$, with associated eigenvalue λ, then $D_{i}\left(A_{i j} v\right)=-A_{i j} D_{j} v=-\lambda\left(A_{i j} v\right)$. This implies that $A_{i j} v=0$, otherwise (against the assumptions made) $-\lambda$ would be eigenvalue of D_{i}. This holds for every $v \in \mathcal{B}$ and so, $A_{i j}=\mathbf{0}$, as soon as $i \neq j$. Therefore $A=\bigoplus_{j=1}^{s} A_{j j}$, where each $A_{j j}$ anticommutes with D_{j}. The converse is trivial.
2.5. Remark-Definition. If $M \in \mathfrak{g l}_{n}(\mathbb{C})$ and G is a closed subgroup of $G L_{n}(\mathbb{C})$, we call $A d(G)$-orbit of M, denoted by $A d(G)(M)$, the set $\left\{A d_{B}(M)=B M B^{-1}: B \in G\right\}$.
It is well-known that each orbit $\operatorname{Ad}(G)(M)$ is an immersed submanifold of $\mathfrak{g l}_{n}(\mathbb{C})$, diffeomorphic to the homogeneous space $\frac{G}{\langle M\rangle_{G}}$, being $\langle M\rangle_{G}$ the isotropy subgroup of M with respect to the action of G; furthermore, if G is compact, then $\operatorname{Ad}(G)(M)$ is a compact (embedded) submanifold of $\mathfrak{g l}_{n}(\mathbb{C})$ (see, for instance, EoM-Orbit).
2.6. Remarks-Definitions. A non-empty family of matrices $A_{1}, \cdots, A_{p} \in \mathfrak{g l}_{n}(\mathbb{C}) \backslash\{0\}$ is said to be an $S V D$-system, if $A_{h}^{*} A_{j}=A_{h} A_{j}^{*}=0$, for every $h \neq j$, and $A_{j} A_{j}^{*} A_{j}=A_{j}$, for every $j=1, \cdots, p$. Note that, if A_{1}, \cdots, A_{p} is an SVD-system, then
a) the matrices A_{1}, \cdots, A_{p} are linearly independent over \mathbb{C};
b) $c_{1} A_{1}, c_{2} A_{2}, \cdots, c_{p} A_{p}$ is still an SVD-system, if $c_{j} \in \mathbb{C}$ and $\left|c_{j}\right|=1$, for $j=1, \cdots, p$. We call $S V D$-decomposition of $M \in \mathfrak{g l}_{n}(\mathbb{C}) \backslash\{0\}$, any decomposition $M=\sum_{j=1}^{p} \sigma_{j} A_{j}$, where $A_{1}, \cdots, A_{p} \in \mathfrak{g l}_{n}(\mathbb{C}) \backslash\{0\}$ form an SVD-system and $\sigma_{1}>\sigma_{2}>\cdots>\sigma_{p}>0$ are positive real numbers. Any matrix $M \in \mathfrak{g l}_{n}(\mathbb{C}) \backslash\{0\}$ has an SVD-decomposition $M=\sum_{j=1}^{p} \sigma_{j} A_{j}$ and this decomposition is unique, i.e. if $M=\sum_{h=1}^{q} \tau_{h} B_{h}$ is another SVD-decomposition, then $p=q, \sigma_{j}=\tau_{j}$ and $A_{j}=B_{j}$ for every $j=1, \cdots, p$. The positive numbers $\sigma_{1}, \sigma_{2}, \ldots, \sigma_{p}$ are the distinct square roots of the non-zero eigenvalues of $M^{*} M$; they are known as the non-zero singular values of M. We say that the matrices $A_{1}, \cdots A_{p}$ are the $S V D$ components of M. For more information, see for instance Horn-Johnson 2013, Thm. 2.6.3], Ottaviani-Paoletti 2015, Thm.3.4] and also Dolcetti-Pertici 2017, § 4].
2.7. Lemma. Let A_{1}, \cdots, A_{p} be an $S V D$-system of skew-hermitian matrices of order n, let $\theta_{1}>\theta_{2}>\cdots>\theta_{p}$ be real numbers and denote $M:=\sum_{j=1}^{p} \theta_{j} A_{j}$. Then
a) the eigenvalues of A_{j} are: \mathbf{i} with multiplicity $\mu_{j} \geq 0,-\mathbf{i}$ with multiplicity $\nu_{j} \geq 0$ (where $\mu_{j}+\nu_{j} \geq 1$) and 0 with multiplicity $n-\left(\mu_{j}+\nu_{j}\right) \geq 0$, for every $j=1, \cdots, p$; b) the distinct eigenvalues of M are $\mathbf{i} \theta_{j}$ with multiplicity $\mu_{j} \geq 0,-\mathbf{i} \theta_{j}$ with multiplicity $\nu_{j} \geq 0\left(\right.$ for $j=1, \cdots, p$ and $\left.\sum_{j=1}^{p}\left(\mu_{j}+\nu_{j}\right) \geq p\right)$, and 0 with multiplicity $n-\sum_{j=1}^{p}\left(\mu_{j}+\nu_{j}\right) \geq 0$.

Proof. Since A_{1}, \cdots, A_{p} is an SVD-system of skew-hermitian matrices, each matrix A_{j} satisfies the matrix equation $X^{3}+X=0$. This allows to obtain (a).
We have $A_{h} A_{j}=-A_{h} A_{j}^{*}=0$, for every $h \neq j$; these conditions imply that, if v is an eigenvector of A_{j} associated with the eigenvalue \mathbf{i} or $-\mathbf{i}$, then $A_{h} v=0$, for every $j \neq h$. Moreover the same conditions give, in particular, that the matrices A_{h} and A_{j} commute, hence A_{1}, \cdots, A_{p} are simultaneously diagonalizable (together with M) by means of a unitary matrix (see for instance Horn-Johnson 2013, Thm. 2.5.5 p. 135]). Using a common (orthonormal) basis of eigenvectors, we easily obtain (b).
2.8. Lemma. Let $A_{1}, A_{2}, \cdots, A_{p}$ be an SVD-system of skew-hermitian matrices of order n and let $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{p}$ be complex numbers. Then

$$
\exp \left(\sum_{j=1}^{p} \alpha_{j} A_{j}\right)=I_{n}+\sum_{j=1}^{p}\left[\sin \left(\alpha_{j}\right) A_{j}+\left(1-\cos \left(\alpha_{j}\right)\right) A_{j}^{2}\right]
$$

Proof. Since $A_{1}, A_{2}, \cdots, A_{p}$ are skew-hermitian, as in the proof of Lemma 2.7 the properties of being an SVD-system give: $A_{h} A_{j}=0$, for $h \neq j$ (so A_{h} and A_{j} commute), and $A_{j}^{3}=$ $-A_{j}$, for every j. Hence $\left(\alpha_{j} A_{j}\right)^{2 k-1}=(-1)^{k-1} \alpha_{j}^{2 k-1} A_{j}$ and $\left(\alpha_{j} A_{j}\right)^{2 k}=(-1)^{k-1} \alpha_{j}^{2 k} A_{j}^{2}$, for every $j=1, \cdots, p$ and for every $k \geq 1$. Therefore: $\exp \left(\sum_{j=1}^{p} \alpha_{j} A_{j}\right)=\prod_{j=1}^{p} \exp \left(\alpha_{j} A_{j}\right)=$ $\prod_{j=1}^{p}\left[I_{n}+\sin \left(\alpha_{j}\right) A_{j}+\left(1-\cos \left(\alpha_{j}\right)\right) A_{j}^{2}\right]=I_{n}+\sum_{j=1}^{p}\left[\sin \left(\alpha_{j}\right) A_{j}+\left(1-\cos \left(\alpha_{j}\right)\right) A_{j}^{2}\right]$.
2.9. Remark. Lemma 2.8 gives one of the possible generalizations of the classical Rodrigues' formula (see Gallier-Xu 2002, Thm. 2.2] and Dolcetti-Pertici 2018b, Ex. 4.11]). Note also that, from this Lemma, we obtain $\exp (\alpha \Omega)=E_{\alpha}$, for every $\alpha \in \mathbb{R}$.

3. SVD-closed Real Lie subalgebras of $\mathfrak{g l}_{n}(\mathbb{C})$

3.1. Remark-Definition. We say that a real Lie subalgebra \mathfrak{g} of $\mathfrak{g l}_{n}(\mathbb{C})$ is SVD-closed if all SVD-components of every matrix of $\mathfrak{g} \backslash\{0\}$ belong to \mathfrak{g}.
Note that any intersection of SVD-closed real Lie subalgebras of $\mathfrak{g l}_{n}(\mathbb{C})$ is an SVD-closed real Lie subalgebra of $\mathfrak{g r}_{n}(\mathbb{C})$.
3.2. Notation. We denote by \mathfrak{A}_{n} the group, whose elements are the automorphisms f of the real Lie algebra $\mathfrak{g l}_{n}(\mathbb{C})$, such that
i) $f \circ \eta=\eta \circ f \quad$ (i.e. $f\left(A^{*}\right)=f(A)^{*}, \quad$ for every $A \in \mathfrak{g l}_{n}(\mathbb{C})$);
ii) $f(A B A)=f(A) f(B) f(A)$, for every $A, B \in \mathfrak{g l}_{n}(\mathbb{C}) \quad$ (i.e. f preserves the so-called Jordan triple product).
3.3. Lemma. The elements of \mathfrak{A}_{n} are precisely the following maps:
(1) $X \mapsto A d_{V}(X)=V X V^{*}$,
(2) $X \mapsto\left(A d_{V} \circ \mu\right)(X)=V \bar{X} V^{*}$,
(3) $X \mapsto\left(A d_{V} \circ(-\tau)\right)(X)=-V X^{T} V^{*}$,
(4) $X \mapsto\left(A d_{V} \circ(-\eta)\right)(X)=-V X^{*} V^{*}$,
for every $V \in U_{n}$.

