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Abstract
Purpose Hyponatremia is the most frequent electrolytic disorder in clinical practice. In addition to neurological symptoms, 
hyponatremia, even when mild/moderate and chronic, has been related to other manifestations, such as bone demineralization 
and increased risk of fractures. To better elucidate tissue alterations associated with reduced serum sodium concentration 
 [Na+], we developed an in vivo model of hyponatremia secondary to the Syndrome of Inappropriate Antidiuresis.
Methods and results Hyponatremia was induced in  Foxn1nu/nu mice by subcutaneous infusion of the vasopressin analog 
1-deamino [8-D-arginine] vasopressin (dDAVP) for 14 days via osmotic mini-pumps. Mice in the control group were 
infused with isotonic saline solution. Serum  [Na+] progressively decreased, with a nadir of 123.4 ± 2.3 mEq/L (mean ± SD, 
dDAVP 0.3 ng/h) and 111.6 ± 4.7 mEq/L (mean ± SD, dDAVP 0.5 ng/h). Evident signs of liver steatofibrosis were observed 
at histology in hyponatremic mice. Accordingly, the expression of proteins involved in lipid metabolism (SREBP-1, PPARα 
and PPARγ) and in myofibroblast formation (αSMA and CTGF) significantly increased. Furthermore, heme oxygenase 
1 expression was up-regulated in Kupffer and hepatic stellate cells in the liver of hyponatremic mice. Testis alterations 
were also observed. In particular, the thickness of the seminiferous epithelium appeared reduced. The expression levels of 
PCNA and PTMA, which are involved in DNA replication and germ cells maturation, were markedly reduced in the testis 
of hyponatremic mice.
Conclusion Overall, these findings shed new light on the possible consequences of chronic hyponatremia and prompt a more 
thorough evaluation of hyponatremic patients.

Keywords Hyponatremia · SIAD · Liver steatosis · Spermatogenesis · Oxidative stress

Introduction

Hyponatremia, defined by a serum sodium concentration 
 [Na+] of less than 135 mEq/L, is the most frequent electrolyte 
alteration in clinical practice [1] and it is more common in 
the elderly, with incidences that vary from 7 to 53% in this 
subgroup [2–5]. In more than 40% of cases, hyponatremia is 
due to the Syndrome of Inappropriate AntiDiuresis (SIAD) 
[1, 6]. Hyponatremia, especially when acute (i.e., onset from 
less that 48 h) and severe (serum  [Na+] < 120 mEq/L), has 
been associated with evident neurological symptoms, which 
are secondary to brain edema [7, 8]. However, also chronic and 
mild/moderate hyponatremia (serum  [Na+] 126–135 mEq/L), 
once considered asymptomatic, have been more recently re-
evaluated and associated with a variety of symptoms. They 
include, for instance, cognitive disorders, gait instability and 
increased risk of falls [9, 10]. Furthermore, mild hyponatremia 
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has been associated with an increased length of stay in the hos-
pital, risk of hospital readmission and death in several clinical 
conditions, including cancer [11–15].

Animal models can further clarify the consequences of 
low serum  [Na+]. In 1984, a rat model of chronic hypona-
tremia secondary to SIAD was developed by the group of 
Joseph Verbalis [16]. In these animals, a condition mimick-
ing SIAD was obtained by continuous injection of 1-des-
amino-8-D-arginine vasopressin (dDAVP) together with 
a liquid diet. Interestingly, more recent evidence revealed 
that hyponatremic rats develop bone demineralization, 
with approximately a 30% mineral density reduction after 
3 months, compared with normonatremic rats [17]. These 
data were confirmed in humans. In particular, the analy-
sis of data from the Third National Health and Nutrition 
Examination Survey (NHANES III) indicated that hypona-
tremia is associated with an increased risk of osteoporosis 
at the hip [17]. Subsequent in vitro studies showed that low 
extracellular  [Na+] determines osteoclast activation on one 
hand [18], and inhibition of osteogenesis on the other hand 
[19]. Further analysis of male hyponatremic rats showed that 
these animals developed primary hypogonadism, abnormal 
testicular histology, sarcopenia and cardiomyopathy [20]. 
The authors concluded that hyponatremia elicits multiple 
manifestations of senescence in male rats.

A mouse model of hyponatremia secondary to SIAD has 
been rarely reported, so far. In two studies, dDAVP infusion 
in mice was used to induce hyponatremia. However, because 
the aim of these studies was to investigate on osmotic demy-
elination, hyponatremia was rapidly corrected by hypertonic 
saline infusion 4 days later [21, 22]. Only very recently, a 
mouse model of sustained hyponatremia due to SIAD was 
developed. In these mice, behavioral analyses were per-
formed and confirmed the presence of cognitive impairment, 
particularly related to loss of memory [23].

However, to date, several areas of possible tissue altera-
tions associated with chronic hyponatremia remain unex-
plored. For this reason, we have developed a mouse model 
of chronic hyponatremia secondary to SIAD. In our experi-
mental design, we used  Foxn1nu/nu mice, because this mouse 
model is intended to be used in upcoming projects, to study 
tumor proliferation and spread in normonatremia vs. hypona-
tremia. Here, we present data on tissue alterations observed 
in the liver and testis of hyponatremic mice.

