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Environmental conditions affect the growth and health of animals, making it crucial to quantify heat
stress and the genetic basis of heat tolerance in animal breeding. The main objective of this study was
to evaluate heat stress on growth and investigate the genetic background of tolerance to harsh environ-
mental conditions in the Italian Limousine beef cattle. Three growth traits were analysed: average daily
gain (ADG), weaning weight (WW), and yearling weight (YW). Data were collected from animals raised
between 1991 and 2022 and combined with 14 environmental covariates. Records for ADG, WW, and YW
encompassed 108 205, 100 058, and 24 939 individuals, respectively, with 4 617, 4 670, and 2 048 geno-
typed individuals. Climatic variables were compared for inclusion in a linear mixed model using the
Deviance Information Criterion. Multiple-trait models and genomic information incorporated environ-
mental conditions with the largest impact on the studied traits Genotype by environment interaction
(G � E) was detected in all the studied traits, showing substantial heterogeneity of the variance compo-
nents across the different environments (Env). Heritability for WW remains constant among Env;
instead, for ADG and YW decreased under uncomfortable environmental conditions. YW showed the low-
est genetic correlation (0.28) between divergent conditions (Env 2 and Env 5,) for ADG and WW correla-
tions dropped below 0.50 among Env. The values of genetic correlations indicate that growth traits are
moderately to strongly affected by G � E. Eigenvalue decomposition of the additive genetic (co)variance
matrix for ADG, WW, and YW indicated that three components accounted for over 0.80 of the proportion
of the variance explained, suggesting different animal performances across Env. Spearman rank correla-
tions showed potential re-ranking of genotyped sires, because ADG, WW, and YW showed correlations
between Env below 0.80. The accuracy of single-step genomic EBV was higher compared to EBV for al
traits. Overall, the result confirms the existence of G � E for growth traits in the Italian Limousine pop-
ulation. Including G � E in the model allows for more environment-aware predictions, helping breeders
understand how different genetic bases respond to varying conditions. Genomic predictions incorporat-
ing G � E could accelerate genetic gains and improve response to selection for heat tolerance.
� 2024 The Authors. Published by Elsevier B.V. on behalf of The Animal Consortium. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
Implications

In the face of rising global temperatures and climate variability,
understanding the genetic and environmental factors affecting ani-
mal performance is critical to increase the sustainability of live-
stock production systems. This study evaluated the effect of heat
stress and environmental factors on growth traits, identifying the
genetic basis for tolerance to harsh conditions. Our findings show
significant variation in growth across environments, underscoring
the importance to select animals that cope with climatic condi-
tions. These results can guide breeding programmes to enhance
cattle resilience, productivity, and welfare, supporting sustainable
beef production in the context of climate change.

Introduction

Heat stress has been reported as a cause of decreased perfor-
mance in livestock, resulting in significant economic losses and
reduced animal health and welfare. Physiology, health, and meta-
bolism could be severely damaged by increased temperatures
(Nardone et al., 2010). For example, St.-Pierre et al. (2003) esti-
mated $360 million in annual losses due to heat stress in the US
beef sector. One effective strategy to overcome this problem is to
select animals that are less sensitive to environmental stress and
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more adapted to harsh conditions (Renaudeau et al., 2012). The
genetic control on tolerance to heat stress is attributable to the
genotype by environment interaction (G � E) (Tiezzi and
Maltecca, 2022). Therefore, genetic evaluation of G � E is con-
stantly increasing in the livestock sector, especially for economi-
cally important traits.

Genotype�by�environment interaction implies that different
genotypes may respond differently to environmental changes,
affecting performance across different environments. Research on
cattle and pigs has shown that the genetic component of heat
stress is negatively correlated with production performance
(Zumbach et al., 2008b; Biffani et al., 2016; Bradford et al., 2016).
Additionally, studies have also demonstrated the existence of
G � E for reproduction traits, showing a negative association
between the genetic component of heat stress and the reproduc-
tive performances (Ravagnolo and Misztal, 2002; Bernabucci
et al., 2014; Tiezzi et al., 2020).

Quantifying the magnitude of G � E is a significant challenge.
Therefore, developing strategies and tools to enhance the efficiency
and sustainability of beef production is necessary to understand
specific sector problems and the genetic background of sensitivity
to environmental variation. One complication in modelling heat
stress in beef cattle is that only the weight of animals at particular
growth stages is often available. Another complication is compen-
satory growth, where animals can recover weight lost due to pre-
vious stress periods caused by heat stress (Baccari et al., 1983;
Mader and Davis, 2004; Santana et al., 2016). One way to address
these issues is to assume that heat load accumulates over the ani-
mals’ lifetime or until a certain weight.

Generally, genetic analyses of heat stress in pigs (Zumbach
et al., 2008a,b; Fragomeni et al., 2016) and beef cattle (Bradford
et al., 2016; Santana et al., 2016) are based on heat load function
for live or carcass weight in growing/finishing animals. In selection,
the presence of G � E is explored using multi-trait models (MTs) or
reaction norm models (Tiezzi and Maltecca, 2022). In the MT
model, a trait measured in multiple environments is considered a
different trait in each environment. Consequently, the animal’s
breeding value on the environmental conditions reflects the
heterogeneous impact of the genetic background across different
environments. Environmental conditions must be treated as cate-
gorical variables so that the MT provides a breeding value estimate
for each environment. This approach is called a multi-environment
trial, where a set of genotypes or families are raised in several envi-
ronments (Isik et al., 2017). Proper analyses of multi-environment
trial can determine which animals perform better in a specific
environment and understand the relationship among environ-
ments in terms of G � E patterns. Genetic correlations between
environments lower than 0.80 have been proposed in animal
breeding as evidence of G � E interactions (Hayes et al., 2016).
Moreover, correlations below 0.70, suggest considerable reranking
of selection candidates, confirming G � E (Mulder and Bijma,
2007). For this reason, it is recommended to assess separate breed-
ing programmes and consider the effect of the environment on the
genetic or genomic model.

In cattle breeding programmes in Italy, routine genetic evalua-
tions do not account for G � E. This justifies a study to identify
genetically superior individuals for tolerance to heat stress in the
Limousine population, a French beef breed typically used in local
or dairy crossbreeding systems or as a pure breed (Bouquet et al.,
2011). It is widely raised in the Mediterranean, with a relevant
presence in Italy. However, this population is distributed across
the entire national territory, predominating in Central and South-
ern Italy. The diversity of Italian territory led to different farm
management and environmental conditions, affecting the animals
and exposing them to varying humidity and temperature levels.
Consequently, animals’ performance can be negatively affected.
2

Understanding the extent of environmental variability in Italy is
crucial. Animals can experience significant heat stress, especially
during the summer months. In many regions, cattle may face over
50 days of high temperatures (CNR-ISAC, https://www.isac.cnr.it),
leading to heat stress.

