
Journal of Computer and System Sciences 144 (2024) 103548
Contents lists available at ScienceDirect

Journal of Computer and System Sciences

journal homepage: www.elsevier.com/locate/jcss

On computing large temporal (unilateral) connected

components ✩

Isnard Lopes Costa a,∗, Raul Lopes b,c,∗, Andrea Marino d,∗, Ana Silva a,d,∗
a Departamento de Matemática, Universidade Federal do Ceará, Fortaleza, CE, Brazil
b Université Paris-Dauphine, PSL University, CNRS UMR7243, LAMSADE, Paris, France
c DIENS, École normale supérieure de Paris, CNRS, Paris, France
d Dipartimento di Statistica, Informatica, Applicazioni, Università degli Studi di Firenze, Firenze, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 July 2023
Received in revised form 22 March 2024
Accepted 6 May 2024
Available online 22 May 2024

Keywords:
Temporal graphs
Components
Graph algorithms

A temporal (directed) graph is one where edges are available only at specific times
during its lifetime, τ . Paths in these graphs are sequences of adjacent edges whose
appearing times are either strictly increasing or non-strictly increasing. Classical concepts
of connected and unilateral components can be naturally extended to temporal graphs. We
address fundamental questions in temporal graphs. (i) What is the complexity of deciding
the existence of a component of size k, parameterized by τ , k, and k + τ? The answer
depends on the component definition and whether the graph is directed or undirected. (ii)
What is the minimum running time to check if a subset of vertices is pairwise reachable? A
quadratic-time algorithm exists, but a faster time is unlikely unless SETH fails. (iii) Can we
verify if a subset of vertices forms a component in polynomial time? This is NP-complete
depending on the temporal component definition.

© 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI
training, and similar technologies.

1. Introduction

A (directed) temporal graph (G, λ) with lifetime τ consists of a (directed) graph G together with a time-function λ : E(G) →
2[τ] which tells when each edge e ∈ E(G) is available along the discrete time interval [τ]. Given i ∈ [τ], the snapshot Gi refers
to the subgraph of G containing exactly the edges available in time i. Temporal graphs, also appearing in the literature under
different names [1–3], have attracted a lot of attention in the past decade, as many works have extended classical notions
of graph theory to temporal graphs (we refer the reader to the surveys [3,4] and the seminal paper [5]).

A crucial characteristic of temporal graphs is that a u, v-walk/path in G is valid only if it traverses a sequence of adjacent
edges e1, . . . , ek at non-decreasing times t1 ≤ . . . ≤ tk , respectively, with ti ∈ λ(ei) for every i ∈ [k]. Similarly, one can consider
strictly increasing sequences, i.e. with t1 < . . . < tk . The former model is referred to as non-strict model, while the latter as
strict. In both settings, we call such sequence a temporal u, v-walk/path, and we say that u reaches v . For instance, in Fig. 1,

✩ Funded by: FUNCAP MLC-0191-00056.01.00/22 and PNE-0112-00061.01.00/16, CNPq 303803/2020-7, Italian PNRR CN4 Centro Nazionale per la Mobilità
Sostenibile, NextGeneration EU-CUP, B13C22001000001, by MUR of Italy, under PRIN Project n. 2022ME9Z78-NextGRAAL: Next-generation algorithms for
constrained GRAph visuALization, by PRIN PNRR Project n. P2022NZPJA-DLT-FRUIT: A user centered framework for facilitating DLTs FRUITion, (partially)
supported by the group Casino/ENS Chair on Algorithmics and Machine Learning and French National Research Agency under JCJC program (ASSK: ANR-18-
CE40-0025-01). Thanks to Giulia Punzi and Mamadou Kanté for interesting discussions.

* Corresponding authors.
E-mail addresses: isnard.lopes@alu.ufc.br (I.L. Costa), raul.wayne@gmail.com (R. Lopes), andrea.marino@unifi.it (A. Marino), anasilva@mat.ufc.br (A. Silva).
https://doi.org/10.1016/j.jcss.2024.103548
0022-0000/© 2024 Elsevier Inc. All rights are reserved, including those for text and data mining, AI training, and similar technologies.

https://doi.org/10.1016/j.jcss.2024.103548
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2024.103548&domain=pdf
mailto:isnard.lopes@alu.ufc.br
mailto:raul.wayne@gmail.com
mailto:andrea.marino@unifi.it
mailto:anasilva@mat.ufc.br
https://doi.org/10.1016/j.jcss.2024.103548

I.L. Costa, R. Lopes, A. Marino et al. Journal of Computer and System Sciences 144 (2024) 103548
a

b
c

d

e

f

g

1,5 1

2,6 2

2

1,3

1,2

2

3

3

4

Fig. 1. A temporal graph, where on each edge e we depict λ(e). Some of its components according to the non-strict model are reported below. A′ = {a, b}
is a closed connected set, as a and b reach each other without using external vertices. A = {a, b, c, d} is a maximal closed connected set, i.e. a closed TCC.
B = {a, b, c, d, e} is a closed TUCC but not a closed TCC as, using only vertices in B , a, b, c, d reach each other, e reaches all the vertices in B and vice versa,
except for d, which does not reach e. B is also a TCC, as d can reach e using the external vertex f . C = {a, b, c, d, e, f } is a TUCC as B forms a closed
TUCC, f is able to reach every other vertex directly or via the external vertex g . However, C is not a TCC as a, b, c, e cannot reach f . (For interpretation
of the colors in the figure(s), the reader is referred to the web version of this article.)

both blue and green paths are valid in the non-strict model, but only the green one is valid in the strict model, as the blue
one traverses two edges with label 2. The red path is not valid in either model.

The non-strict model is more appropriate in situations where the time granularity is relatively big. This is the case in a
disease-spreading scenario [6], where the spreading speed might be unclear or in “time-varying graphs”, as in [7], where a
single snapshot corresponds to all the edges available in a time interval, e.g. the set of all the streets available in a day. As
for the strict model, it can represent the connections of the public transportation network of a city which are available only
at precise scheduled times. All in all, there is a rich literature on both models (see [8–11,6]), and this is why we explore
both settings.

Connected Sets and Components. Given a temporal graph G = (G, λ), we say that X ⊆ V (G) is a temporal connected set
if u reaches v and v reaches u, for every u, v ∈ X . Extending the classical notion of connected components in static graphs,
in [12] the authors define a temporal connected component (TCC for short) as a maximal connected set of G . Such constraint
can be strengthened to the existence of such paths using only vertices of X . Formally, X is a closed temporal connected
component (closed TCC for short) if, for every u, v ∈ X , we have that u reaches v and v reaches u through temporal paths
whose vertex sets are contained in X . See Fig. 1 for an example of a TCC and of a closed TCC.

