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Abstract

When acquiring series of spectra (T1,T2, CP buildup curves, etc.) on samples

with poor SNR, we are usually faced with choosing between taking a few

points with a large number of scans to maximize the SNR or more points with

a smaller number of scans to maximize the information content. In this Letter,

we show how low-rank decomposition can be used to denoise a series of spec-

tra, reducing the trade-off between the number of scans and the number of

experiments.
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1 | INTRODUCTION

While nuclear magnetic resonance (NMR) has witnessed
a significant improvement, in terms of accessibility of
high magnetic fields and enhanced polarization appara-
tus, of the design of probes and electronics, of efficiency
of pulse sequences, and so forth,[1,2] samples that are lim-
ited in signal still represent a challenge, in particular
when series of spectra must be acquired. Such cases
include the acquisition of traditional dynamics experi-
ments such as T1,T2,T1ρ, heteronuclear NOE, and CP
buildup curves. In the case of samples that display poor
SNR, it is usually the case that the spectroscopist needs to

compromise between the number of experiments that are
taken along the series and the number of scans per exper-
iment. In this Letter, we question the possibility of denois-
ing these data through low-rank decomposition methods:
the modulation of the signal intensity as a result of the
pulse sequence is expected to be captured as the most sig-
nificant variation across a series of spectra.[3,4] It is worth
mentioning that the joint processing of series of signals
has been used in other contexts in NMR for sensitivity
boosts and better determination of spectral parameters
(see for instance previous works[5–11]). We also discuss
which acquisition protocol can be applied to obtain data
of a sufficient quality to be used for quantitative purposes.

Abbreviations: BSS, blind source separation; MCR, multivariate curve resolution; SNR, signal to noise ratio; SVD, singular value decomposition.
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2 | COMPUTATIONAL DETAILS

All the scripts employed for simulating and analyzing the
data are written using Python 3.10 and collected in an in-
house package (the used libraries and their versions[12–16]

are reported in Table S1). The package is available upon
request to the authors.

2.1 | Generation of the model

2.1.1 | Signal

In this manuscript, we compare three datasets: clean (C),
noisy (N , see below in the paragraph 2.1.2), and denoised
(D, see below in the paragraph 2.2), containing respec-
tively the “clean” simulated spectra, the simulated spec-
tra with additive noise, and the simulated spectra with
residual noise after applying denoising.

The spectra were simulated to represent the acquisi-
tion of 13C pseudo-2D spectra at 16.4 T (176 MHz 13C
Larmor frequency). Each transient features five
signals that have the same Voigtian lineshape but
differ in shift and intensity. Across the series, the inten-
sity (I) of each signal is modulated as in a CP
buildup (1).[17]

IðtÞ¼ Ið0Þ
1� τCP=T1ρ

� e�t=T1ρ � e�t=τCP
� �

ð1Þ

The other parameters used in the simulation,
e.g. number of points per transient, T1ρ and chemical
shift of signals, are reported in Table S2. The
indirect dimension of the pseudo-2D experiment was
built by sampling the CP contact times (τCP) in M equally
spaced experiments from 100 μs to 2 ms (see
Section 2.1.2).

FIGURE 1 (a) First experiment with additive noise (N ) of the pseudo-2D composed by 32 τCP increments acquired at increasing

number of scans. The top panel shows the noiseless spectrum (C). (b) Buildup curve extracted as indirect dimension projection at

δ¼ 125ppm from the pseudo-2D noisy spectra (N ) composed by 32 τCP increments, acquired at increasing number of scans. The top panel

shows the theoretical buildup curve, extracted from the noiseless spectrum (C).
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2.1.2 | Noise

Additive complex noise is modeled following Grage and
Akke[18] and added to the simulated FIDs. As stated
above (2.1.1), each series comprises M experiment. Each
experiment results from the sum of ns scans. Therefore,
the total number of scans in a series (N) is obtained as
N ¼ns �M. The list of chosen ns and M are reported in
Table S3. For each experiment, 10 different realizations
of noise were created in order to obtain meaningful
statistics.