This context underscores the importance of considering G � E
interactions in breeding programmes, as it could significantly
influence animal performance and welfare, guiding breeders
towards G � E-aware breeding values. Therefore, the objectives
of this study were: (a) to identify the environmental parameter
with the most substantial impact on growth; (b) to estimate the
impact of heat stress on genetic parameters; (c) to compare
pedigree-BLUP and Single-Step genomic BLUP for the genetic eval-
uations for heat tolerance using a multiple-trait approach. The
study was conducted on the Italian Limousine beef cattle
population.
Material and methods

Animal data

Data were obtained from a pre-existing database; therefore,
Animal Care and Use Committee approval was unnecessary. The
National Italian Association of Limousine and Charolais Breeders
provided phenotypic, pedigree, and genomic information. Records
were collected on animals born between 1991 and 2022 and raised
in herds in the national territory. The traits analysed were weaning
weight (WW, kg), yearling weight (YW, kg), and average daily gain
(ADG, g/d). Firstly, WW was measured considering a range of 170–
250 days of age and YW at 290–440 days of age in the Limousine
population. For each animal, ADG was calculated as the difference
between twoweights ranging from 30 days (minimum) to 150 days
(maximum).

ADG, WW, and YW records of contemporary groups with less
than five individuals were excluded from the dataset for data edit-
ing, with groups defined by concatenating the herd and the ani-
mal’s birth year. Moreover, phenotypic records outside the
interval of the mean ±3.5 SD units. After editing, the final database
included 108 205, 100 058, and 24 939 animals for ADG, WW, and
YW, respectively. For the subsequent analyses, the age of animals
was grouped into two classes using the median (118, 205, and
323 days of age for ADG, WW, and YW, respectively). The age of
the dam at calving was divided into five classes using the first four
quintiles as discriminants to create a balanced number of observa-
tions in each class. Dividing the age of animals into two classes
using the median reduces variability from individual age differ-
ences, which is useful where there is significant variation in age-
related growth traits. It is also less sensitive to outliers, producing
more robust and reliable results. Moreover, including fixed effects
for age classes in our model can help control for age-related varia-
tion in weight.

We considered only animals with known sires and dams to
analyse all the investigated traits. Finally, general information
and descriptive statistics used in this study from the three final
datasets were summarised in Table 1. In addition, Fig. 1 illustrates
the distribution of animals and herds for ADG, WW, and YW across
the 20 Italian regions. Supplementary Table S1 provides the per-
centage distribution of herds and the number of animals for these
growth traits in the seven most representative Italian regions.

Meteorological data and environmental descriptors

Several previous studies have used weather stations; however,
data from meteorological stations could be limited for a specific
time because the complete information is not always accessible.

https://www.isac.cnr.it


Table 1
Descriptive statistics of traits, number of farms, contemporary groups (CG), sires, dams, and effects for cattle under study.

Traits Descriptive statistics

N. of records N. of animals with records Mean SD N. of Farms N. of CG N. of sires N. of dams

ADG 108 205 108 205 1.04 0.28 829 5 712 3 783 39 014
WW 100 058 100 058 247.9 46.54 838 6 102 4 019 40 548
YW 24 939 24 939 354.5 65.61 550 2 030 2 162 16 090

Abbreviations: ADG = average daily gain; WW = weaning weight; YW = yearling weight.

Fig. 1. Frequency of cattle and herds across Italian regions for average daily gain (ADG, kg/d), weaning weight (WW, kg), and yearling weight (YW, kg).

S. Callegaro, F. Tiezzi, M.C. Fabbri et al. Animal 18 (2024) 101344
The National Aeronautics and Space Administration (NASA/
POWER, https://power.larc.nasa.gov) provides a surrogate to the
meteorological stations where weather data are obtained from
satellite observations (Van Wart et al., 2015). Rockett et al.
(2023) compared weather parameters and temperature humidity
index (THI) values collected from weather stations against NASA/
POWER estimates. The study showed that climatic data from the
stations were highly correlated (with a Pearson correlation larger
3

than 0.80) with data from NASA POWER; therefore, weather sta-
tion data could be replaced.

Herds’ positions were matched with their corresponding lati-
tude and longitude coordinates to obtain data from NASA POWER.
Meteorological data including average daily temperature (Temp,
�C), relative humidity (RH, %), and the dew point (DP, �C Td) were
downloaded. Subsequently, the average THI (NRC, 1971) was cal-
culated as:

https://power.larc.nasa.gov
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THI ¼ 1:8� Tempþ 32ð Þ � 0:55� 0:0055� RHð Þ
� 1:8� Temp� 26ð Þ

where Temp is the temperature in degrees Celsius, and RH is the
relative humidity, expressed in percentage. Heat stress in animals
was further characterised by calculating the heat load, which is
the cumulative THI units above a certain threshold (70 or 75) over
a specified period (Zumbach et al., 2008a; Santana et al., 2016;
Bradford et al., 2016). This was applied to datasets ADG, WW, and
YW. The heat load function was defined as follows:

heat load 70 ¼ max 0;
X

THI� 70
� �

heat load 75 ¼ max 0;
X

THI� 75
� �

THI was the accumulated THI for the animals on the days lead-
ing up to the weight measurement date or between the two dates
for ADG. When THI was below the threshold, the model assumes
that heat stress does not impact animal growth, and heat load
was assigned a value of 0. Conversely, when the average daily
THI exceeds the threshold (either 70 or 75), heat load is assigned
a positive value, reflecting the degree of heat stress experienced
by the animals.

A range of 30 days before the weight data for WW was chosen
based on Bradford et al. (2016). Instead, we reduce YW from 150 to
30 days because Bradford et al. (2016) found that cattle may have
recovered to heat stress during the 150 days, resulting in no
detectable G � E intersctions. For ADG, a period of 30–150 days
was chosen, assuming that in this gap, environmental parameters
may negatively affect the growth of animals. Therefore, averaged
weather data for the three analysed traits were calculated into
these periods. This range was chosen based on the period during
which significant weight gain occurs, reflecting the average envi-
ronmental conditions affecting the cattle. This interval was also
selected to assess the impact of heat stress on growth as reported
in the literature these time frames are crucial for cattle accumulat-
ing stress due to environmental factors. Including this range for
ADG was intentional to capture the impact of environmental stres-
sors on cattle growth during these critical periods. Additionally,
the mean values at the first and third quartiles were considered
because NASA POWER provides daily averages, not hourly values.
Using only minimum and maximum would underestimate the
effect of extreme conditions on the animals. Finally, 14 variables
describing climatic conditions were obtained, as detailed in Sup-
plementary Table S2.