Unilateral Connected Components. In the same fashion, also the concept of unilateral connected component can be ex-
tended to temporal graphs. In static graph theory, they are a well-studied relaxation of connected components which asks
for a path from u to v or vice versa, for every pair u, v in the component [13,14]. More formally, in a directed graph G , we
say that X ⊆ V (G) is a unilateral connected set if u reaches v or v reaches u, for every u, v ∈ X . X is a unilateral connected
component if it is maximal. In this paper, we introduce the definition of a (closed) unilateral temporal connected set/compo-
nent, which can be seen as the immediate translation of unilateral connected component to the temporal context. Formally,
X ⊆ V (G) is a temporal unilateral connected set if u reaches v or v reaches u, for every u, v ∈ X , and it is a closed unilateral
connected set if this holds using paths contained in X . Finally, a (closed) temporal unilateral connected component ((closed)
TUCC for short) is a maximal (closed) temporal unilateral connected set. See again Fig. 1 for an example.

Problems In this paper, we deal with four different definitions of temporal connected components, depending on whether
they are unilateral or not, and whether they are closed or not. In what follows, we pose three questions, and we comment
on partial knowledge about each of them. Later on, we discuss our results, which close almost all the gaps found in the
literature. For each of the types of components described above, we consider the natural problem of deciding if a given
(directed) temporal graph contains a component of size at least k. For (closed) TCCs and (closed) TUCCs, we define the
(closed) tcc and (closed) tucc problems. Unless stated otherwise, the statements refer to undirected temporal graphs.
When applied to directed temporal graphs, this is explicitly stated. We start by asking the following.

Question 1 (Parameterized complexity). What is the complexity of deciding the existence of temporal components of size at least k
parameterized by (i) τ , i.e. the lifetime, (ii) k, and (iii) k + τ ?

In order to answer Question 1 for the strict model, there is a very simple parameterized reduction from k-clique, known
to be W [1]-hard when parameterized by k [15], to decide the existence of connected components (both closed or not
and both unilateral or not) of size at least k in undirected temporal graphs. This reduction has appeared in [16]. Given
an undirected graph G , we can simply consider the temporal graph G = (G, λ) where λ(uv) = {1} for all uv ∈ E(G) (i.e.,
G is equal to G itself). As u temporally reaches v if and only if uv ∈ E(G), one can see that all those problems are now
equivalent to decide the existence of a k-clique in G . Observe that we get W[1]-hardness when parameterized by k or k + τ ,
and para-NP-completeness when parameterized by τ , both in the undirected and the directed case.1 However, this reduction

1 In the directed case, it suffices to replace each edge of the input graph with two opposite directed edges between the same endpoints.
2

I.L. Costa, R. Lopes, A. Marino et al. Journal of Computer and System Sciences 144 (2024) 103548
Table 1
A summary of our results for the parameterized complexity of computing components
of size at least k of a temporal graph G having lifetime τ in the non-strict model.
“W[1]-h” stands for W[1]-hardness and “p-NP” stands for para-NP-completeness. For
the strict model the entries are W[1]-h in the third and fourth columns and p-NP in
the second one already for τ = 1, both for the directed and the undirected case.

Par. τ Par. k Par. k + τ

tcc p-NP τ ≥ 2
W[1]-h Dir. τ ≥ 2 (Th. 3)

Undir. (Th. 1)
and Undir. (Th. 2) W[1]-h Dir. (Th. 3)

and Dir. (Th. 3)
tucc

W[1]-h Dir. τ ≥ 2 (Th. 3) FPT Undir. (Th. 5)
FPT Undir. (Th. 5)

closed tcc W[1]-h Dir. τ ≥ 3 (Th. 4)
W[1]-h Dir. (Th. 4)

closed tucc
W[1]-h Dir. τ ≥ 3 (Th. 4) FPT Undir. (Th. 5)
FPT Undir. (Th. 5)

does not work in the case of the non-strict model, leaving Question 1 open. Indeed the reductions in [12] and in [17] for
(closed) TCCs, which work indistinctly for both the strict or the non-strict models, are not parameterized reductions. We
also observe that the aforementioned reductions work on the non-strict model only for τ ≥ 4.

Another question of interest is the following. Letting n be the number of vertices in G and M be the number of temporal
edges,2 it is known that, in order to verify whether X ⊆ V (G) is a connected set in G , we can simply apply O (n) single
source “best” path computations (see e.g. [18,19]), resulting in a time complexity of O (n · M). This is O (M2) if G has no
isolated vertices, a natural assumption when dealing with connectivity problems. As in static graphs testing connectivity can
be done in linear time [20], we ask whether the described algorithm can be improved.

Question 2 (Lower bound on checking connectivity). Given a temporal graph G and a subset X ⊆ V (G), what is the minimum running
time required to check whether X is a (unilateral) connected set?

Finally we focus on one last question.

Question 3 (Checking maximality). Given a temporal graph G and a subset X ⊆ V (G), is it possible to verify, in polynomial time,
whether X is a component, i.e. a maximal (closed) (unilateral) connected set?

For Question 3, we first observe that the property of being a temporal (unilateral) connected set is hereditary (forming an
independence system [21], see [22] for a survey about set systems), meaning that every subset of a (unilateral) connected set
is still a (unilateral) connected set. For instance, in Fig. 1, every subset of the connected set B = {a, b, c, d, e} is a connected
set. Also, checking whether X ′ ⊆ V (G) is a temporal (unilateral) connected set can be done in time O (n · M), as discussed
above. We can then check whether X is a maximal such set in time O (n2 · M): it suffices to test, for every v ∈ V (G) \ X ,
whether by adding v to X we still get a temporal (unilateral) connected set. On the other hand, closed connected (unilateral)
sets are not hereditary, because by removing vertices from the set we could destroy the paths between other members of
the set. This is the case for the closed connected set A = {a, b, c, d} in Fig. 1, since by removing d there are no temporal
paths from c to a nor b using only vertices in the remainder of the set. This implies that the same approach as before
does not work, i.e., we cannot check whether X is maximal by adding to X a single vertex at a time, then checking for
connectivity. For instance, the closed connected set A′ = {a, b} in Fig. 1 cannot be grown into the closed connected set A by
adding one vertex at a time, since both A′ ∪ {c} and A′ ∪ {d} are not closed connected sets. Hence, the answer to Question 3
for closed sets does not seem easy, and until now was still open.