Materials and methods

Animal model of hyponatremia

All animal experiments were conducted according to insti-
tutional ethical norms and national laws after approval 
from the Italian Ministry of Health [D. N° 688/2020-PR 

(prot. 17E9C.201)] [24]. 8-week-old  Foxn1nu/nu male mice 
(Charles River Laboratories International, Wilmington, 
Massachusetts, USA) were housed in a standard animal 
facility (Ce.S.A.L., Department of Biomedical, Experimen-
tal and Clinical Sciences “Mario Serio”, Florence, Italy) in 
sterile areas with a 12/12 h light/dark cycle and a constant 
temperature (21–23 °C), equipped with ventilation and ster-
ile barriers inside “sterile filter top” cages. In the first week 
of acclimatization, the animals (25–30 g of body weight) 
had ad  libitum access to standard chow  (MF®; Oriental 
Yeast Co., Ltd., Tokyo, Japan) and tap water. Then mice 
were randomly divided into three experimental groups: a 
control group (n = 15) and two treatment groups, group A 
and group B (n = 15 each one).Subsequently, according to 
the previously described hyponatremic rat model [16], mice 
were fed with a nutritionally balanced (66% carbohydrates, 
21% protein, 12% fat and vitamins) rodent liquid formula 
(Rodent Liquid Diet AIN-76A, Mucedola S.R.L., Milan, 
Italy) and tap water for seven days. After this time, osmotic 
mini-pump (model 1002, Alzet, Cupertino, CA, USA) was 
implanted. Mice in the control group were subcutaneously 
infused with isotonic saline (0.9% NaCl), whereas mice that 
received dDAVP (MINIRIN/DDAVP 0.1 mg/ml, Ferring 
S.P.A., Milan, Italy) in isotonic saline solution were infused 
at two different rates: 0.3 ng/h (group A) and 0.5 ng/h (group 
B). To decrease the amount of fluid ingested, from the day 
of implantation and for the entire duration of the experiment 
(14 days), treatment groups were fed only with rodent liquid 
diet without access to tap water.

Analysis of serum and urine

The experimental design included sacrifice of control and 
dDAVP-treated mice (n = 3 for each group) at different time 
points, to assess the induction and maintenance of hypona-
tremia by serum and urine analysis. In 5 animals, blood was 
drawn by venipuncture (submandibular vein) and urine was 
collected at time T-3. Considering as time point zero (T0), 
the day of the implantation of the osmotic mini-pumps, at 
time points T0, T3, T8, T14 and T14 + 3, mice were sac-
rificed with an overdose of anesthetic (ketamine/xylazine) 
necessary to take blood via cardiocentesis-transthoracic. The 
day before the sacrifice, the animals were housed individu-
ally in metabolic cages and urines were collected and ana-
lyzed for osmolality (Model 3320 Osmometer, Advanced 
Instrument Inc., New Taipei City, Taiwan) and  [Na+]. After 
death, blood samples were collected via cardiocentesis-
transthoracic, centrifuged at 1500 rpm for 20 min at + 4 °C 
and then processed for osmolality (Model 3320 Osmometer, 
Advanced Instrument Inc., New Taipei City, Taiwan) and 
 [Na+] measurement using the Cobas 8000 (Roche/Hitachi 
family, Basel, Switzerland). The biochemical analyses were 
carried out by the General Clinical Chemical laboratory 
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of AOU Careggi, Florence, according to the standard 
procedures.

Testosterone, luteinizing hormone 
and follicle‑stimulating hormone analysis

Testosterone, luteinizing hormone (LH) and follicle-stimu-
lating hormone (FSH) concentrations were determined. In 
particular, testosterone concentrations were measured using 
the Cobas 8000 (Roche/Hitachi family, Basel, Switzerland) 
at the General Clinical Chemical laboratory of AOU Car-
eggi, whereas FSH and LH were measured by two competi-
tive ELISA kits: mouse follicle-stimulating hormone ELISA 

Fig. 1  Experimental protocol 
and weight fluctuations. a 
Protocol used for the mouse 
model of hyponatremia. All 
the animals were fed with a 
rodent liquid diet. Animals were 
infused with two different rates 
of dDAVP (group A and B) for 
14 days (T0-T14) via osmotic 
mini-pumps, whereas the 
control group with 0.9% NaCl. 
Animals were sacrificed at dif-
ferent time points and blood and 
urine samples were obtained. b 
Weight fluctuations of the three 
experimental groups. Results 
are expressed as mean ± SD
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Table 1  Weight fluctuations

*p ≤ 0.05 vs. T0; #p ≤ 0.05 vs. T14

Mice weight (gr)

Days Control group Group A Group B

T-3 30.5 ± 0.5 30.5 ± 0.5 30.5 ± 0.5
T0 28.95 ± 0.4 28.2 ± 0.8 28.6 ± 1.2
T3 29.6 ± 1.3 30.8 ± 1.5 30.5 ± 0.1
T8 31.5 ± 0.6* 29.3 ± 0.2 27.6 ± 1
T12 31.7 ± 0.8* 31 ± 0.9* 29.3 ± 0.2
T14 31.1 ± 1.4 32.9 ± 0.5* 31.6 ± 0.8*
T14 + 3 30.9 ± 0.5# 28.9 ± 0.1# 28.5 ± 0.1#
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Fig. 2  Analysis of serum osmo-
lality and serum  [Na+]. Blood 
was collected by transthoracic 
cardiocentesis at the time of 
sacrifice. a Serum osmolality 
(mOsm/kg) in group A and 
B and in the control group. b 
Serum  [Na+] (mEq/L) in group 
A and B and in the control 
group. Results are expressed as 
mean ± SD
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Table 2  Serum osmolality and 
 [Na+]