Heat stress analysis model

The 14 environmental variables were categorised into 5 classes
(Supplementary Table S2) to define ‘environmental conditions’
(Env). By grouping animals based on these classes, it is possible
to evaluate the impact of different levels of environmental stress
on growth traits (ADG, WW, and YW). The five classes of the Env
were created using the first four quintiles as discriminants, allow-
ing a balanced number of observations per each Env category. For
each environmental variable, the 5 classes represent the different
levels of environmental stress. Animals were grouped according
to the environmental conditions at their respective locations. The
five Env were defined as follows: Env 1 (extremely uncomfortable),
Env 2 (moderately comfortable), Env 3 (comfortable), Env 4 (mod-
erately uncomfortable), and Env 5 (extremely uncomfortable),
respectively. An exception was for RH, where the 5 classes were
defined differently: Env 1 (comfortable), Env 2 (moderately com-
4

fortable), Env 3 (moderately uncomfortable), Env 4 (uncomfort-
able), and Env (5 extremely uncomfortable), respectively. For
heat load, the classes were treated differently: Env 1 (comfortable,
with all heat load values equal to 0), and from env 2 until env 5, the
classes were divided incrementally based on the heat accumulated
by the animals.

Because most of the analysed environmental variables were
derived from Temp and DP, Env 1 (extremely cold environment)
and Env 5 (extremely hot environment) were both considered ‘‘ex-
tremely uncomfortable.” Although cattle typically do not have
problems with cold weather, extreme cold is still classified as
uncomfortable due to its potential negative impact. Toghiani
et al. (2020) found that cold stress as an environmental stressor
could impact overall health and cattle productivity, in particular
birth and weaning weight. The classification changes regarding rel-
ative humidity, where the lowest values are the most comfortable.

Detection of best environmental covariates

The effect of the environmental conditions on ADG, WW, and
YW was assessed using the following linear mixed model (Model
1) to evaluate the response of growth to a specific environment:

yijklm ¼ lþ envi þ sexj þ agek þ ageDl þ envi � sexj þ envi

� agek þ envi � ageDl þ agek � ageDl þ hym þ eijklm ð1Þ
where yijklm was the measurements of ADG, WW, and YW, l was
the intercept of the model; envi was the fixed effect of the environ-
mental covariates divided into five classes i; sexj was the fixed
effect of the sex; agek was the fixed effect of the age of the animals,
divided into two levels using median (for YW we correct the model
using age as a linear covariate); ageD, was the fixed effect of age
dam class (five levels); hym was the random effect of the herd year;
eijklm was the residual error. The model also included all the two-
way interactions among the fixed effects. These analyses were
implemented using the function lmer of package ‘lme40 (Bates,
2010) of the R software (R Core Team, 2020), using a maximum-
likelihood estimator (option REML = FALSE in lmer). The models
were compared based on the Deviance Information Criterion, with
smaller values indicating better model fit.
Pedigree and genotypes

The raw pedigree file included 493 125 animals across more
than 10 generations. Therefore, animals were traced back seven
generations, including 44 304, 48 231, and 33 478 animals for
ADG, WW, and YW, respectively. 269, 265, and 139 animals were
genotyped with GeneSeek GGP Bovine 150 K (HD, number of
SNPs = 119 854) for ADG, WW, and YW, respectively. 4 348,
4 404, and 1 909 animals were genotyped with GeneSeek GGP
Bovine LD v3 (number of SNPs = 28 299) for ADG, WW, and YW,
respectively. The two panels shared 14 079 SNPs. Due to the low
number of genotyped animals in HD compared to LD, animals
genotyped with GeneSeek GGP Bovine 150 K were imputed to Gen-
eSeek GGP Bovine LD starting from the 14 079 SNPs shared. FIm-
pute v.3 (Sargolzaei et al., 2014) was used with default
parameters to impute genotypes.

Quality control and data filtering of genotype data were per-
formed with PLINK v1.9 (Chang et al., 2015). Therefore, in the qual-
ity control autosomal SNPs and individuals with less than 10% of
missing values, minor allele frequency higher than 0.01 and a call
rate higher than 90% were retained. Thus, 22 910, 22 903, and
22 921 SNPs for 4 617, 4 670, and 2 048 animals for ADG, WW,
and YW, respectively, were included in the successive analyses.
Table 2 summarises the number of genotyped animals per cate-



Table 2
Number of genotyped cattle across the three studied traits, considering animals with phenotype, sires, and dams.

Traits Males with phenotype Sires Females with phenotype Dams Total

ADG 1 224 551 1 775 1 067 4 617
WW 1 127 675 1 565 1 303 4 670
YW 266 431 449 902 2 048

Abbreviations: ADG = average daily gain; WW = weaning weight; YW = yearling weight; Males with phenotype = are those individuals showing a phenotypic record in the
dataset. They may appear as sires or other individuals; Sires = are those individuals not showing a phenotypic record in the dataset, but they appear as sires of individuals
with phenotypes; Females with phenotype = are those individuals showing a phenotypic record in the dataset. They may appear as dams or other individuals; Dams = are
those individuals not showing a phenotypic record in the dataset, but they appear as dams of individuals with phenotypes.
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gory, considering males and females with phenotype, sires, and
dams.

Model and analyses for variance components and breeding value
estimates

Univariate model. Separate univariate models were used to
mimic the national Limousine evaluation for growth traits without
including the G � E effect. The models were defined as follows
(Model 2):

yijklm ¼ lþ sexi þ agej þ ageDk þ al þ cgm þ eijklm ð2Þ
were yijklm is the value of ADG, WW, and YW; sexi is the fixed effect
of the sex; agej is the fixed effect of the age of the animals (contin-
uous covariate or in classes); ageDk, is the fixed effect of age dam
class (five levels); al is the random additive direct genetic effect of
the animal; cgm is the random effect of the contemporary groups;
eijklm is the random residual error. In matrix notation, the univariate
model was represented as follows:

y ¼ Xbþ ZuþWmþ e

where y is the vector of phenotypic values of ADG, WW, and YW; b
is the vector of solutions for fixed effects; u is the vector of solutions
for the random genetic effect of the animal; m is vector of solutions
for the random effect of contemporary groups; e is the random
residual error; and X, Z, W are the incidence matrices associated
with fixed, direct genetic, and random genetic effects, respectively.
In all the subsequent analyses for WW, the maternal permanent
environmental effect was not incorporated in the models. This
choice is related to the dam frequency and limited repeated records
per dam in the Italian Limousine population. Also, Santana et al.
(2016) omitted the permanent maternal environmental effect for
one breed because of the limited repeated records per dam.
Table 3
Distribution of cattle numbers for average daily gain, weaning weight, and yearling weigh

Traits Covariate Interval

ADG maxRH_CLASS [40.69–72
maxRH_CLASS (72.44–79
maxRH_CLASS (79.12–84
maxRH_CLASS (84.92–89
maxRH_CLASS (89.94–98

WW T_CLASS [�11.31–
T_CLASS (7.41–12.
T_CLASS (12.35–17
T_CLASS (17.45–22
T_CLASS (22.72–35

YW DP_CLASS [�8.65–3
DP_CLASS (3.88–7.1
DP_CLASS (7.17–10.
DP_CLASS (10.25–13
DP_CLASS (13.59–23

Abbreviations: ADG = average daily gain; WW = weaning weight; YW = yearling we
Temperature; DP_CLASS = class of Dew Point.