The first trace of each CP buildup series is shown in
Figure 1a and the reconstruction of the buildup curves
using an increased number of scans is shown in
Figure 1b.

The SNR for the first trace in all the series is given in
Table 1, showing the expected / ffiffiffiffi

N
p

dependence.
The SNR was evaluated for each transformed tran-

sient dividing the maximum of the signal by twice the
standard deviation of the noise. The signal is the height
of the most intense peak (measured in the noiseless spec-
trum) and the standard deviation of noise is calculated as
in the command SINO in Bruker TopSpin software:

where p is the total number of points in the noise region,
n¼ðp�1Þ=2, and yðiÞ is the ith point in the noise region.
A slice of the spectrum where no signal is present was
selected as representative of the noise region.

2.2 | Denoising

The denoising of the spectra is based on singular value
decomposition (SVD),[19] which yields the optimal solu-
tion in absence of other priors—the effect of which is

outside of the scope of the present work.[20,21] A series of
1D spectra arranged in a pseudo-2D experiment is
a complex matrix. The SVD is performed on the
time-domain data. If no apodization is added, the
Fourier transform does not alter the information content
of the data (the SVD of the spectrum and of the FID yield
singular values that have the same relative intensities).
However, in line with what we have previously done,[20]

we have chosen to work in the time domain on the one
hand to avoid that the noise becomes polarized by a prior
apodization and, on the other hand, to preserve the possi-
bility of further processing after the denoising itself. The
SVD of a m�n complex matrix A is the decomposition of
A into three matrices: A¼USV†, where U is a m�m
complex unitary matrix, S is a m�n rectangular diagonal
matrix containing non-negative real singular values and
V† is the transpose conjugate of the V n�n complex
matrix.

The application of SVD on a pseudo-2D experiment
does not require a conversion in a structured matrix
(e.g., Toeplitz or Hankel),[22] as in the case of individual
1D experiments.[23] It can be noted that while in the
application of Toeplitz or Hankel the correlation within

the matrix is imposed by the method itself, in this
case the matrix structure is solely determined by the
experiment and therefore a part of the noise might show
correlation. The shape of the matrix is not relevant for
low-rank approximations, as long as the rank that the
matrix can have is at least equal to the number of
signals.[22]

For denoising, after performing the SVD of a series,
we apply a hard-thresholding constraint, which consists
in maintaining only the first nc singular values and zero-
ing all the others. As a cautious choice, nc was set to

TABLE 1 SNR of the first trace (i.e., τCP ¼ 100μs) of the noisy spectra N as function of the number of scans per experiment (ns),

averaged among the seeds employed for the generation of the noise. The standard deviation is also reported as an index of the stability of the

noise model. The source data are reported in full in Table S4.

ns 1 2 4 8 16 32 64 128 256 512 1024 2048

Mean SNR 1.97 2.17 2.36 2.87 3.46 4.74 6.26 8.78 11.96 16.41 22.98 32.29

σSNR 0.17 0.19 0.26 0.28 0.22 0.22 0.15 0.35 0.37 0.24 0.30 0.43

gma¼ 1ffiffiffiffiffiffiffiffiffiffi
p�1

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼�n

y ið Þ2� 1
p

Xn
i¼�n

y ið Þ
 !2

þ 3
p2�1

Xn
i¼1

i y ið Þ� y �ið Þð Þ
 !2" #vuut ð2Þ
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5, that is, the number of peaks in each transient. Using
less components than the signals can cause signals to dis-
appear, or to change in intensity or shape, using more
components than the number of signals reintroduces
noise.[20] This choice is justified by the fact that the rank
of the matrix constructed from the noiseless 1D-FIDs
belonging to a series should be equal to the number of
signals in the spectra, while in the presence of noise, the
matrix is always full-rank. With this choice, we preserve
some noise, but we limit the possible impact on the
reconstructed signal: since SVD is not a blind-source-
separation method, each component will always contain
a contribution from each signal in the spectrum. For this
reason, it has been observed that non-lorentzian signals
might be distorted in the decomposition.[23] However, we
are not interested in the decomposition, but on the recon-
struction of the full signal, therefore distortions that may
arise in the single components cancel out upon summing
all the components, even if the signals have different
deviation from lorentzian (see Figure S1).