Proof. It is easy to check that the previous maps are elements of \mathfrak{A}_{n}.
For the converse, consider the decomposition $\mathfrak{g l}_{n}(\mathbb{C})=\mathcal{H}_{n} \oplus \mathfrak{u}_{n}$, where \mathcal{H}_{n} is the real vector subspace of $\mathfrak{g l}_{n}(\mathbb{C})$ of hermitian matrices, so that every matrix $Z \in \mathfrak{g l}_{n}(\mathbb{C})$ can be uniquely written as $Z=\frac{Z+Z^{*}}{2}+\frac{Z-Z^{*}}{2}$, with $\frac{Z+Z^{*}}{2} \in \mathcal{H}_{n}$ and $\frac{Z-Z^{*}}{2} \in \mathfrak{u}_{n}$; let $f \in \mathfrak{A}_{n}$ and denote by f_{1} and by f_{2} the restrictions of f to \mathcal{H}_{n} and to \mathfrak{u}_{n}, respectively. Since $f \circ \eta=\eta \circ f$, we have $f_{1}\left(\mathcal{H}_{n}\right)=\mathcal{H}_{n}$ and $f_{2}\left(\mathfrak{u}_{n}\right)=\mathfrak{u}_{n}$. By An-Hou 2006, Thm. 2.1], there exists a unitary matrix $V \in U_{n}$ such that we have
either $f_{1}=A d_{V}$ or $f_{1}=-A d_{V} \quad$ or $f_{1}=A d_{V} \circ \mu \quad$ or $f_{1}=-A d_{V} \circ \mu$.
In particular, this implies $f\left(I_{n}\right)= \pm I_{n}$.
Now we denote $\mathcal{M}:=\mathbf{i} I_{n}$ and $\mathcal{N}:=I_{n}-\mathcal{M}=(1-\mathbf{i}) I_{n}$, so that $\mathcal{N} Y \mathcal{N}=-2 \mathbf{i} Y$, for every $Y \in \mathfrak{g l}_{n}(\mathbb{C})$. Since f is an automorphism of the Lie algebra $\mathfrak{g l}_{n}(\mathbb{C})$ and \mathcal{M} belongs to its center \mathcal{Z}, then also $f(\mathcal{M})$ belongs to \mathcal{Z}, i.e. $f(\mathcal{M})=\lambda I_{n}$ for some $\lambda \in \mathbb{C}$. Since f preserves the Jordan triple product, we get: $-f\left(I_{n}\right)=f\left(\mathcal{M} I_{n} \mathcal{M}\right)=\lambda^{2} f\left(I_{n}\right)$. Hence $\lambda= \pm \mathbf{i}$, so that $f(\mathcal{N})=f\left(I_{n}\right)-f(\mathcal{M})=\left(\varepsilon_{1}+\varepsilon_{2} \mathbf{i}\right) I_{n}$, where $\varepsilon_{1}, \varepsilon_{2}= \pm 1$; from this we get $f(\mathcal{N})^{2}=2 \varepsilon \mathbf{i} I_{n}$, where $\varepsilon= \pm 1$. Fixed $Y \in \mathfrak{u}_{n}$, we have $(\mathbf{i} Y)^{*}=\mathbf{i} Y$ and, so, $\mathcal{N} Y \mathcal{N}=-2 \mathbf{i} Y \in \mathcal{H}_{n}$. Remembering that f preserves the Jordan triple product, we get $-2 f_{1}(\mathbf{i} Y)=f_{1}(\mathcal{N} Y \mathcal{N})=f(\mathcal{N}) f_{2}(Y) f(\mathcal{N})=2 \varepsilon \mathbf{i} f_{2}(Y)$ and this gives $f_{2}(Y)=\varepsilon \mathbf{i} f_{1}(\mathbf{i} Y)$. This last equality implies that $f(Z)=\frac{1}{2}\left[f_{1}\left(Z+Z^{*}\right)+\varepsilon \mathbf{i} f_{1}\left(\mathbf{i} Z-\mathbf{i} Z^{*}\right)\right]$, for every $Z \in \mathfrak{g l}_{n}(\mathbb{C})$. Taking into account the four possible expressions for f_{1} (and the fact that $\varepsilon= \pm 1$), easy computations allow to obtain the following eight possible expressions for f :
$\pm A d_{V}, \quad \pm A d_{V} \circ \mu, \quad \pm A d_{V} \circ \eta, \quad \pm A d_{V} \circ \tau$.
But $-A d_{V},-A d_{V} \circ \mu, A d_{V} \circ \eta, A d_{V} \circ \tau$ are not automorphisms of the real Lie algebra $\mathfrak{g l}_{n}(\mathbb{C})$, while the remaining four are the expressions for f in the statement.
3.4. Remark. If $f \in \mathfrak{A}_{n}$, then either $f(X Y)=f(X) f(Y)$ for every $X, Y \in \mathfrak{g l}_{n}(\mathbb{C})$ (in the cases (1) and (2) of Lemma 3.3) or $f(X Y)=-f(Y) f(X)$ for every $X, Y \in \mathfrak{g l}_{n}(\mathbb{C})$ (in the remaining cases (3) and (4)).
3.5. Proposition. For every $f \in \mathfrak{A}_{n}$, the set Fix $(f):=\left\{M \in \mathfrak{g l}_{n}(\mathbb{C}): f(M)=M\right\}$ is an SVD-closed real Lie subalgebra of $\mathfrak{g l}_{n}(\mathbb{C})$.

Proof. Choose an element f of $\mathfrak{A}_{n} ; F i x(f)$ is a real Lie subalgebra of $\mathfrak{g l}_{n}(\mathbb{C})$, since f is an automorphism of the real Lie algebra $\mathfrak{g l}_{n}(\mathbb{C})$. Hence it suffices to prove that Fix (f) is SVDclosed. Let $M=\sum_{i=1}^{p} \sigma_{i} A_{i}$ be a matrix of $F i x(f) \backslash\{0\}$, with its SVD-decomposition; since f is \mathbb{R}-linear, we have $M=f(M)=\sum_{i=1}^{p} \sigma_{i} f\left(A_{i}\right)$. By conditions (i), (ii) of Notation 3.2 we have $f\left(A_{i}\right) f\left(A_{i}\right)^{*} f\left(A_{i}\right)=f\left(A_{i} A_{i}^{*} A_{i}\right)=f\left(A_{i}\right)$, for $i=1, \cdots, p$. Furthermore, by Remark
$3.4 f\left(A_{i}\right) f\left(A_{j}\right)^{*}$ equals either $f\left(A_{i} A_{j}^{*}\right)$ or $-f\left(A_{j}^{*} A_{i}\right)$ and, in both cases, $f\left(A_{i}\right) f\left(A_{j}\right)^{*}=0$, if $i \neq j$. Similarly, we get $f\left(A_{i}\right)^{*} f\left(A_{j}\right)=0$, if $i \neq j$. Hence $\sum_{i=1}^{p} \sigma_{i} f\left(A_{i}\right)$ is another SVDdecomposition of M; by uniqueness, we get $f\left(A_{i}\right)=A_{i}$, so every $A_{i} \in \operatorname{Fix}(f)$.
3.6. Examples. From Proposition 3.5 and from Lemma 3.3 we obtain that, for every $V \in U_{n}$, the following are SVD-closed real Lie subalgebras of $\mathfrak{g l}_{n}(\mathbb{C})$:
$\operatorname{Fix}\left(A d_{V}\right)=\langle V\rangle_{\mathfrak{g l}_{n}(\mathbb{C})} ; \quad \operatorname{Fix}\left(A d_{V} \circ \mu\right)=\preccurlyeq V \succcurlyeq_{\mathfrak{g l}_{n}(\mathbb{C})} ; \quad \quad \operatorname{Fix}\left(A d_{V} \circ(-\tau)\right)$;
$\operatorname{Fix}\left(A d_{V} \circ(-\eta)\right) \quad$ (note that, if $V=I_{n}$, we have $\operatorname{Fix}(-\eta)=\mathfrak{u}_{n}$).
Taking into account Remark-Definition 3.1 we obtain that
$\langle V\rangle_{\mathfrak{g}}=\langle V\rangle_{\mathfrak{g l}_{n}(\mathbb{C})} \cap \mathfrak{g} \quad$ and $\quad \preccurlyeq V \succcurlyeq_{\mathfrak{g}}=\preccurlyeq V \succcurlyeq_{\mathfrak{g l}_{n}(\mathbb{C})} \cap \mathfrak{g}$
are SVD-closed real Lie subalgebras of \mathfrak{g}, for every $V \in U_{n}$, and for every SVD-closed real
Lie subalgebra \mathfrak{g} of $\mathfrak{g l}_{n}(\mathbb{C})$. In particular, for $\mathfrak{g}=\mathfrak{u}_{\mathfrak{n}}$, we deduce that
$\operatorname{Fix}\left(A d_{V} \circ(-\eta)\right) \cap \mathfrak{u}_{n}=\operatorname{Fix}\left(A d_{V}\right) \cap \mathfrak{u}_{n}=\langle V\rangle_{\mathfrak{u}_{n}} \quad$ and
$\operatorname{Fix}\left(A d_{V} \circ(-\tau)\right) \cap \mathfrak{u}_{n}=\operatorname{Fix}\left(A d_{V} \circ \mu\right) \cap \mathfrak{u}_{n}=\preccurlyeq V \succcurlyeq_{u_{n}}$
are SVD-closed Lie subalgebras of \mathfrak{u}_{n}, for every $V \in U_{n}$.
Other particular SVD-closed real Lie subalgebras of $\mathfrak{g l}_{n}(\mathbb{C})$ are the following:
$g l_{n}(\mathbb{R})=\operatorname{Fix}(\mu) ; \quad \mathfrak{s o}_{n}(\mathbb{C})=\operatorname{Fix}(-\tau) ; \quad \mathfrak{s o}_{n}=\mathfrak{u}_{n} \cap g l_{n}(\mathbb{R}) ;$
$\mathfrak{s p}_{2 n}(\mathbb{C})=\operatorname{Fix}\left(A d_{\Omega_{n}} \circ(-\tau)\right) ; \quad \mathfrak{s p}_{n}=\mathfrak{s p}_{2 n}(\mathbb{C}) \cap \mathfrak{u}_{2 n} ; \quad \mathfrak{s u}_{2}=\mathfrak{s p}_{2}(\mathbb{C}) \cap \mathfrak{u}_{2} ;$
$\mathfrak{s p}_{2 n}(\mathbb{R})=\mathfrak{s p}_{2 n}(\mathbb{C}) \cap g l_{n}(\mathbb{R}) ; \quad \mathfrak{u}_{(p, q)}=\operatorname{Fix}\left(A d_{J_{(p, q)}} \circ(-\eta)\right) ;$
$\mathfrak{s o}_{(p, q)}(\mathbb{C})=\operatorname{Fix}\left(A d_{J_{(p, q)}} \circ(-\tau)\right) ; \quad \quad \mathfrak{s o}_{(p, q)}=\mathfrak{s o}_{(p, q)}(\mathbb{C}) \cap \mathfrak{g l}_{(p+q)}(\mathbb{R})$.
3.7. Remark. If $n \geq 3$, the following are not SVD-closed real Lie subalgebras of $\mathfrak{g l}_{n}(\mathbb{C})$:
$\mathfrak{s u}_{n}, \quad \mathfrak{s l}_{n}(\mathbb{C})=\left\{M \in \mathfrak{g l}_{n}(\mathbb{C}): \operatorname{tr}(M)=0\right\}, \quad \mathfrak{s l}_{n}(\mathbb{R}):=\mathfrak{s l}_{n}(\mathbb{C}) \cap g l_{n}(\mathbb{R})$.
We check it only for $\mathfrak{s u}_{3}$; the generalization to $n>3$ and the other cases go similarly.
The SVD-components of the matrix $D=\left(\begin{array}{ccc}\mathbf{i} & 0 & 0 \\ 0 & \mathbf{i} & 0 \\ 0 & 0 & -2 \mathbf{i}\end{array}\right)$ are $\left(\begin{array}{ccc}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -\mathbf{i}\end{array}\right)$ and $\left(\begin{array}{ccc}\mathbf{i} & 0 & 0 \\ 0 & \mathbf{i} & 0 \\ 0 & 0 & 0\end{array}\right)$ (being 1 and 2 the singular values of D); since $D \in \mathfrak{s u}_{3}$, while its SVD-components do not belong to $\mathfrak{s u}_{3}$, we can conclude that the Lie algebra $\mathfrak{s u}_{3}$ is not SVD-closed.
3.8. Proposition. Let \mathfrak{g} be an SVD-closed real Lie subalgebra of $\mathfrak{g l}_{n}(\mathbb{C})$.
a) For every $W \in \mathfrak{u}_{n}$, we have that $\langle W\rangle_{\mathfrak{g}}$ is an SVD-closed Lie subalgebra of \mathfrak{g}.
b) If \mathfrak{g} is the Lie algebra of a closed subgroup of U_{n}, then every Cartan subalgebra of \mathfrak{g} is SVD-closed.

Proof. Clearly, if $Y W=W Y$ then $Y e^{s W}=e^{s W} Y$, for every $s \in \mathbb{R}$; conversely, if $Y e^{s W}=$ $e^{s W} Y$ for every $s \in \mathbb{R}$, then, differentiating with respect to s and putting $s=0$, we get $Y W=W Y$. Hence $\langle W\rangle_{\mathfrak{g}}=\mathfrak{g} \cap\left[\bigcap_{s \in \mathbb{R}} F i x\left(A d_{\exp (s W)}\right)\right]$. We get (a), since $\exp (s W) \in U_{n}$, for every $s \in \mathbb{R}$. Part (b) follows from part (a), via Sepanski 2007, Lemma 5.7 p. 100].
4.1. Remark-Definition. We say that any subgroup of $G L_{n}(\mathbb{C})$ is $S V D$-closed if it is closed in $G L_{n}(\mathbb{C})$ and its Lie algebra is an SVD-closed real Lie subalgebra of $\mathfrak{g l}_{n}(\mathbb{C})$. Note that, by Examples 3.6 and Remarks 2.2 (b), the subgroups of U_{n}, defined by $\preccurlyeq V \succcurlyeq_{U_{n}}=\left\{X \in U_{n}: X V=V \bar{X}\right\}=\left\{X \in U_{n}: X V X^{T}=V\right\}$ and $\langle V\rangle_{U_{n}}=\left\{X \in U_{n}: X V=V X\right\}$, are SVD-closed, for every matrix $V \in U_{n}$. By Remark-Definition 3.1 the intersection of SVD-closed subgroups of $G L_{n}(\mathbb{C})$ is an SVDclosed subgroup of $G L_{n}(\mathbb{C})$; indeed, it is known that its Lie algebra is the intersection of Lie algebras of all SVD-closed subgroups (Bourbaki 1975 Cor. 3 p. 307]). In the Sections 7 and 8 , we will study the sets of generalized principal logarithms of matrices of the groups $\langle V\rangle_{U_{n}}$, where $V \in U_{n}$, and $\preccurlyeq Q \succcurlyeq_{S U_{n}}=\preccurlyeq Q \succcurlyeq_{U_{n}} \cap S U_{n}$, where $Q \in O_{n}$.
Note that we can obtain some classical Lie groups as follows:
$U_{n}=\left\langle I_{n}\right\rangle_{U_{n}}, \quad S O_{n}=\preccurlyeq I_{n} \succcurlyeq_{S U_{n}}, \quad S p_{n}=\preccurlyeq \Omega_{n} \succcurlyeq_{S U_{2 n}}$,
$U_{(p, n-p)} \cap U_{n}=\left\langle J^{(p, n-p)}\right\rangle_{U_{n}}, \quad S O_{(p, n-p)}(\mathbb{C}) \cap U_{n}=\preccurlyeq J^{(p, n-p)} \succcurlyeq_{S U_{n}}$,
for $p=0, \cdots, n$. We need some preliminary results.
4.2. Proposition. Let $V \in U_{n}$; denote by λ_{1} (with multiplicity n_{1}), \cdots, λ_{r} (with multiplicity n_{r}) its distinct eigenvalues, and choose $R \in U_{n}$ such that $V=A d_{R}\left(\bigoplus_{j=1}^{r} \lambda_{j} I_{n_{j}}\right)$. Then $\langle V\rangle_{U_{n}}=A d_{R}\left(\bigoplus_{j=1}^{r} U_{n_{j}}\right)$ and it is a (compact) connected SVD-closed subgroup of U_{n}, whose Lie algebra is $\langle V\rangle_{\mathfrak{u}_{n}}=A d_{R}\left(\oplus_{j=1}^{r} \mathfrak{u}_{n_{j}}\right)$.

