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ABSTRACT

Proton nuclear magnetic resonance (1H NMR) spec-
troscopy is acknowledged as one of the most powerful 
analytical methods with cross-cutting applications in 
dairy foods. To date, the use of 1H NMR spectroscopy 
for the collection of milk metabolic profile is hindered 
by costly and time-consuming sample preparation 
and analysis. The present study aimed at evaluating 
the accuracy of mid-infrared spectroscopy (MIRS) as 
a rapid method for the prediction of cow milk me-
tabolites determined through 1H NMR spectroscopy. 
Bulk milk (n = 72) and individual milk samples (n = 
482) were analyzed through one-dimensional 1H NMR 
spectroscopy and MIRS. Nuclear magnetic resonance 
spectroscopy identified 35 milk metabolites, which were 
quantified in terms of relative abundance, and MIRS 
prediction models were developed on the same 35 milk 
metabolites, using partial least squares regression 
analysis. The best MIRS prediction models were devel-
oped for galactose-1-phosphate, glycerophosphocholine, 
orotate, choline, galactose, lecithin, glutamate, and 
lactose, with coefficient of determination in external 
validation from 0.58 to 0.85, and ratio of performance 
to deviation in external validation from 1.50 to 2.64. 
The remaining 27 metabolites were poorly predicted. 
This study represents a first attempt to predict milk 
metabolome. Further research is needed to specifically 
address whether developed prediction models may find 
practical application in the dairy sector, with particular 
regard to the screening of dairy cows’ metabolic status, 
the quality control of dairy foods, and the identification 
of processed milk or incorrectly stored milk.

Key words: dairy cattle, metabolome, predictive 
ability, chemometrics

INTRODUCTION

Proton nuclear magnetic resonance (1H NMR) spec-
troscopy is widely adopted to study the composition of 
the metabolome in biological matrices and tissues. In 
the field of human medicine, 1H NMR spectroscopy has 
been supportive in the identification of biomarkers able 
to discriminate between healthy and diseased tissues or 
organs, and consequently in the development of diagnos-
tic clinical tests (Emwas et al., 2013). In food science, 
1H NMR spectroscopy is a high-throughput analytical 
method for the analysis of the metabolome, in both 
liquid and solid matrices. High-resolution 1H NMR has 
been effectively used to obtain spectrum-based and 
metabolite-based food fingerprints, with important 
applications in quality and safety controls (Hatzakis, 
2019; Dourou et al., 2020), as well as in traceability 
and authenticity validation purposes (Monakhova et 
al., 2013; Meoni et al., 2020).

As regards the dairy sector, 1H NMR spectroscopy 
has several applications with various purposes along 
the entire production chain. At dairy farm level, milk 
1H NMR spectra and their metabolic profiles have been 
effectively used to discriminate between healthy udder 
quarters and udder quarters with subclinical mastitis 
(Bobbo et al., 2022), and between cows with subclini-
cal and clinical mastitis (Luangwilai et al., 2021). The 
in-depth analysis of milk with high and low SCC is a 
promising approach in the livestock sector to elucidate 
the biochemical basis of mastitis (Sundekilde et al., 
2013). At dairy industry level, 1H NMR spectroscopy 
has been proposed as an anticounterfeiting analytical 
method to detect traces of bovine milk in caprine milk 
(Rysova et al., 2021), to discriminate between cow milk 
produced according to indoor farming and outdoor 
grazing conditions (Niero et al., 2022), to distinguish 
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milk produced according to different feeding systems 
(Tenori et al., 2018), and to distinguish cheeses manu-
factured in compliance with different disciplinaries 
(Segato et al., 2019). Nowadays, the collection of milk 
metabolomic fingerprint and the application of related 
protocols for safety or traceability purposes are ham-
pered by high costs and time of analysis of 1H NMR 
spectroscopy.