3 | RESULTS

3.1 | Low-rank decomposition denoises
the data even at low SNR values, and SNR
depends on the total number of scans

When the data display a low SNR, it may happen that
some signals are not visible, as they are buried under the
noise. One such example is the signal at 25 ppm shown
in the top-left panel of Figure 2. Figure 2 shows that the
denoising based on low-rank decomposition is capable of
recovering the signals with intensities below the detec-
tion limit of 3�σN . However, it is to be noted that high
noise levels can cause alteration in the signal
intensities,[24] compromising the obtainment of intensity-
dependent parameters, for example, τCP and T1ρ from the
CP build-up curves.

The quality of the denoising, as shown in Figure 2,
improves by increasing the starting SNR, and therefore
the total number of scans, with the same number of

FIGURE 2 Plot of the trace correspondent to τCP ¼ 100 μs, that is, the first of the 32 acquired transients, of the noisy pseudo-2D

experiments (left panels) and of their denoised counterpart (right panels), at increasing number of scans. For reference, the noiseless

spectrum is shown in blue in all panels.
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experiments M. The detailed dependence is reported in
Figure S2.

Figure S3 shows the SNR of the denoised spectra
against their noisy counterparts (averaged among the
seeds) for all the investigated combinations of ns and M.
The determining factor in the final SNR is thus found to
be the total number of scans N .

3.2 | Quality of the reconstruction

As stated above (Section 3.1), the aim of the denoising
procedure is not only to improve the SNR but also to
reconstruct the native signal intensities, hence obtaining
meaningful parameters from the analysis of the series.
Therefore, for the same total number of scans N we here
compare the results of the fit to (1) against the known

values, for two different M values: 8 and 128 (the results
are shown in Figure 3 and Table S5).

We can see that, in order to obtain the best compro-
mise between the accuracy of the reconstruction and the
increase in SNR, the best choice is an intermediate com-
bination of ns and M (see Figure S5 and Table S6).1

3.3 | Is acquiring a series better than
acquiring a single experiment?

The last consideration that we make is about the use of
measurement time: how does acquiring a pseudo-2D
experiment and denoising it compare to the acquisition
of a single 1D spectrum acquired with the same number
of scans? As an example, we select N ¼ 8192. The 1D
spectrum has SNR = 63, whereas the corresponding

FIGURE 3 Comparison of the buildup curves of each signal between the noisy spectra N acquired with M¼ 8 experiment (red traces)

and the denoised spectra D composed of M¼ 128 experiments (green traces), for a total number of scans N ¼ 512 (a) and N ¼ 2048 (b). For

reference, the trends extracted from the noiseless (C) spectra are shown as blue traces in all panels.

LETTER - APPLICATION NOTE 5

 1097458xa, 0, D
ow

nloaded from
 https://analyticalsciencejournals.onlinelibrary.w

iley.com
/doi/10.1002/m

rc.5338 by C
ochraneItalia, W

iley O
nline L

ibrary on [08/05/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



denoised spectrum in the series with ns ¼ 256 and M¼ 32
has SNR = 24, that is, around a factor �3 loss in SNR.
However, the denoised spectra automatically come with
the additional information of the pseudo-2D while keep-
ing the acquisition time constant (see Figure 4).

4 | CONCLUSIONS

The synthetic test we show in this manuscript demon-
strates that low-rank decomposition methods increase
the SNR in a series of spectra and allow for distributing
the total number of scans, hence the total experimental
time, over a larger number of experiments. This, in turn,
is reflected in a higher quality of the fit to extract mean-
ingful chemical information. The fact that the SNR in a
single transient is lower than the SNR of a single experi-
ment acquired with the same number of total scans sug-
gests that acquiring and denoising series of experiments
can be a convenient alternative to acquiring a single spec-
trum in low-sensitivity samples because of the increased
information that can be gathered.
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