Proof. The equality $\langle V\rangle_{U_{n}}=A d_{R}\left(\bigoplus_{j=1}^{r} U_{n_{j}}\right)$ easily follows from Lemma 2.4 (b). This implies that $\langle V\rangle_{U_{n}}$ is compact and connected. As noted in Remark-Definition $4.1\langle V\rangle_{U_{n}}$ is SVD-closed too. Clearly, its Lie algebra is $\langle V\rangle_{\mathfrak{u}_{n}}=A d_{R}\left(\bigoplus_{j=1}^{r} \mathfrak{u}_{n_{j}}\right)$.
4.3. Lemma. Let V any matrix of U_{n}. Then $\preccurlyeq V \succcurlyeq_{S U_{n}}$ is an SVD-closed subgroup of U_{n}, whose Lie algebra is $\preccurlyeq V \succcurlyeq_{u_{n}}=\preccurlyeq V \succcurlyeq_{\text {su }_{n}}$.

Proof. The Lie algebra of $\preccurlyeq V \succcurlyeq_{S U_{n}}$ is $\preccurlyeq V \succcurlyeq_{\text {su }_{n}} \subseteq \preccurlyeq V \succcurlyeq_{\text {und }_{n}}$ and this last is SVD-closed, so it suffices to prove the reverse inclusion. If $X \in \preccurlyeq V \succcurlyeq_{u_{n}}$, being $V^{*} X V=\bar{X}$, then X is similar to its complex conjugate \bar{X} and so, by Horn-Johnson 2013, Cor.3.4.1.7 p. 202], X is similar to a real matrix; therefore X has real trace; since any skew-hermitian matrix has trace with zero real part, we conclude that the trace of X is zero, i.e. $X \in \preccurlyeq V \succcurlyeq_{\text {su }_{n}}$.

In the next results, we will need the matrices $W_{(p, q)}, E_{\varphi}^{(p, q)}$ and $J^{(p, q)}$ defined in Notations 1.1(a).
4.4. Lemma. If $p=0,1, \cdots, n$, we have $O_{(p, n-p)}(\mathbb{C}) \cap U_{n}=A d_{W_{(p, n-p)}}\left(O_{n}\right) \quad$ and $S O_{(p, n-p)}(\mathbb{C}) \cap U_{n}=A d_{W_{(p, n-p)}}\left(S O_{n}\right)$.

Proof. Let $W:=W_{(p, n-p)}$. Then the statements follow from Remarks 2.2 (a), since $\preccurlyeq I_{n} \succcurlyeq_{U_{n}}=O_{n}, \quad \preccurlyeq I_{n} \succcurlyeq_{S U_{n}}=S O_{n}, \quad \preccurlyeq J^{(p, n-p)} \succcurlyeq_{U_{n}}=O_{(p, n-p)}(\mathbb{C}) \cap U_{n}$,
$\preccurlyeq J^{(p, n-p)} \succcurlyeq_{S U_{n}}=S O_{(p, n-p)}(\mathbb{C}) \cap U_{n}, \quad W I_{n} W^{T}=J^{(p, n-p)}$ and the groups $U_{n}, S U_{n}$ are $A d_{W}$-invariant.
4.5. Lemma. For every $\varphi \in \mathbb{R}$ and $p=0,1, \cdots, n$, we have

$$
\begin{aligned}
& \preccurlyeq E_{\varphi}^{(p, n-p)} \succcurlyeq_{U_{2 n}}=A d_{W_{(2 p, 2 n-2 p)}}\left(\preccurlyeq E_{\varphi}^{\oplus n} \succcurlyeq_{U_{2 n}}\right) \quad \text { and } \\
& \preccurlyeq E_{\varphi}^{(p, n-p)} \succcurlyeq_{S U_{2 n}}=A d_{W_{(2 p, 2 n-2 p)}}\left(\preccurlyeq E_{\varphi}^{\oplus n} \succcurlyeq_{S U_{2 n}}\right) .
\end{aligned}
$$

Proof. Let $W:=W_{(2 p, 2 n-2 p)}$. The groups $U_{2 n}$ and $S U_{2 n}$ are $A d_{W}$-invariant and $W E_{\varphi}^{\oplus n} W^{T}=E_{\varphi}^{(p, n-p)}$; hence, by Remarks 2.2 (a), we get the statements.
4.6. Lemma. Fix $\varphi \in[0,2 \pi)$, with $\varphi \neq \frac{\pi}{2}$ and $\varphi \neq \frac{3}{2} \pi$; consider the matrix $E_{\varphi}^{\oplus n}$. Then a matrix $A \in \mathfrak{g l}_{2 n}(\mathbb{C})$ anticommutes with $E_{\varphi}^{\oplus n}$ if and only if $A=\mathbf{0}_{2 n}$.

Proof. Assume first $n=1$, so $E_{\varphi}^{\oplus n}=E_{\varphi}=\left(\begin{array}{cc}\cos (\varphi) & -\sin (\varphi) \\ \sin (\varphi) & \cos (\varphi)\end{array}\right)$. If a matrix
$A=\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in \mathfrak{g l}_{2}(\mathbb{C})$ anticommutes with E_{φ}, then $\left\{\begin{array}{l}2 \alpha \cos (\varphi)=(\gamma-\beta) \sin (\varphi) \\ 2 \delta \cos (\varphi)=(\gamma-\beta) \sin (\varphi) \\ 2 \gamma \cos (\varphi)=-(\alpha+\delta) \sin (\varphi) \\ 2 \beta \cos (\varphi)=(\alpha+\delta) \sin (\varphi)\end{array}\right.$.
Since $\cos (\varphi) \neq 0$, the previous conditions give: $\alpha=\delta$ and $\beta=-\gamma$, i.e. $A=\alpha I_{2}+\gamma \Omega$. But this last matrix also commutes with the nonsingular matrix E_{φ} and so, A must be the null matrix.
If $n \geq 2$, we write any matrix of $A \in \mathfrak{g l}_{2 n}(\mathbb{C})$ as $A:=\left(A_{i j}\right)$, with n^{2} square blocks $A_{i j}$ of order 2. A direct computation shows that, if A anticommutes with $E_{\varphi}^{\oplus n}$, then each block $A_{i j}$ anticommutes with E_{φ}; hence, the proof follows from the case $n=1$.
4.7. Lemma. Fix $\varphi \in(0,2 \pi)$ with $\varphi \neq \frac{\pi}{2}, \varphi \neq \pi$ and $\varphi \neq \frac{3}{2} \pi$. Then we have $\preccurlyeq E_{\varphi}^{(p, n-p)} \succcurlyeq_{S U_{2 n}}=\preccurlyeq E_{\varphi}^{(p, n-p)} \succcurlyeq_{U_{2 n}}=A d_{W_{(2 p, 2 n-2 p)}}\left(U_{n}\right), \quad$ for every $p=0, \cdots, n$, in which we put (consistently with Remarks 1.2 (a)) $U_{n}=\mathfrak{g l}_{n}(\mathbb{C}) \cap S O_{2 n} \subset S U_{2 n}$.

