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Abstract: This study reports on a phase-space analysis of a mathematical model of tumor growth with
the interaction between virus and immune response. In this study, a mathematical determination was
attempted to demonstrate the relationship between uninfected cells, infected cells, effector immune
cells, and free viruses using a dynamic model. We revealed the stability analysis of the system
and the Lyapunov stability of the equilibrium points. Moreover, all endemic equilibrium point
models are derived. We investigated the stability behavior and the range of attraction sets of the
nonlinear systems concerning our model. Furthermore, a global stability analysis is proved either in
the construction of a Lyapunov function showing the validity of the concerned disease-free equilibria
or in endemic equilibria discussed by the model. Finally, a simulated solution is achieved and the
relationship between cancer cells and other cells is drawn.

Keywords: mathematical modeling; virus; immune system cells; tumor growth; stability of dynamical
systems

1. Introduction

The nonlinearity approach has been shown to be powerful in revealing unexpected dy-
namics in cancer growth processes, manifested by different responses of the dynamics to dif-
ferent concentrations of immune cells at different stages of cancer growth
development [1–12]. Research findings have highlighted the complex nature of the pro-
cesses and their interaction behind the cancer growth [13]. Taking into account all these
complex processes behind cancer growth, the introduction of nonlinear mathematical mod-
els can balance and minimize the inconsistencies among the different already proposed
mathematical models that are related to the influence of anticancer factors on cancer growth.
The computation of mathematical non-spatial models of cancer tumor growth in the broad
context of studies of tumor-immune interactions is one of the intensively developing areas
in modern mathematical biology [1–9].

Currently, one of the most challenging research issue is represented by the formaliza-
tion of the interactions among uninfected cells, free viruses, and immune responses. In this
context, the dynamic models could still play a crucial role [14–17]. One of these models, a
three-dimensional dynamic model of viral infection, was proposed by Nowak et al. [15–17].
The aforementioned model is capable of generalizing numerical methods of autonomous
dynamical systems. Moreover, Giesl [18] characterized a Lyapunov function as a solution
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for a suitable linear first-order partial differential equation and approximated it by using
radial basis functions.

Furthermore, Yang and Wang [19] proposed a mathematical model which, employing
non-constant transmission rates, is able to take into account both the environmental and
epidemiological conditions, reflecting the impact of endemic disease. They have acknowl-
edged the challenge of designing mathematical models of virus dynamics description.
As a matter of fact, several models have been produced, leading sometimes to different
estimates. They have devised a deterministic compartmental (SEIR) model. Moreover,
endemic outbreaks (e.g., COVID-pandemic [20,21]) will continue to grow and peak in time,
due to practically implemented public health interventions. Moreover, recent discoveries
showed that the best solution is predominantly permanent and rigid self-isolation. How-
ever, the necessity of new interventions cannot be neglected. In this framework, we propose
a deterministic compartmental model based on SEIR model [22] to describe the dynamics
of the virus contribution to the spectrum of tumor-immune interaction.