We remark the important practical consequences of the latter question. Indeed, in practice, when trying to find struc-
tures of maximum size, a usual viable strategy is modifying backtracking listing algorithms for efficient generating maximal
structures (eventually with pruning strategies) and choosing the largest structures found [23,24]. Such algorithms typi-
cally solve the so-called extension problem, that is generating all (or some of) the maximal solutions enlarging a partial
one [25,26,22,27]. Question 3 implicitly asks whether efficient generation of closed TCCs or closed TUCCs is likely to exist
or not.

Our results Our results concerning Question 1 are reported in Table 1 for the non-strict model, since for the strict model
all the entries would be W [1]-hard or para-NP-complete already for τ = 1, as we argued before. In the non-strict model,
we observe instead that the situation is much more granulated. If τ = 1, then all the problems become the corresponding
traditional ones in static graphs, which are all solvable in polynomial time (see Paragraph “Related works”). As for bigger
values of τ , the complexity depends on the definition of component being considered, and whether the temporal graph is

2 M = ∑
e∈E(G) |λ(e)|.
3

I.L. Costa, R. Lopes, A. Marino et al. Journal of Computer and System Sciences 144 (2024) 103548
Table 2
Our results for Question 2 and Question 3, holding for both the strict
and the non-strict models. Recall that a component is a (inclusion-wise)
maximal connected set. ∗The O (·) result can be obtained by applying any
“single source best path” algorithm (e.g. the ones presented in [18,19]), as
explained in the paragraphs preceding Question 2 and succeeding Ques-
tion 3. M (resp. n) denotes the number of temporal edges (resp. nodes)
in G .

Check whether X ⊆ V is
a connected set

Check whether X ⊆ V is
a component

tcc

�(M2) (Th. 6)
O (n2 · M)∗

tucc

closed tcc
NP-c (Th. 7)

closed tucc

directed or not. Table 1 considers τ > 1, reporting on negative results, “τ ≥ x” for some x meaning that the negative result
starts to hold for temporal graphs of lifetime at least x.

The second column of Table 1 addresses Question 1(i), i.e., parameterization by τ . We prove that, for all the definitions of
components being considered, the related problem becomes immediately para-NP-complete as soon as τ increases from 1
to 2 for both the undirected and directed cases; this is done with Theorems 1 and 3. Theorem 1 improves upon the
reduction of [12], which holds only for τ ≥ 4. We remark that a similar result has also appeared online in a very recent
manuscript [28], which also have independently proved NP-completeness for τ = 2 for (closed) tcc. The relation of this
work with our is discussed in the related work section.

Question 1(ii) (parameterization by k) is addressed in the third column of Table 1. Considering first directed temporal
graphs, we prove that all the problems are W[1]-hard. In particular, deciding the existence of a TCC or TUCC of size at least
k is W[1]-hard already for τ ≥ 2 (Theorem 3). As for the existence of closed components, W[1]-hardness also holds as long
as τ ≥ 3 (Theorem 4). Observe that, since τ is constant in both results, these also imply the W[1]-hardness results presented
in the last column, thus answering also Question 1(iii) (parameterization by k + τ) for directed graphs. On the other hand,
if the temporal graph is undirected, then the situation is even more granulated. Deciding the existence of a TCC of size at
least k remains W[1]-hard, but only if τ is unbounded. This is complemented by the answer to Question 1(iii), presented in
the last column of Table 1: tcc and (even) closed tcc are FPT on undirected temporal graphs when parameterized by k + τ
(Theorem 5). We also give FPT algorithms when parameterized by k for unilateral components, namely tucc and (closed)
tucc. Observe how this differs from tcc, whose corresponding problem is W[1]-hard, meaning that unilateral and traditional
components behave very differently when parameterized by k.

In summary, Table 1 answers Question 1 for almost all the definitions of components, both for directed and undirected
temporal graphs. We leave open only the following three problems. Given an undirected temporal graph, deciding the
existence of a closed TCC of size at least k when parameterized by k. And, given a directed temporal graph with lifetime 2,
deciding the existence of closed TCC (closed TUCC) of size at least k when parameterized by k.

Concerning Questions 2 and 3, our results are summarized in Table 2. All these results hold both for the strict and the
non-strict models. For Question 2, we prove that the trivial O (M2) algorithm to test whether S is a (closed) (unilateral)
connected set is best possible, unless the Strong Exponential Time Hypothesis (SETH) fails [29]. For Question 3, in the case
of TCC and TUCC, we have already seen that checking whether a set X ⊆ V is a component can be done in O (n2 · M).
Interestingly, for closed TCC and closed TUCC, we answer negatively (unless P =NP) to Question 3.

Related work The notions of temporal connected component and closed temporal connected component have been defined
in [12], where the authors proved that, given a temporal graph G and a positive integer k, deciding whether G has a
(closed) TCC of size at least k is NP-complete even if G has lifetime 4. Their construction works indistinctly for both the
strict or the non-strict setting. Such problems continue to be NP-complete even if the underlying graph has geometric
properties, namely even if it is a unit disc graph, as shown in [30], and even if each edge appears exactly once and each
snapshot forms a matching (these are called happy graphs), as shown in [17] both for the strict or the non-strict setting,
leaving open the case when τ = 2 or 3. In [28, Theorem 34 and 37], the authors close also the cases τ = 2 and 3 as we do
independently in Theorem 1. However, all these reductions are not parametrized and do not imply W [1]-hardness wrt k as
the ones we show in this paper (third column of Table 1). In [28], they also provide an algorithm for tcc running in time
O (nm logτ + min{nkk2, 20.25n}) and an algorithm for closed tcc running in time O (2nn(m logτ +n log n)), where n = |V (G)|
and m = |E(G)|, both on undirected graphs. These algorithms are either XP when parameterized by k or exponential on n,
while the algorithms we provide in this paper are FPT in k + τ (fourth column of Table 1).

In [7], the authors show that the problem of computing TCCs is a particular case of finding cliques in the so-called affine
graph. This does not imply that the problem is NP-complete as claimed, since in order to prove hardness one needs to do a
reduction on the opposite direction, i.e., a reduction from a hard problem to tcc instead.