Mid-infrared spectroscopy (MIRS) is one of the 
most rapid and cost-effective technologies to collect 
phenotypes on a large scale (De Marchi et al., 2014). 
Milk spectra obtained from MIRS analysis can be 
electronically stored as records of energy absorbed by 
the sample hit by an electromagnetic radiation in the 
range between 900 and 5,000 cm−1. The same MIRS 
spectra can be processed through different chemomet-
rics approaches to predict phenotypes at no additional 
costs. Currently, in national milk recording systems, 
milk samples from individual cows are periodically col-
lected and analyzed through MIRS to determine fat, 
protein, casein, lactose, and urea. In recent years, much 
research has been carried out to develop MIRS predic-
tion models for novel phenotypes, including detailed 
mineral (Soyeurt et al., 2009), fatty acid (Gottardo et 
al., 2017), and protein profile (Niero et al., 2021). The 
possibility to predict fine milk traits such as vitamins 
(Revilla et al., 2017), antioxidants (Niero et al., 2019), 
and lactoferrin (Soyeurt et al., 2020) represents the last 
frontier of this research field.

To authors’ knowledge, no previous research has in-
vestigated the possibility to predict milk metabolites 
through MIRS. Therefore, the aim of the present study 
was to assess the accuracy of MIRS to predict cow 
milk metabolites determined through 1H NMR spec-
troscopy. In the light of the accuracy of the developed 
models and based on available scientific literature, dis-
cussion on the best predicted metabolites have been 
appended to provide some potential implication for 
the dairy sector.

MATERIALS AND METHODS

Samples Collection

A total of 554 raw cow milk samples (72 bulk and 
482 individual milks) were collected in dairy herds lo-
cated in Northern Italy, between June 2019 and June 
2021. Bulk milks were collected from conventional and 
organic multibreed herds, with Holstein being the most 
represented breed. Individual milks were collected 
from Simmental cows farmed according to indoor barn 
or outdoor pasture conditions. Detailed description 
of farm management, animal feeding, and sampling 
procedures can be retrieved from Niero et al. (2022). 

Immediately after sampling, 200 µL of Azidiol preser-
vative (chloramphenicol 1.5 g/L, anhydrous trisodium 
citrate 34 g/L, sodium azide 36 g/L, bromophenol blue 
0.35 g/L, ethanol 1%) were added to 100 mL of milk. 
Each sample was divided into 2 aliquots for subsequent 
analyses.

Mid-infrared Spectra and Chemical Composition

One of the milk aliquots was transported at 4°C to 
the laboratory of the Breeders Association of Veneto 
Region (Vicenza, Italy). Within 24 h, milk samples were 
warmed, gently mixed by inversion to promote solid ho-
mogenization, and analyzed for gross composition (fat, 
protein, casein, and lactose, %), and urea (mg/dL) us-
ing MilkoScan 7DC (Foss) according to ISO 21543:2020 
and ICAR guidelines (ICAR, 2018; ISO, 2020). Somatic 
cell count was determined using Fossmatic (Foss) ac-
cording to ISO 13366–2:2006 and ICAR guidelines 
(ISO, 2006; ICAR, 2018). Mid-infrared spectra of all 
samples were collected and stored electronically.