Tang et al. provided a detailed analysis of the SEIR model and showed its applications
by using publicly disclosed data. Among other findings, analytical and numerical results
indicate that virus infection will remain endemic and require long-term disease preven-
tion and intervention programs. Then, a new spatial approach (SBDiEM) for infectious
dynamic prediction, and mathematical epidemiology models have been shown helpful
in contrasting epidemic outbreaks [23]. Moreover, the model can be adjusted to identify
past outbreaks and viruses. Methodologies can have important implications for national
health systems, international stakeholders, and policymakers with the aim of developing
epidemic control, vaccination, and prevention strategies. The model can be embedded in a
global AI surveillance system to contrast outbreaks. Bekirosa et al. [22] investigated the
transmission dynamics of viruses and a separated mathematical model between humans
in different regions. It showed that protecting vulnerable individuals, preventing contact
with infected people, and controlling incentives to join quarantine centers provide the most
cost-effective strategy to control the disease. In addition, the most appropriate campaigns
should be carried out by preventing people from moving from one region to another,
encouraging them to attend quarantine centers, conducting awareness campaigns aimed at
being affected by viruses, safety campaigns and health measures. Khajji et al. presented
the implementation of a global network model with the local epidemic SEIR model to
measure the epidemic dynamics of COVID-19 in China and the USA [24]. Researchers
demonstrated how mathematical modeling can help in estimating the outbreak dynamics
and provide decision guidelines for successful outbreak control. The model can become
a valuable tool for evaluating the potential of vaccination and quantifying the effect of
relaxing political measures including total lockdown, shelter-in-place, and travel restric-
tions for low-risk subgroups of the population or for the population as a whole [25]. It
is worthwhile noting that the mathematical models identified by the World Health Orga-
nization (WHO) can play an important role in providing evidence-based information to
healthcare decision-makers and policymakers. Moreover, the modeling approach can assist
in understanding the spread of viruses in the population. As a matter of fact, research
findings also evidenced that several viruses are linked with cancer in humans [26]. In
this work, we have created a mathematical model of virus transmission based on the SEIR
model. Furthermore, our study includes mathematical models of the relationship between
cancer cells and viruses. In the context of the therapy, some numerical cases, by Pham
et al., demonstrated that a dynamic, time-delayed SEIR model can be used to monitor the
effects of chemotherapy drug therapy and the growth rate of tumor virus-infected cells and
autoimmune disease [27]. The results of modeling suggest determining the progression of
tumor cells in the human body based on partial differential equations under the influence
of chemotherapy, autoimmune diseases and time delays. Hence, the model can also be
used to predict when the free state of tumor viruses will be reached as time progresses,
and to predict the state of healthy cells in the body as time progresses. In addition, Gao et
al. proved the existence and uniqueness of the solution, the system stability, along with
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the local stability and global stability of infection-free homeostasis. Moreover, they also
examined the uniform persistence and local stability of the infected state and demonstrated,
through the Creation of the Lyapunov function, the global stability of the infected state.
Finally, the theoretical results were verified by numerical simulation [28]. Qian Lia et al.
showed a new mathematical modeling framework based on the latency of differential
equation to study tumor virotherapy with antitumor immunity mediated by oncolytic
viruses involving complex tumor-virus-immune system interactions [29]. Baleanu et al.,
provided a generalized fractional model to analyze, control and synchronize the associ-
ated hyper-chaotic behaviors by means of a variety of approaches. More specifically, the
relevant nonlinear mathematical model was presented in the form of both integer and
fractional degree differential equations [30,31]. Yasmin implemented an epidemic model
to conceptualize the phenomenon of the transmission of pneumococcal pneumonia by
vaccination and treatment factors [32]. Given the literature of nonlinear dynamic systems,
here, we propose a further mathematical model concerning to the initial value problem for
the following nonlinear systems. Modeling can help better understand a virus spreading in
the population. Our study also includes mathematical models of the relationship between
cancer cells and viruses.

İ(t) = β
T(t)I(t)
T(t) + k1

+ β1 I(t)− q13E(t)I(t), (1)

Ṫ = r2T
(

1− k−1
2 T

)
+ β2V(t)T − q23ET, (2)

Ė(t) =
d1 I(t)E(t)
I(t) + k3

− q33 I(t)E(t)− d2E(t), (3)

V̇(t) = dnE(t)− cV(t), , (4)

I(t0) = I0, T(t0) = T0, E(t0) = E0,

V(t0) = V0, t0 ∈ [0, t0),

where I = I(t), T = T(t), E = E(t) and V = V(t) denote the concentration of infected
cells, cancer cells, effector immune cells and free viruses at time t ∈ [0, t0), respectively.
In the first equation, the interaction dynamic of infected and cancer cells are given by the
rational function which depends on the virus concentration with positive constants β and
k1. They are respectively maximal I cells activation rate by contact with tumor cells T and
half saturation constant. The constants here, β1 > 0, q13 > 0 are growth and decrease rates,
rate of the infected cells due to viruses and death rate due to immune effect, respectively.
The first term of the second equation corresponds to the logistic growth of tumor cells in the
absence of any effect from other cells populations with the growth rate of r2 and maximum
carrying capacity k2. Here, competition between tumor cells T(t) with virus and effector
immune cells which results in the growth and loss of the tumor cells population is given
by terms β2V(t)T, q23ET; here β2 (rate of T produced by V) and q23 (killing rate of T cells
by E cells) are positive numbers. Viruses can cause cancer by direct and indirect modes of
action(see, e.g., [33]). They studied the local and global dynamics model of cancer tumor
growth [34]. Next, the parameter q33 refers to the killing rate of the infected cells rate by the
immune cells E(t). Moreover, the dynamic of effector immune cells (recognition process)
is given by the rational function which depends on the virus concentration with positive
constants k3 and d1. Where k3 and d1 are respectively half-saturation constant and maximal
E(t) cells activation rate by contact with I(t) cells. The effector immune cells die naturally
at the rate d2. The infected cells produce new viruses, V(t), at the rate dn during their life,
on average having the length 1

d , where n > 0 is some integer number. The constant c > 0 is
the rate at which the viruses are cleared, and the average lifetime of a free virus is 1

c .
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2. Boundedness and Dissipativity

In this section, we shall show that the model is bounded with negative divergence,
positively invariant with respect to a region in R4

+ and dissipative. As we are interested in
biologically relevant solutions of the system, the next results show that the positive octant
is invariant and that the upper limits of trajectories depend on the parameters.

We put
I(t) = x1(t), T(t) = x2(t), E(t) = x3(t), V(t) = x4(t).