There are many other papers about temporal connected components in the literature. In [16], by constructing on
Moon-Moser [31] graphs, they provide examples of temporal graphs on n vertices that have 2�(

√
n) temporal connected com-

ponents, both for the strict and the non-strict models. New improved bounds for the number of such components have been
4

I.L. Costa, R. Lopes, A. Marino et al. Journal of Computer and System Sciences 144 (2024) 103548
given in [28]. Further related works include recent papers on giant components and connectivity in randomized temporal
graphs [32,33], as well as papers on other notions of temporal components as for instance temporal in/out-component [34],
�-component [35], persistent components [36], and weakly connected components [34]. Weakly connected components are
only defined if the temporal graph is directed; as its analogue static version, given a directed temporal graph G , it is said
that u and v are weakly temporally connected in G is there is temporal u, v-path in the underlying undirected temporal
graph related to G . In this paper, we implicitly consider also weakly temporal connected components as studying how to
compute them in directed temporal graphs is the same as studying how to compute (closed) TCCs in undirected temporal
graphs. As for the temporal out-components (resp. in-components) defined in [34], these are the sets of vertices which can
be reached from (resp.reaching) a vertex in a time-varying graph. Components similar to these have also been considered
in [28]. The �-components in [35] can intuitively be seen as subsets of vertices that are connected by paths that last at
most � timesteps throughout the lifetime. Finally, persistent connected components [36] are quadruplets specifying the set of
vertices involved, its size, and the time window where such vertices are connected. In the same paper, they consider net-
works with continuous varying-time with interval assigned to the edges. An interval temporal network is connected during
a period of time [x, y] if it is connected for all timesteps t ∈ [x, y]. In [37], they provide a polynomial-time algorithm that
answers whether the temporal network is connected during a time period. If the network is not connected throughout the
given time period, then they give a polynomial-time algorithm that return large components of the networks that remain
connected and remains large during [x, y]. They also examine a case of interval temporal graphs networks on trees, where
the lifetimes of links are not controlled; and they show that one can with high probability maintain the connectivity of the
network for a long time period.

Finally, we remark that there are many results in the literature concerning unilateral components in static graphs, also
with applications to community detection [38]. Even though the number of unilateral components in a graph is exponen-
tial [13], deciding whether there is one of size at least k is polynomial. In [13, Theorem 3], they prove that this corresponds
to decide whether a DAG with weights on its vertices has a path of weight at least k, which in turn can be done in poly-
nomial time by slightly modifying the algorithm for longest paths [39]. In [40,13], they propose an algorithm for finding all
the unilateral components of a digraph on n vertices and m edges that runs in time O (m + nc) and uses O (m + n) space,
where c denotes the number of unilateral components. In [38], the authors propose a method to find communities in di-
rected networks based on strong components and unilateral components. In [41], a characterization of unilateral connected
graphs is presented. In [42], they give a polynomial-time algorithm to recognize whether the non-directed edges of a mixed
graph can be oriented in a way as to obtain a unilateral connected directed graph. In [43], they relate unilateral connected
orientations and traceability of graphs (see also [41], Theorem 5.11.5). There were no results about unilateral components in
temporal graphs until now.

Structure of the paper In Section 2 we introduce basic notations and definitions on static and temporal graphs, as well as
some preliminary results. In Section 3 we prove the results mentioned in Table 1. Section 4 is devoted to the lower bounds
considered in Question 2. In Section 5 we prove the results mentioned in the second column of Table 2, showing that it
is hard to decide if a given set of vertices of a temporal graph, directed or not, forms a (closed) TCC or TUCC. Finally, our
concluding remarks and open questions are contained in Section 6.

2. Preliminaries

For basic graph theory concepts and notation, we refer to [44], and to [45,46] for basic background on parameterized
complexity.

2.1. Static graphs

Given a graph G = (V , E), directed or not, and a set X ⊆ V (G) we write G[X] for the subgraph of G induced by X . If e
is an edge of a directed or undirected graph with endpoints u and v , we may refer to e as uv and say that e is incident to
u and v . If e is an edge of a directed graph3 from u to v of a directed graph, we say that e is from u to v , and is oriented
from u to v . The degree dG(v) of a vertex v of a (directed) graph G is the number of edges of G incident to v . We denote
by �(G) the maximum degree of the vertices of G . The neighborhood NG(v) of v is the set {u ∈ V (G) | uv ∈ E(G)}, while
the closed neighborhood of v in G is the set NG [v] = NG(v) ∪ {v}. We omit G if it is clear from the context. If X, Y ⊆ V (G)

are subsets of vertices and G is clear from the context, we denote by NY (X) the set {y ∈ Y \ X | y ∈ NG(x) for some x ∈ X}.
If D is a digraph, the in-neighborhood N−

D (v) of v is the set {u ∈ V (D) | uv ∈ E(D)}, and the out-neighborhood N+
D (v) is the

set {u ∈ V (D) | vu ∈ E(D)}.
An undirected graph G is said to be simple if there is at most one edge between every pair of vertices of G (i.e., there

are no parallel edges). We say that G is bipartite if there is a partition of V (G) into two non-empty sets X and Y such that
every edge of G has one endpoint in X and the other endpoint in Y . A matching of G is a set of edges M ⊆ E(G) such that
no two edges of M share an endpoint; i.e., they all are pairwise independent. This definition also applies to oriented edges

3 We refer to arcs of directed graphs as edges (following the notation in [44]).
5

I.L. Costa, R. Lopes, A. Marino et al. Journal of Computer and System Sciences 144 (2024) 103548
1 2

3

4

5

6

1 2

3

4 6

5

Fig. 2. To the left, a graph G , to the right its line graph, L.

in directed graphs. A clique in an graph H is a subset C ⊆ V (H) such that all vertices of C are pairwise adjacent. If H is
directed, we say that C is a clique (resp. full clique) if one of (resp.both) the two possible edges exist between u and v , for
every pair u, v ∈ C , u �= v . A biclique in a bipartite graph H is a disjoint pair of sets A, B ⊆ V (H) such that there is an edge
from every a ∈ A to every b ∈ B . A graph is 2K2-free if it does not contain a pair of edges uv and xy such that G[{u, v, x, y}]
contains exactly the two edges (i.e., is isomorphic to a 2K2).

An orientation of an undirected graph G is a digraph D obtained from G by choosing an orientation for each edge
e ∈ E(G). The undirected graph G formed by ignoring the orientation of the edges of a digraph D is the underlying graph of
D . The line graph of an undirected graph G is the graph L with vertex set E(G) where two vertices e, f ∈ V (L) associated
with edges of G are linked by an edge if and only if e and f share an endpoint in G . See Fig. 2 for an example. For
a undirected graph G and u ∈ V (G), let δ(u) denote the set {e ∈ E(G) | u is incident to e}. For a set S ⊆ E(G), the edge-
induced subgraph G[S] is a graph whose edge set is S and vertex set consists of all endpoints of the edges in S .