*p ≤ 0.05 vs. control group; #p ≤ 0.05 vs. T0

Serum  [Na+] (mEq/L) Serum osmolality (mOsm/kg)

Days Control group Group A Group B Control group Group A Group B

T-3 153.8 ± 1.2 153.8 ± 1.2 153.8 ± 1.2 322.4 ± 2.1 322.4 ± 2.1 322.4 ± 2.1
T0 155.7 ± 0.2 152.8 ± 2.1 158 ± 1.4 325.6 ± 4.9 320.3 ± 7.5 327.8 ± 6.7
T3 152.3 ± 0.9 139.6 ±  2# 134 ± 1.3*# 321.2 ± 1.6 292.3 ± 9.2# 298.3 ± 5.6#

T8 150.3 ± 0.9# 128 ± 4.2# 118.9 ± 1*# 324.7 ± 3.7 271.7 ± 9.6*# 264.8 ±  11#

T14 154 ± 0.6 123.4 ± 1.4# 111.7 ± 2.7*# 325.6 ± 2.5 264.2 ± 7.6# 251.3 ± 10.6#

T14 + 3 154.7 ± 0.9 136.6 ± 1 130.2 ± 0.4 324.2 ± 3.6 296.3 ± 5.3 279.8 ± 4
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Fig. 3  Analysis of urinary 
volume, urinary osmolality and 
urinary  [Na+]. Urinary volume 
(mL) (a), osmolality (mOsm/
kg) (b) and  [Na+] (mEq/L) (c) 
in group A and B and in the 
control group, measured by 
housing animals in metabolic 
cages for 24 h. Results are 
expressed as mean ± SD
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kit (RRID: AB_2920724, CSB-E06871m, Cusabio Tech-
nology LLC, Houston, TX, USA) and mouse luteinizing 
hormone ELISA kit (RRID: AB_2920725, CSB-E12770m, 
Cusabio Technology LLC, Houston, TX, USA), according 
to manufacturers’ instructions. Briefly, after blood samples’ 
centrifugation, 50 µl of serum was added to 50 µl of specific 
secondary antibody in 96-well ELISA plates and incubated 
at 37 °C for one hour. Then, 50–100 µl of HRP conjugate 
substrates were put into the well and incubated before adding 
stop solution. The optical density was measured through a 
microplate reader set to 450 nm.

Tissue preparation and morphological 
characterization

After blood drawing, tissues were rapidly explanted, partly 
fixed in 10% formalin (65-30001F—Bio-Optica Milano Spa, 
Milan, Italy) for at least 48 h and partly cryopreserved. For-
malin fixed tissues were washed in water for at least 24 h 
before being automatically embedded in paraffin through 
the ASP300S and HistoCore processor (Arcadia Inclusion 
System, Leica Biosystems, Milan, Italy). Tissues were then 
sectioned in 5–7 µm slices and put on Superfrost glasses 
(630-2835, Thermo Fisher Scientific, Waltham, Massachu-
setts, USA). In the present study, liver and testis tissues were 
analyzed. After de-paraffinization in xylene and dehydration 
in decreasing series of alcohols, 5–7 µm of liver and testis 
sections was stained with haematoxylin (Hematoxylin Gill 3, 
05-06015L—Bio-Optica Milano Spa, Italy) and eosin (Eosin 
Y alcoholic solution, 05-10,003/L—Bio-Optica Milano Spa, 
Italy). At the same time, liver sections were also stained with 
Sirius Red (Sirius red F3B—Sigma–Aldrich, St. Louis, Mis-
souri, USA) to highlight collagen fibers. Finally, all slides 
were dehydrated and mounted in a resinous medium (09-
00500, Eukitt—BioOptica Milano Spa, Italy). As for fro-
zen tissues, 5–7 µm sections from liver were stained with 
Oil Red-O to assess lipid content. Moreover, 10 µm sec-
tions from liver and testis were homogenized in 500 µl of 
RIPA lysis buffer (50 mM Tris–HCl pH 7.5, 120 mM NaCl, 
1 mM EDTA, 6 mM EGTA, 15 mM  Na4P2O7, 20 mM NaF, 
1% NP-40) supplemented with protease (11,697,498,001, 
Roche, Basel, Switzerland) and phosphatase inhibitor cock-
tail (#5870, Cell Signaling Technology, Danvers, Massa-
chusetts, USA) 100X, to obtain whole protein lysate for 
immunoblot analysis.

Western blot analysis

Equal amount of liver and testis proteins (10–15 ug) was 
separated on TGX Stain-Free FastCast Acrylamide Kit 10% 
(#1,610,183, Bio-Rad) by electrophoretic run. The sam-
ples were transferred onto PVFD membrane (Immobilion, 
Billerica, Millipore, MA, USA) and were subsequently Ta
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blocked with milk 5% for 1 h. Afterward, the membranes 
were incubated overnight at + 4 °C with primary antibod-
ies: rabbit polyclonal anti-HMOX1 (RRID:AB_880536, 
SAB2108676, 1:1000, Sigma–Aldrich, St. Louis, Missouri, 
USA), mouse monoclonal anti-PCNA (RRID:AB_2160343, 
#2586S, 1:2000, Cell Signaling Technology, Danvers, Mas-
sachusetts, USA), mouse monoclonal anti-PPARγ (RRID: 
AB_2920698, sc-390740, 1:1000, Santa Cruz Biotechnol-
ogy, Dallas, Texas, USA), mouse monoclonal anti-PPARα 
(RRID:AB_2885073, sc-398394, 1:1000, Santa Cruz 