Then the problem (1) and (2) is reduced the following form:

ẋ1(t) = f1(x), ẋ2(t) = f2(x), ẋ3(t) = f3(x), ẋ4(t) = f4(x), (5)

x1(t0) = x10, x2(t0) = x20, x3(t0) = x30, (6)

x4(t0) = x40, t0 ∈ [0, T),

where,
x = x(t) = (x1, x2, x3, x4), xk = xk(t), k = 1, 2, 3, 4, (7)

f1(x) = β
x2(t)x1(t)
x2(t) + k1

+ β1 x1(t)− q13x3(t)x1(t),

f2(x) = r2x2

(
1− k−1

2 x2

)
+ β2x4(t)x2 − q23x3x2,

f3(x) =
d1x1(t)x3(t)

x1(t) + k3
− q33x1(t)x3(t)− d2x3(t),

f4(x) = dnx3(t)− cx4(t).

Let
R4
+ =

{
x = (x1, x2, x3, x4) ∈ R4, xk > 0

}
.

Condition 1. Let d1 ≤ k3q33, d2 > r2 and β ≤ k1k−1
2 . Consider the problem (5)–(6) with t0 = 0.

Theorem 1. Assume that the Condition 1 holds. Then the system (6) is with the negative diver-
gence and is dissipative.

Proof. Indeed, from (6) we have

∂ f1

∂x1
+

∂ f2

∂x2
+

∂ f3

∂x3
+

∂ f4

∂x4
=

βx2

x2 + k1
+ β1 − q13x3+

r2 − 2r2

(
k−1

2 x2

)
+ β2x4 − q23x3 +

d1x1

x1 + k3
− q33x1 − d2 − c

=

[
d1

x1 + k3
− q33

]
x1 +

[
β

x2 + k1
− 2r2k−1

2

]
x2

−(q13 + q23)x3 + β2x4 + r2 + β1 − c− d2.

Hence, by Condition 1 the system (5) is dissipative on the domain

Ω =
{

x ∈ R4
+: (q13 + q23)x3 + (β1 + β2)x4 ≤ d2 − r2}.
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3. The Local Stability of Equilibria Points

In this section, we will derive the stability properties of equilibria points of the system
(5). Let

Br(x̄) =
{

x ∈ R4, ‖x− x̄‖R3 < r
}

.

Condition 2. Let the following assumptions hold:

(k3q33 + d2 − d1)
2 ≥ 4q33k3d2. (8)

Theorem 2. Assume that the Condition 2 is satisfied. The points P0 = P0(0, 0, 0, 0), Pi =

Pi

(
x1i, 0, β1

q13
, β1dn

cq13

)
, i = 1, 2 and P3 = P3(0, k2r2,0, 0) are the equilibria points of the system (5)

in R4
+.

Proof. In view of (5) and (7), equilibria points of (5) are the solutions of the following
system [

βx2

x2 + k1
+ β1 − q13x3

]
x1 = 0, (9)[

r2

(
1− k−1

2 x2

)
+ β2x4 − q23x3

]
x2 = 0,[

d1x1

x1 + k3
− q33x1 − d2

]
x3 = 0, dnx3 − cx4 = 0.

From (9) it is clear to see that the point P0 = (0, 0, 0, 0) is equilibria point of (5).
Moreover, the other solutions of (9) can be derived from the following equations

βx2

x2 + k1
+ β1 − q13x3 = 0, r2

(
1− k−1

2 x2

)
+ β2x4 − q23x3 = 0,

d1x1

x1 + k3
− q33x1 − d2 = 0 , dnx3 − cx4 = 0. (10)

Let x1 6= 0, x2 = 0. From the first and forth equations of (10), we get

x3 =
1

q13

[
βx2

x2 + k1
+ β1

]
=

β1

q13
, x4 =

β1dn
cq13

. (11)

Moreover from the third equation for x3 6= 0 we have

ν1x2
1 + ν2x1 + ν3 = 0, (12)

where
ν1 = q33, ν2 = k3q33 + d2 − d1, ν3 = k3d2.

By Condition 2,
ν2

2 − 4ν1ν3 ≥ 0.

Thus by solving (12), we have

x11 =
−ν2 +

√
ν2

2 − 4ν1ν3

2ν1
, x12 =

−ν2 −
√

ν2
2 − 4ν1ν3

2ν1
. (13)

Let now x1 = x3 = x4 = 0 and x2 6= 0. Then from the second equation (9), we obtain
x2 = k2r2, i.e., we get that the point E4(0, k2r2,0, 0) is also a stable point for the system (5).

Hence, from (11), we obtain that the points Pi

(
x1i, 0, β1

q13
, β1dn

cq13

)
, i = 1, 2 are stabile

points for (5).
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Remark 1. Note that, these points are biologically feasible equilibria, when all coordinates are
nonnegative, i.e.,

−ν2 ±
√

ν2
2 − 4ν1ν3

2ν1
≥ 0.