Proof. By Lemma 4.5 we have to prove that $\preccurlyeq E_{\varphi}^{\oplus n} \succcurlyeq_{S U_{2 n}}=\preccurlyeq E_{\varphi}^{\oplus n} \succcurlyeq_{U_{2 n}}=U_{n}$. For, a complex matrix $X=X_{1}+\mathbf{i} X_{2}\left(X_{1}, X_{2}\right.$ real matrices) satisfies the condition $X E_{\varphi}^{\oplus n}=$ $E_{\varphi}^{\oplus n} \bar{X}$ if and only if $X_{1} E_{\varphi}^{\oplus n}=E_{\varphi}^{\oplus n} X_{1} \quad$ and $\quad X_{2} E_{\varphi}^{\oplus n}=-E_{\varphi}^{\oplus n} X_{2}$ and, by Lemmas 4.6 and 2.3 this is equivalent to say that $X \in \mathfrak{g l}_{n}(\mathbb{C}) \subseteq \mathfrak{g l}_{2 n}(\mathbb{R})$ (and, in this case, $\operatorname{det}(X) \geq 0$). Hence, by Remarks 1.2 (a), we get $\preccurlyeq E_{\varphi}^{\oplus n} \succcurlyeq_{S U_{2 n}}=\mathfrak{g l}_{n}(\mathbb{C}) \cap S U_{2 n}=\mathfrak{g l}_{n}(\mathbb{C}) \cap S O_{2 n}=U_{n}$ and similarly, $\preccurlyeq E_{\varphi}^{\oplus n} \succcurlyeq_{U_{2 n}}=\mathfrak{g l}_{n}(\mathbb{C}) \cap U_{2 n}=\mathfrak{g l}_{n}(\mathbb{C}) \cap S O_{2 n}=U_{n}$.
4.8. Lemma. Remembering Remarks 1.2 (b), we have
$\preccurlyeq \Omega^{\oplus n} \succcurlyeq_{S U_{2 n}}=\preccurlyeq \Omega^{\oplus n} \succcurlyeq_{U_{2 n}}=U_{n}(\mathbb{H}) \quad$ and $\quad \preccurlyeq \Omega^{\oplus n} \succcurlyeq_{\text {su }_{2 n}}=\preccurlyeq \Omega^{\oplus n} \succcurlyeq_{u_{2 n}}=\mathfrak{u}_{n}(\mathbb{H})$.
Proof. Any matrix $X=Y+\mathbf{i} Z \in \mathfrak{g l}_{2 n}(\mathbb{C})$ (with $Y, Z \in \mathfrak{g l}_{2 n}(\mathbb{R})$) satisfies the condition $X \Omega^{\oplus n}=\Omega^{\oplus n} \bar{X}$ if and only if $Y \Omega^{\oplus n}=\Omega^{\oplus n} Y$ and $Z \Omega^{\oplus n}=-\Omega^{\oplus n} Z$. A direct computation shows that these conditions on Y and Z are equivalent to say that $Y=\left(Y_{i j}\right)$
and $Z=\left(Z_{i j}\right)$ are block matrices, whose blocks $Y_{i j}, Z_{i j}$ are 2×2 real matrices of the form: $Y_{i j}=\left(\begin{array}{cc}a_{i j} & -b_{i j} \\ b_{i j} & a_{i j}\end{array}\right), \quad Z_{i j}=\left(\begin{array}{cc}c_{i j} & d_{i j} \\ d_{i j} & -c_{i j}\end{array}\right)$, for $i, j=1, \cdots, n$. These last conditions are equivalent to say that $X=\left(X_{i j}\right)$ is a block matrix, with n^{2} blocks of the form: $X_{i j}=\left(\begin{array}{cc}z_{i j} & -w_{i j} \\ \bar{w}_{i j} & \bar{z}_{i j}\end{array}\right)$, and, by Remarks $1.2(\mathrm{~b})$, this is equivalent to say that $X \in \mathfrak{g l}_{n}(\mathbb{H})$. Hence $\preccurlyeq \Omega^{\oplus n} \succcurlyeq_{S U_{2 n}}=S U_{2 n} \cap \mathfrak{g l}_{n}(\mathbb{H})=U_{n}(\mathbb{H})=U_{2 n} \cap \mathfrak{g l}_{n}(\mathbb{H})=\preccurlyeq \Omega^{\oplus n} \succcurlyeq U_{U_{2 n}}$ and, by Remarks $2.2(\mathrm{~b})$, we also get $\preccurlyeq \Omega^{\oplus n} \succcurlyeq_{\mathfrak{s u}_{2 n}}=\preccurlyeq \Omega^{\oplus n} \succcurlyeq_{\mathfrak{u}_{2 n}}=\mathfrak{u}_{n}(\mathbb{H})$.
4.9. Remarks. a) For any $Q \in O_{n}$, there exists a matrix $A \in O_{n}$ such that $Q=A d_{A}(\mathcal{J})=$ $A \mathcal{J} A^{T}$, where \mathcal{J} is a matrix of the form $\mathcal{J}:=J^{(p, q)} \oplus\left(\bigoplus_{j=1}^{h} E_{\varphi_{j}}^{\left(\mu_{j}, \nu_{j}\right)}\right) \oplus \Omega^{\oplus k}$,
with $0<\varphi_{1}<\varphi_{2}<\cdots<\varphi_{h}<\frac{\pi}{2} ; \quad p+q+2 \sum_{j=1}^{h}\left(\mu_{j}+\nu_{j}\right)+2 k=n ; \quad p, q, k, \mu_{j}, \nu_{j} \geq 0 ;$ $\mu_{j}+\nu_{j} \geq 1 \quad$ (see for instance Dolcetti-Pertici 2021, Rem.-Def.1.8], where we called \mathcal{J} the real Jordan auxiliary form of Q). Hence the (possible) eigenvalues of Q and their multiplicities are the following: 1 of multiplicity $p \geq 0 ;-1$ of multiplicity $q \geq 0 ; \pm \mathbf{i}$ both of multiplicity $k \geq 0$; when $h>0, e^{ \pm \mathbf{i} \varphi_{j}}$ both of multiplicity $\mu_{j} \geq 0$ and $e^{ \pm \mathbf{i}\left(\pi-\varphi_{j}\right)}=-e^{\mp \mathbf{i} \varphi_{j}}$ both of multiplicity $\nu_{j} \geq 0$, for every $j=1, \cdots, h$. The condition $\mu_{j}+\nu_{j} \geq 1$ is equivalent to say that $e^{ \pm \mathbf{i} \varphi_{j}}$ or $e^{ \pm \mathbf{i}\left(\pi-\varphi_{j}\right)}$ (and possibly both) are effective eigenvalues of Q.
b) If $Q, A, \mathcal{J} \in O_{n}$ are as in (a), we have $A d_{A}\left(I_{1} \oplus\left(-I_{(n-1)}\right)\right) \in \preccurlyeq Q \succcurlyeq_{S U_{n}}$ if and only if n is odd. Indeed, if n is odd, the real matrix Q has at least one real eigenvalue.
4.10. Proposition. Let $Q \in O_{n}$; denote its eigenvalues (with their multiplicities) and the matrices $A, \mathcal{J} \in O_{n}$ as in Remarks 4.9 (a). If Z is the $n \times n$ unitary matrix defined by $Z:=A\left(W_{(p, q)} \oplus\left[\bigoplus_{j=1}^{h} W_{\left(2 \mu_{j}, 2 \nu_{j}\right)}\right] \oplus I_{2 k}\right)$, then $\preccurlyeq Q \succcurlyeq_{U_{n}}=A d_{Z}\left(O_{(p+q)} \oplus\left[\bigoplus_{j=1}^{h} U_{\left(\mu_{j}+\nu_{j}\right)}\right] \oplus U_{k}(\mathbb{H})\right)$, $\preccurlyeq Q \succcurlyeq_{S U_{n}}=A d_{Z}\left(S O_{(p+q)} \oplus\left[\bigoplus_{j=1}^{h} U_{\left(\mu_{j}+\nu_{j}\right)}\right] \oplus U_{k}(\mathbb{H})\right)$, and they are (compact) SVD-closed subgroups of U_{n}, whose common Lie algebra is $\preccurlyeq Q \succcurlyeq_{\mathfrak{s u}_{n}}=\preccurlyeq Q \succcurlyeq_{u_{n}}=A d_{Z}\left(\mathfrak{s o}_{(p+q)} \oplus\left[\bigoplus_{j=1}^{h} \mathfrak{u}_{\left(\mu_{j}+\nu_{j}\right)}\right] \oplus \mathfrak{u}_{k}(\mathbb{H})\right)$. The group $\preccurlyeq Q \succcurlyeq_{U_{n}}$ is connected if Q has no real eigenvalues, otherwise it has two connected components. In any case, $\preccurlyeq Q \succcurlyeq_{S U_{n}}$ is the connected component of $\preccurlyeq Q \succcurlyeq_{U_{n}}$ containing the identity I_{n}.

Proof. From Remark-Definition 4.1 and Lemma 4.3, it follows that the groups $\preccurlyeq Q \succcurlyeq_{U_{n}}$ and $\preccurlyeq Q \succcurlyeq_{S U_{n}}$ are SVD-closed and their common Lie algebras is $\preccurlyeq Q \succcurlyeq_{\mathfrak{u}_{n}}=\preccurlyeq Q \succcurlyeq_{\mathfrak{s u}_{n}}$. By Remarks $2.2(\mathrm{a})$, we have $\preccurlyeq Q \succcurlyeq_{U_{n}}=A d_{A}\left(\preccurlyeq \mathcal{J} \succcurlyeq_{U_{n}}\right), \preccurlyeq Q \succcurlyeq_{S U_{n}}=A d_{A}\left(\preccurlyeq \mathcal{J} \succcurlyeq_{S U_{n}}\right)$. Now we determine the groups $\preccurlyeq \mathcal{J} \succcurlyeq_{U_{n}}$ and $\preccurlyeq \mathcal{J} \succcurlyeq_{S U_{n}}$. A matrix $X=X_{1}+\mathbf{i} X_{2} \in \mathfrak{g l}_{n}(\mathbb{C})$ (with $X_{1}, X_{2} \in \mathfrak{g l}_{n}(\mathbb{R})$) satisfies the condition $X \mathcal{J}=\mathcal{J} \bar{X}$ if and only if $X_{1} \mathcal{J}=\mathcal{J} X_{1} \quad$ and $X_{2} \mathcal{J}=-\mathcal{J} X_{2} . \quad$ By Lemma 2.4 (b), the condition $X_{1} \mathcal{J}=\mathcal{J} X_{1}$ implies that
$X_{1}=Y_{0} \oplus\left[\bigoplus_{j=1}^{h} Y_{j}\right] \oplus Y_{(h+1)}, \quad$ where $Y_{0} \in \mathfrak{g l}_{(p+q)}(\mathbb{R}), \quad Y_{j} \in \mathfrak{g l}_{\left(2 \mu_{j}+2 \nu_{j}\right)}(\mathbb{R})$ for every $j=1, \cdots, h$ and $Y_{(h+1)} \in \mathfrak{g l}_{2 k}(\mathbb{R})$. By Lemma 2.4 (a), the condition $X_{2} \mathcal{J}=-\mathcal{J} X_{2}$ implies that also the matrix X_{2} must be block-diagonal, with blocks of the same type as the blocks of X_{1}. Therefore, if X satisfies the condition $X \mathcal{J}=\mathcal{J} \bar{X}$, then X is block-diagonal with similar blocks, this time complex instead of real. Of course, X is unitary if and only if each single block is unitary too. Then, setting $U=W_{(p, q)} \oplus\left[\bigoplus_{j=1}^{h} W_{\left(2 \mu_{j}, 2 \nu_{j}\right)}\right] \oplus I_{2 k}$ and taking into account also Lemmas 4.44 .7 and 4.8, we obtain
$\preccurlyeq \mathcal{J} \succcurlyeq_{U_{n}}=\preccurlyeq J^{(p, q)} \succcurlyeq_{U_{(p+q)}} \oplus\left[\bigoplus_{j=1}^{h} \preccurlyeq E_{\varphi_{j}}^{\left(\mu_{j}, \nu_{j}\right)} \succcurlyeq_{U_{\left(2 \mu_{j}+2 \nu_{j}\right)}}\right] \oplus \preccurlyeq \Omega^{\oplus k} \succcurlyeq_{U_{2 k}}=$
$\preccurlyeq J^{(p, q)} \succcurlyeq_{U_{(p+q)}} \oplus\left[\bigoplus_{j=1}^{h} \preccurlyeq E_{\varphi_{j}}^{\left(\mu_{j}, \nu_{j}\right)} \succcurlyeq_{S U_{\left(2 \mu_{j}+2 \nu_{j}\right)}}\right] \oplus \preccurlyeq \Omega^{\oplus k} \succcurlyeq_{S U_{2 k}}=$
$A d_{U}\left(O_{(p+q)} \oplus\left[\bigoplus_{j=1}^{h} U_{\left(\mu_{j}+\nu_{j}\right)}\right] \oplus U_{k}(\mathbb{H})\right)$;
$\preccurlyeq \mathcal{J} \succcurlyeq_{S U_{n}}=\preccurlyeq J^{(p, q)} \succcurlyeq_{S U_{(p+q)}} \oplus\left[\bigoplus_{j=1}^{h} \preccurlyeq E_{\varphi_{j}}^{\left(\mu_{j}, \nu_{j}\right)} \succcurlyeq_{S U_{\left(2 \mu_{j}+2 \nu_{j}\right)}}\right] \oplus \preccurlyeq \Omega^{\oplus k} \succcurlyeq_{S U_{2 k}}=$
$A d_{U}\left(S O_{(p+q)} \oplus\left[\bigoplus_{j=1}^{h} U_{\left(\mu_{j}+\nu_{j}\right)}\right] \oplus U_{k}(\mathbb{H})\right)$.
From these equalities, easily follow the statements that still remain to be proved.

5. Generalized principal \mathfrak{g}-LOGARIthms

5.1. Definition. Let G be a connected closed subgroup of $G L_{n}(\mathbb{C})$, whose Lie algebra is $\mathfrak{g} \subseteq \mathfrak{g l}_{n}(\mathbb{C})$. If $M \in G$, we say that a matrix $L \in \mathfrak{g}$ is a generalized principal \mathfrak{g}-logarithm of M, if $\exp (L)=M$ and $-\pi \leq \operatorname{Im}(\lambda) \leq \pi$, for every eigenvalue λ of L.