Biotechnology, Dallas, Texas, USA), mouse monoclonal 
anti-CTGF (RRID:AB_10917205, sc-373936, 1:1000, Santa 
Cruz Biotechnology, Dallas, Texas, USA), mouse mono-
clonal anti-α-SMA (RRID:AB_476701, A2547, 1:1000, 
Sigma–Aldrich, St. Louis, Missouri, USA) and mouse mon-
oclonal anti-SREBP1 (RRID:AB_10843812, sc-365513, 
1:1000, Santa Cruz Biotechnology, Dallas, Texas, USA). 
The day after, membranes were washed twice in PBST and 
incubated with the specific secondary antibody (HRP-linked 
anti-mouse IgG, RRID:AB_330924, #7076 Cell Signaling 

Fig. 4  Analysis of liver from 
control mice and hyponatremic 
mice. A Representative images 
of liver sections. Steatosis is 
highlighted by hematoxylin–
eosin and Oil red O staining. In 
the scatter plot, densitometric 
analysis of positive pixels of 
lipid droplets is represented 
(**p ≤ 0.02 group A and B 
vs. control group; ##p ≤ 0.02, 
group A vs. B). Results are 
expressed as mean ± SD. B 
SREBP-1, PPAR-α and PPAR-γ 
expression were analyzed by 
Western blot. Representative 
experiments are shown on 
the left, the results of three 
different experiments for each 
protein on the right. Results 
are expressed as mean ± SD. 
(*p ≤ 0.05 vs. 154 mEq/L). C 
Liver fibrosis is highlighted 
by Sirius red staining. In the 
scatter plot, densitometric 
analysis of positive pixels of 
the fibrotic areas is represented 
(**p ≤ 0.02 group A and B 
vs. control group; ##p ≤ 0.02, 
group A vs. B). Results are 
expressed as mean ± SD. D 
Western Blot analysis of fibrosis 
markers in liver: α-SMA and 
CTGF proteins. Representative 
experiments are shown on the 
left, the results of three different 
experiments for each protein on 
the right. Results are expressed 
as mean ± SD. (*p ≤ 0.05 vs. 
154 mEq/L). For immunohisto-
chemical images and Western 
blot analysis,  [Na+] 154 mEq/L 
is from control group;  [Na+] 
140 and 122 mEq/L are 
from group A, T3 and T8, 
respectively;  [Na+] 117 and 
108 mEq/L are from group B, 
T8 and T14, respectively
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Technology, Danvers, Massachusetts, USA or HRP-linked 
anti-rabbit IgG, RRID:AB_2536530, G-21234 Invitrogen, 
Waltham, Massachusetts, USA) conjugated to horseradish 
peroxidase for 1 h at room temperature. After peroxidase 
substrate incubation (Immobilon Crescendo Western HRP 
substrate, WBLUR0500, Millipore, Burlington, Massachu-
setts, USA), chemiluminescent images were acquired with a 
BioRad ChemiDoc Imaging System (Biorad, Hercules, CA, 
USA) and analyzed with ImageJ Software Gel. Images were 
normalized versus the whole quantity of protein loaded in 
the gel visualized with stain free system.

Immunohistochemical analysis

After de-paraffinization and rehydration, formalin-fixed 
slices were boiled in Buffer Citrate (pH = 6) at 95 °C for 
10 min for antigenic unmasking of samples. To inhibit tis-
sue peroxidases, slices were placed in 6%  H2O2 solution for 
30 min at room temperature and then blocked in PBS–BSA 
(bovine serum albumin) 2% solution for 1 h. To reduce the 
binding of endogenous antibodies, slices then were incubated 
with ReadyProbes™ Mouse-on-Mouse IgG Blocking Solu-
tion (R37621, Invitrogen, Waltham, Massachusetts, USA) 
for 1 h at room temperature. Subsequently, the slices were 
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incubated overnight at 4 °C with the primary antibody rab-
bit polyclonal anti-HMOX1 (RRID: AB_880536, ab52947, 
1:100, Abcam, Cambridge, UK), rabbit polyclonal anti-F480 
(RRID:AB_2881149, 28,463-1-AP, 1:2000, Proteintech 
Europe, Manchester, UK), mouse monoclonal anti-α-SMA 
(RRID:AB_2223500, M0851, 1:100, Dako Agilent Tech-
nologies, Santa Clara, California, USA), mouse monoclonal 
anti-PCNA (#2586, 1:16,000, Cell Signaling Technology, 
Danvers, Massachusetts, USA), rabbit polyclonal anti-PTMA 
(RRID:AB_2679972, HPA047183, 1:50, Sigma–Aldrich, St. 
Louis, Missouri, USA). Anti-F480 and anti-α-SMA were 
kindly provided by Drs. Tommaso Mello and Simone Pol-
vani (Gastroenterology Unit, Department of Experimental 
and Clinical Biomedical Sciences “Mario Serio”, Univer-
sity of Florence, Italy). Finally, slices were incubated for 1 h 
with specific secondary antibody conjugated to horseradish 
peroxidase (HRP-linked anti-mouse IgG, #7076 or HRP-
linked anti-rabbit IgG, RRID:AB_2099233, #7074 Cell 
Signaling Technology, Danvers, Massachusetts, USA). AEC 
(3-amino-9-ethylcarbazole) Substrate Peroxidase (HRP) Kit 
(RRID:AB_2336076, SK-4200, Vector Laboratories, Burl-
ingame, CA, USA) and  SignalStain® DAB Substrate Kit 
(#8059, Cell Signaling Technology, Danvers, Massachusetts, 
USA) were used for antigen detection. In addition, slices 
were counter-stained with Gill’s haematoxylin, to visualized 
cells nuclei. The slices were mounted in resinous medium. 
For each one, five fields of view were randomly selected 
under an optical microscope and AEC/DAB positive cells 
were analyzed and quantified using imageJ software and 
GraphPad Prism 5.0 Software.