Consider now, the linearized matrix of (5), i.e., the Jacobian matrix according to system (5):

D f
Dx

=


∂ f1
∂x1

∂ f1
∂x2

∂ f1
∂x3

∂ f1
∂x4

∂ f2
∂x1

∂ f2
∂x2

∂ f2
∂x3

∂ f2
∂x4

∂ f3
∂x1

∂ f3
∂x2

∂ f3
∂x3

∂ f3
∂x4

∂ f4
∂x1

∂ f4
∂x2

∂ f4
∂x3

∂ f4
∂x4

 =


d11(x) d12(x) d13(x) 0

0 d22(x) d23(x) 0
d31(x) 0 d33(x) 0

0 dn 0 −c

,

where
d11(x) =

βx2

x2 + k1
+ β1 − q13x3, d12(x) =

βkx1

(x2 + k1)
2 ,

d13(x) = − βkq13x1

(x2 + k1)
2 , d14(x) =

ββ1kx1

(x2 + k1)
2 , (14)

d22(x) = r2

(
1− 2k−1

2 x2

)
+ β2x4 − q23x3, d23(x) = −q23x2,

d31(x) =

[
d1k3

(x1 + k3)
2 − q33

]
x3, d33(x) =

d1x1

x1 + k3
− q33x1 − d2.

Then, the Jacobian matrix of (5) at the point P0 is

A0 =
D f
Dx

(0) =


0 0 0 0
0 r2 0 0
0 0 −d3 0
0 dn 0 −c

. (15)

Note that the linearized matrices of (5) according to other stability points Pi are the
following:

Ai =


d11(Pi) d12(Pi) d13(Pi) 0

0 d22(Pi) d23(Pi) 0
d31(Pi) 0 d33(Pi) 0

0 dn 0 −c

, i = 1, 2. (16)

The linearized matrices of (5) according to other stability points P3(0, k2r2,0, 0) is the
following

A3 =


d11(P3) d12(P3) d13(P3) 0

0 d22(P3) d23(P3) 0
d31(P3) 0 d33(P3) 0

0 dn 0 −c

, (17)

where
d11 =

βk2r2

k2r2 + k1
+ β1, d12 = 0,

d13 = 0, d14 = 0, d22 = r2

(
1− 2k−1

2 k2r2

)
, (18)

d23 = −q23k2r2, d31 = 0, d33 = −d2.

Condition 3. Assume the following assumptions are satisfied

d22 < 0, (d11 + d33) ≤ 0, (d11 − d33)
2 ≥ 4d31d2

12, d3 ≥ k3q32,
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(d11 + d33)±
√
(d11 − d33)

2 − 4d31d2
12 ≤ 0.

Let djk = djk(Pi) for i = 1, 2. We show here, the following results.

Theorem 3. The point E0 is a saddle point for the system of (5).

Proof. Indeed, it is clear that λ1 = 0, λ2 = r2, λ3 = −d3 and λ4 = −c are the eigenvalues
of the matrix A0. Since r2, d3, c are positive, all eigenvalues of A0 are non positive, i.e., A0
is a saddle point for the linearized system of (5).

Theorem 4. Let Conditions 2 and 3 hold. Then Pi are the locally stable points for the system of (5).
Moreover, Pi are saddle points, when d22 ≥ 0, (d11 + d33) ≥ 0 and d11d33 + d31d2

12 ≥ 0.

Proof. The eigenvalues of the matrices Ai can found as the solutions of the following
equations

Ai − λI =


d11 − λ d12 d13 0

0 d22 − λ d23 0
d31 0 d33 − λ 0
0 dn 0 −c− λ



= (c + λ)

 d11 − λ d12 d13
0 d22 − λ d12

d31 0 d33 − λ

 (19)

= (c + λ)

[
3

∏
k=1

[(dkk − λ)] + d31d2
12 − d13d31(d22 − λ)

]
= 0.

Hence λ1 = −c is a eigenvalue of Ai, and other eigenvalues are as the solution of the
equation

3

∏
k=1

[(dkk − λ)] + d31d2
12 − d13d31(d22 − λ) = 0. (20)

Let λ2 = d22. Then the roots λ3 and λ4 of (20) would be solution of the following
equation

(d11 − λ)(d33 − λ) + d31d2
12

= λ2 − (d11 + d33)λ + d11d33 + d31d2
12 = 0.

The roots of the above equation are

λ3, λ4 =
(d11 + d33)±

√
(d11 + d33)

2 − 4
(
d11d33 + d31d2

12
)

2

=
(d11 + d33)±

√
(d11 − d33)

2 − 4d31d2
12

2
,

when
(d11 − d33)

2 ≥ 4d31d2
12.

Moreover, for d22 ≥ 0, (d11 + d33) ≥ 0 and d11d33 + d31d2
12 ≥ 0 we get that the matrices

Ai have different sign of eigenvalues, i.e., in this case Pi are saddle points.