Proton Nuclear Magnetic Resonance

The second aliquot of milk was transported at 4°C 
to the Magnetic Resonance Center (Sesto Fiorentino, 
Italy) for 1H NMR analysis. Within 24 h, samples were 
dissolved in dichloromethane (CH2Cl2) at a ratio of 1:1 
(vol/vol; Tenori et al., 2018). The mixture was homog-
enized by vortexing and then incubated at room tem-
perature for 10 min. After centrifuging the mixture at 
5,000 × g for 30 min at 4°C, 350 μL of the supernatant 
were added to 350 μL of sodium phosphate buffer [70 
mM Na2HPO4; 20% (vol/vol) H2O, 6.1 mM NaN3; 4.6 
mM sodium trimethylsilyl (2,2,3,3-H4)-propionate; pH 
7.4]. Then, 600 μL of this mixture were transferred to 
a 5-mm 1H NMR tube (Bruker BioSpin) and stored at 
80°C for the 1H NMR analysis. Proton nuclear magnetic 
resonance spectra of milk extracts were obtained from 
a Bruker spectrometer (Bruker BioSpin) operating at 
600.13 MHz proton Larmor frequency and equipped 
with a 5-mm PATXI 1H-13C-15N probe with a z-axis 
gradient coil, automatic tuning-matching, and an au-
tomatic refrigerated sample changer. For temperature 
equilibration, samples were maintained inside the 1H 
NMR probe for at least 5 min prior measurement 
(310K). For each sample, 3 one-dimensional 1H NMR 
spectra were acquired with water peak suppression 
and different pulse sequences that allowed the selec-
tive observation of different molecular components: 
(1) a standard NOESY 1Dpresat (noesygppr1d.comp; 
Bruker BioSpin) pulse sequence (using 64 scans, 98,304 
data points, a spectral width of 18,028 Hz, an acquisi-
tion time of 2.7 s, a relaxation delay of 4 s, and a mix-
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ing time of 0.01 s). This pulse sequence is designed to 
obtain a spectrum in which both signals of metabolites 
and high molecular weight molecules (lipids and lipo-
proteins) are visible; (2) a standard CPMG (cpmgpr1d.
comp; Bruker BioSpin) pulse sequence (using 64 scans, 
73,728 data points, a spectral width of 12,019 Hz, and 
a relaxation delay of 4 s). This pulse sequence is de-
signed for the selective observation of small molecules 
in solutions containing macromolecules; (3) a standard 
diffusion-edited (ledbgppr2s1d.comp; Bruker BioSpin) 
pulse sequence (using 64 scans, 98,304 data points, a 
spectral width of 18,028 Hz, and a relaxation delay of 
4 s) for the selective observation of macromolecular 
components in solutions containing small molecules. 
Free induction decays were amplified by an exponential 
function comparable to a 0.3 Hz line-broadening factor 
before applying the Fourier transform. TopSpin 3.6.2 
(Bruker BioSpin) was used to automatically adjust for 
phase and baseline aberrations and to calibrate trans-
formed NOESY and CPMG spectra to the α-lactose 
doublet (5.24 δ1H ppm). Each one-dimensional spectra 
in the range of 0.02 to 10.00 1H ppm was segmented 
into 0.02 δ1H ppm chemical shift bins for multivariate 
analysis (buckets). The portions of NOESY and CPMG 
spectra containing water (4.61–4.77 1H ppm) and di-
chloromethane (5.30–5.33 and 5.42–5.65 1H ppm) were 
eliminated. Normalization using X was applied to the 
bins before any statistical analysis.

A total of 35 metabolites were identified in the 1H 
NMR spectra. Signal identification was performed us-
ing a library of 1H NMR spectra of pure organic com-
pounds (Assure NMR 2.2 software, Bruker BioSpin), 
public databases (FooDB, https:​/​/​foodb​.ca/​, and Milk 
Composition Database, http:​/​/​www​.mcdb​.ca/​) stor-
ing references, and literature data (Tenori et al., 2018; 
Meoni et al., 2020; Bobbo et al., 2022).

Partial Least Squares Regression Models

Samples were randomly split in calibration and 
validation sets, in a 5:1 ratio, stratified by sample 
type (bulk and individual), to maintain the same 
representativeness of the 2 different type of samples. 
Descriptive statistics of metabolites in the whole data 
set and in calibration and validation sets are reported 
in Supplemental Table S1 (https:​/​/​figshare​.com/​
articles/​journal​_contribution/​Franzoi​_M​_et​_al​_2023​
_​-​_Supplementary​_Table​_S1​_​-​_JDS​_R2/​23093252; 
Niero, 2023). Prediction models were built on the cali-
bration set using modified partial least squares regres-
sion analysis (WinISI III v. 1.60; Foss and Infrasoft 
International LLC) through 10-fold cross-validation. 
Several combinations both in terms of scattering correc-
tion (no correction, detrend, standard normal variate, 

standard normal variate + detrend, standard multipli-
cative scatter correction) and mathematical treatment 
(0,0,1,1; 1,4,4,1; 1,8,8,1; 2,5,5,1; 2,10,10,1) were tested. 
For the mathematical treatment, the 4 digits indicate 
the number of the derivative, gap used for derivative 
calculation, data points in the first smoothing, and 
data points in the second smoothing, respectively. The 
number of latent variables included in the model were 
selected according to van der Voet (1994).

Before each regression, spectra were evaluated for 
global Mahalanobis distance (GH) and those with GH 
>3 were excluded. Hereafter, potential outliers were 
removed using the T-outlier test (Soyeurt et al., 2012) 
in Winisi software (Foss), setting to 3 the critical value. 
Modified partial least squares regression and outlier de-
termination were iterated 3 times. The best prediction 
equation for each trait was chosen based on the stan-
dard error of prediction in cross-validation. Standard 
error of prediction was calculated also for calibration 
and validation. Relative standard error, coefficient of 
determination, and ratio performance to deviation were 
calculated for calibration (RSECal, R

2
Cal, and RPDCal, 

respectively), cross-validation (RSECVal, R
2
CVal, and 

RPDCVal), and external validation (RSEEVal, R
2
EVal, 

and RPDEVal).