5

Multiple traits model including genotype by environment interac-
tion. An MT animal model was used to estimate variance compo-
nents for growth traits in 5 different Env, selected based on
lower Deviance Information Criterion values from Model 1. Utilis-
ing the covariance among traits, this model can generate breeding
values for all traits of individuals. Consequently, variance–covari-
ance structures can be applied to model G� E interactions. Records
were assigned to the corresponding Env class based on the envi-
ronmental covariate involved (Table 3). Fixed and random effects
were the same as in Model 2.

In matrix notation, the following general model was used in five
Env analyses:

y1

y2

y3

y4

y5

2
6666664

3
7777775
¼ d

X1 0 0 0 0
0 X2 0 0 0
0 0 X3 0 0
0 0 0 X4 0
0 0 0 0 X5

e

b1

b2

b3

b4

b5

2
6666664

3
7777775

þ d

Z1 0 0 0 0
0 Z2 0 0 0
0 0 Z3 0 0
0 0 0 Z4 0
0 0 0 0 Z5

e

a1
a2
a3
a4
a5

2
6666664

3
7777775

þ d

W1 0 0 0 0
0 W2 0 0 0
0 0 W3 0 0
0 0 0 W4 0
0 0 0 0 W5

e

m1

m2

m3

m4

m5

2
6666664

3
7777775
þ

e1
e2
e3
e4
e5

2
6666664

3
7777775

where y1, y2, y3, y4, and y5 are trait records for genotypes in Env 1, 2,
3, 4, and 5, respectively, X1 to X5 are incidence matrices for fixed
t across Italy, divided into five different environments.

Environment N

.44] Env 1 21 778

.12] Env 2 21 540

.92] Env 3 21 619

.94] Env 4 21 753

.70] Env 5 21 515

7.41] Env 1 19 999
35] Env 2 20 024
.45] Env 3 20 021
.72] Env 4 20 002
.66] Env 5 20 012

.88] Env 1 4 990
7] Env 2 4 985
25] Env 3 4 992
.89] Env 4 4 984
.15] Env 5 4 988

ight; maxRH_CLASS = class of Maximum Relative Humidity; T_CLASS = class of
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effect, Z1 to Z5 are the matrix of the additive genetic effect, W1 toW5

are the incidence matrices of the random effect of contemporary
groups. The vectors of the systematic effects are represented by
b1 to b5, a1 to a5 are vectors of additive genetic effect, m1 to m5

are vectors of the random effect of contemporary groups, and e1
to e5 are vectors of residual error. The assumptions regarding the
(co)variance structure of random effects, and additive genetic effect
in five Env are:

a1
a2
a3
a4
a5

2
6666664

3
7777775
� N 0;A�

r2
a1 ra12 ra13 ra14 ra15

ra21 r2
a2 ra23 ra24 ra25

ra31 ra32 r2
a3 ra34 ra35

ra41 ra42 ra43 r2
a4 ra45

ra51 ra52 ra53 ra54 r2
a5

2
6666664

3
7777775

0
BBBBBB@

1
CCCCCCA

m1

m2

m3

m4

m5

2
6666664

3
7777775
� N 0; I�

r2
m1 rm12 rm13 rm14 rm15

rm21 r2
m2 rm23 rm24 rm25

rm31 rm32 r2
m3 rm34 rm35

rm41 rm42 rm43 r2
m4 rm45

rm51 rm52 rm53 rm54 r2
m5

2
6666664

3
7777775

0
BBBBBB@

1
CCCCCCA

the random residuals (co)variance structure is:

e1
e2
e3
e4
e5

2
6666664

3
7777775
� N 0; I�

r2
e1 0 0 0 0
0 r2

e2 0 0 0
0 0 r2

e3 0 0
0 0 0 r2

e4 0
0 0 0 0 r2

e5

2
6666664

3
7777775

0
BBBBBB@

1
CCCCCCA

where A is the matrix of additive genetic relationships among indi-
viduals in the pedigree, and I is the identity matrix. The residual
covariance between the five Env is set to zero.

Multiple traits genomic-based single-step model including geno-
type by environment interaction. The SNP information can be
included as a genomic relationships matrix among animals to
obtain genomic Estimated breeding value (EBV). Also, the MT can
be extended with the information derived from SNP. The genomic
approach combines matrix A (pedigree relationship matrix) with G
(relationships matrix from SNP markers). Indeed, genomic EBV was
estimated with single-step genomic BLUP (Aguilar et al., 2010), and
the H matrix was composed by combining A with G (Legarra et al.,
2014):

H�1 ¼ A�1 þ 0 0
0 G�1�A�1

22

� �

where A�1 is the inverse of the numerator relationship matrix A,

and A�1
22 is the inverse of the A matrix for the genotyped animals

and G�1 represents the inverse of the SNP genomic relationship
matrix, determined with the second method as in VanRaden (2008).

Multiple traits model using permutation. An additional model was
assessed to evaluate the effective presence of G � E on the studied
traits. MT models using permuted Env assignments (MT with per-
mutations) were implemented, where y is the observation for the
YW of the animal assigned randomly in the five Env (permuta-
tions). The fixed and random effects were the same in Model 2.
Random assignment of the trait of animals in different Env min-
imises the environmental effect. The MT with permutations model
was implemented only for YW, the trait with fewer available
records. Ten permutations were carried out, estimating variance
components for each.
6

Bayesian inference, model comparison, and computation

Variance components and genetic parameters were estimated
with an animal model through the GIBBS3F90 program, imple-
mented in the BLUPF90 family of programs (Misztal et al., 2014).
Therefore, a Gibbs chain of 1 000 000 iterations has been set, plus
a burn-in period of 500 000 iterations and a sampling interval of
100 iterations. These constraints ensured model convergence for
all traits analysed. Convergence of the parameters was confirmed
by visual investigation of trace plots and throughout Geweke’s test
using the package ‘coda’ (Plummer et al., 2006) of the R software (R
Core Team, 2020).

Heritability (h2) and herd-year effect (hi) were defined as
follows:

h2 ¼ r2
a

r2
a þr2

hy þr2
e

hi ¼
r2

hy

r2
a þr2

hy þr2
e

where r2
a is the estimate of additive genetic variance, r2

hy is the

estimate of herd-year effect variance, and r2
e is the estimate of

residual variance. The posterior mean and 95% empirical confidence
intervals of the posterior distribution were used as the estimate and
its attached error. Confidence intervals were calculated using the R
software package ‘TeachingDemos’ (Snow, 2020).