Theorem 5. Let the Conditions 2 holds. The point P3 is a saddle point.
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Proof. The eigenvalues of the matrices A3 can found as the solutions of the following
equations

A3 − λI =


d11 − λ d12 d13 0

0 d22 − λ d23 0
d31 0 d33 − λ 0
0 dn 0 −c− λ

, (21)

where dij are defined by (18). Hence

A3 − λI =


d11 − λ 0 0 0

0 d22 − λ d23 0
0 0 d33 − λ 0
0 dn 0 −c− λ



= (d11 − λ)

 d22 − λ d23 0
0 d33 − λ 0

dn 0 −c− λ

 (22)

= −(c + λ)(d11 − λ)(d22 − λ)(d33 − λ) = 0.

Hence, λ0 = −c, λ1 = d11, λ2 = d22 and λ3 = d33 are eigenvalues of A3. Since
d11 = βk2r2

k2r2+k1
+ β1 is positive, d22 = r2

(
1− 2k−1

2 k2r2

)
is negative when 2k−1

2 k2r2 > 1, and
d33 = −d2 is negative, we obtain that P3 is a saddle point.

4. Lyapunov Stability of Equilibria Points

In this section we show the following results:

Theorem 6. The system (5) is not stable at the equilibria point P0(0) in the Lyapunov sense.

Proof. Indeed, since the one of eigenvalue of the linearized matrix with respect to equilibria
point P0(0) is positive, we get that the system (5) is not stable at the equilibria point
P0(0).

Now, we consider the equilibria points Pi and prove the following result:

Theorem 7. Assume that the Conditions 2 and 3 are satisfied. Then the system (5) is asymptotically
stable at the equilibria points Pi in the sense of Lyapunov.

Proof. Let Ai be the linearized matrix with respect to equilibria point Pi defined by (15),
i.e.,

Ai =


d11(Pi) d12(Pi) d13(Pi) 0

0 d22(Pi) d23(Pi) 0
d31(Pi) 0 d33(Pi) 0

0 dn 0 −c

,

where dkj = dkj(Pi) are defined by (19).
Consider the Lyapunov equation

Bi Ai + AT
i Bi = −I, (23)

where

Bi =


b11 b12 b13 b14
b21 b22 b23 b24
b31 b32 b33 b34
b41 b42 b43 b44

, bkj = bkj(i), bkj = bjk, (24)
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It is clear that

Bi Ai =


b11 b12 b13 b14
b21 b22 b23 b24
b31 b32 b33 b34
b41 b42 b43 b44




d11 d12 d13 0
0 d22 d23 0

d31 0 d33 0
0 d1n 0 −c

 =
[
ckj

]
,

AT
i Bi =


d11 0 d31 0
d12 d22 0 d1n
d13 d23 d33 0
0 0 0 −c

 =


b11 b12 b13 b14
b21 b22 b23 b24
b31 b32 b33 b34
b41 b42 b43 b44

 =
[
lkj

]
,

where
c11 = d11b11 + d31b13, c12 = d12b11 + d22b12 + dnb14,

c13 = d13b11 + d23b12 + d33b13, c14 = −cb14,

c21 = d11b12 + d31b23, c22 = d12b12 + d22b22 + dnb24,

c23 = d13b12 + d23b22 + d33b23, c24 = −cb24,

c31 = d11b13 + d31b33, c32 = d12b13 + d22b23 + dnb34,

c33 = d13b13 + d23b23 + d33b33, c34 = −cb34,

c41 = d11b14 + d31b34, c42 = d12b14 + d22b24 + dnb44,

c43 = d13b14 + d23b24 + d33b34, c44 = −cb44,

l11 = d11b11 + d31b31, l12 = d11b12 + d31b32, l13 = d11b13 + d31b33,

l14 = d11b14 + d31b34, l21 = d12b11 + d22b21 + dnb14,

l22 = d12b12 + d22b22 + dnb42, l23 = d12b13 + d22b23 + dnb43,

l24 = d12b14 + d22b24 + dnb44, l31 = d13b11 + d23b21 + d33b31,

l32 = d13b12 + d23b22 + d33b32, l33 = d13b13 + d23b23 + d33b33,

l34 = d13b14 + d23b24 + d33b34, l41 = −cb41, l42 = −cb42,

l43 = −cb43, l44 = −cb44.