Statistical analysis

Each experiment was performed in triplicates unless other-
wise stated. Statistical analysis was performed with Graph-
Pad. Normality of data distribution was assessed with the 
Shapiro–Wilk normality test and differences in experimental 
results were evaluated by Student's t test or the Mann–Whit-
ney U test (Wilcoxon rank-sum test), for parametric and non-
parametric data, respectively. When comparing multiple 
groups, ANOVA followed by Dunn, highly significant differ-
ences post hoc test was used for parametric data, whereas the 
Kruskal–Wallis test followed by the Conover-Iman test was 
used for pairwise comparisons of non-parametric data. Val-
ues are expressed as the mean ± standard deviation (SD), and 
p ≤ 0.05 was considered to indicate statistical significance.

Results

Induction of hyponatremia in mice

Hyponatremia was induced by administering a liquid 
diet and subcutaneous infusion of dDAVP for 14 days 
(T0–T14), as described in detail in Materials and Meth-
ods. Two different rates of infusion of dDAVP were used 
(0.3 ng/h, n = 15, group A; and 0.5 ng/h, n = 15, group B). 
One group of mice (n = 15), which was fed with the same 
diet and was infused with isotonic saline solution, was 
used as the control. The experimental protocol is repre-
sented in Fig. 1a.

Weight fluctuations were observed during the experi-
mental procedure. A trend toward a weight reduction was 
observed in all groups of mice after the initiation of a 
liquid diet (from T-3 to T0). dDAVP administration was 
associated with a significant increase of weight in both 
group A (28.2 ± 0.8 g T0, vs. 32.9 ± 0.5 g, T14, p ≤ 0.05) 
and B (28.6 ± 1.2 g, T0, vs. 31.6 ± 0.8 g, T14, p ≤ 0.05). 
Conversely, no significant weight difference was observed 
in the control group at the end of isotonic saline (0.9% 
NaCl) infusion (28.95 ± 0.4 g, T0, vs. 31.1 ± 1.4 g, T14) 
(Fig. 1b, Table 1). After the discontinuation of dDAVP 
administration, a significant weight loss was observed 
(T14 + 3) and the final weight of animals in both group 
A and B was virtually identical to the initial weight (T0).

A progressive reduction of serum  [Na+] was observed 
in animals receiving dDAVP (152.8 ± 2.1 mEq/L, group 
A and 158 ± 1.4 mEq/L, group B, at T0), with a serum 
 [Na+] nadir of 123.4 ± 1.4 mEq/L and 111.7 ± 2.7 mEq/L 
in group A and B, respectively, at T14, p ≤ 0.05 vs. T0 
(Fig. 2a, Table 2). In the 3 days following dDAVP dis-
continuation, a serum  [Na+] increase was observed, as 
expected (136.6 ± 1  mEq/L and 130.2 ± 0.4  mEq/L in 
group A and B, respectively, at T14 + 3 vs. T14). Con-
versely, in control animals, no difference in serum  [Na+] 
was observed between T0 and T14 (155.7 ± 0.2 mEq/L vs. 
154 ± 0.6 mEq/L).

With regard to serum osmolality, a significant decrease 
was observed in group A and B after starting dDAVP infu-
sion, with a nadir at T14 (264.2 ± 7.6 mOsm/kg, group 
A, and 251.3 ± 10.6 mOsm/kg, group B, p ≤ 0.05 vs. T0) 
(Fig. 2b, Table 2). No variation was observed in control 
animals.

Urinary volume increased, yet not significantly, upon 
starting administration of a liquid diet in all groups but 
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was restrained once dDAVP infusion was initiated (group 
A and B), with a nadir at T3. A urinary volume increase 
was again observed at the end of dDAVP administration. 
(Fig. 3a, Table 3). Together with the marked reduction 
of urinary volume following the initiation of dDAVP 
infusion, a significant increase of urine osmolality was 
observed, with a peak at T3 (Fig. 3b, Table 3). In agree-
ment with urinary volume changes, urinary osmolality 
decreased at the end of dDAVP administration. Con-
versely, no significant change of urinary volume and 
osmolality was observed in the control group.

Finally, there was a trend to an increase of urinary 
 [Na+] in mice from group A and B, with a peak at T3 and 
a progressive decrease afterward. No variation in urinary 
 [Na+] was observed in the control group (Fig. 3c, Table 3).