We denote by \mathfrak{g}-plog (M) the set of all generalized principal \mathfrak{g}-logarithms of any $M \in G$.
5.2. Remarks. a) In Introduction, we compared the previous definition with the usual definition of principal logarithm of a matrix $M \in G L_{n}(\mathbb{C})$ without negative eigenvalues, in which case the set $\mathfrak{g l}_{n}(\mathbb{C})-p \log (M)$ consists of a unique matrix (Higham 2008, Thm. 1.31]). b) If G is any connected closed subgroup of $G L_{n}(\mathbb{C})$, with Lie algebra $\mathfrak{g} \subseteq \mathfrak{g l}_{n}(\mathbb{C})$, then $\rho(G)$ is a connected closed subgroup of $G L_{2 n}(\mathbb{R}) \subset G L_{2 n}(\mathbb{C})$, having $\rho(\mathfrak{g}) \subset \mathfrak{g l}_{2 n}(\mathbb{R}) \subset \mathfrak{g l}_{2 n}(\mathbb{C})$ as Lie algebra, where ρ is the decomplexification map. Remembering the relationship between the eigenvalues of Z and $\rho(Z)$ (see Remarks 1.2 (a)), we easily get that $\rho(\mathfrak{g}-\operatorname{plog}(M))=\rho(\mathfrak{g})-\operatorname{plog}(\rho(M)), \quad$ for every $M \in G$.
5.3. Lemma. Let G, H be connected closed subgroups of $G L_{n}(\mathbb{C})$ such that $G=A d_{A}(H)$, for some $A \in G L_{n}(\mathbb{C})$, and let $\mathfrak{g}, \mathfrak{h} \subseteq \mathfrak{g l}_{n}(\mathbb{C})$ be their Lie algebras, respectively. Then $A d_{A}(\mathfrak{h}-p \log (M))=\mathfrak{g}-\operatorname{plog}\left(A d_{A}(M)\right)$, for every $M \in H$.
In particular, if G is any connected closed subgroup of $G L_{n}(\mathbb{C})$, we have
$A d_{A}(\mathfrak{g}-\operatorname{plog}(M))=\mathfrak{g}-\operatorname{plog}\left(A d_{A}(M)\right)$, for every $A, M \in G$.
Proof. Note that $G=A d_{A}(H)$ implies that $\mathfrak{g}=A d_{A}(\mathfrak{h})$. Hence $B \in \mathfrak{g}$ if and only if $A^{-1} B A \in \mathfrak{h}$. Since B and $A^{-1} B A$ are similar and $\exp (B)=A M A^{-1}$ if and only if $\exp \left(A^{-1} B A\right)=M$, we get: $B \in \mathfrak{g}-p \log \left(A d_{A}(M)\right)$ if and only if $A^{-1} B A \in \mathfrak{h}-p \log (M)$.
5.4. Remark. The eigenvalues of any skew-hermitian matrix A are purely imaginary; so, the generalized principal \mathfrak{u}_{n}-logarithms of any $M \in U_{n}$ are the skew-hermitian logarithms of M, whose eigenvalues all have modulus in $[0, \pi]$. Note that, since all the eigenvalues of any $M \in U_{n}$ have modulus 1 , the only possible negative eigenvalue of such M is -1 .

In this Section, given any unitary matrix M of order n, we will denote its eigenvalues by $e^{\mathbf{i} \theta_{1}}$ with multiplicity $m_{1}, e^{\mathbf{i} \theta_{2}}$ with multiplicity m_{2}, up to $e^{\mathbf{i} \theta_{p}}$ with multiplicity m_{p}, where $\pi \geq \theta_{1}>\theta_{2}>\cdots>\theta_{p}>-\pi$ and $n=\sum_{j=1}^{p} m_{j} . \quad$ If -1 is not an eigenvalue of M (i.e. if $\left.\theta_{1}<\pi\right)$, then the eigenvalues of the unique generalized principal $\mathfrak{g l}_{n}(\mathbb{C})$-logarithm of M are exactly: $\mathbf{i} \theta_{1}$ with multiplicity $m_{1}, \mathbf{i} \theta_{2}$ with multiplicity m_{2}, up to $\mathbf{i} \theta_{p}$ with multiplicity m_{p}. Instead, if -1 is an eigenvalue of M (i.e. if $\theta_{1}=\pi$), then the eigenvalues of any generalized principal $\mathfrak{g l}_{n}(\mathbb{C})$-logarithm Y of M are exactly: $\mathbf{i} \pi$ of multiplicity $h,-\mathbf{i} \pi$ of multiplicity $m_{1}-h$ (for some $h \in\left\{0,1, \cdots, m_{1}\right\}$ depending on Y), $\mathbf{i} \theta_{2}$ with multiplicity m_{2}, up to $\mathbf{i} \theta_{p}$ with multiplicity m_{p}. Note that, if Y is any generalized principal \mathfrak{u}_{n}-logarithm of M, in any case we have $\|Y\|_{\phi}^{2}=-\operatorname{tr}\left(Y^{2}\right)=\sum_{j=1}^{n} m_{j} \theta_{j}^{2}=\sum_{j=1}^{n} m_{j}\left|\log \left(e^{\mathbf{i} \theta_{j}}\right)\right|^{2}$.
5.5. Proposition. Let G be a connected $S V D$-closed subgroup of U_{n}, whose Lie algebra is $\mathfrak{g} \subseteq \mathfrak{u}_{n}$. Then
a) $\mathfrak{g}-\operatorname{plog}(M) \neq \emptyset$, for every $M \in G$ and, furthermore, if -1 is not an eigenvalue of M, then $\mathfrak{g}-p \log (M)$ consists of a single element;
b) If $Y \in \mathfrak{g}-\operatorname{plog}(M)$, then $\|Y\|_{\phi} \leq\|X\|_{\phi}$, for every $X \in \mathfrak{g}$ such that $\exp (X)=M$; moreover the equality holds if and only if $X \in \mathfrak{g}-p \log (M)$.

Proof. a) If $M=I_{n}$, it is clear that $\mathfrak{g}-\operatorname{plog}(M)=\left\{\mathbf{0}_{n}\right\}$ and the statement holds true.
Fix $M \in G \backslash\left\{I_{n}\right\}$ and denote its eigenvalues as in Remark 5.4 Since G is compact and connected, we can choose a skew-hermitian matrix $X \in \mathfrak{g} \backslash\left\{\mathbf{0}_{n}\right\}$ such that $\exp (X)=M$ (see, for instance, Bröcker-tomDieck 1985, Ch. IV Thm. 2.2]). Then, the n eigenvalues of X are $\mathbf{i}\left(\theta_{1}+2 k_{1,1} \pi\right), \mathbf{i}\left(\theta_{1}+2 k_{1,2} \pi\right), \cdots, \mathbf{i}\left(\theta_{1}+2 k_{1, m_{1}} \pi\right) ; \mathbf{i}\left(\theta_{2}+2 k_{2,1} \pi\right), \cdots, \mathbf{i}\left(\theta_{2}+2 k_{2, m_{2}} \pi\right) ;$ \cdots; up to $\mathbf{i}\left(\theta_{p}+2 k_{p, 1} \pi\right), \cdots, \mathbf{i}\left(\theta_{p}+2 k_{p, m_{p}} \pi\right)$, where $k_{h, j} \in \mathbb{Z}$, for every h, j. We also denote by $\sigma_{1}>\sigma_{2}>\cdots>\sigma_{s}>0$ the distinct non-zero singular values of X. Since $X \in \mathfrak{u}_{n}$, there exist $\psi_{h} \in\left\{\theta_{1}, \cdots, \theta_{p}\right\}$ and $t_{h} \in \mathbb{Z}$ such that $\sigma_{h}=\left|\psi_{h}+2 t_{h} \pi\right|$, for every $h=1, \cdots, s$. If $X=\sum_{h=1}^{s}\left|\psi_{h}+2 t_{h} \pi\right| X_{h}$ is the SVD-decomposition of X, then every SVDcomponent X_{h} of X belongs to \mathfrak{g}, because G is SVD-closed. Of course, for $h=1, \cdots, s$, we have $\left|\psi_{h}+2 t_{h} \pi\right|= \pm\left(\psi_{h}+2 t_{h} \pi\right)$, and so $X=\sum_{h=1}^{s}\left(\psi_{h}+2 t_{h} \pi\right) Y_{h}=\sum_{i=1}^{s} \psi_{h} Y_{h}+\sum_{i=1}^{s} 2 \pi t_{h} Y_{h}$, where $Y_{h}= \pm X_{h}$. Note that, by Remarks-Definitions 2.6(b), $\left\{Y_{h}\right\}_{1 \leq h \leq s}$ is still an SVDsystem of elements of \mathfrak{g}. Taking into account Lemma 2.8 and the mutual commutativity of the Y_{h} 's, we have: $M=\exp (X)=\exp \left(\sum_{h=1}^{s} \psi_{h} Y_{h}\right) \exp \left(\sum_{i=1}^{s} 2 \pi l_{h} Y_{h}\right)=\exp \left(\sum_{h=1}^{s} \psi_{h} Y_{h}\right)$. So, if we denote $Y:=\sum_{h=1}^{s} \psi_{h} Y_{h}$, we have $Y \in \mathfrak{g}$ and $M=\exp (Y)$. By Lemma 2.7, every non-zero eigenvalue of Y is of the form $\pm \mathbf{i} \theta_{\mathbf{h}}$, for some $h=1, \cdots, p$; hence Y is a
generalized principal \mathfrak{g}-logarithm of M. By Remarks 5.2 (a), if -1 is not an eigenvalue of M, the set $\mathfrak{g}-\operatorname{plog}(M)$ necessarily reduces to the single matrix Y.
b) Let $X \in \mathfrak{g}$ any logarithm of M, with eigenvalues as in (a), and let $Y \in \mathfrak{g}-p \log (M)$. Then, $\|X\|_{\phi}^{2}=-\operatorname{tr}\left(X^{2}\right)=\sum_{j=1}^{p} \sum_{r=1}^{m_{j}}\left(\theta_{j}+2 k_{j, r} \pi\right)^{2}=\sum_{j=1}^{p} m_{j} \theta_{j}^{2}+4 \pi \sum_{j=1}^{p} \sum_{r=1}^{m_{j}} k_{j, r}\left(\theta_{j}+k_{j, r} \pi\right)=$ $-\operatorname{tr}\left(Y^{2}\right)+4 \pi \sum_{j=1}^{p} \sum_{r=1}^{m_{j}} k_{j, r}\left(\theta_{j}+k_{j, r} \pi\right)=\|Y\|_{\phi}^{2}+4 \pi \sum_{j=1}^{p} \sum_{r=1}^{m_{j}} k_{j, r}\left(\theta_{j}+k_{j, r} \pi\right) \quad\left(\right.$ with $\left.k_{j, r} \in \mathbb{Z}\right)$. If $\theta_{j} \in(-\pi, \pi)$, we easily get $k_{j, r}\left(\theta_{j}+k_{j, r} \pi\right) \geq 0$, with equality if and only if $k_{j, r}=0$. If $\theta_{1}=\pi$, clearly we get $k_{1, r}\left(\theta_{1}+k_{1, r} \pi\right)=\pi k_{1, r}\left(1+k_{1, r}\right) \geq 0$, with equality if and only if either $k_{1, r}=-1$ or $k_{1, r}=0$. Since the case $k_{1, r}=-1$ gives $-\mathbf{i} \pi$ as eigenvalue of X, we can conclude that $\|X\|_{\phi}^{2} \geq\|Y\|_{\phi}^{2}$, and the equality holds if and only if the possible eigenvalues of X are only $-\mathbf{i} \pi$ and $\mathbf{i} \theta_{j} \quad(1 \leq j \leq p)$, i.e. if and only if $X \in G \in \mathfrak{g}-p \log (M)$.
5.6. Remark. Assume that $n \geq 3$. As noted in Remark 3.7 $S U_{n}$ is not SVD-closed. Moreover there are matrices $M \in S U_{n}$ such that $\mathfrak{s u}_{n}-\operatorname{plog}(M)=\emptyset$. This is the case of $M=e^{2 \pi \mathbf{i} / n} I_{n}$. Indeed, -1 is not an eigenvalue of M (since $n \geq 3$), and hence, the unique generalized principal $\mathfrak{g l}_{n}(\mathbb{C})$-logarithm of M is $L:=\frac{2 \pi \mathbf{i}}{n} I_{n}$, whose trace is $2 \pi \mathbf{i} \neq 0$, so $L \notin \mathfrak{s u}_{n}$. Hence, the SVD-closure condition in Proposition 5.5 cannot be removed.
5.7. Theorem. Let G be a connected SVD-closed subgroup of U_{n}, whose Lie algebra is $\mathfrak{g} \subseteq \mathfrak{u}_{n}$; let $M \in G$ and let T be a maximal torus of G containing M, with Lie algebra \mathfrak{t}. Then there are $L_{1}, \cdots, L_{s} \in \mathfrak{t}-\operatorname{plog}(M)(s \geq 1)$ such that $\mathfrak{g}-\operatorname{plog}(M)=\bigsqcup_{j=1}^{s} A d\left(\langle M\rangle_{G}\right)\left(L_{j}\right)$. Furthermore, each set $\operatorname{Ad}\left(\langle M\rangle_{G}\right)\left(L_{j}\right)$ is a compact submanifold of \mathfrak{g}, diffeomorphic to the homogeneous space $\frac{\langle M\rangle_{G}}{\left\langle L_{j}\right\rangle_{G}}$.