Since bkj = bjk the matrix equation (24) reduced to the following system of equations
with respect to bkj

ckj + dkj =

{
−1 for k = j
0 for k 6= j

}
.

i.e., we obtain the system of algebraic equations with respect to b11, b12, b13, b14, b22, b23, b24,
b33 and b44;

d11b11 + d31b13 = −1
2

, d12b11 + (d11 + d22)b12 + dnb14 + d31b23 = 0,

d13b11 + d23b12 + (d33 + d11)b13 + d31b33 = 0, (d11 − c)b14 + d31b34 = 0,

d12b12 + d22b22 + d1nb24 = −1
2

, d13b12 + d23b22 + (d22 + d33)b23 + d12b13 + dnb34 = 0,

(d22 − c)b24 + d12b14 + dnb44 = 0, cb44 =
1
2

.

d13b13 + d23b23 + d33b33 = −1
2

, (d33 − c)b34 + d13b14 + d23b24 = 0.
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We obtain the following matrix equation

GB = −1
2

J, G = G(i), (25)

where

G =



d11 0 d31 0 0 0 0 0 0 0
d12 d11 + d22 0 d1n 0 d31 0 0 0 0
d13 d23 d11 + d33 0 0 d31 0 0 0 0
0 0 0 d11 − c 0 0 0 d31 0 0
0 d12 0 0 d22 0 d1n 0 0 0
0 d13 d12 0 d23 d22 + d33 0 0 d1n 0
0 0 0 d12 0 d22 − c 0 0 0 dn
0 0 d13 0 0 d23 0 d33 0 0
0 0 0 d13 0 0 d23 0 a33 − c 0
0 0 0 0 0 0 0 0 0 c


,

B =



b11
b12
b13
b14
b22
b23
b24
b33
b34
b44


, − 1

2
J10 =



− 1
2

0
0
0
− 1

2
0
0
1
2
0
1
2


.

Let Det G 6= 0. Then the system (24) have a solution

b11 =
DetG1

DetG
, b12 = b21 =

DetG2

DetG
, b13 = b31 =

DetG3

DetG
,

..., b34 = b43 =
DetG9

DetG
, b44 =

DetG10

DetG
,

where Gk are the additional matrices obtained from the main matrix G by replacing k-th
column with − 1

2 J10. We assume that akj, c, λ such that

bkk > 0, k = 1, 2, 3, 4. (26)

Consider the quadratic function

Vi(x) = XT BiX = b11x2
1 + b22x2

2 + 2b12x1x2 + 2b13x1x3+

b33x2
3 + 2b23x2x3 + 2b24x2x4 + b44x2

4 =

=
1
2

b11

(
x1 + 2

b12

b11
x2

)2
+

(
b22 −

2b2
12

b11

)
x2

2+ (27)

b33x2
3 + 2b23x2x3 + 2b24x2x4 + b44x2

4 =

1
2

b11

(
x1 + 2

b13

b11
x2

)2
+

(
b33 −

2b2
13

b11

)
x2

3+

1
2

b22

(
x2 + 2

b23

b22
x3

)2
+

(
b33 −

2b2
23

b22

)
x2

3+



Bioengineering 2023, 10, 224 11 of 18

1
2

b22

(
x2 + 2

b23

b22
x4

)2
+

(
b44 −

2b2
24

b22

)
x2

4.

From (25) we see that Vi(x) ≥ 0, when the following hold

b22 ≥
2b2

12
b11

, b33 ≥
2b2

13
b11

, b33 ≥
2b2

23
b22

, b44 ≥
2b2

24
b22

. (28)

Thus, Vi(x) are positive defined Lyapunov functions. By ([12] Corollary 8.2) we need
now to determine the domains Ωi on which V̇i(x) is negatively defined. By assuming
xk ≥ 0, k = 1, 2, 3, 4 we will find the solution set of the following inequality

V̇i(x) =
4

∑
j=1

∂Vi
∂xj

f j(x) = (29)

= 2B1(x)
[

βx2

x2 + k1
+ β1x4 − q13x3

]
x1+

2B2(x)
[
r2

(
1− 2k−1

2 x2

)
+ β2x4 − q23x3

]
x2+

2B3(x)
[

d3x1

x1 + k3
− q32x1 − d3

]
x3 + 2B3(x)(dnx2 − cx4) ≤ 0,

where

Bj(x) =
4

∑
k=1

bjkxk, j = 1, 2, 3, 4.