The accuracy of EBV and single-step genomic EBV for the trait t
taken into consideration of the animal i was estimated as follows:

Accit ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� SE2

it

ð1þ FiÞr2
at

s

where SEit is the SE of EBV and single-step genomic EBV for animal i
in the 5 Env, Fi is the inbreeding coefficient, and finally r2

a is the
estimated variance of the animal genetic additive effect (Aguilar
et al., 2020). A cross-validation using Linear Regression was per-
formed to evaluate the single-step genomic BLUP and BLUP models
(Legarra and Reverter, 2018). The evaluation was conducted by
truncating the data to four years prior, using the complete pedigree
information. The EBVs and single-step genomic EBVs and their
accuracies were obtained by truncating the data to 4 years prior
and using the complete pedigree. For the comparison between
single-step genomic BLUP and BLUP, bulls with at least five proge-
nies today and zero progeny 4 years ago were selected. The linear
regression statistics (bias, slope, and accuracy) were calculated to
assess the performance of the models between the whole and trun-
cated datasets. The number of bulls used for the comparison was
619, 704, and 213, for ADG, WW, and YW, respectively.

To compute the genetic correlation between Env, the following
equation was used for MT and single-step MT:

rgen ¼ ra;xzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

a;x �r2
a;z

q
where ra;xz is the genetic covariance between Env x and Env z, and
r2

a;x and r2
a;z are the additive genetic variances. Genetic correlations

were calculated among all the five Env.
Spearman’s rank correlation was estimated between EBV and

single-step genomic EBV across the five environmental conditions
in the MT and single-step MT models to investigate a possible re-
ranking among genotyped sires. Additionally, G � E and possible
re-ranking between sires were evaluated by comparing EBV and
single-step genomic EBV from univariate analyses without envi-
ronmental effect and MT analyses. This study also investigated
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the impact of G� E interactions on animal growth in the Limousine
population using eigenvalue decomposition of the genetic (co)vari-
ance matrix (Meyer, 2009). Eigenvalues indicate the amount of
variation accounted for by each principal component, with larger
eigenvalues indicating that the corresponding principal compo-
nent captures more substantial variation. In G � E analysis, larger
eigenvalues indicate significant patterns of variation across Env.
The eigen decomposition of the additive genetic (co)variance
matrix from the MT model was used to calculate the effective
dimensionality of the genetic variation across the Env. The additive
genetic (co)variance matrix summarises the genetic variation
within several Env and the (co)variance among Env. To confirm
the presence of G � E in growth traits, a comparison was made
between the eigenvalue decomposition of additive genetic vari-
ance components from the MT and MT with permutations models
for YW. The eigen-decomposition was performed using the eigen
function of the R software.

Results

Characterisations of climatic conditions and detection of
environmental parameters with great impact on growth

Average daily gain was 1.04 kg/d, WW was 247.9 kg, and YW
was 354.5 kg. SD values were 0.28, 46.54, and 65.61 for ADG,
WW, and YW, respectively. Environmental conditions were cate-
gorised into five environmental classes, with maximum RH class
(%), average Temp class (�C), and average DP class (�C Td) providing
the best model fit for ADG, WW, and YW, respectively. The
Deviance Information Criterion values obtained for all the environ-
mental covariates and traits assessed in Model 1 are provided in
Supplementary Table S3. The distribution of the number of animals
and environmental variables tested for ADG, WW, and YW in the
five different Env are shown in Table 3.

Variance components

Estimates of variance components were obtained for all three
traits with both MT and single-step MT. Heterogeneity in additive
genetic variances (r2

a) was observed across different environmen-
tal conditions (Table 4). For ADG, r2

a estimates slightly decrease
over maxRH levels, indicating lower magnitudes under extreme
humidity conditions. The variance estimation for ADG was smaller
when the conditions of RH were critical, and greater when the ani-
mals were exposed to the lowest RH levels (Table 4). Similar trends
were observed for YW, with lower r2

a estimates under stressful
environmental conditions. (Table 4). Conversely, WW exhibited
higher r2

a estimates at extreme Temp. Detailed variance compo-
nent estimates for ADG, WW, and YW across five environmental
conditions are provided in Supplementary Table S4. Overall, the
patterns and trends observed for variance components were con-
sistent between MT and single-step MT analyses.

Heritability and herd-year effect estimates

Table 4 presents heritability estimates for ADG, WW, and YW
under different Env using MT and single-step MT models, along
with univariate analysis results. These heritabilities were obtained
in the five environments through MT models. Only the univariate
model, used to mimic the national Limousine evaluation for
growth traits, does not include the G � E effect. Heritability gener-
ally decreases for ADG and YWwhen the environmental conditions
become less favourable, while remaining relatively stable for WW.
Specifically, ADG showed low to moderate heritability across all RH
Envs (0.07–0.10), while WW exhibited moderate heritability
7
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through Temp Envs (0.12–0.15), and YW showed low to moderate
heritability across DP Envs (0.09–0.15). Lastly, univariate models
showed heritability estimates of 0.08, 0.12, and 0.10 for ADG,
WW, and YW, respectively.

The heritability estimates for ADG showed the highest value in
the most comfortable climatic conditions (0.09–0.10) and slightly
decreased with increasing RH levels (Table 4). Afterwards, YW her-
itability decreased in extreme DP Env but remained stable in inter-
mediate conditions. Meanwhile, WW heritability estimates
remained constant across Temp Env, with a lower increase at
extreme temperatures. The estimates and trends for heritability
for ADG, WW, and YW remained consistent between MT and
single-step MT analyses.

On the three traits, the herd-year effect (Table 4) was moder-
ately low for ADG, modest for WW, and moderately high for YW
in both univariate and MT analyses. Univariate models, on average,
had a lower herd-year effect with estimates of 0.35, 0.45, and 0.58
for ADG, WW, and YW, respectively. Including environmental
interaction for MT and single-step MT models, the herd-year effect
increased, particularly for WW and YW, with the highest values
observed in extreme conditions. Average daily gain exhibited a
moderate herd-year effect (from 0.47 for Env 1 to 0.44 for Env 5),
slightly decreasing over maxRH levels. A relatively higher herd-
year effect was found for WW and YW. For WW, the herd-year
effect increases over temperatures (0.48 Env 1 – 0.54 Env 5). The
highest herd-year effect was detected for YW, with values ranging
between 0.62 and 0.65. For all three traits, MT and single-step MT
models highlighted the same results.

Genetic correlations between environments and eigenvalue
decompositions

The genetic correlations of additive genetic effects across differ-
ent Env for the three traits are summarised in Fig. 2.