Proof. By Proposition 3.8 (b), T is SVD-closed, being \mathfrak{t} a Cartan subalgebra of \mathfrak{g}; so, by Proposition 5.5 (a), there exists a matrix $L \in \mathfrak{t}-\log (M)$. Furthermore, the exponential map $\exp : \mathfrak{t} \rightarrow T$ is a Lie group homomorphism (considering \mathfrak{t} as an additive Lie group), so it is a covering map (see, for instance, Alexandrino-Bettiol 2015, Prop. 1.24]) and the fiber $\exp ^{-1}(M)$ is discrete. By Proposition5.5(b), the set $\mathfrak{t}-\log (M)$ is the intersection between $\exp ^{-1}(M)$ and the sphere $\left\{W \in \mathfrak{t}:\|W\|_{\phi}=\|L\|_{\phi}\right\}$, therefore it is finite. We can choose a non-empty subset $\left\{L_{1}, \cdots, L_{s}\right\}$ of $\mathfrak{t}-p \log (M)$ such that $L_{h} \notin A d\left(\langle M\rangle_{G}\right)\left(L_{i}\right)$, if $h \neq i$, and such that every $L \in \mathfrak{t}-\operatorname{plog}(M)$ belongs to $A d\left(\langle M\rangle_{G}\right)\left(L_{j}\right)$, for some $j \in\{1, \cdots, s\}$; it is clear that $\operatorname{Ad}\left(\langle M\rangle_{G}\right)\left(L_{h}\right) \bigcap \operatorname{Ad}\left(\langle M\rangle_{G}\right)\left(L_{i}\right)=\emptyset$, for every $h \neq i$.
We now prove the set equality of the statement.
If $X=A d_{K}\left(L_{h}\right)$, with $K \in\langle M\rangle_{G}$, for some $h \in\{1, \cdots, s\}$, then clearly $X \in \mathfrak{g}-\operatorname{plog}(M)$. Conversely, let $Y \in \mathfrak{g}-p \log (M)$. By Sepanski 2007, Thm. 5.9 p. 101], there exists $Q \in G$ such that $A d_{Q}(Y) \in \mathfrak{t}$, so that $\exp \left(A d_{Q}(Y)\right)=A d_{Q}(M) \in T$. By Bröcker-tomDieck 1985, Lemma 2.5 p. 166], there exists H in the normalizer of T in G such that $A d_{H}\left(A d_{Q}(M)\right)=$ M. Since $A d_{H}(\mathfrak{t})=\mathfrak{t}$, we have $A d_{H}\left(A d_{Q}(Y)\right) \in \mathfrak{t}$, with $\exp \left[A d_{H}\left(A d_{Q}(Y)\right)\right]=M$; so $A d_{H}\left(A d_{Q}(Y)\right) \in \mathfrak{t}-p \log (M)$. Hence, there exist $j \in\{1, \cdots, s\}$ and $P \in\langle M\rangle_{G}$ such that
$A d_{H}\left(A d_{Q}(Y)\right)=A d_{P}\left(L_{j}\right)$, and so, $Y=A d_{K}\left(L_{j}\right)$, with $K:=Q^{*} H^{*} P \in G$. Since $M=$ $\exp (Y)=\exp \left(L_{j}\right)$, we get $M=A d_{K}(M)$, i.e. $K \in\langle M\rangle_{G}$, and hence $Y \in \operatorname{Ad}\left(\langle M\rangle_{G}\right)\left(L_{j}\right)$. We conclude by Remark-Definition 2.5 since $\langle M\rangle_{G}$ is compact and $\left\langle L_{j}\right\rangle_{G} \subseteq\langle M\rangle_{G}$.

6. Closed subgroups of U_{n} endowed with the Frobenius metric

6.1. Remark-Definition. In this Section we consider an arbitrary closed subgroup G of U_{n} and we still denote by ϕ the Riemannian metric on G, obtained by restriction of the Frobenius scalar product of $\mathfrak{g l}_{n}(\mathbb{C})$ (remember Notations 1.1(e)). It is easy to check that the metric ϕ (called the Frobenius metric of G) is bi-invariant on G and that we have $\phi_{A}(X, Y)=-\operatorname{tr}\left(A^{*} X A^{*} Y\right)$, for every $A \in G$ and for every $X, Y \in T_{A}(G)$. We denote by $d:=d_{(G, \phi)}$ the distance on G induced by ϕ and by $\delta(G, \phi)$ the diameter of G with respect to d. Of course $\delta(G, \phi)<+\infty$, because G is compact.
6.2. Proposition. Let G be a closed subgroup of U_{n} and let $\mathfrak{g} \subseteq \mathfrak{u}_{n}$ be its Lie algebra. Then (G, ϕ) is a globally symmetric Riemannian manifold with non-negative sectional curvature, whose Levi-Civita connection agrees with the 0-connection of Cartan-Schouten of G. The geodesics of (G, ϕ) are the curves $\gamma(t)=P \exp (t X)$, for every $X \in \mathfrak{g}$ and $P \in G$; furthermore (G, ϕ) is a totally geodesic submanifold of $\left(U_{n}, \phi\right)$.

For a proof of Proposition 6.2 we refer, for instance, to Alexandrino-Bettiol 2015 § 2.2].
6.3. Proposition. Let G be a connected closed subgroup of U_{n} and let $\mathfrak{g} \subseteq \mathfrak{u}_{n}$ be its Lie algebra. Then, for every $P_{0}, P_{1} \in G$, the distance $d\left(P_{0}, P_{1}\right)$ is equal to the minimum of the set $\left\{\|X\|_{\phi}: X \in \mathfrak{g}\right.$ and $\left.\exp (X)=P_{0}^{*} P_{1}\right\}$.

Proof. Any geodesic segment γ joining P_{0} and P_{1} can be parametrized by $\gamma(t)=P_{0} \exp (t X)$ $(t \in[0,1])$, with $X \in \mathfrak{g}, \exp (X)=P_{0}^{*} P_{1}$, and its length is $\sqrt{-\operatorname{tr}\left(X^{2}\right)}=\|X\|_{\phi}$; so, we conclude by the Hopf-Rinow theorem (see, for instance, Alexandrino-Bettiol 2015, p. 31]).
6.4. Remark. Let G be a connected closed subgroup of U_{n} such that $-I_{n} \in G$. Then $\delta(G, \phi) \geq \sqrt{n} \pi$. Indeed, if $\exp (X)=-I_{n}$, with $X \in \mathfrak{g} \subseteq \mathfrak{u}_{n}$, the eigenvalues of X are of the form $\left(2 k_{j}+1\right) \pi \mathbf{i}$, with $k_{j} \in \mathbb{Z}$, so $\|X\|_{\phi}=\sqrt{-\operatorname{tr}\left(X^{2}\right)}=\sqrt{\sum_{j=1}^{n}\left(2 k_{j}+1\right)^{2}} \cdot \pi \geq \sqrt{n} \pi$. Hence, by Proposition 6.3 we have $\delta(G, \phi) \geq d\left(I_{n},-I_{n}\right) \geq \sqrt{n} \pi$.
6.5. Theorem. Let G be a connected SVD-closed subgroup of U_{n} with Lie algebra $\mathfrak{g} \subseteq \mathfrak{u}_{n}$. Let $P_{0}, P_{1} \in G$ and let μ_{1}, \cdots, μ_{n} be the n eigenvalues of $P_{0}^{*} P_{1}$. Then
a) $d\left(P_{0}, P_{1}\right)=\sqrt{\sum_{j=1}^{n}\left|\log \left(\mu_{j}\right)\right|^{2}}$;
b) the map: $X \mapsto \gamma(t):=P_{0} \exp (t X) \quad(0 \leq t \leq 1)$ is a bijection from \mathfrak{g}-plog $\left(P_{0}^{*} P_{1}\right)$ onto the set of minimizing geodesic segments of (G, ϕ), with endpoints P_{0} and P_{1}.

Proof. Part (a) follows from Propositions 6.3, 5.5 and Remark 5.4 we also get (b), since the geodesic path: $t \mapsto P_{0} \exp (t X)$ is minimizing if and only if $X \in \mathfrak{g}-\operatorname{plog}\left(P_{0}^{*} P_{1}\right)$.
6.6. Corollary. Let G be a connected $S V D$-closed subgroup of U_{n}. Then
a) $\delta(G, \phi) \leq \sqrt{n} \pi$ and the equality holds if and only if $-I_{n} \in G$;
b) if $-I_{n} \in G$, we have $d\left(P_{0}, P_{1}\right)=\delta(G, \phi)$ (with $P_{0}, P_{1} \in G$) if and only if $P_{1}=-P_{0}$.

Proof. By Theorem 6.5 (a), we easily get the inequality in (a), while, if $-I_{n} \in G$, the equality follows from Remark 6.4 Conversely, assume that the equality holds. Since G is compact, by Theorem 6.5 there exist $P_{0}, P_{1} \in G$ such that $\sqrt{n} \pi=d\left(P_{0}, P_{1}\right)=$ $\sqrt{\sum_{j=1}^{n}\left|\log \left(\mu_{j}\right)\right|^{2}}$, where μ_{1}, \cdots, μ_{n} are the eigenvalues of $P_{0}^{*} P_{1} \in G \subseteq U_{n}$. Hence, for every $j=1, \cdots, n$, we have $\left|\mu_{j}\right|=1$, and so, $\log \left(\mu_{j}\right)=\mathbf{i} \theta$, with $\theta \in(-\pi, \pi]$. The above equality implies: $\log \left(\mu_{j}\right)=\mathbf{i} \pi$, so $\mu_{j}=-1$, for every j, and from this: $P_{0}^{*} P_{1}=-I_{n} \in G$. From these arguments, we also easily obtain part (b).
6.7. Proposition. a) $\delta\left(\langle V\rangle_{U_{n}}, \phi\right)=\sqrt{n} \pi$, for every $V \in U_{n}$ and for every integer $n \geq 1$; b) $\delta\left(\preccurlyeq Q \succcurlyeq_{S U_{n}}, \phi\right)=\sqrt{n} \pi, \quad$ for every $Q \in O_{n}$ and for every even integer $n \geq 2$;
c) $\delta\left(\preccurlyeq Q \succcurlyeq_{S U_{n}}, \phi\right)=\sqrt{n-1} \pi$, for every $Q \in O_{n}$ and for every odd integer $n \geq 1$.

Proof. Parts a) and b) follow from Corollary 6.6 (a) (taking into account also Propositions 4.2 and 4.10, since, in both cases, the groups are connected, SVD-closed and contain $-I_{n}$. c) If n is odd, by Remarks 4.9 (b), we have $P=A d_{A}\left(I_{1} \oplus\left(-I_{(n-1)}\right)\right) \in \preccurlyeq Q \succcurlyeq_{S U_{n}}$ (with $\left.A \in O_{n}\right)$; hence, from Theorem 6.5 (a), we get $\delta\left(\preccurlyeq Q \succcurlyeq_{S U_{n}}, \phi\right) \geq d\left(I_{n}, P\right)=\sqrt{n-1} \pi$. Now let P_{0}, P_{1} be arbitrary elements of $\preccurlyeq Q \succcurlyeq_{S U_{n}}$. Since n is odd, by Proposition 4.10, the matrix $P_{0}^{*} P_{1} \in \preccurlyeq Q \succcurlyeq_{S U_{n}}$ has 1 as eigenvalue; so, from Theorem 6.5 (a), we get $d\left(P_{0}, P_{1}\right) \leq \sqrt{n-1} \pi$ and then (c) holds.
6.8. Remarks. a) Remembering Remark-Definition4.1 and Lemma4.8 from Proposition 6.7 we deduce the following facts: the diameter of the groups U_{n} and $U_{(p, n-p)} \cap U_{n}$ $(p=0, \cdots, n)$ is $\sqrt{n} \pi \quad($ for $n \geq 1)$; the diameter of $S p_{n}$ and $U_{n}(\mathbb{H})$ is $\sqrt{2 n} \pi \quad($ for $n \geq 1)$; the diameter of $S O_{n}$ and $S O_{(p, n-p)}(\mathbb{C}) \cap U_{n}(p=0, \cdots, n)$ is $\sqrt{n} \pi$, for every even integer $n \geq 2$; while the diameter of the groups $S O_{n}, S O_{(p, n-p)}(\mathbb{C}) \cap U_{n}(p=0, \cdots, n)$, is equal to $\sqrt{n-1} \pi$, when the integer $n \geq 1$ is odd (see also Dolcetti-Pertici 2018a, Cor. 4.12]). b) There are examples of connected closed subgroups G of U_{n} such that $-I_{n} \in G$ and $\delta(G, \phi)>\sqrt{n} \pi$. For instance, denoted by G the one-parameter subgroup of U_{2}, given by $\exp (t \Delta)(t \in \mathbb{R})$, where Δ is the diagonal matrix with eigenvalues $\pi \mathbf{i}$ and $3 \pi \mathbf{i}$, it is easy to check that G is compact, not SVD-closed, $-I_{2} \in G$ and $\delta(G, \phi)=d\left(I_{2},-I_{2}\right)=\sqrt{10} \pi$.

$$
\text { 7. GENERALIZED PRINCIPAL }\langle V\rangle_{\mathfrak{u}_{n}} \text {-LOGARITHMS, wITH } V \in U_{n}
$$

7.1. Proposition. Let $M \in U_{n}$ and $\zeta \geq 0$ be the multiplicity of -1 as eigenvalue of M. Then $\mathfrak{u}_{n}-p l o g(M)$ is disjoint union of $\zeta+1$ compact submanifolds of \mathfrak{u}_{n}, called $\mathcal{W}_{0}, \cdots, \mathcal{W}_{\zeta}$, such that \mathcal{W}_{j} is diffeomorphic to the complex Grassmannian $\mathbf{G r}\left(j ; \mathbb{C}^{\zeta}\right)$, for $j=0, \cdots, \zeta$.