It is clear to see that (29) holds, when

B1(x) ≥ 0,
βx2

x2 + k1
+ β1x4 − q13x3 ≤ 0,

B2(x) ≥ 0, r2

(
1− 2k−1

2 x2

)
+ β2x4 − q23x3 ≤ 0,

B3(x) ≥ 0,
d3x1

x1 + k3
− q32x1 ≤ d3,

B4(x) ≥ 0, dnx2 − cx4 ≤ 0

or
B1(x) ≤ 0,

βx2

x2 + k1
+ β1x4 − q13x3 ≥ 0,

B2(x) ≤ 0, r2

(
1− 2k−1

2 x2

)
+ β2x4 − q23x3 ≥ 0,

B3(x) ≤ 0,
d3x1

x1 + k3
− q32x1 ≥ d3,

B4(x) ≤ 0, dnx2 − cx4 ≥ 0,

i.e., V̇i(x) ≤ 0 in the following domains

Ωi1 =
{

x ∈ R4
+, B1(x) ≥ 0,

βx2

x2 + k1
+ β1x4 − q13x3 ≤ 0,

B2(x) ≥ 0, r2

(
1− 2k−1

2 x2

)
+ β2x4 − q23x3 ≤ 0, B3(x) ≥ 0,

[
d3

x1 + k
− q32

]
x1 ≤ d3, B4(x) ≥ 0, x2 ≤

c
dn

x4

}
, (30)
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Ωi1 =
{

x ∈ R4
+, B1(x) ≤ 0,

βx2

x2 + k1
+ β1x4 − q13x3 ≥ 0,

B2(x) ≤ 0, r2

(
1− 2k−1

2 x2

)
+ β2x4 − q23x3 ≥ 0,

B3(x) ≤ 0,
[

d2

x1 + k
− q33

]
x1 ≥ d1, B4(x) ≥ 0, x2 ≥

c
dn

x4

}
.

That is the system (5) is asymptotically stable at the equilibria points Ei on the domains

Ωi = Ωi1 ∪Ωi2. (31)

In our study, we mathematically demonstrated the relationship between uninfected
cells, infected cells, effector immune cells, and free viruses with a dynamic model. We
examined the stability analysis of the system and the Lyapunov stability of the equilibrium
points. Clinical studies have not yet been conducted. We tried to make a mathematical
determination. In Figures 1–3, We compare the cancer cells with the infected cells and the
effector immune cells. When the cancer cells increase rapidly, the infected cells and the free
viruses cells do not increase so quickly in Figures 1 and 3. On the other hand, when the
cancer cells increase rapidly, the effector immune cells decrease rapidly in Figure 2. The
constants in the equations are taken as 0.1 The moment of time taken after the beginning of
time, that is time zero, is called positive time, while the time taken before the beginning of
time is negative. There is a negative time from ten on the chart. Because this is a function,
it has a corresponding value in the negative values of the x coordinate. The time in the
graphs is taken as unit time.

Figure 1. We compare the cancer cells (T(t)) and the infected cells (I(t)).
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Figure 2. We compare the cancer cells (T(t)) and the effector immune cells (E(t)).

Figure 3. We compare the cancer cells (T(t)) and the free viruses cells (V(t)).

5. Basin of Attractions

In this section, we will derive the domain attraction sets of the problem (3) and (4) at
attractor points Ei. Lyapunov’s method can be used to find the region of attraction or an
estimate of it. We show in this section the following results:
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Theorem 8. Assume that the Condition 2 is satisfied. Then the basin of multiphase attraction set
of (3)–(4) at x(i) = Pi belongs to the sets ΩC(i) ⊂ Ωi and

ΩC(i) =
{

x ∈ R4
+: Vi(x) ≤ Ci

}
,

here positive constants Ci are defined in bellow, Ωi were defined by (31).

Proof. We are interested in the largest sets ΩC(i) ⊂ Ωi that we can determine the largest
value for the constants Ci such that ΩCi (i) ⊂ D(Vi), where

D(Vi) =
{

x ∈ R4, Vi(x) ≥ 0, V̇i(x) < 0
}

.

Let us now, find the sets ΩCi (i) ⊂ Bri (x(i)), where

Ci < min
|x−x(i)|=ri

Vi(x) = λmin(Ai)r2
i ,

here Ai were defined by (21), λmin(Ai) denote the minimum eigenvalues of the correspond-
ing matrices Ai. Moreover, for some Ci > 0 the inclusion ΩCi (i) ⊂ Ωi means the existence
of Ci > 0 such that x ∈ ΩCi (i) implies x ∈ Gi1 ∪ Gi2. Here Gi1, Gi2 are defined by

Gi1 =
{

x ∈ R4
+, Bk(x) ≥ 0, k = 1, 2, 3, 4, (32)

x3 ≥
1

q13

[
βx2

x2 + k1
+ β1x4

]
, x4 + r2 ≤

1
β2

[
2r2k−1

2 x2 + q23x3

]
,

x1 ≤
k3d2

d1 − k3q33
, x2 ≤

c
dn

x4

}
, d1 > k3q33,

Gi2 =
{

x ∈ R4
+, Bk(x) ≤ 0, k = 1, 2, 3, 4, (33)

x3 ≤
1

q13

[
βx2

x2 + k1
+ β1x4

]
, x4 + r2 ≥

1
β2

[
2r2k−1

2 x2 + q23x3

]
,

x1 ≥
k3d2

d1 − k3q33
, x2 ≥

c
dn

x4

}
.