As expected, the genetic correlation decreased gradually across
Env (1–5) for WW and YW, with a weaker correlation between
Fig. 2. Genetic correlations between different traits for average daily gain (ADG, kg/d), w
environmental covariates with lower Deviance Information Criterion values for multipl
interaction. Abbreviations: BLUP = best linear unbiased prediction; GBLUP = genomic be

8

more distant Env. These correlations generally decreased as the
environmental conditions became more divergent. For ADG, the
genetic correlations showed the opposite trend, increasing from
Env 1–5. Significant G � E interaction was detected for ADG,
WW, and YW in the Limousine population, with a lower genetic
correlation of 0.50 between the five Env. The lowest genetic corre-
lation (0.28 ± 0.13) was detected for YW between Env 2 and 5,
while the highest (0.89 ± 0.03) was between Env 1 and 3 of DP, sug-
gesting limited G � E effects. Genetic correlations for ADG ranged
from 0.36 ± 0.09 to 0.68 ± 0.06 across maxRH Env, indicating a
moderate to remarkable G � E effect. Low to moderate interaction
for WW was across Temp Env, with genetic correlations from
0.48 ± 0.07 to 0.68 ± 0.05, indicating a moderate G � E effect. For
YW genetic correlations between DP Envs ranged from
0.28 ± 0.13 to 0.89 ± 0.03, suggesting a negligible to remarkable
G � E effect. Genomic correlations for single-step MT showed sim-
ilar patterns to those of MT analyses. Fig. 3 highlighted the pres-
ence of G � E on the three traits using eigenvalue decomposition
of the additive genetic variance matrix. Each trait with two Env
had an explained variance higher than 0.80, supporting G� E inter-
actions. Supplementary Figure S1 confirms G � E for YW by com-
paring eigenvalues from MT models with fiv Env, and 10 random
permutations. The permutations revealed substantial differences
in the proportion of variance explained with one Env, showing that
almost all variance was explained by the additive genetic (co)vari-
ance matrix.

Sire re-ranking across environments

The pattern of Spearman’s rank correlations between solutions
and Env of the models are summarised as a heatmap in Fig. 4. Rank
correlations were calculated for genotyped sires using solutions
from univariate, MT, and single-step MT models. Some combina-
tions among Env for ADG, WW, and YW showed correlations lower
than 0.80, indicating potential re-ranking of sires and G � E inter-
actions among Env. For ADG, rank correlations across Env of
eaning weight (WW, kg), and yearling weight (YW, kg) for Limousine cattle, using
e traits and single step multiple traits models, including genotype by environment
st linear unbiased prediction.



Fig. 3. Eigenvalue decomposition of the (co)variance structure of the additive genetic variance matrix in beef cattle for average daily gain (ADG, kg/d), weaning weight (WW,
kg), and yearling weight (YW, kg) using multiple traits and single-step multiple models traits including genotype by environment (G � E) interaction between five different
environments. Abbreviations: maxRH = Maximum Relative Humidity; Temp = Temperature; DP = Dew Point; BLUP = best linear unbiased prediction; GBLUP = genomic best
linear unbiased prediction.

Fig. 4. Heatmap of Spearman rank correlations between solutions for Limousine genotyped sires using univariate and multiple trait models including genotype by
environment (G � E) interaction, for average daily gain (ADG, kg/d), weaning weight (WW, kg), and yearling weight (YW, kg). Abbreviations: BLUP = best linear unbiased
prediction; GBLUP = genomic best linear unbiased prediction.
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maxRH on the MT model indicated moderate to strong re-ranking
of sires, with some correlation below 0.70. The highest correlation
was 0.92 between Env 4 and Env 5, while the lowest was 0.66
between Env 1 and Env 2. A similar pattern was observed for
9

ADG in the single-step MT model, with a rank correlation lower
than 0.70 between Env 2 and Env 3.

Similar rank correlations between MT and single-step MT
models for WW were found across the 5 Temp Env. The highest
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Spearman’s rank correlation was equal to 0.92 between Env 1 and
Env 3, and the lowest was 0.76 between Env 2 and Env 5. This sug-
gests that re-ranking of sires EBV and single-step genomic EBV
could occur for WW under extreme Temp conditions. Strong rank
correlations existed for YW across the closest DP Env for MT and
single-step MT, with values ranging from 0.52 to 0.91. However,
reranking could also occur among distant Env, especially under
extreme conditions. Daughters of the same sire passing from cold
to hot weather have different performances and ranked differently
across Env for YW. Overall, the comparison of Spearman’s rank cor-
relations was moderate between the univariate and MT models
using pedigree and single-step analyses. Re-ranking of proven sires
between models could occur for all growth traits, with the lowest
correlations equal to 0.80, 0.82, and 0.80 for ADG, WW, and YW,
respectively (Fig. 4).
Fig. 5. Comparison of the accuracy of Limousine genotyped sires between univariate mo
single-step multiple traits models for average daily gain (ADG, kg/d), weaning weight (W
prediction; GBLUP = genomic best linear unbiased prediction.

10
Comparison in accuracy of estimated breeding values and single-step
genomic estimated breeding values for genotyped sires

EBV’s Accuracy values were estimated for univariate, MT,
single-step univariate, and single-step MT models. For ADG, the
average accuracy of single-step genomic EBV (0.38) was higher
than that of the EBV (0.34) (Fig. 5). Considering WW, the average
accuracy of (0.46) increased compared to EBV (0.41) (Fig. 5). Sim-
ilarly, for YW, the average accuracy values increased with the
inclusion of genomic information (0.35 for single-step genomic
EBV compared to 0.32 for EBV) (Fig. 5). In univariate analyses,
single-step genomic EBV consistently showed higher average accu-
racies than EBV across all three traits. However, the SD was greater
than the difference in accuracy between the single-step and pedi-
gree univariate analyses, making these differences not relevant.
dels without genotype by environment (G � E) interaction, multiple traits (MT), and
W, kg), and yearling weight (YW, kg). Abbreviations: BLUP = best linear unbiased
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For ADG, WW and YW, in the single-step MT analysis, single-
step genomic EBV accuracies of the sires were slightly higher
respect EBV accuracies across different Env (Fig. 5). The accuracies
increased on average by 0.02–0.04 points across Env. However, the
SD exceeded 0.1 in all the Env, indicating that the differences in
accuracy between single-step and pedigree models are not rele-
vant. In all cases, including genomic information increased the
sires’ accuracies, potentially improving the response to selection
for specific trait/environment combinations. For instance, in low
environments, the accuracy for ADG increased from 0.21 to 0.25
(Env1) when using single-step genomic EBV compared to the uni-
variate model. The accuracy of WW in intermediate environments
increased from 0.29 to 0.33 (Env3). Similarly, for YW in extreme
environments, the accuracy improved from 0.16 to 0.20 (Env5)
with the inclusion of genomic information (Fig. 5) The univariate
model without the G � E effect showed larger accuracy compared
to MT analyses. Results of linear regression cross-validation are
summarised in Supplementary Table S5.

Discussion

Herds and animals included in this study were distributed
around all the country, mostly in 7 regions (Lombardy, Sicily,
Emilia-Romagna, Sardinia, Tuscany, Veneto, and Lazio), accounting
for approximately 83–84% of the herds and 87–88% of the animals.
The Limousine breed was introduced in Italy in 1985, and since
then, the number of animals and herds has been consistently
increasing. Because climate change is expected to modify the pro-
duction environments in a shorter time (IPCC, 2007), understand-
ing the genetic determination of heat tolerance in beef cattle is
crucial. The main challenge in this study was identifying climatic
parameters that significantly impact animal growth and quantify-
ing G � E interactions on beef cattle. We explored G � E effects in
the Limousine population using an MT model across 5 different
environments, considering both pedigree (A), and genomic-
pedigree (H) relationship matrices.