Proof. If $\zeta=0$, the statement is true, since $\mathfrak{u}_{n}-p \log (M)$ and $\mathbf{G r}\left(0 ; \mathbb{C}^{0}\right)$ reduce to a point.

Assume now $\zeta \geq 1$. Let us denote the eigenvalues of M as in Remark 5.4 with $\theta_{1}=\pi$ and $\zeta=m_{1}$. It is well-known that M can be diagonalized by means of a unitary matrix; hence, by Lemma 5.3 we can assume $M=\left(-I_{\zeta}\right) \oplus\left(\bigoplus_{j=2}^{p} e^{\mathrm{i} \theta_{j}} I_{m_{j}}\right)$, so that, by Lemma 2.4 (b), we have $\langle M\rangle_{U_{n}}=U_{\zeta} \oplus\left(\bigoplus_{j=2}^{p} U_{m_{j}}\right)$. Let T denote the maximal torus of U_{n}, passing through M, consisting of all unitary diagonal matrices, whose Lie algebra is the Cartan subalgebra \mathfrak{t} of \mathfrak{u}_{n}, consisting of all skew-hermitian diagonal matrices (see, for instance, Sepanski 2007, p. 98]). Since $\left|\theta_{j}\right|<\pi$, for every $j \geq 2$, we have that $\mathfrak{t}-\log (M)$ is the set of the 2^{ζ} elements of the form $D \oplus\left(\bigoplus_{j=2}^{p} \mathbf{i} \theta_{j} I_{m_{j}}\right)$, where D is any diagonal matrix of order ζ, having each diagonal element equal to either $\mathbf{i} \pi$ or $-\mathbf{i} \pi$. We denote $D_{j}:=\left(\mathbf{i} \pi I_{j}\right) \oplus\left(-\mathbf{i} \pi I_{(\zeta-j)}\right)$ and $L_{j}:=D_{j} \oplus\left(\bigoplus_{j=2}^{p} \mathbf{i} \theta_{j} I_{m_{j}}\right)$, so that $\left\langle L_{j}\right\rangle_{U_{n}}=U_{j} \oplus U_{(\zeta-j)} \oplus\left(\bigoplus_{j=2}^{p} U_{m_{j}}\right)$, for $j=0, \cdots, \zeta$. Clearly, each matrix of \mathfrak{t}-plog (M) belongs to the $\operatorname{Ad}\left(\langle M\rangle_{U_{n}}\right)$-orbit of a unique L_{j}. Denoted $\mathcal{W}_{j}:=\operatorname{Ad}\left(\langle M\rangle_{U_{n}}\right)\left(L_{j}\right)$, by Theorem5.7 we get: $\mathfrak{u}_{n}-\operatorname{plog}(M)=\bigsqcup_{j=0}^{\zeta} \mathcal{W}_{j}$, with \mathcal{W}_{j} compact submanifolds of \mathfrak{u}_{n}, diffeomorphic to $\frac{\langle M\rangle_{U_{n}}}{\left\langle L_{j}\right\rangle_{U_{n}}}=\frac{U_{\zeta} \oplus\left(\underset{j=2}{p} U_{m_{j}}\right)}{U_{j} \oplus U_{(\zeta-j)} \oplus\left(\bigoplus_{j=2}^{p} U_{m_{j}}\right)} \simeq \frac{U_{\zeta}}{U_{j} \oplus U_{(\zeta-j)}}$, and it is well-known that this last homogeneous space is diffeomorphic to the complex Grassmannian $\mathbf{G r}\left(j ; \mathbb{C}^{\zeta}\right)$, for $j=0, \cdots, \zeta$.
7.2. Theorem. Let $V \in U_{n}$; denote by λ_{1} (with multiplicity n_{1}), \cdots, λ_{r} (with multiplicity $\left.n_{r}\right)$ its distinct eigenvalues, and choose $R \in U_{n}$ such that $V=A d_{R}\left(\underset{j=1}{\underset{r}{r}} \lambda_{j} I_{n_{j}}\right)$. Then a) $M \in\langle V\rangle_{U_{n}}$ if and only if $M=A d_{R}\left(\bigoplus_{j=1}^{r} M_{j}\right)$, with $M_{j} \in U_{n_{j}}$, for $j=1, \cdots, r$; b) if $M=A d_{R}\left(\bigoplus_{j=1}^{r} M_{j}\right) \in\langle V\rangle_{U_{n}}$ (with $M_{j} \in U_{n_{j}}$), and $\zeta_{j} \geq 0$ is the multiplicity of -1 as eigenvalue of $M_{j}(1 \leq j \leq r)$, then the set $\langle V\rangle_{u_{n}}-p \log (M)$ has $\prod_{j=1}^{r}\left(\zeta_{j}+1\right)$ connected components, called $\mathcal{Z}\left(k_{1}, \cdots, k_{r}\right)$ (for $k_{j}=0,1, \cdots, \zeta_{j}$ and $\left.j=1, \cdots, r\right)$; each component $\mathcal{Z}\left(k_{1}, \cdots, k_{r}\right)$ is a simply connected compact submanifold of \mathfrak{u}_{n}, diffeomorphic to the product of complex Grassmannians $\prod_{j=1}^{r} \mathbf{G r}\left(k_{j} ; \mathbb{C}^{\zeta_{j}}\right)$.

Proof. Part (a) follows directly from Proposition 4.2. We now prove part (b). By Lemma 5.3) we can assume $V=\bigoplus_{j=1}^{r} \lambda_{j} I_{n_{j}}$ (i.e. $R=I_{n}$) and, so, again by Proposition 4.2, we have $\langle V\rangle_{U_{n}}=\bigoplus_{j=1}^{r} U_{n_{j}}, \quad\langle V\rangle_{\mathfrak{u}_{n}}=\bigoplus_{j=1}^{r} \mathfrak{u}_{n_{j}}$ and $\quad M=\bigoplus_{j=1}^{r} M_{j}$. From this, it follows that $L \in\langle V\rangle_{\mathfrak{u}_{n}}-\operatorname{plog}(M)$ if and only if $L=L_{1} \oplus \cdots \oplus L_{r}$, where $L_{j} \in \mathfrak{u}_{n_{j}}-\operatorname{plog}\left(M_{j}\right)$, for every $j=1, \cdots, r$. This implies that $\langle V\rangle_{\mathbf{u}_{n}}-p \log (M)=\bigoplus_{j=1}^{r} \mathfrak{u}_{n_{j}}-p \log \left(M_{j}\right)$.
From Proposition 7.1 we get that the set $\mathfrak{u}_{n j}-p \log \left(M_{j}\right)$ is disjoint union of $\zeta_{j}+1$ compact submanifolds of $\mathfrak{u}_{n_{j}}$, called $\mathcal{W}_{j 0}, \cdots, \mathcal{W}_{j \zeta_{j}}$, where $\mathcal{W}_{j k}$ is diffeomorphic to the complex Grassmannian $\mathbf{G r}\left(k ; \mathbb{C}^{\zeta_{j}}\right)$, for every $k=0, \cdots, \zeta_{j}$ and $j=1, \cdots, r$. Hence:
$\langle V\rangle_{u_{n}-}-\operatorname{plog}(M)=\bigoplus_{j=1}^{r}\left(\bigsqcup_{k_{j}=0}^{\zeta_{j}} \mathcal{W}_{j k_{j}}\right)=\underset{0 \leq k_{1} \leq \zeta_{1}, \cdots, 0 \leq k_{r} \leq \zeta_{r}}{\bigsqcup} \bigoplus_{j=1}^{r} \mathcal{W}_{j k_{j}}$, where each $\bigoplus_{j=1}^{r} \mathcal{W}_{j k_{j}}$
is a connected component of $\langle V\rangle_{\mathfrak{u}_{n}}{ }_{n}$ plog (M) and a compact submanifold of \mathfrak{u}_{n}, diffeomorphic to the product $\prod_{j=1}^{r} \operatorname{Gr}\left(k_{j} ; \mathbb{C}^{\zeta_{j}}\right)$. The total number of these components is $\prod_{j=1}^{r}\left(\zeta_{j}+1\right)$. Setting $\mathcal{Z}\left(k_{1}, \cdots, k_{r}\right):=\bigoplus_{j=1}^{r} \mathcal{W}_{j k_{j}}$ (for all possible indices), we obtain (b).
8. GENERALIZED PRINCIPAL $\preccurlyeq Q \succcurlyeq_{\mathfrak{s u}_{n}}$-LOGARITHMS, wITH $Q \in O_{n}$
8.1. Remark. By Lemma 4.8 we have $U_{n}(\mathbb{H})=\preccurlyeq \Omega^{\oplus n} \succcurlyeq_{S U_{2 n}}$. Then, arguing as in the proof of Lemma 4.3, it is easy to show that any matrix $M \in U_{n}(\mathbb{H})$ is similar to a real matrix; so, if -1 is an eigenvalue of $M \in U_{n}(\mathbb{H})$, its multiplicity is even and the eigenvalues of M can be listed as follows: -1 with multiplicity $2 \mu \geq 2, e^{ \pm \mathbf{i} \eta_{1}}$ both with multiplicity $\mu_{1}, e^{ \pm \mathbf{i} \eta_{2}}$ both with multiplicity μ_{2}, \cdots, up to $e^{ \pm \mathbf{i} \eta_{q}}$ both with multiplicity $\mu_{q}(q \geq 0)$, where $\pi>\eta_{1}>\eta_{2}>\cdots>\eta_{q} \geq 0$, with the agreement that, if $\eta_{q}=0$, the multiplicity of the corresponding eigenvalue 1 is $2 \mu_{q}$. In any case we have: $\mu+\sum_{j=1}^{q} \mu_{j}=n$.
8.2. Proposition. Let $M \in U_{n}(\mathbb{H})$; denote by $2 \mu \geq 0$ the multiplicity of -1 as eigenvalue of M. Then $\mathfrak{u}_{n}(\mathbb{H})-$ plog (M) is a simply connected compact submanifold of $\mathfrak{u}_{n}(\mathbb{H})$, diffeomorphic to the symmetric homogeneous space $\frac{U_{\mu}(\mathbb{H})}{U_{\mu}} \simeq \frac{S p_{\mu}}{U_{\mu}}$.