From (32) we deduced that

Di1 =
{

x ∈ R4
+, Bk(x) ≥ 0, k = 1, 2, 3, 4, (34)

x4 ≤
q13

µ1
x3 − x2, x4 ≤

µ2

β2
(x2 + x3), x2 ≤

q13

µ1
x3,

x1 ≤
k3d2

d1 − k3q33
, x2 ≤

c
dn

x4

}
⊂ Gi1, d1k3q33

D̄i1 =
{

x ∈ R4
+, Bk(x) ≥ 0, k = 1, 2, 3, 4, (35)(

1 +
c

dn

)
x4 ≤

q13

µ1
x3, x2 ≤

q13

µ1
x3, x1 ≤

k3d2

d1 − k3q33

}
⊂ Gi1,

where

µ1 = max
{

β

k1
, β1

}
, µ2 = min

{
2r2k−1

2 , q23

}
,

µ2

β2
− q13

µ1
> 0.
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From (34) and (35) we have

4

∑
k=1

[xk − xk(i)]
2 =

4

∑
k=1

x2
k − 2xkxk(i) + (xk(i))

2 ≤ r2
i1,

where

ri1 =
√

2

{[
k3d3

d3 − k3q32

]2
+

[
1 +

(
q13

µ1

)2
]

β2

q2
13

+

µ2
3

β2

q2
13

+

(
q13

µ1

)2 β2

q2
13

} 1
2

+ (xk(i))
2.

Hence,

Ω̃i1 =

{{
x ∈ R4

+, Bk(x) ≥ 0,
4

∑
k=1

[xk − xk(i)]
2 ≤ r2

i1

}
⊂ Ωi1.

Then we obtain
Ci1 < min

|x|=ri1
Vi(x).

Moreover, consider now, the case with domain Gi2 defined by (33). It is clear to see
that

Di2 =
{

x ∈ R4
+, Bk(x) ≤ 0, k = 1, 2, 3, 4, (36)

x1 =
k3d2

d1 − k3q33
, x2 =

c
dn

x4, x3 ≤
β1

q13
x4,

β2x4 ≥
[
2r2k−1

2
c

dn
x4 + q23x3

]
, d1 > k3q33}.

Let we put [
β2 − 2r2k−1

2
c

dn

]
x4 = q23x3.

From (34) and (36) then we have

4

∑
k=1

[xk − xk(i)]
2 =

4

∑
k=1

x2
k − 2xkxk(i) + (xk(i))

2 ≤

≤ 2
4

∑
k=1

x2
k + (xk(i))

2 ≤ 2

{(
k3d2

d1 − k3q33

)2
+

[( c
dn

)2
+

η2
1 + 1

]
x2

4 ≤ r2
i2,

where

η1 = min
{

β1

q13
,
[

β2 − 2r2k−1
2

c
dn

] 1
q23

}
,

here we assume
β2 ≥ 2r2k−1

2
c

dn
.

So,

Ω̃i1 =

{{
x ∈ R4

+, Bk(x) ≤ 0,
4

∑
k=1

[xk − xk(i)]
2 ≤ r2

i2

}
⊂ Ωi2.

Then we obtain
Ci2 < min

|x|=ri2
Vi(x).
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6. Discussion

Observing the outcome of our research we can say that the results are quite significant.
After inspecting the figures (Figures 1–3), it is possible to say that rate of increase in cancer
cells is proportional to the increase in virus cells while it is inversely proportional to
immune cells. Thus, it is possible to say that our model is accurate. It is not natural to
expect all the coefficients of the variables taken in the experiment to be 0.1 but we believed
the outcome would be more fitting by doing so. Since the equation we are trying to solve
here is nonlinear, its exact solution cannot be found. Almost all nonlinear equations lack
an exact solution. Hence, we are in the process of finding an approximate solution based
on assumptions. Although we have achieved this result by the aforementioned method,
our solution is admissible since it supports the foreseen outcome. On the other hand, it is
possible to say that further improvements can be made to our model. In the comparison
of the solved dynamic system with the literature, it is understood that the results are as
expected. The next step will be to try to solve the problem we have solved mathematically
with clinical data. Future studies will be aimed at including real data from laboratory
settings. This study can be improved by increasing the variable number and adding other
appropriate parameters from physiology.

7. Conclusions

In this study, the interactions between cancer cells, viruses, infected cells, and effec-
tor immune cells were discussed. In particular, we graphically showed the relationship
between cancer cells and the other three cells at certain values. Equilibrium points were
found depending on the constants. Stability analyzes of equilibrium points were examined.
In addition, Lyapunov stability analysis of the equilibrium points was also performed. We
hope that the established mathematical model will be useful to decision-makers in the field
of healthcare. We revealed the comparison between cancer cells, the infected cells and the
effector immune cells. When the cancer cells increase rapidly, the infected cells and the free
virus cells do not increase so quickly (see Figures 1 and 3). On the other hand, when the
cancer cells increase rapidly, the effector immune in Figure 2 is significant. To the best of
the author’s knowledge, this topic is shown for the first time. The model was developed
to assist protocols applied in the treatment of cancer patients. It is aimed at choosing the
factors affecting the coefficient of the equations in the most appropriate way and to help
the patient receive better treatment.
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