Selection of environmental covariates

For beef cattle, compensatory growth occurs after feed restric-
tion or a physiologically stressed period and is generally expected
to subsequently befall heat stress events (Mitlöhner et al., 2001).
Even though heat stress might temporarily reduce growth, cattle
typically experience compensatory gain after heat stress subsides.
In the beef sector, heat stress could be confounded by seasonal
changes since cattle graze outdoors (Paterson et al., 1995). More-
over, calculating proper heat stress and understanding which envi-
ronmental covariates have a negative impact on growth is difficult.
For these reasons, we included weaning and yearling weights
because animals are exposed to a wide range of different climatic
conditions during these periods.

Because of the cumulative nature of WW and YW and the type
of farm management, heat load functions are mostly used in beef
cattle. This approach has also been applied to dairy cattle
(Ravagnolo and Misztal, 2000; Aguilar et al., 2009; Carrara et al.,
2021) and swine (Zumbach et al., 2008a,b; Fragomeni et al.,
2016). Also, THI has been widely used in animal breeding, particu-
larly for dairy cattle (Biffani et al., 2016; Nguyen et al., 2016;
Ansari-Mahyari et al., 2019). Some studies have assessed different
variables, such as temperature or humidity, to explore their impact
on reproductive and productive traits in swine (Tiezzi et al., 2020;
Usala et al., 2021; Freitas et al., 2021). For these reasons, one chal-
lenge was properly quantifying heat stress in beef cattle and iden-
tifying the meteorological parameters that most impact growth.
We evaluated 14 Env variables based on Temperature, RH, and
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DP to explore the impact of each of the evaluated traits. The most
relevant environmental covariate for each trait was selected using
the Deviance Information Criterion applied to the baseline model
(Model 1). Lower values indicate a better fitting.

The selection of appropriate environmental parameters for
assessing heat stress is crucial due to their significant physiological
impacts on cattle. Elevated temperatures can cause thermal stress,
leading to decreased feed intake, altered metabolism, and reduced
growth rates. Chronic exposure to high temperatures can also
impair immune function and increase disease susceptibility affect-
ing overall health, reproduction, and productivity. Furthermore,
cattle cannot lose heat efficiently through evaporation when RH
is high because the air is almost saturated with water vapour. This
inefficiency in heat loss occurs because high RH deters evaporative
cooling through the skin (Baena et al., 2019). Combined with
extreme temperatures, high RH can exacerbate heat stress in cattle,
leading to further declines in performance and overall health
(Baena et al., 2019). Understanding these physiological implica-
tions is essential for developing effective breeding and manage-
ment strategies to improve cattle heat tolerance. By selecting
more resilient animals for heat stress, the negative impacts of cli-
mate change on cattle productivity and welfare can be mitigated.

Variance components estimation

Generally, the values were similar between the BLUP and
single-step genomic BLUP models, with a comparable pattern for
variance components (Table 4). Moderate additive genetic esti-
mates for ADG, WW, and YW suggest that heat stress will affect
animal growth. A decrease in r2

a was observed at extreme Env
for ADG and YW, respectively, while r2

a was low in most comfort-
able Env conditions for WW. In extreme environments, genetic
variance is often observed to be lower due to stress effects, strong
selective pressure, and G� E interaction. Also, fewer animals might
perform well, leading to a reduced range of genetic variance. Under
these conditions, the ability of individuals to express their genetic
potential is diminished, leading to a reduction of genetic variance.

These results indicate the potential for different selection
responses for these traits depending on maxRH, Temp, and DP
under which the animals are raised. Variance components estimate
can be used to evaluate the presence of G � E interactions; a vari-
ability suggests that the same genotype may perform differently
based on environmental conditions, highlighting the importance
of considering G � E interactions in breeding programmes to
improve animal performance across diverse Env. Moderate esti-
mates from this study indicate significant genetic variability for
traits like ADG, WW, and YW. This variability means selective
breeding could be effective, depending on the specific environmen-
tal conditions the animals were subjected to.

Change in heritability and herd-year effect across multi-environment
analyses

Analyses using BLUP and single-step genomic BLUP showed
similar heritability patterns. Across five different Env r2

a varied,
resulting in differences in heritability in the Limousine population
(Table 4). The heritability estimates suggest varying degrees of
genetic control on growth traits under different environmental
conditions, particularly in heat tolerance. Heritability estimates
for univariate analyses were generally lower than those Bradford
et al. (2016) reported for WW and YW in Angus cattle. Cardoso
et al. (2011) found similar heritability (0.08–0.23) when including
Env effects in a two-step model for post-weaning weight standard-
ised at 345 days in Hereford cattle. Williams et al. (2012) observed
changes in heritability of WW (0.26 and 0.28) and post-weaning
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weight (0.26 and 0.19) across different altitudes in Angus cattle
using a multivariate analysis. Similarly, using a random regression
model, Santana et al. (2016) and Bradford et al. (2016) reported
higher heritability for WW across the Env gradient. Oliveira et al.
(2018) found higher heritability for YW compared to our study.

For ADG in different Env of maxRH, Cardoso and Tempelman
(2012) found that the heritability increased in more favourable
conditions for postweaning weight gain in Angus cattle, consistent
with our finding. Likewise, for YW in Angus cattle, authors noted a
reduction in direct heritability as environmental stress increased,
using a random regression model (Bradford et al., 2016). Pegolo
et al. (2011) observed an increase in the heritability in Nellore cat-
tle in more favourable Env for weight at 450 days. On the contrary,
using a reaction norm model, Santana et al. (2013, 2016) reported
that WW had higher direct heritability in more favourable condi-
tions in tropical composite cattle, Brangus, and Nellore. The differ-
ences in our results compared to other studies may be attributed to
several factors. These include variations in the models used for her-
itability estimation and G � E analysis, the distinct genetic back-
grounds and adaptations of the cattle breeds studied, fluctuations
in environmental conditions such as climate and management
practices, and differences in the structure and quality of the data-
sets. These disparities underscore the importance of considering
breed-specific and environment-specific contexts in genetic
studies.