Proof. If $\mu=0$ (i.e. if -1 is not an eigenvalue of M), the statement is true, remembering Notations 1.1 (a) and Proposition 5.5 (a). Assume now $\mu \geq 1$. It is easy to show that the $\operatorname{group} T=\left\{\bigoplus_{j=1}^{n} E_{\theta_{j}}: \theta_{1}, \cdots \theta_{n} \in \mathbb{R}\right\}$ is a maximal torus of $U_{n}(\mathbb{H})$, whose Lie algebra is $\mathfrak{t}=\left\{\bigoplus_{j=1}^{n} \theta_{j} \Omega: \theta_{1}, \cdots \theta_{n} \in \mathbb{R}\right\}$. We denote the eigenvalues of M and their multiplicities as in Remark 8.1 then, by Sepanski 2007, Thm. 5.12 (a)], there exists $K \in U_{n}(\mathbb{H})$ such that $M=A d_{K}\left(\left(-I_{2 \mu}\right) \oplus\left(\bigoplus_{j=1}^{q} E_{\eta_{j}}^{\oplus \mu_{j}}\right)\right)$. By Lemma 5.3, we can assume $K=I_{2 n}$; hence, by Remark 2.9, the set $\mathfrak{t}-\operatorname{plog}(M)$ consists of the 2^{μ} elements of the form $\left(\bigoplus_{h=1}^{\mu}\left(\epsilon_{h} \pi \Omega\right)\right) \oplus\left(\bigoplus_{j=1}^{q}\left(\eta_{j} \Omega\right)^{\oplus \mu_{j}}\right)$, where each ϵ_{h} is either 1 or -1 . All these elements belong to the same $A d\left(\langle M\rangle_{U_{n}(H)}\right)$-orbit. Indeed, it suffices to remark that the matrix $\Psi(\mathbf{k})=$ $\left(\begin{array}{cc}0 & -\mathbf{i} \\ -\mathbf{i} & 0\end{array}\right)$ satisfies $\Psi(\mathbf{k}) \Omega \Psi(\mathbf{k})^{*}=-\Omega$. Hence, by Theorem 5.7. $\mathfrak{u}_{n}(\mathbb{H})-p \log (M)$ is a compact submanifold of $\mathfrak{u}_{n}(\mathbb{H})$, diffeomorphic to the homogeneous space $\frac{\langle M\rangle_{U_{n}(\mathbb{H})}}{\langle L\rangle_{U_{n}(\mathbb{H})}}$, where $L:=(\pi \Omega)^{\oplus \mu} \oplus\left(\bigoplus_{j=1}^{q}\left(\eta_{j} \Omega\right)^{\oplus \mu_{j}}\right)$. Recalling Remarks 1.2(c), (d), we get the statement, since we have $\langle M\rangle_{U_{n}(\mathbb{H})}=U_{\mu}(\mathbb{H}) \oplus\left(\bigoplus_{j=1}^{q} \Phi\left(U_{\mu_{j}}\right)\right)$ and $\langle L\rangle_{U_{n}(\mathbb{H})}=\Phi\left(U_{\mu}\right) \oplus\left(\bigoplus_{j=1}^{q} \Phi\left(U_{\mu_{j}}\right)\right)$.
8.3. Remark. In Remarks 1.2 (c), we have seen that we have $A d_{B}\left(U_{n}(\mathbb{H})\right)=S p_{n}$, with $B \in O_{2 n}$; so, by Lemma 5.3, we obtain $\mathfrak{s p}_{n}-\operatorname{plog}(M)=A d_{B}\left[\mathfrak{u}_{n}(\mathbb{H})-\operatorname{plog}\left(A d_{B^{T}}(M)\right)\right]$, for every $M \in S p_{n}$. Hence, by Proposition 8.2 we conclude that the set $\mathfrak{s p}_{n}-p \log (M)$ is a simply connected compact submanifold of $\mathfrak{s p}_{n}$, diffeomorphic to the symmetric space $\frac{S p_{\mu}}{U_{\mu}}$, where $2 \mu \geq 0$ is the multiplicity of -1 as eigenvalue of M, for every $M \in S p_{n}$.
8.4. Proposition. Let $M \in S O_{(p, n-p)}(\mathbb{C}) \cap U_{n}(p=0, \cdots, n)$ and denote by $2 m \geq 0$ the multiplicity of -1 as eigenvalue of M. Then the set $\left(\mathfrak{s o}_{(p, n-p)}(\mathbb{C}) \cap \mathfrak{u}_{n}\right)-\operatorname{plog}(M)$ is a compact submanifold of $\mathfrak{s u}_{n}$, diffeomorphic to the homogeneous space $\frac{O_{2 m}}{U_{m}}$; hence, if $m \geq 1$, this set has two connected components, both diffeomorphic to the simply connected compact symmetric homogeneous space $\frac{S O_{2 m}}{U_{m}}$.

Proof. By Lemmas 4.4 and 5.3 we can assume $p=n$, so that $S O_{(p, n-p)}(\mathbb{C}) \cap U_{n}=S O_{n}$, and, in this case, the Proposition has already been proved in Dolcetti-Pertici 2018a, §3] and in Pertici 2022, Thm. 4.7]. A further proof can be deduced from Theorem [5.7] but, for the sake of brevity, we omit it.
8.5. Theorem. Let $Q \in O_{n}$, and assume that Q has, as real Jordan form, the matrix $\mathcal{J}:=J^{(p, q)} \oplus\left(\bigoplus_{j=1}^{h} E_{\varphi_{j}}^{\left(\mu_{j}, \nu_{j}\right)}\right) \oplus \Omega^{\oplus k}$, with $0<\varphi_{1}<\varphi_{2}<\cdots<\varphi_{h}<\frac{\pi}{2}$, $p+q+2 \sum_{j=1}^{h}\left(\mu_{j}+\nu_{j}\right)+2 k=n, \quad p, q, k, \mu_{j}, \nu_{j} \geq 0, \quad \mu_{j}+\nu_{j} \geq 1$, and choose $A \in O_{n}$ such that $Q=A d_{A}(\mathcal{J})=A \mathcal{J} A^{T}$. Let Z be the $n \times n$ unitary matrix defined by $Z:=A\left(W_{(p, q)} \oplus\left[\bigoplus_{j=1}^{h} W_{\left(2 \mu_{j}, 2 \nu_{j}\right)}\right] \oplus I_{2 k}\right)$. Then
a) $M \in \preccurlyeq Q \succcurlyeq_{S U_{n}}$ if and only if $M=A d_{Z}\left[N \oplus\left(\bigoplus_{j=1}^{h} M_{j}\right) \oplus R\right]$, where $N \in S O_{(p+q)}, \quad R \in U_{k}(\mathbb{H})$ and $M_{j} \in U_{\left(\mu_{j}+\nu_{j}\right)}$, for $j=1, \cdots, h$.
b) If $M=A d_{Z}\left[N \oplus\left(\bigoplus_{j=1}^{h} M_{j}\right) \oplus R\right] \in \preccurlyeq Q \succcurlyeq_{S U_{n}}$, denote by $2 m \geq 0$ the multiplicity of -1 as eigenvalue of N, by $\zeta_{j} \geq 0$ the multiplicity of -1 as eigenvalue of $M_{j}($ for $1 \leq j \leq h)$ and by $2 \mu \geq 0$ the multiplicity of -1 as eigenvalue of R. Then we have

$$
\preccurlyeq Q \succcurlyeq_{\text {sun }_{n}}-\operatorname{plog}(M)=\bigsqcup_{0 \leq l_{1} \leq \zeta_{1}, \cdots, 0 \leq l_{h} \leq \zeta_{h}} \mathcal{V}\left(l_{1}, \cdots, l_{h}\right),
$$

where each $\mathcal{V}\left(l_{1}, \cdots, l_{h}\right)$ is a compact submanifold of $\mathfrak{s u}_{n}$, diffeomorphic to the product $\frac{O_{2 m}}{U_{m}} \times\left[\prod_{j=1}^{h} \mathbf{G r}\left(l_{j} ; \mathbb{C}^{\zeta_{j}}\right)\right] \times \frac{S p_{\mu}}{U_{\mu}}$.
If -1 is not an eigenvalue of N (i.e. if $m=0$), then each $\mathcal{V}\left(l_{1}, \cdots, l_{h}\right)$ is connected and $\preccurlyeq Q \succcurlyeq_{\mathfrak{s u}_{n}}-$ plog (M) has $\prod_{j=1}^{h}\left(\zeta_{j}+1\right)$ components; while, if -1 is an eigenvalue of N (i.e. if $m \geq 1)$, then each $\mathcal{V}\left(l_{1}, \cdots, l_{h}\right)$ has two connected components, both diffeomorphic to $\frac{S O_{2 m}}{U_{m}} \times\left[\prod_{j=1}^{h} \mathbf{G r}\left(l_{j} ; \mathbb{C}^{\zeta_{j}}\right)\right] \times \frac{S p_{\mu}}{U_{\mu}}$, so $\preccurlyeq Q \succcurlyeq_{\text {su }_{n}-}{ }^{-} \operatorname{plog}(M)$ has $2 \prod_{j=1}^{h}\left(\zeta_{j}+1\right)$ components. In any case, all components of $\preccurlyeq ~ Q \succcurlyeq_{\text {su }_{n}}{ }^{-p l o g}(M)$ are simply connected, compact and diffeomorphic to a symmetric homogeneous space.

Proof. Part (a) follows directly from Proposition 4.10 By Lemma 5.3 we can assume $\preccurlyeq Q \succcurlyeq_{S U_{n}}=S O_{(p+q)} \oplus\left[\bigoplus_{j=1}^{h} U_{\left(\mu_{j}+\nu_{j}\right)}\right] \oplus U_{k}(\mathbb{H}) \quad$ and $\quad M=N \oplus\left(\bigoplus_{j=1}^{h} M_{j}\right) \oplus R$. Therefore, arguing as in the proof of Theorem 7.2 we get $\preccurlyeq Q \succcurlyeq_{\text {su }_{n}}{ }^{-p l o g}(M)=$ $\left[\mathfrak{s o}_{(p+q)}-\operatorname{plog}(N)\right] \oplus\left[\bigoplus_{j=1}^{h} \mathfrak{u}_{\left(\mu_{j}+\nu_{j}\right)}-\operatorname{plog}\left(M_{j}\right)\right] \oplus\left[\mathfrak{u}_{k}(\mathbb{H})-\operatorname{plog}(R)\right]$.
Hence we get (b), by means of Propositions $8.2,8.4$ and 7.1, via Remarks 5.2 (b).

References

[Alexandrino-Bettiol 2015] ALEXANDRINO Marcos M., BETTIOL Renato G., Lie groups and geometric aspects of isometric actions, 2015, Springer, Cham.
[An-Hou 2006] AN Runling, HOU Jinchuan, "Additivity of Jordan multiplicative maps on Jordan operator algebras", Taiwanese J. Math. 10 (2006), no. 1, 45-64.
[Bröcker-tomDieck 1985], BRÖCKER Theodor, TOM DIECK Tammo, Representations of Compact Lie Groups, 1985, Springer-Verlag, New York.
[Bourbaki 1975] , BOURBAKI Nicolas, Elements of Mathematics. Lie Groups and Lie Algebras. Part I: Chapters 1-3, 1975, Addison-Wesley Publishing Company, Reading, Massachusetts.
[Dolcetti-Pertici 2017] DOLCETTI Alberto, PERTICI Donato, "Some remarks on the JordanChevalley decomposition", São Paulo J. Math. Sci. (2017), 11(2): 385-404.
[Dolcetti-Pertici 2018a] DOLCETTI Alberto, PERTICI Donato, "Skew symmetric logarithms and geodesics on $O_{n}(\mathbb{R}) "$, Adv. Geom. 2018; 18(4): 495-507.
[Dolcetti-Pertici 2018b] DOLCETTI Alberto, PERTICI Donato, "Some additive decompositions of semisimple matrices", Rend. Istit. Mat. Univ. Trieste, Vol. 50 (2018), 47-63.
[Dolcetti-Pertici 2021] DOLCETTI Alberto, PERTICI Donato, "Elliptic isometries of the manifold of positive definite real matrices with the trace metric", Rend. Circ. Mat. Palermo Series 2 (2021) $70: 575-592$.
[EoM-Orbit] "Orbit", Encyclopedia of Mathematics,
URL: http://encyclopediaofmath.org/index.php?title=Orbit\&oldid=48062 (accessed on 2 November 2022).
[Gallier-Xu 2002] GALLIER Jean, XU Dianna, "Computing exponentials of skew-symmetric matrices and logarithms of orthogonal matrices", International Journal of Robotics and Automation, Vol. 17, No. 4, 2002, 10-20.
[Higham 2008] HIGHAM Nicholas J., Functions of Matrices. Theory and Computation, 2008, SIAM Society for Industrial and Applied Mathematics, Phildelphia.
[Horn-Johnson 2013] HORN Roger A., JOHNSON Charles R., Matrix analysis, Second Edition, 2013, Cambridge University Press, Cambridge.
[Ottaviani-Paoletti 2015] OTTAVIANI Giorgio, PAOLETTI Raffaella, "A geometric perspective on the Singular Value Decomposition", in Rend. Istit. Mat. Univ. Trieste, Vol. 47 (2015), 107125.
[Pertici 2022] PERTICI Donato, "Real logarithms of semi-simple matrices", https://doi.org/10.48550/arXiv.2209.06033 (accessed on 2 November 2022)
[Sepanski 2007] SEPANSKI Mark R., Compact Lie groups, 2007, GTM 235, Springer, New York.

