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Abstract

Damage identification analyses are fundamental to guarantee the safety of civil struc-
tures. They are often formalised as inverse problems whose solution ignores any source of
uncertainty that could be accounted for by using appropriate statistical models. Unfortu-
nately, these models often exhibit an intractable likelihood function. We propose quantify-
ing uncertainty through a fully Bayesian approach based on Approximate Bayesian Com-
putation (ABC), a class of methods that overcome the evaluation of the likelihood and only
require the ability to simulate from the model. Furthermore, we suggest a strategy to reduce
ABC computational burden using Neural Networks. Finally, we test the method at work on
a damaged beam to discuss its strengths and weaknesses.

Keywords: Damage Identification, Uncertainty Quantification, Approximate Bayesian Com-
putation, Neural Networks

1. Introduction

In the civil engineering field, structural monitoring and damage detection techniques have received
growing attention since they are paramount for tasks of control and preservation. Damages modify the
mechanical properties of a civil structure and can cause changes in the dynamic behaviour of the system
described by natural frequencies and modal shapes. Thus, these quantities can be exploited to infer the
existence of structural damages, their location and their entity. A common practice is addressing the
issue as an inverse problem: optimal values of the parameters describing the properties of the system are
found by minimising a distance measure between the experimental data (e.g., observed frequencies) and
data produced by a Finite Element Model (FEM) - i.e. a numerical method for solving the differential
equations that describe the dynamic behaviour of the system as a function of the mechanical parameters
and the structural configuration. Once solved the inverse problem, one can evaluate whether there have
been variations of the mechanical properties carrying pieces of information on the location and the entity
of the damage. However, such a procedure ignores all the sources of uncertainty - e.g. unobserved
characteristics of the system, variations of the material properties as well as measurement errors. It
follows that predictions about future dynamics are taken as assured. A probabilistic damage assessment
allows for taking into account different sources of uncertainty. More specifically, a Bayesian probabilistic
damage identification procedure provides posterior distributions over the location and the entity of the
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damage, thus avoiding a false sense of confidence. Moreover, posterior predictive distributions enable an
evaluation of the uncertainty around the prediction of the future dynamic behaviour.

In the literature, there are few works addressing the problem of incorporating uncertainty in dam-
age identification (7; 9, among others). They rely on strong assumptions and describe the relationship
between observed data and mechanical properties through simple models that imply tractable likelihood
functions. Implementing likelihood-free methods is a possible strategy to provide a finer description
of reality. They allow a straightforward integration of the uncertainty induced by latent variables and
variables having complex dependence structures. In (4; 3) the authors resort to Approximate Bayesian
Computation (ABC), a likelihood-free approach, however, they do not adopt a fully Bayesian perspective
and aim only at finding point estimates of the model parameters.

This paper is aimed at giving a formal statistical definition of the probabilistic model for damage’s lo-
cation identification building upon a proper framework for uncertainty quantification (5; 2). Furthermore,
we describe a strategy to get fully Bayesian estimates using a suitable ABC algorithm. In particular, we
propose a procedure based on a surrogate generative model derived via Neural Networks. We speculate
that this approach will provide a flexible tool that allows straightforward integration into the model of
many sources of uncertainty.

2. Bayesian Inference in models for uncertainty quantification

Let us denote by θ the variable object of our inference, that is the location of a damage in a structure,
and by y0 some observed characteristics related to its dynamic (e.g., the frequencies). Our aim is to
derive the posterior distribution π(θ | y0) ∝ π(θ)p(y0 | θ), given the prior distribution, π(·), and the
likelihood function, p(· | θ). 1 In this framework, the evaluation of posterior quantities requires a
simulated inference approach because many unobserved variables interact with the damage’s location
and affects its relation with the frequencies. These variables must be included in the model as latent
variables.