Animals with moderate additive genetic estimates for growth
traits may exhibit different physiological responses to environ-
mental stressors. Understanding these responses can help in
managing animal welfare more effectively. For instance, animals
that maintain better growth rates under heat stress might have dif-
ferent metabolic or hormonal profiles compared to those that do
not (Majumdar et al., 2020; Smith et al., 2022). The herd-year effect
(Table 4) indicates that management practices moderately impact
growth traits. A higher herd-year effect in Env with stressful con-
ditions slows down genetic progress. This moderate herd-effect
also contributes to G � E interactions, reflecting varying manage-
ment practices and environmental conditions across different
herds and years. This is the expression of genetic potential and hin-
ders the identification of superior genotypes.
Genetic correlation, eigenvalues, and genotype by environment
interactions throughout the environment

Genetic correlations followed a similar pattern when using both
MT and single-step MT models (Fig. 2). A genetic correlation below
0.80 indicates evidence of G � E interactions. Genetic correlations
did not decrease gradually across the five Env. In this study, the
genetic correlation for the three traits reached values below 0.80,
confirming the existence of G � E on Limousine growth traits
under different environmental conditions. Using a MT approach,
Carvalheiro et al., 2019 observed G � E interactions for post-
weaning weight gain, with a genetic correlation of 0.79 between
harsh and favourable Env. Similar findings for WW were reported
by Santana et al. (2016) in Brangus and Tropical Composite popu-
lation, showing lower genetic correlations in extreme environ-
ments. Bradford et al. (2016) found genetic correlations below
0.50 for large heat load differences in Angus cattle, indicating that
the Env gradient was not the same trait. Conversely, for YW, no sig-
nificant Env differences were found in the Angus population
(Bradford et al., 2016). In swine, Zumbach et al. (2008a,b) reported
a genetic correlation of 0.42 for carcass weights between hot and
cold months using two-trait analyses, and 0.02 when applying a
random regression model for more distant heat load values.
Usala et al. (2021) found a genetic correlation of 0.20 for ADG
between the 5th and 95th percentiles of RH.
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Eigenvalue decomposition of the genetic additive matrix con-
firmed G � E interactions in the Italian Limousine population
(Fig. 3). For maxRH, Temp, and DP, the proportion of variance
explained by the first three eigenvalues was 0.86, 0.87, and 0.93
in MT and 0.83, 0.87, and 0.91 in single-step MT for ADG, WW,
and YW, respectively. The remaining two eigenvalues accounted
for less than 0.20 of the variances explained by the Env. The first
eigenvalue absorbed less than 70% of the total variance, and the
sum with the second seldom reached 80%. Eigenvalue decomposi-
tion on the permuted data (MT with permutations) did not show
any G � E (Supplementary Figure S1), supporting the findings from
the actual data.

These estimates should interest breeders because the best-
performing animals in one Env may not necessarily be the best
in another, indicating different adaptability. These results could
allow the development of targeted strategies to optimise animal
performance and improve breeding and management strategies
tailored to different environmental contexts. Thus, ADG, WW,
and YW are moderately to largely affected by G � E, indicating that
growth in the Limousine population in Italy varies across different
Env of maxRH, Temp, and DP showing a potential G � E effect. Fur-
thermore, we observed that the genetic correlations between the
Env were often in different directions. This suggests varying rela-
tionships between average performance and environmental sensi-
tivity of growth traits. Physiologically, this indicates that animals
exhibiting high average performance might not necessarily show
high environmental resilience. Different genetic mechanisms may
control performance and sensitivity to environmental changes,
affecting how traits manifest under varying conditions. Under-
standing these genetic correlations is crucial to developing breed-
ing strategies that enhance performance and adaptability to
diverse Env.

Reranking and identification of heat-tolerant sires

Considering the limited number of genotyped sires, re-ranking
using Spearman rank correlation is expected under different Env,
particularly when comparing animals in optimal versus extreme
conditions. Numerous studies have documented changes in sire
re-ranking in dairy cattle (Bernabucci et al., 2014; Carrara et al.,
2021) and beef cattle for WW (Bradford et al., 2016). However,
Bradford et al., 2016 reported a rank correlation greater than
0.80 for YW, suggesting a low re-ranking of sire across environ-
mental conditions. In swine, a weak rank correlation (0.18–0.54)
for carcass traits under high and low Env indicates a higher phys-
iological response to heat stress than beef cattle (Zumbach et al.,
2008b).

In our study, many rank correlations for genotypes were below
0.80 between Env of maxRH, Temp, and DP. The findings proved
that sire re-ranking across affects genetic gain. Environmental con-
ditions influence an individual’s breeding value, with sires excel-
ling in favourable conditions potentially performing poorly and
less resilient in extreme conditions. Selective breeding of sire that
exhibit strong performance across diverse Env is expected to
enhance overall productivity, health, and welfare, thereby increas-
ing the profitability of cattle farms. Physiologically, sires that main-
tain high ranks in varying environmental conditions demonstrate
resilience and adaptability, which are crucial for growth traits
under environmental stressors.

Comparison in accuracy of estimated breeding values and single-step
genomic estimated breeding values for genotyped sires

Genomic selection has better opportunities to exploit G � E
interactions than traditional breeding by achieving high accuracy
in unfavourable Env (Mulder, 2016). However, accuracies in
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extreme Env tend to be lower, and limited information is available
for breeding value in these conditions (Mulder, 2016). Our study
compared accuracies between single-step and pedigree-based
analysis of genotyped sires across different Env. Results showed a
slight improvement in accuracies for single-step MT compared to
MT models for ADG, WW, and YW (Fig. 5). Nevertheless, for all
three traits, the SD exceeded the differences in accuracies between
single-step and pedigree models, indicating non-significant differ-
ences. In addition, when univariate pedigree BLUP and single-step
genomic BLUP were compared, accuracies increased with the
inclusion of the H matrix. Conversely, single-step MT accuracies
were lower compared to univariate pedigree BLUP without
accounting for G � E. Accuracies using an H matrix were lower,
probably because the number of genotyped animals was not large
enough and using an MT approach, genotyped animals were dis-
tributed among the five Env.

These findings suggest that genomic selection might accelerate
genetic gain for heat tolerance. Single-step genomic BLUP
improved response to selection across different environments
more than pedigree analyses for growth traits. The results imply
that as more animals are genotyped, the accuracies of single-step
analyses for heat tolerance could further improve. Mulder (2016)
highlights that genomic selection enhances resilience compared
to traditional breeding schemes. This is emphasised when the ref-
erence population is representative of diverse environmental
conditions.

Conclusions

These findings provide the basis for the possible genetic or
genomic selection development for heat tolerance in the Limousine
cattle population. Heritability estimates demonstrate the tolerance
to critical environmental conditions under genetic control. This
suggests the feasibility of selecting individuals who are particularly
tolerant to specific environmental and management conditions
through the direct genetic and genomic selection of growth traits.
Furthermore, as evidence of G � E interactions, substantial hetero-
geneity was observed in the variance components for ADG, WW,
and YW across different environmental conditions. A possible re-
ranking in opposite Env of animals and sires was verified. Indeed,
the best-performing genotypes in the less stressful Env may not
excel under more challenging conditions. These results underscore
that selecting more tolerant animals can optimise the selection
programmes, showing that genomic selection could enhance the
accuracy of breeding values across diverse Env. Despite these
insights, further research is needed to better understand the
genetic and genomic background of heat tolerance and the genetic
mechanism of adaptability in beef cattle. This aspect could be
explored by assessing future analyses by implementing a random
regression model. When the number of environmental covariates
exceeds one, multidimensional environmental data can be incor-
porated using Reproducing Kernel Hilbert Spaces regression.
Exploring the relationship between genetics and environmental
factors can provide relevant insights into heat tolerance ad adapt-
ability in beef cattle breeding programmes.
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