Given a (directed) graph G and vertices v0, vq ∈ V (G), a v0, vq-walk in G is a sequence of vertices and edges, P =
(v0, e1, v1, · · · , eq, vq), such that ei has endpoints vi−1 vi , for each i ∈ [q]. Additionally, if no vertices of G are repeated in P ,
then we say that P is a v0, vq-path. A graph G is connected if, for every pair of vertices u, v ∈ V (D), there is a walk between
u and v in G . A connected component of G is a maximal connected subgraph of G . A directed graph D is strongly connected
if, for every pair of vertices u, v ∈ V (D), there is a u, v-walk and a v, u-walk in D . We say that D is weakly connected
if the underlying graph of D is connected. A strong component of D is a maximal induced subgraph of D that is strongly
connected, and a weak component of D is a maximal induced subgraph of D that is weakly connected. For simplicity, we
call a strong connected component of a directed graph simply “connected component”.

2.2. Parameterized complexity

A parameterized problem is a language L ⊆ �∗ × N . For an instance I = (x, k) ∈ �∗ × N , k is called the parameter. A
parameterized problem L is fixed-parameter tractable (FPT) if there exists an algorithm A, a computable function f , and
a constant c such that given an instance I = (x, k), A (called an FPT algorithm) correctly decides whether I ∈ L in time
bounded by O (f (k) · |I|c).

A parameterized problem L is in XP if there exists an algorithm A and two computable functions f and g such that
given an instance I = (x, k), A (called an XP algorithm) correctly decides whether I ∈ L in time bounded by O (f (k) · |I|g(k)).
For instance, the Clique problem, i.e. deciding whether there exists a clique of size at least k, parameterized by k is in XP.

Within parameterized problems, the class W[1] may be seen as the parameterized equivalent to the class NP of classical
decision problems. Without entering into details (see [46,45] for the formal definitions), a parameterized problem being
W[1]-hard can be seen as a strong evidence that this problem is not FPT. Clique parameterized by the size of the solution
is the canonical example of a W[1]-hard problem.

Parameterized reductions are used to transfer fixed-parameter tractability or hardness between parameterized problems.
Namely, a parameterized reduction is an algorithm that, given an instance (x, k) of a parameterized problem L, runs in
time f (k) · |x|O (1) and outputs an instance (x′, k′) of a parameterized problem L′ such that k′ ≤ g(k) for some computable
function g and (x, k) is positive if and only if (x′, k′) is positive. For example, if L is W[1]-hard and there is a parameterized
reduction from L to L′ , then L′ is also W[1]-hard and thus unlikely to admit an FPT algorithm.

2.3. Temporal graphs, paths and components

Recall that a (directed) temporal graph with lifetime τ is a pair (G, λ) where G is a (directed) graph and λ is a function
from E(G) to 2[τ] , also called time-function. Additionally, given i ∈ [τ], the snapshot Gi is the subgraph (V (G), Ei), where
Ei = {uv ∈ E(G) | i ∈ λ(uv)}.

Given a temporal (directed) graph G = (G, λ) and vertices v0, vq ∈ V (G), a temporal v0, vq-walk in G is defined as a
sequence of vertices and temporal edges, (v0, α1, v1, · · · , αq, vq) such that, for each i ∈ [q], αi has endpoints vi−1 vi and is
active in a timestep ti which is at most equal to the timestep where αi+1 is active. Sometimes we abuse notation and write
P = (v0, t1, v1, . . . , tq, vq) instead, where ti is equal to the timestep where αi is active, for every i ∈ [q]. We then say that P
starts in time t1 and finishes in time tq . Given i, j ∈ {0, . . . , q}, we denote by vi P v j the vi, v j -walk (vi, ti+1, vi+1, . . . , t j, v j).
6

I.L. Costa, R. Lopes, A. Marino et al. Journal of Computer and System Sciences 144 (2024) 103548
Additionally, if no vertices of G are repeated in P , then we say that P is a temporal v0, vq-path. It is important to mention
that distinctions between paths and walks are important for some problems, but since it is not the case in this work, the
reader should not worry about interchangeable uses of “walks” and “paths” along the text. Given two vertices u, v ∈ V (G),
we say that u reaches v in G if there exists a temporal u, v-walk in G .

Given a temporal (directed) graph G = (G, λ) and a subset S ⊆ V (G), we say that S is temporal connected (in G) if
there is a temporal u, v-path in G for every ordered pair (u, v) ∈ S × S . In [12], the authors define a temporal connected
component (TCC for short) as a maximal subset S ⊆ V (G) such that S is temporal connected. Similarly, a closed temporal
connected component (closed TCC for short) was defined as a maximal subset S ⊆ V (G) for which, for every ordered pair
(u, v) ∈ S × S , there is a temporal u, v-path in G using only vertices of S . In other words, a closed TCC is a maximal subset
S ⊆ V (G) such that G[S] (the temporal subgraph induced by S) is temporal connected. We say that S is a temporal unilateral
connected set if for every pair u, v ∈ S there is a temporal u, v-path or a temporal v, u-path in G . If all such paths use only
vertices in S then we say that S is a closed temporal unilateral connected set. If S is maximal such set, then we say that S is a
temporal unilateral connected component (TUCC) in the first case, and a closed temporal unilateral connected component (closed
TUCC) in the second case.

The reachability digraph R(G) associated to G is a directed graph with the same vertex set as G , and such that uv is an
edge in R(G) if and only if u reaches v in G , u �= v . This is a slight generalization of the affine graph introduced in [7].
There, since they are interested only in the TCC variants, they consider pairs that are mutually reachable from each other,
ignoring the edges uv of R(G) that are not symmetric (i.e., for which vu is not present).

The following result is an immediate consequence of the definition of reachability graph R(G).

Lemma 1. Given a temporal (directed) graph G = (G, λ), then the following hold:

1. C is a TCC in G if and only if C is a maximal full clique in R(G);
2. C is a TUCC in G if and only if C is a maximal clique in R(G);
3. If C is a closed TCC in G , then C is a full clique in R(G); and
4. If C is a closed TUCC in G , then C is a clique in R(G).

For each i ∈ [τ] and u ∈ V (G), denote by Ci(u) the set of vertices in the same connected component of Gi as u, and by
Ri(u) the set of vertices in Gi reachable from u (i.e., v ∈ Ri(u) if and only if there is a u, v-path in Gi). Observe that, if
G is undirected, then Ci(u) = Ri(u). For the sake of completeness, we now show that we can recursively define the set of
vertices reachable from u by a temporal path finishing at time at most i. We apply the following lemma in the context of
non-strict reachability, but also holds for strict.

Lemma 2. Let G be a (directed) temporal graph, and let Ri(u) be recursively defined as:

Ri(u) =
{

R1(u) , if i = 1⋃
v∈Ri−1(u) Ri(v) , otherwise

Then Ri(u) is equal to the set of vertices reachable from u by a temporal path finishing at time at most i.