Let x be the latent variables and ξ = (θ, x) the vector of all the unknown quantities. In principle,
Monte Carlo (MC) or Markov Chain Monte Carlo (MCMC) methods allow us to get samples from a
posterior distribution defined on an augmented space: π(ξ | y0) = π(θ, x | y0) ∝ π(θ, x)p(y0 | θ, x).
However, here even the likelihood function p(y0 | θ, x) is analytically intractable and its evaluation
may be computationally demanding. To give insights into the reasons for this intractability, we provide
a formal statistical definition of the model for uncertainty quantification (2). The key elements of the
model are:

• yR(θ): the vector of real values of the frequencies when the damage’s location is θ;
• yM (ξ): the output of a simulator that reproduces the real process. The simulator may be a numer-

ical model for partial differential equations (e.g. the FEM) and takes both θ and x as inputs;
• b(ξ) = yR(θ)− yM (θ, x): the discrepancy between the model and the reality. It may come from

incorrect or missing physical characteristics, as well as the simplification of the problem needed
to put it in a digital framework (e.g. space discretisation in FEM).

• yE(ξ) = yM (ξ) + η(ξ): the emulator. It is an approximation of the simulator and η(ξ) is the
discrepancy between the simulator and the emulator.

• y0(θ) = yM (ξ) + b(ξ) + e : the observed data. They typically differ from the real process for
some measurement errors e.

In this scenario, the probability p(y0 | ξ) can be retrieved from p(y0, b, e | ξ) via marginalisation:

p(y0 | ξ) =
∫ ∫

p(y0 | e, b, ξ)p(e, b | ξ)de db =
∫ ∫

δy0(y
M + b+ e)p(e)p(b | ξ)de db (1)

where δy0(·) is the Dirac measure. Note that Eq (1) comes from the assumption that measurement errors

1For the sake of simplicity, our notation does not discriminate between probability density functions and mass
functions that can be distinguished from the context.
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are independent of ξ and b, and from the fact that the simulator is a deterministic numerical model that,
once a vector ξ is given as input, always returns the same output yM (ξ).

MC and MCMC algorithms for the computation of the π(ξ | y0) would involve multiple point-wise
evaluations of p(y0 | ξ) and each of them requires the solution of the integrals in Eq (1). The compu-
tation of yM (ξ) makes exact calculations infeasible and numerical approximations are computationally
demanding: a single evaluation of the integrals would require many runs of the FEM. This motivates the
choice of simulation-based methods, such as Approximate Bayesian Computation (ABC).

3. ABC for probabilistic damage identification

The origin of ABC methods can be traced back to (11; 8) but, in the last twenty years, huge progress
has been made in this field. For a comprehensive description of the method, we refer the reader to (10).
The key idea of the basic ABC algorithm is to get samples from an approximate posterior distribution by
converting samples from the prior into samples from the posterior in three steps: 1) generate N parameter
values from the prior distribution π(·); 2) generate simulated processes yi ∼ p(· | θi) for i ∈ {1, ..., N};
3) retain only parameter values θi such that d(yi; y0) ≤ ϵ, where d(· ; ·) is a distance function and ϵ ≥ 0
is a tolerance threshold.

The algorithm avoids the evaluation of the likelihood function. It only requires the ability to pro-
duce samples from p(· | θ) using a generative model that can be thought of as a computer code which
takes parameters θ as inputs, performs stochastic calculations that involve latent variables x, and outputs
simulated data y. However, this solution to the problem of the intractability of the likelihood comes at
the cost of introducing at least one source of approximation in the estimate of the posterior distribution.
In particular, the quality of the approximation depends on the tolerance threshold ϵ: the approximate
posterior distribution converges to the true posterior distribution as ϵ → 0.

Besides the basic ABC algorithm, many other sampling schemes have been proposed – see (10, Ch
4). Here, we resort to a sampling scheme inspired by the Population Monte Carlo ABC (PMC-ABC)
presented in (1). It is displayed in Algorithm 1 where Kj(· | θj−1

i ) is a Normal distribution with mean
θj−1
i and variance equal to twice the weighted empirical variance of (θj−1

1 , ..., θj−1
N ) , and α is a tuning

parameter between 0 and 1. The output of the algorithm is a sample from the following approximate
posterior distribution

πϵ(θ | y0) = π(θ)

∫
1{d(y; y0) ≤ ϵ}p(y | θ)dy

where 1{·} denotes the indicator function and ϵ = ϵM is the value of the threshold adaptively chosen.
Algorithm 2 describes the generative model used to get samples from p(· | θ). Note that each run of

the generative model involves a call to the FEM. Here we propose a strategy to reduce the computational
cost of this procedure. In particular, we replace the simulator with a less expensive emulator based on
Neural Networks.