Liver alterations

For the analysis of tissue alterations, mice sacrificed at dif-
ferent time points (T0, T3, T8, T14) from group A, group 
B, and control group were used. Evident signs of steato-
sis were observed in the liver of hyponatremic mice, as 
indicated by the presence of ballooning degeneration of 
hepatocytes in hematoxylin–eosin stained tissue samples 
and by the increased number of lipid droplets labeled by 
Oil Red-O staining. Noticeably, liver steatosis progres-
sively increased as serum  [Na+] dropped down, together 
with a progressive accumulation of lipid droplets, which 
was significantly different in group A and B vs. control 
group and in group A vs. group B (p ≤ 0.02). (Fig. 4a). 
Morphological changes were substantiated by the increased 
expression of the cleaved (i.e., mature) form of the Sterol 
Regulatory Element-Binding Protein 1 (SREBP-1), which 
plays a crucial role in the induction of liver lipogene-
sis (Fig. 4b). Similarly, the expression of the Peroxisome 

Proliferator-Activated Receptor alpha (PPAR-α) and, yet 
to a lesser extent, gamma (PPAR-γ), two major regulators 
of lipid metabolism in the liver, was increased in hypona-
tremic mice (Fig. 4b).

Together with the presence of steatosis, in mice with 
severe hyponatremia (group B), liver fibrosis was observed, 
as indicated by Sirius Red staining (p ≤ 0.02 vs. control 
group) (Fig. 4c). Accordingly, the expression of alpha-
Smooth Muscle Actin (α-SMA) and of Connective Tissue 
Growth Factor (CTGF), which are markers of myo-fibroblast 
formation, increased (Fig. 4d).

Finally, Heme Oxygenase 1 (HMOX 1) gene expres-
sion, which was virtually nil in the liver of normonatremic 
mice, significantly increased in hyponatremic animals, as 
shown by immunohistochemistry (p ≤ 0.02 vs. control 
group and p ≤ 0.05 between group A and B) and Western 
blot analysis (Fig. 5a, b). To identify the nature of cells 
expressing HMOX 1 in the liver of hyponatremic animals, 
serial liver sections were subjected to immunohistochem-
istry analysis for F480, a marker of activated Kupffer 
cells in the liver [25, 26], and αSMA, a marker of myo-
fibroblast formation, as previously mentioned, which is 
expressed by activated Hepatic Stellate Cells (HSC) [27]. 
Very low (F480) or no immuno-positivity (α-SMA) were 
found in the liver of normonatremic mice, whereas evident 
positive staining was observed for both markers in liver 
sections of hyponatrenic mice (Fig. 5c). The comparison 
between serial sections suggested that the cells expressing 
HMOX 1 in low  [Na+] correspond to activated Kupffer 
cells and HSC.

Testis alterations

Testicular weight was reduced in hyponatremic mice 
(p ≤ 0.02 vs. control group). Histological examination indi-
cated that the size of seminiferous tubules was reduced 
(p ≤ 0.05 group A and group B vs. control group and group 
A vs. group B). This was a consequence of the reduction 
of the thickness of the epithelium (p ≤ 0.002 group B vs. 
control group and p ≤ 0.05 group A vs. group B), whereas 
the lumen area appeared increased (p ≤ 0.02 group B vs. 
control group and p ≤ 0.05 group A vs. group B) (Fig. 6a, 
c). Furthermore, the expression of the Proliferating Cell 
Nuclear Antigen (PCNA) gene (Fig. 7a), which is involved 
in DNA replication, and of the Prothymosin alpha gene 
(PTMA) (Fig. 7b), which is involved in the maturation of 
spermatogonia into primary spermatocytes, was reduced in 
animals with hyponatremia (p ≤ 0.02 vs. control group and 
group A vs. group B). Hormonal evaluation revealed that 
hyponatremic mice had lower serum testosterone levels than 
normonatremic mice and higher serum FSH and LH levels 
(p ≤ 0.05 vs. control group) (Fig. 7c).

Fig. 5  Expression analysis of HMOX-1 in liver of control mice and 
hyponatremic mice. A Immunohistochemical analysis of HMOX-
1. In the scatter plot, densitometric analysis of positive pixels of 
HMOX-1 positive cells is represented (**p ≤ 0.02 group A and B 
vs. control group; #p ≤ 0.05, group A vs. B). Results are expressed 
as mean ± SD. B Western Blot analysis of HMOX-1 expression in 
liver. A representative experiment is shown on the left, the results 
of three different experiments on the right. Results are expressed as 
mean ± SD (*p ≤ 0.05 vs. 154  mEq/L). C Images related to serial 
immunohistochemical staining of F480, α-SMA and HMOX-1, indi-
cating that HMOX-1 protein is expressed by both Kupffer cells (red 
arrows) and HSCs (black arrows). In the scatter plot, densitometric 
analysis of positive pixels in mice with  [Na+] ≤ 140 mEq/L (hypona-
tremic mice) normalized vs. mice from control group is represented. 
Results are expressed as mean ± SD (*p ≤ 0.05). For immunohisto-
chemical images and Western blot analysis,  [Na+] 154 mEq/L is from 
control group;  [Na+] 140 and 122 mEq/L are from group A, T3 and 
T8, respectively;  [Na+] 117 and 108 mEq/L are from group B, T8 and 
T14, respectively
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Discussion

Clinical data have shown that the effects of hyponatremia 
extend beyond neurological alterations and a rat model of 
hyponatremia has confirmed for instance that this condi-
tion is associated with a marked reduction of bone density 
[17]. Further analyses performed in this model indicated 
that other alterations occur in hyponatremic animals (e.g., 
hypogonadism, sarcopenia and cardiomyopathy).