Proof. We want to prove that v ∈ Ri(u) if and only if there exists a temporal u, v-walk finishing in time at most i. First,
let v ∈ Ri(u). If i = 1, then v ∈ R1(u) and u reaches v in G1 by definition. So suppose i > 1. Again by definition, we have
v ∈ ⋃

v ′∈Ri−1(u) Ri(v ′). Consider then w ∈ Ri−1(u) such that v ∈ Ri(w). By induction hypothesis, there exists a temporal
u, w-path P finishing in time at most i − 1. And because w reaches v in Gi , such path can be extended to a temporal
u, v-walk finishing in time at most i.

Now, let v be such that there exists a temporal u, v-path P finishing in time at most i. If P finishes in time at most
i − 1, we are done by induction hypothesis. Otherwise, let w ∈ V (P) be closest to v in P such that the temporal edges
incident to w in P occur in time j < i and i. Observe that w P v is contained in Gi , and hence v ∈ Ri(w). Additionally, u P w
finishes in time at most j ≤ i − 1, and by induction hypothesis w ∈ Ri−1(u). By definition we then get v ∈ Ri(u), as we
wanted to show. �

The following easy proposition tells us that deciding the existence of large components (i.e. maximal connected sets) is
equivalent to decide the existence of large connected sets.

Remark 1. Let G be a temporal (directed) graph. Then G has a (closed) temporal (unilateral) connected component of size
at least k if and only if it has (closed) temporal (unilateral) connected set of size at least k.

3. Parameterized complexity results

This section is devoted to answer Question 1 and prove the results summarized in Table 1.
7

I.L. Costa, R. Lopes, A. Marino et al. Journal of Computer and System Sciences 144 (2024) 103548
3.1. Parameterization by τ

We start by proving the result in the first column of Table 1, about para-NP-completeness when parameterized by the
lifetime τ , which applies to all the definitions of temporal components. For (closed) tcc we present a reduction from
the NP-complete problem Maximum Edge Biclique (MEBP for short) [47]. A biclique in a graph G is a complete bipartite
subgraph of G . The MEBP problem consists of, given a bipartite graph G and an integer k, deciding whether G has a biclique
with at least k edges. Using the same construction, we prove hardness of (closed) tucc reducing from the NP-complete
problem 2K2-free Edge Subgraph [48]. In this problem we are given a bipartite graph G and an integer k, and are trying to
decide whether G has a 2K2-free subgraph with at least k edges.

The main idea of the reductions is to generate a temporal graph G whose underlying graph is the line graph L of a
bipartite graph H with parts X, Y . Recall that, for each u ∈ X ∪ Y , there is a clique in L formed by all the edges incident
to u; denote such clique by Cu . We make active in timestep 1 the edges within Cu for every u ∈ X , and in timestep 2 the
edges within Cu for every u ∈ Y . Doing so, we ensure that any pair of vertices of G associated with a biclique in H reach
one another in G . We prove that there exists a biclique in H with at least k edges if and only if there exists a closed TCC
in G of size at least k. The result extends to TCCs, as every TCC is also a closed TCC. For the unilateral case, we can relax
the biclique to a 2K2-free graph since only one reachability relation is needed. As a result, we get the following.

Theorem 1. For every fixed τ ≥ 2 and given a temporal graph G = (G, λ) of lifetime τ and an integer k, it is NP-complete to decide if
G has a (closed) TCC or a (closed) TUCC of size at least k, even if G is the line graph of a bipartite graph.

Proof. Consider an instance (H, k) of MEBP, consisting of a bipartite graph H = (X ∪ Y , E) and an integer k. We construct
a temporal graph G = (G, λ) with lifetime 2 such that V (G) = E(H) as follows. For each x ∈ X and every pair of edges
e, e′ ∈ δ(x), add the edge ee′ to E(G), defining λ(ee′) = {1}. Similarly, for each y ∈ Y and every pair of edges e, e′ ∈ δ(y), add
the edge ee′ to E(G), defining λ(ee′) = {2}. Clearly G is the line graph of H . We claim that there exists a biclique (A, B) in
H with at least k edges if and only if there exists a closed TCC in G of size at least k. Then we prove that every TCC is also
a closed TCC, finishing this part of the proof.

Suppose first that there exists a biclique (A, B) in H with at least k edges, and let C = E(H[A, B]). We want to show that
C is a closed temporal connected set of G . Let e = xy and e′ = x′ y′ be two elements of C , with {x, x′} ⊆ X and {y, y′} ⊆ Y .
If x = x′ then e, e′ ∈ δ(x) and hence are contained in the same component of G1 (i.e., they reach each other by a direct
edge); the analogous holds in case y = y′ , so suppose x �= x′ and y �= y′ . Since (A, B) is a biclique in H , we have that
{xy, xy′, x′ y, x′ y′} ⊆ C . Denote xy′ by f and x′ y by f ′ . Now, in G we can reach f from e at timestep 1 and e′ from f at
timestep 2. Similarly, we can also reach e from e′ in G . Because f , f ′ are also in C , and since this holds for any two such
edges, we get that C is a closed temporal connected set, and by Remark 1, we get that G has a closed TCC of size at least
k.

For the converse, suppose that G has a TCC C with |C | ≥ k. We want to show that C forms a biclique in H with at least
k edges. Let A ⊆ X contain all vertices incident to some e ∈ C , and define B similarly with relation to Y . First we show that
(A, B) is a biclique in H . Let x ∈ A and y ∈ B . We need to show that xy is an edge of H . Note that since x ∈ A, it must be
an endpoint of some edge ex ∈ C ; analogously, since y ∈ B , it must be an endpoint of some edge e y ∈ C . Since ex and e y
are in C , there exists a temporal ex, e y-path in G . Recall that the connected components of G1 and of G2 are cliques, and
more specifically, that ex is contained in the clique of G1 formed by δ(x) and e y is contained in the clique of G2 formed by
δ(y). Observe that this implies that if there exists a temporal ex, e y-path in G , then there exists such a path of length at
most 2. We analyse all cases. If exe y ∈ E(G1), then e y ∈ δ(x) and therefore e y = xy ∈ E(H) as we wanted to prove. A similar
argument holds in case exe y ∈ E(G2). Finally suppose that the temporal ex, e y-path in G is equal to (ex, 1, e, 2, e y). Then
e ∈ δ(x) ∩ δ(y), i.e., e = xy ∈ E(H), as we wanted to prove. Finally just observe that |E(H[A, B])| ≥ |C | ≥ k to see that we
have the desired biclique in H .