546



Algorithm 1 ABC-PMC
Sample θ01 , ..., θ

0
N from π(·).

Sample yi using Alg. 2 giving θ0i as input for each i ∈ {1, ..., N}.
Let di = d(yi; y0) for each i ∈ {1, ..., N}.
Put ϵ1 equal to the α-quantile of the distribution of (d1, ..., dN ).
for j = 1, 2, . . . ,M do

Set i = 0
while i < N do

Sample θ∗ from qj(·) =
∑N

i=1 w
j−1
i Kj(·|θ

j−1
i )∑N

i=1 w
j−1
i

.

Sample y∗ using Alg. 2 giving θ∗ as input.

Compute w∗ =
π(θ∗)

qj(θ∗)
1{d(y∗; y0) ≤ ϵj}.

if w∗ > 0 then
Let θji = θ∗, dji = d(y∗; y0), w

j
i = w∗ and i = i+ 1.

end if
end while
Put ϵj+1 equal to the α-quantile of the distribution of (dj1, ..., d

j
N ).

end for

Algorithm 2 Generative model
Take θ as an input.
Sample x from its prior distribution.
Compute yM (θ, x) using the simulator (FEM)
or the emulator (ANN).
Sample b(ξ) and e from their distributions.
Return y = yM (ξ) + b(ξ) + e.

Approximating the simulator using Neural Networks Artificial Neural Networks (ANN) are
computational models that use experience to learn functions. We resort to feedforward neural networks
which process information from inputs to outputs through intermediate computations and without feed-
back connections. The basic processing unit of an ANN is the neuron that receives inputs from other
neurons and computes its own output using a linear combination based on previously defined weights
and bias, and an activation function. Neurons are then arranged in layers: the first layer is called the
input layer, the last layer is the output layer and in between layers are the hidden layers that determine
the depth of the network. The network learns by adjusting weights and biases to minimise the prediction
error, which is the value of the loss function that quantifies the difference between the output of the
network and the output taken from a training set.

In the case of the probabilistic damage identification, the relation that links the unknowns, ξ, to the
simulated process, yM , is specified by a deterministic function reproduced using the FEM. Thus, an
ANN can be used as an emulator that replaces FEM in Algorithm 2. The ANN takes as input layer ξ
and gives as output layer an emulated process yE(ξ). To train the ANN we need a training set built by
considering S vectors, ξ1, ..., ξS , giving them as input to the FEM, and taking S simulated process as
output. It follows that our approach gives a computational advantage as long as S is smaller than the
number of simulations from the generative model in Algorithm 1.

4. Simulation study

To illustrate the proposed method, we considered the example of a simply supported beam modelled
by using the commercial code ANSYS®. The total length of the structure is 5000 mm and the cross-
section is a IPE240 steel profile – see Figure 1.

Figure 1: Discretisation in ANSYS®(left) and cross-section (right) of the beam without and
with damage.
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The induced localised damage is imposed by cutting the beam flanges. This damage is repro-
duced in ANSYS®by reducing the section shown in Figure 1. The effects, in terms of observable dy-
namic characteristics of the beam, are a reduction of the frequencies and changes in modal shapes.
Here, we want to infer the location of the damage, θ ∈ (0, 5000), using three observed frequen-
cies, y0 = (f1, f2, f3) expressed in Hz. The latent variable X represents the uncertainty on the re-
straint conditions of the beam, in particular on its location. We assumed θ ∼ Uniform(0, 5000) and
X
100 ∼ Exponential(λ = 1.5). Measurement errors e = (e1, e2, e3) are distributed as a Multivariate
Normal with mean µe = (0, 0, 0) and covariance matrix Σe = 0.152I3. We included in the model also a
random discrepancy b ∼ Uniform(−0.2, 0.2).2