RESULTS AND DISCUSSION

Milk Composition, Proton Nuclear Magnetic Spectra, 
and Mid-Infrared Spectra

Descriptive statistics of milk composition, urea, and 
SCC are summarized in Table 1. Fat, protein, casein, 
and lactose averaged 3.73, 3.47, 2.75, and 4.84%, re-
spectively. Fat had the greatest variability with coef-
ficient of variation (CV) of 21.59%. Milk urea and SCC 
averaged 21.05 mg/dL and 190.09 cells/µL, and had 
CV of 20.95 and 125.84%, respectively. Such a great 
variability was somewhat expected and is likely due 
to the experimental design of the present study, which 
indeed included (1) individual cow and bulk milk, (2) 
different cow breeds, (3) different farming systems (i.e., 
organic and conventional), (4) different farming con-
ditions (i.e., indoor and outdoor) and related feeding 
strategies (i.e., silages and forages). Broadly speaking, 
the possibility to capture great variability is favorable 
for the development of MIRS prediction models. In-
deed, great variability is associated with great spectra 
variability, which in turn, is an effective way to improve 
the accuracy of MIRS prediction models (Soyeurt et al., 
2011; De Marchi et al., 2014).

Average CMPG 1H NMR spectrum, average mid-
infrared spectrum, and hetero-spectral synchronous 
2D correlation spectrum are represented in Figure 1. 

Franzoi et al.: PREDICTION OF MILK METABOLITES

https://foodb.ca/
http://www.mcdb.ca/
https://figshare.com/articles/journal_contribution/Franzoi_M_et_al_2023_-_Supplementary_Table_S1_-_JDS_R2/23093252
https://figshare.com/articles/journal_contribution/Franzoi_M_et_al_2023_-_Supplementary_Table_S1_-_JDS_R2/23093252
https://figshare.com/articles/journal_contribution/Franzoi_M_et_al_2023_-_Supplementary_Table_S1_-_JDS_R2/23093252


5291

Journal of Dairy Science Vol. 106 No. 8, 2023

To the best of our knowledge, this is the first time a 
hetero-spectral synchronous 2D correlation spectrum 
was produced between 1H NMR and MIRS milk spec-
tra. Most of the 2D cross-signals appeared in specific 
regions of the mid-infrared spectrum. A complex pat-
tern of both positive and negative cross-signals appears 
between 1,000 and 1,100 cm−1, commonly assigned 
to lactose C–O, C–C, and C–H stretching vibrations 
(Grelet et al., 2015). Such region showed the strongest 
positive cross-signals with 1H NMR peaks typical of N-
acetyl carbohydrates (2.07 ppm), methanol (3.37 ppm), 
lactose (4.47 ppm), and galactose (5.28 ppm). Correla-
tion between lactose NMR peak and infrared lactose 
region was expected. At the same time, methanol and 
galactose derive from bacterial fermentation of lactose 
that could explain the observed correlation. Moreover, 
galactose and N-acetyl carbohydrates share several 
functional groups with lactose, contributing to samples 
absorbance between 1,000 and 1,100 cm−1. The same 
infrared region highlighted a strong negative cross-peak 
with glycerophosphocholine (3.23 ppm), whereas the 
same metabolite showed an intense positive cross-signal 
with the near-infrared spectral region around 1,157 
cm−1, typical of lactose C–O–C stretching (Grelet et 
al., 2015).

Lactose NMR m. −CH2 peak also showed a positive 
cross-peak with infrared region around 1,400 cm−1, 
typical of the bending of CHn in fatty acids aliphatic 
chains (Grelet et al., 2015). Infrared regions associated 
with protein C–C and C–N stretching, around 1,550 
cm−1, are correlated with several 1H NMR peaks such 
as N-acetyl carbohydrates, glycerophosphocholine, 
methanol, lactose, and galactose. Infrared regions as-
sociated with fat C=O stretching (1,743 cm−1) and 
fatty acids CHn stretching (between 2,800 and 3,000 
cm−1) showed in general an opposite trend of cross-
peaks compared with both lactose and fat CHn bending 
regions and similar to C–O–C lactose stretching, and 
weaker cross-peaks with metabolites such as 3-hydroxy-
butyrate (2.326 ppm), citrate (3.55 ppm), and sarcosine 
+ dimethylamine (2.736 ppm).