Observe that we have proved that if H has a biclique with at least k edges, then C has a closed temporal connected
set of size at least k, which means that C has a temporal connected set of size at least k. Then we proved that if G has a
temporal connected set of size at least k (independently of it being closed or not), then H has a biclique with at least k
edges. This finishes the proofs for (closed) tcc.

For (closed) tucc, we make a reduction from 2K2-free Edge Subgraph on bipartite graphs. This was shown to be equiv-
alent to the Minimum Fill-in problem in co-bipartite graphs in [48], where the authors also showed that this problem is
NP-complete. Given a bipartite graph H , the proof follows similarly to the first case, using exactly the same construction for
the temporal graph G . The proof is similar to the previous one, but we present it for completeness.

Suppose first that there exists a 2K2-free subgraph H ′ = (A, B) in H with at least k edges, and let C = E(H[A, B]). We
want to show that C is a closed temporal unilateral connected set of G . Let e = xy and e′ = x′ y′ be two elements of C ,
with {x, x′} ⊆ X and {y, y′} ⊆ Y . If x = x′ then e, e′ ∈ δ(x) and hence are contained in the same component of G1 (i.e., they
reach each other by a direct edge); the analogous holds in case y = y′ , so suppose x �= x′ and y �= y′ . Since H ′ is 2K2-free,
we have that {xy′, x′ y} ∩ C �= ∅. If f = xy′ ∈ C , then (e, 1, f , 2, e′) is a temporal e, e′-path in G . And if f ′ = x′ y ∈ C , then
(e′, 1, f ′, 2, e) is a temporal e′, e-path in G . In either case, we have that e temporally reaches e′ or the other way around.
Since this holds for any two edges in C , we get that C is a closed temporal unilateral connected set, and by Remark 1, we
get that G has a closed tucc of size at least k.
8

I.L. Costa, R. Lopes, A. Marino et al. Journal of Computer and System Sciences 144 (2024) 103548
V V ′

un u′
n0

u3 u′
30

u2 u′
20

u1 u′
10

...

...

u vei

u v

huv

hvu

i

i

m + i

m + i

u′ v ′
h′

uv

h′
vu

2m + i

2m + i

3m + i

3m + i

0 0

Fig. 3. Construction used in the proof of Theorem 2. On the left, the two copies of V (G) and the edges between them, active in timestep 0. On the right,
the edge ei ∈ E(G) and the associated gadget in G .

For the converse, suppose that G has a temporal unilateral connected set C with |C | ≥ k. We want to show that C forms
a 2K2-free subgraph in H with at least k edges. Let A ⊆ X contain all vertices incident to some e ∈ C , and define B similarly
with relation to Y . Let H ′ be the subgraph of H induced by A ∪ B . Since |E(H ′)| ≥ |C | ≥ k, it suffices to show that H ′ is
2K2-free. So let e = xy, e′ = x′ y′ ∈ E(H ′) be a pair of independent edges in H ′ , i.e., {x, y} ∩ {x′, y′} = ∅. We need to prove
that {xy′, x′ y} ∩ E(H ′) �= ∅. Because C is a temporal unilateral connected set, we can suppose, without loss of generality, that
e temporally reaches e′ . Since e, e′ are not incident in the same vertex, we get that there must exist a temporal e, e′-path
of length exactly two, say (e, 1, f , 2, e′). By construction, we get that f ∈ δ(x) ∩ δ(y′); hence f = xy′ . As this holds for every
choice of such edges of H ′ , it follows that H ′ is indeed 2K2-free.

Observe that we have proved that if H has a 2K2-free subgraph with at least k edges, then C has a closed temporal
unilateral connected set of size at least k, which means that C has a temporal unilateral connected set of size at least k.
Then we proved that if G has a temporal unilateral connected set of size at least k (independently of it being closed or not),
then H has a 2K2-free subgraph with at least k edges. This finishes the proofs for (closed) tucc.

In order to extend these results for temporal graphs with higher lifetime, observe that we can artificially increase the
lifetime to τ , for any fixed τ , simply by adding two new vertices u, v , together with edge uv , defining λ(uv) = [τ]. �
3.2. W [1]-hardness by k

We now focus on proving the W [1]-hardness results in the second column of Table 1 concerning parameterization by k,
which also imply some of the results of the third column. The following W [1]-hardness results (Theorem 2, 4, and 3) are
parameterized reductions from k-Clique. The general objective is constructing a temporal graph G in a way that vertices
in G are in the same component if and only if the corresponding nodes in the original graph are adjacent. Notice that we
have to do this while: (i) ensuring that the size of the desired component is f (k) for some computable function k (i.e.,
this is a parameterized reduction); and (ii) avoiding that the closed neighborhood of a vertex forms a component, so as
to not a have a false “yes” answer to k-Clique. To address these tasks, we rely on different techniques. The first reduction
concerns tcc in undirected temporal graphs and requires τ to be unbounded, as for τ bounded we show that the problem
is FPT by k + τ (Theorem 5). The technique used is similar to the semaphore technique [12,17], except that it produces a
parameterized reduction. While the original reduction gives labels in order to ensure that paths longer than one are broken,
the following one allows the existence of paths longer than one. But if a temporal path from u to v exists for uv /∈ E(G),
then the construction ensures the non-existence of temporal paths from v to u. Because of this property, the reduction does
not extend to tucc, which we prove to be FPT when parameterized by k instead (Theorem 5).

Theorem 2. Given a temporal graph G and an integer k, deciding if G has a TCC of size at least k is W[1]-hard with parameter k.

Proof. We make a parameterized reduction from k-Clique. Let G be graph and k ≥ 3 be an integer. We construct the
temporal graph G = (G ′, λ) as follows. Fist, add to G ′ every vertex in V (G) and make V = V (G). Second, add to G ′ a copy
u′ of every vertex u ∈ V and define V ′ = {u′ | u ∈ V }. Third, for every pair u, u′ with u ∈ V and u′ ∈ V ′ add the edge uu′ to
G ′ and make all such edges active at timestep 0. Fourth, consider an arbitrary ordering e1, . . . , em of the edges of G and for
each edge ei = uv create four new vertices {huv , hvu, h′

uv , h′
vu | uv ∈ E(G)}. We say that vertices huv , hvu, h′

uv , h′
vu are related

to edge uv . Finally, add edges:

• uhuv and vhvu , active at time i;
• u′h′

uv and v ′h′
vu , active at time 2m + i;

• hvuu and huv v , active at time m + i; and
• h′

vuu′ and h′
uv v ′ , active at time 3m + i.
9

I.L. Costa, R. Lopes, A. Marino et al. Journal of Computer and System Sciences 144 (2024) 103548
See Fig. 3 for an illustration of this construction. Denote the set {huv , hvu | uv ∈ E(G)} by H , and the set {h′
uv , h′

vu | uv ∈
E(G)} by H ′ . We now prove that G has a clique of size at least k if and only if G has a temporal connected set of size at
least 2k. The theorem follows by Remark 1.