We have developed a model of hyponatremia secondary 
to SIAD in male mice by administering a liquid diet, with 
the addition of continuous infusion of dDAVP via osmotic 
mini-pumps. Weight fluctuations were observed in animals 
during the two weeks in which dDAVP was administered at 
two different rates. Overall, the final weight was significantly 
increased at the end of this period both in mice that received 
0.3 ng/h or 0.5 ng/h dDAVP. The final increase was around 
10–15%, in agreement with what had been observed in other 
mouse or rat models of SIAD, in which similar infusion rates 
of dDAVP had been used [23, 28]. The final weight gain 
very likely indicates a condition of water retention, consid-
ering also that a significant weigh reduction was observed 
after the removal of dDAVP mini-pumps.

Accordingly, serum  [Na+] progressively decreased in 
mice that received dDAVP, with lowest mean concentra-
tions of 123.4 mEq/L and 111.7 mEq/L in animals receiv-
ing an infusion rate of 0.3 ng/h and 0.5 ng/h, respectively. 
Only in rats lower serum  [Na+] had been obtained after two 
weeks of dDAVP infusion (106 mEq/L), yet using a much 
higher dDAVP infusion rate (5 ng/ml) [28]. Serum  [Na+] 
reduction was paralleled by a decrease of serum osmolality. 
The discontinuation of dDAVP administration led to a rapid 
increase of both serum  [Na+] and osmolality.

As per urine parameters, a marked volume reduction 
occurred soon after the insertion of dDAVP mini-pumps, 
followed by a recovery at the end of administration. Accord-
ingly, a significant increase of urine osmolality was observed 
after the initiation of dDAVP infusion, with a peak after 
3 days, followed by a progressive reduction, with a nadir 
after the discontinuation of the infusion. A similar early 

increase of urine osmolality, followed by a progressive 
decrease, had been reported previously in the rat model 
of SIAD [28]. With regard to sodium excretion, a marked 
increase was observed in the first 3 days of dDAVP infu-
sion, followed by a subsequent reduction. No differences in 
urine parameters were observed in the control group. The 
aforementioned findings are in agreement with a condition 
of hyponatremia secondary to SIAD.

Upon sacrifice, tissues were excised at different time 
points in control animals and in animals receiving dDAVP. 
In the present study, findings regarding liver and testis alter-
ations associated with hyponatremia have been reported.

We first focused on the liver, because signs of steatosis 
were already evident at an initial macroscopic examination. 
Noteworthy, no data regarding liver alterations in animal 
models of hyponatremia had been previously published. 
On clinical grounds, it is well known that hyponatremia is 
a negative prognostic factor in patients with cirrhosis [29, 
30]. In tissue sections, lipid droplets’ deposition was present 
starting from a serum  [Na+] of 140 mEq/L, corresponding 
to a condition of mild hyponatremia in this animal model. 
Interestingly, lipid accumulation progressively increased as 
serum  [Na+] dropped down. Together with these morpholog-
ical changes, we observed that the expression of SREBP-1 
increased in hyponatremic mice. SREBP-1, together with 
SREBP-2, modulates lipogenesis. In particular, SREBP-1 
induces the expression of the hydroxy-methyl-glutaryl-CoA 
synthase enzyme, which is the rate-limiting enzyme in the 
biosynthesis of cholesterol [31]. Accordingly, PPAR-α and 
PPAR-γ expression were increased in hyponatremic mice. 
PPARs are ligand inducible transcription factors under the 
class of nuclear receptors, which are involved in different 
physiological functions, including lipid metabolism. Differ-
ent PPAR isoforms (i.e., α, γ, ẟ) have been associated to the 
pathogenesis of liver steatosis in humans [32]. Non-alco-
holic fatty liver disease (NAFLD) represents the first step of 
a broad spectrum of alterations that lead to the more severe 
forms of non-alcoholic steatohepatitis (NASH), fibrosis, and 
ultimately cirrhosis, liver failure and hepatocarcinoma [33]. 
Interestingly, in hyponatremic mice liver fibrosis was also 
observed, as indicated by Sirius red staining. In addition, 
the expression of α-SMA and of CTGF protein, which are 
markers of myofibroblast formation, eventually leading to 
liver fibrosis, appeared increased [34, 35].

The etio-pathogenesis of liver steatosis is multifacto-
rial and still incompletely understood. Among the factors 
that have been identified as effective triggers of steatosis, 
a genetic predisposition, environmental factors, metabolic 
alterations, inflammation and molecular mechanisms have 
been described [33]. One of the key molecular factors that 
have been related to liver steatosis is oxidative stress. Note-
worthy, antioxidants, such as flavonoids, curcumin, vitamin 