Overall, hetero-spectral synchronous 2D correlation 
spectrum highlighted a complex relationship between 

mid-infrared spectrum and NMR-determined metabo-
lites. Despite such complexity, the presence of specific 
mid-infrared regions associated with metabolites could 
be used for wavelengths selection in the development of 
mid-infrared predictions (Forouzangohar et al., 2013).

Franzoi et al.: PREDICTION OF MILK METABOLITES

Table 1. Descriptive statistics of milk composition, urea, and SCC

Trait n Mean CV (%) Minimum Maximum

Milk composition          
  Fat (%) 548 3.73 21.59 1.22 6.98
  Protein (%) 550 3.47 9.43 2.42 4.44
  Casein (%) 554 2.75 10.29 1.86 3.69
  Lactose (%) 546 4.84 3.35 4.34 5.30
Urea (mg/dL) 553 21.05 20.95 9.30 33.20
SCC (cells/µL) 541 190.09 125.84 6.00 1,731.00

Figure 1. Two-dimension correlation between mid-infrared spectra 
(MIRS) and proton nuclear magnetic resonance (1H NMR) spectra. 
Red and blue lines represent positive and negative cross-peaks, re-
spectively.
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Infrared Prediction Models

Among the 35 identified metabolites, 8 exhibited RP-
DEVal ≥1.5 and the remaining 27 were poorly predicted, 
with RPDEVal <1.5. Fitting statistics of the prediction 
models for cow milk metabolites with RPDEVal ≥1.5 are 
reported in Table 2, and scatter plots of the measured 
metabolites (x-axis) versus predicted metabolites (y-
axis) are in Figure 2. Among the studied metabolites, 
MIRS prediction models for galactose-1-phosphate and 
glycerophosphocholine exhibited the best prediction 
performances, with R2

EVal of 0.85 and 0.84, and RPDEVal 
of 2.64 and 2.56, respectively. To the best of authors’ 
knowledge, this is the first study that has attempted to 
predict galactose-1-phosphate and glycerophosphocho-
line concentration in milk and thus comparison with 
the literature was somewhat difficult. Broadly speaking 
and according to Grelet et al. (2021), R2

EVal between 
0.74 and 0.89, and RPDEVal between 2 and 3 are suffi-
ciently reliable and allow for rough screening of samples 
to estimate the quantity of the predicted phenotype.

Prediction models for orotate, choline, galactose, 
and lecithin concentration were slightly less accurate 
than those for galactose-1-phosphate and glycerophos-
phocholine, with R2

EVal from 0.70 to 0.79, and RPDEVal 
from 1.72 to 1.88. Zaalberg et al. (2020) assessed the 
effectiveness of MIRS for the prediction of milk orotate 
determined through 1H NMR spectroscopy and reported 
R2

EVal from 0.60 in milk of Danish Jersey cows to 0.79 
in milk of Danish Holstein cows. Franzoi et al. (2018) 
developed MIRS prediction models for the prediction 
of galactose in different kinds of delactosated milk; the 
excellent accuracy of the models developed by Franzoi 
et al. (2018; R2

CVal = 0.98, RPDCVal = 7.42) is likely due 
to the great amount of galactose in delactosated milk, 
which is not the case of the present study.

Moderate R2
EVal and RPDEVal were obtained for glu-

tamate (0.63 and 1.65, respectively) and lactose (0.58 
and 1.50, respectively). In the present study glutamate 
was predicted with slightly greater accuracy compared 
with McDermott et al. (2016), who obtained R2

EVal of 
0.59 and RPDEVal of 1.20. In the light of the fitting 
statistics obtained for lactose, it is likely that 1H NMR 
spectroscopy is not the best reference method to be 
used for the development of MIRS prediction models. 
Indeed, a correlation of 0.996 in validation has been 
declared between lactose measured through HPLC 
as reference method and lactose predicted through 
MIRS (application note 5373 Rev. 3, MilkoScan 7RM/
FT+/6000; Foss).