In our simulation study, the observed data y0 = (32.63, 96.73, 208.61) have been produced running
the FEM assuming θtrue = 2423.8 and xtrue = 6.18 (values generated at random). We trained the ANN
with 2 inputs (θ and x), three hidden layers with 50 neurons, and 3 outputs (f1, f2 and f3). We used the
Relu activation function for all the layers, the Mean Square Error (MSE) as loss function, and Adam (6)
as the optimization algorithm. Our training set has size S = 160 000. The performance of the trained
network is good enough to consider negligible the discrepancy between the simulator and the emulator
(MSE = (1.09 · 10−5, 4.88 · 10−6, 9.48 · 10−6) and R2 = (0.99, 0.99, 0.99) computed on a test set).
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Figure 2: Posterior distribution of θ with θtrue (red
line) and θMAP (blue line).

Posterior predictive distributions
mean s.d. 95% CI

f1 38.60 2.22 32.88; 41.03
f2 113.31 6.26 97.70; 120.85
f3 243.56 14.41 210.60; 263.30

Table 1: Mean, standard deviation and
95% credible intervals of the posterior
predictive distributions.

We ran Algorithm 1 for 20 minutes with N = 500 and using the Euclidean distance. In the given
budget of time, the final number of iterations is M = 22, and all of them required more than 100 000
calls to the generative model to accept 500 parameter proposals. The final threshold is ϵM = 0.07.

Looking at Figure 2 we can see that the Maximum a Posteriori estimate of the damage’s location,
θMAP = 2448, is very close to θtrue. Note that the FEM discretises the beam using meshes of size
50 mm, meaning that the difference θMAP − θtrue = 24.2 mm can be ignored since it is too small to
be detected by the model. The bimodality of the posterior distribution is due to the symmetry of the
beam. However, in the reality this perfect symmetry does not occur, thus we speculate that posterior
distributions based on real data will be unimodal. The uncertainty about the damage’s location has been
propagated to future frequencies by computing posterior predictive distributions described in Table 4.

The variability of the distribution increases moving from the first to the third frequency. In a more
realistic framework, the uncertainty would be even larger and ignoring posterior predictive distributions
may lead to the observation of completely unexpected scenarios.

5. Discussion and future work

In this work, we investigate the use of a formal model for uncertainty quantification in the identifi-
cation of damages in civil structures. A probabilistic approach is essential to be aware of the uncertainty

2Prior distributions have been set exploiting information coming from preliminary investigations as well as the
experts’ knowledge.
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around estimates and predictions and to conduct a more conscious process of decision-making. However,
including different sources of uncertainty often leads to complex probabilistic models with an intractable
likelihood function. We propose a likelihood-free approach to provide fully Bayesian estimates. The
presented ABC method overcomes problems related to the computational cost of the simulator resorting
to an emulator. In particular, we exploit the deterministic nature of the function that links parameters and
latent variables to the frequencies and propose an emulator based on ANNs.

Our exploratory analysis showed that the method is able to infer the damage’s location and gave some
insights into the uncertainty of future frequencies pointing out the importance of considering posterior
predictive distributions. This aspect makes the proposed framework particularly relevant in the structural
health monitoring field.

One of the main strengths of the proposed approach is its flexibility. In our example, we assumed
simple Gaussian and Uniform distributions over the measurement errors and the bias of the model. How-
ever, the method allows one to straightforwardly replace them with more complex random variables –
e.g. considering Gaussian processes (5). In fact, we need only the ability to produce simulations from
the assumed distributions and no analytical evaluations are required. Furthermore, in this framework, the
statistician can take full advantage of the expert knowledge in the specification of the prior distributions
and the definition of a model that is as close as possible to reality.

The major drawback of the method is that it still requires a large number of calls to the FEM to build
a training set for the ANN. However, in our example, the size of the training set turned out to be far lower
than the number of simulations needed in the PMC-ABC procedure. Furthermore, the use of the trained
emulator is not limited to the implementation of the PMC-ABC algorithm since it can be integrated into
the health monitoring system which, otherwise, would call the FEM many times.

Future work should focus on the application of the method to real data and on the extension to more
complex structures such as bridges, towers, etc. Moreover, we plan to define a more sophisticated model
that allows inferring also the presence/absence and the entity of the damage.
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