Fig. 6  Weight and histology of testes from control mice and hypona-
tremic mice. A Testis weight (gr) of mice with  [Na+] ≤ 140  mEq/L 
(hyponatremic mice) normalized vs. mice from control group. Results 
are expressed as mean ± SD (**p ≤ 0.02). B Hematoxylin–eosin stain-
ing of testis sections. Tubule diameter is represented by dotted lines, 
lumen area by circles and epithelial height by continuous lines.  [Na+] 
154 mEq/L is from control group;  [Na+] 140 and 122 mEq/L are from 
group A, T3 and T8, respectively;  [Na+] 117 and 108  mEq/L are 
from group B, T8 and T14, respectively. C Measurements are repre-
sented by scatter plots (*p ≤ 0.05 group A and B vs. control group; 
**p ≤ 0.02 group A and B vs control group; ***p ≤ 0.002 group 
A and B vs. control group; #p ≤ 0.05, group A vs. B). Results are 
expressed as mean ± SD
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E and resveratrol, have been proposed for the treatment of 
NAFLD [36]. Interestingly, we and others have previously 
observed oxidative stress induction in cells exposed to low 
 [Na+] [18, 37–40]. Noteworthy, high levels of expression 
of HMOX 1, an inducible oxidative stress protein, were 
detected in the liver of hyponatremic mice. Further evalua-
tion, by comparing serial liver sections and using cell spe-
cific markers, indicated that the cells expressing HMOX 1 
were activated Kupffer cells and HSC. In the liver, Kupffer 
cells, which belong to the family of macrophages, are local-
ized within the lumen of liver sinusoids. When activated, 
they produce inflammatory cytokines, TNF-alpha, oxygen 
radicals, and proteases, which may ultimately lead to liver 
injury [41]. HSC, also known as Ito cells, are quiescent peri-
sinusoidal cells that, once activated, acquire proliferative and 
contractile activity, and contribute to extracellular matrix 
production. As such, activated HSC represent the major cell 
type involved in liver fibrosis [42].

Overall, these data suggest for the first time that hypona-
tremia may be another factor contributing to the onset of 
liver steatofibrosis. It is worth mentioning that sodium glu-
cose cotransporter 2 (SGLT-2) inhibitors, a recent class of 
antidiabetic medications, have been shown to effectively 
attenuate inflammation, oxidative stress and fibro-gene-
sis and clinical trials involving the use of these drugs in 
NAFLD are ongoing [43, 44]. Noticeably, SGLT-2 inhibi-
tors have been found to correct serum  [Na+] in patients with 
hyponatremia secondary to SIAD, by inducing osmotic diu-
resis [45, 46]. These unpredicted effects of SGLT-2 inhibi-
tors appear of particular interest, also in view of the fact that 
liver failure is a very well-known etiology of hyponatremia 
due to fluid retention [1].

In this study, we also analyzed the testes of hyponatremic 
mice. Testicular alterations had been previously reported in 
a rat model of hyponatremia secondary to SIAD [20]. The 
authors found that the weight of testes in hyponatremic mice 
was significantly reduced compared to control mice. At his-
tological examination, impaired spermatogenesis, tubular 

atrophy and fibrous degeneration were observed in the testes 
of animals with low serum  [Na+]. From a hormonal point 
of view, after 10 weeks of hyponatremia, rats developed a 
moderate reduction of serum testosterone, with a significant 
increase of FSH and LH [20]. Hence, we were interested to 
verify whether similar alterations could be confirmed in our 
mouse model of hyponatremia. Interestingly, our data were 
completely in agreement with the data observed in rats. The 
weight of testes was significantly reduced in hyponatremic 
mice and tubular atrophy was observed. In particular, the 
thickness of the seminiferous epithelium was decreased, 
whereas the lumen area appeared increased. The expression 
of PCNA, which is a nuclear protein involved in DNA repli-
cation, elongation and repair [47], was reduced in the testes 
of mice with hyponatremia. PCNA also controls cell cycle 
progression through the  G1/S boundary by direct interaction 
with cyclin/cdk [48]. In the testis, PCNA is mainly expressed 
in the nuclei of mitotic active spermatogonia and of pri-
mary spermatocytes [49]. Reduced expression of PCNA 
has been associated to germinal arrest [50]. Furthermore, 
in our model, hyponatremia was associated with a reduced 
expression of PTMA, which is a small peptide expressed in 
pre- and post-meiotic phases of spermatogenesis. Its pres-
ence in the heads of spermatids and epididymal spermato-
zoa, associated with the acrosome system, supports a role 
of PTMA also in mature germ cells function [51]. It is with 
mentioning that, although Leydig cell alterations have been 
reported in the testes of  Foxn1nu/nu mice, no germ cell abnor-
malities have been observed [52]. In addition, low-level tes-
tosterones have been found in  Foxn1nu/nu mice [53]. In our 
model, we detected in normonatremic mice similar testos-
terone levels to those previously reported in  Foxn1nu/nu mice 
[52]. However, lower levels of testosterone were observed in 
hyponatremic mice, together with higher levels of FSH and 
LH. These findings are in agreement with previous observa-
tions in a rat model of hyponatremia [20]. Admittedly, our 
data confirm that hyponatremia is associated with atrophy 
of the seminiferous epithelium and primary hypogonadism. 
Noteworthy, we described here for the first time that hypona-
tremia is associated with the onset of liver steatofibrosis, a 
potential precursor of liver cirrhosis and cancer [33]. These 
data further extend the variety of previously unpredicted 
extra-neurological alterations associated with hyponatremia. 
Of course, these observations need to be confirmed in clini-
cal practice. If so, clinicians would have additional reasons 
to thoroughly evaluate patients with hyponatremia and to 
promptly correct this electrolyte alteration. Furthermore, 
additional analyses will be performed in upcoming studies 
addressing other tissues obtained from hyponatremic mice.
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Fig. 7  Immunohistochemical and hormonal assessment analysis of 
testes from control mice and hyponatremic mice. A Immunohisto-
chemical analysis of PCNA. In the scatter plot, densitometric analysis 
of positive pixels of PCNA positive cells is represented (**p ≤ 0.02 
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