Fitting statistics of prediction models for cow milk 
metabolites with RPDEVal <1.5 are reported in Table 3. 
According to Grelet et al. (2021) the use of models with 
such RPDEVal is uncertain. McDermott et al. (2016) ob-
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Figure 2. Scatter plots of predicted (y-axis) versus measured (x-axis) (A) galactose-1-phosphate, (B) glycerophosphocholine, (C) orotate, 
(D) choline, (E) galactose, (F) lecithin, (G) glutamate, and (H) lactose, in arbitrary units (AU). Dark and light gray represent calibration and 
validation data sets, respectively. Fitting statistics are the coefficient of determination in calibration (R2

Cal), the standard error of prediction in 
calibration (SEPCal), the coefficient of determination in external validation (R2

Eval), and the standard error of prediction in external validation 
(SEPEVal).
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tained slightly greater accuracy when predicting valine 
determined through HPLC reference method (R2

EVal of 
0.59 and RPDEVal of 1.14). Grelet et al. (2016) reported 
considerably greater prediction accuracy in a study 
aimed to predict citrate, acetone, and 3-hydroxybutyric 
acid by the combination of data from different cow 
breeds farmed in different countries and according to 
different production systems.

Discussion on the Best Predicted Metabolites

Metabolites discussed in this chapter have been se-
lected among those with RPDEVal ≥1.5 (Table 2) and, 
at the same time, documented technological, biological, 
or nutritional implications. Based on this approach, 5 
metabolites have been considered, namely galactose-
1-phosphate, glycerophosphocholine, choline, orotate, 
and galactose. Given this, it is worth reporting that the 
use of MIRS-predicted metabolites must be deepened 
through further specific research trials.

Galactose-1-Phosphate

Results by Lu et al. (2013) suggest that milk galac-
tose-1-phosphate can be used as a reliable and specific 
indicator to determine the energy status of dairy cows. 
Those authors reported increased levels of galactose-
1-phosphate in milk of cows experiencing negative 
energy balance, whereas very low amount (or even 
an absence) of this compound was observed in milk 
of cows with positive energy balance. On this back-
ground, accurate prediction of galactose-1-phosphate 
through MIRS may find application for the screening of 
metabolic status of dairy cows, with particular regard 
to the energy balance during the onset of lactation, 
and the enhancement of animal resistance to metabolic 
disorders.

Glycerophosphocholine and Choline

In ruminants, dietary choline is largely degraded by 
rumen bacteria (Neill et al., 1979); therefore, endog-
enous synthesis becomes a critical source of choline 
(Baldi and Pinotti, 2006). Still, the supplementation 
of rumen-protected choline has been demonstrated to 
reduce the extent of hepatic fatty infiltration and to 
increase the expression of genes involved in very low-
density lipoprotein transport (Goselink et al., 2013). 
Such supplementation may be particularly important 
in the periparturient period, which is characterized by 
high incidence of fatty liver disease (Shahsavari et al., 
2016). The possibility to monitor the content of these 
milk compounds may be of interest in the view of cow 
health and dietary balance.

Orotate

Organic acids in milk such as orotic acid are known to 
be important for the flavor of fermented dairy products 
(Guzel-Seydim et al., 2000). Therefore, the prediction 
of milk orotic acid before fermentation could be used 
to select milk with desired orotic acid concentration or 
even to select suitable starter cultures.

Galactose

Rapid and cost-effective quantification of milk ga-
lactose can find applications in identifying raw milk 
exposed to appropriate storage temperature. Ajmal et 
al. (2018), demonstrated lactose was partially degraded 
when milk was chilled 2 h after collection, compared 
with milk immediately refrigerated. This effect was 
likely linked to higher microbial activity in milk not 
stored at appropriate temperatures. Therefore, the rap-
id quantification of milk galactose may be of interest 
for the dairy industry to assess whether milk batches 
have been properly stored after collection.

CONCLUSIONS

The present study evaluated the robustness of MIRS 
to predict cow milk metabolites determined through 
1H NMR spectroscopy. A total of 35 milk metabolites 
were identified through 1H NMR spectroscopy analysis. 
Among them, galactose-1-phosphate, glycerophospho-
choline, orotate, choline, galactose, lecithin, glutamate, 
and lactose exhibited RPDEVal ≥1.5 and R2

EVal from 
0.58 to 0.85. Further research is advisable to under-
stand whether such prediction models may find any 
application in the dairy sector, with particular regard 
to predicted galactose-1-phosphate (for the screening 
of metabolic status of dairy cows), predicted orotate 
(for quality control in dairy products), and predicted 
galactose (as milk quality reporter).
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