First, let C ⊆ V be a clique of size at least k in G and C ′ = {u′ | u ∈ C}. We show that C ∪ C ′ is a TCC of G . For this,
let u, v ∈ C . Since λ(uhuv) = i < m + i = λ(huv v), we get that u reaches v in G through huv . Because C is a clique in G we
conclude that C is a temporal connected set of G , and similarly the same holds for C ′ . Thus it remains to show that pairs
of vertices of the form u, u′ with u ∈ C and u′ ∈ C ′ are also connected in G . This is true due to the choice of timestep 0 for
the edges forming the matching between V and V ′ of G .

Now, let S ⊆ V (G ′) be a TCC of G of size at least 2k. We want to show that either C = {u ∈ V (G) | u ∈ S ∩ V } or
C ′ = {u ∈ V (G) | u′ ∈ S ∩ V ′} is a clique of G of size at least k. For this, we first prove a series of useful facts.

Claim 1. Let P be a temporal path in G ′[V ∪ H]. Then P has at most one internal vertex of H, and hence |V (P)| ≤ 5. The analogous
holds if P is contained in G ′[V ′ ∪ H ′].

Proof. Observe that every e ∈ H is incident to exactly two edges of G ′ , one active at time at most m and the other one
active at time at least m + 1. This immediately gives that P contains at most one internal vertex of H . Additionally, since
G ′[V ∪ H] is a bipartite graph and P cannot contain more than one internal vertex of H , we get that P is the longest if it
starts and finishes in H , having exactly one internal vertex of H . This implies that |V (P)| ≤ 5 as desired. �
Claim 2. C and C ′ are cliques in G.

Proof. Let u, v ∈ C . Since S is a temporal connected set and u, v ∈ C ⊆ S , there is a temporal path from u to v . Such path
must contain only edges of G ′[V ∪ H] since the edges between V and V ′ are only active in timestep 0, and all other edges
are active in a later time (i.e., there is no way to leave u to u′ at time 0, then go back to v). By Claim 1 and the fact that
G ′[V ∪ H] is bipartite, it follows that u and v must be adjacent. The argument for u, v ∈ C ′ is analogous by taking their
copies, u′, v ′ in S . �

Note that if S ⊆ V ∪ V ′ , then Claim 2 and the fact that |S| ≥ 2k directly imply that either C or C ′ is a clique of size at
least k in G . Assume now that S ∩ (H ∪ H ′) �= ∅. In this case, it is not ensured that C or C ′ contains a clique of size at least
k, but the following claims allow us to obtain another clique.

Claim 3. For every h ∈ H and every x′ ∈ V ′ ∪ H ′ , h does not reach x′ . Similarly, for every h′ ∈ H ′ and every x ∈ V ∪ H, h′ does not
reach x.

Proof. The only edges between V ∪ H and V ′ ∪ H ′ are those incident to V and V ′ at timestep 0. Since every edge incident
to h ∈ H ∪ H ′ is active only at a later timestep, the claim follows. �
Claim 4. If a, b ∈ S ∩ H, then a and b are related to the same edge, or to edges adjacent to each other. The same holds for a, b ∈ S ∩ H ′ .

Proof. Suppose, without loss of generality, that a reaches b. Suppose also by contradiction that a, b are related to distinct
edges, say ei and e j , respectively. Write ei as uv and e j as xy and assume that {u, v} ∩ {x, y} = ∅. Because every temporal
path between a and b must alternate between V and H , as G ′[V ∪ H] is bipartite, and since by Claim 1 every temporal path
contains at most one internal vertex of H , we get that the temporal a, b-path must use vertices (a, v, hvx, x, b). This gives
us that av and vhvx must be active in timestep at most m, while hvxx and xb must be active in timestep at least m + 1.
Hence, by letting vx be equal to e	 , we must have that i < 	 < j. We apply an analogous argument to a temporal b, a-path
to obtain that j must be smaller than i, a contradiction. A similar argument can clearly be applied to e, f ∈ S ∩ H ′ , and the
claim follows. �

Now suppose that S ∩ H �= ∅. By Claim 3 we get that S ⊆ V ∪ H . Since V and H are disjoint and |S| ≥ 2k, we get that
either |S ∩ V | ≥ k or |S ∩ H | ≥ k. If the former occurs, then C contains a clique of size at least k by Claim 2. Otherwise,
denote by E S the set of edges of G related to vertices in S ∩ H (i.e. E S = {uv ∈ E(G) | {huv , hvu} ∩ S �= ∅}). The following is
the last ingredient of the proof.

Claim 5. Let a, b ∈ S ∩ H be related with distinct edges g, g′ of G sharing an endpoint v. If u and w are the other endpoints of g and
g′ , respectively, then u and w are also adjacent in G. Additionally, either |S ∩ {hxy, hyx}| ≤ 1 for every xy ∈ E(G), or |S ∩ H | ≤ 2.

Proof. By contradiction suppose that u and w are not adjacent in G . This gives us that every uw-path in G ′ contains two
internal vertices of H , and therefore is not a temporal path by Claim 1. Because every subpath of a temporal path is also
a temporal path, this means that there is no temporal a, b-path passing by u and w . By construction, and since G is a
10

I.L. Costa, R. Lopes, A. Marino et al. Journal of Computer and System Sciences 144 (2024) 103548
simple graph (i.e., there is only one edge with endpoints u and v , and only one with endpoints v and w), we get from
Claim 1 that, if P is a temporal a, b-path not containing both u and w , then P is one of the following paths: P1 = (a, v, b);
P2 = (a, u, a′, v, b) where {a, a′} = {huv , hvu}; or P3 = (a, v, b′, w, b) where {b, b′} = {hv w , hw v}. Note that, since all paths
are strictly increasing, we get that at least one between P2 or P3 (or their reverse) is a temporal path. But observe that
neither the subpath (a, u, a′, v) nor its reverse can ever be temporal paths by construction, which means that neither P2 nor
its reverse can be temporal paths. A similar argument can be applied to P3, which means that the only possible temporal
a, b-path is P1. Observe that this in turn implies that edge av is active in a timestep strictly smaller than the timestep in
which vb is active. Now, note that the same argument can be applied to conclude that the only possible temporal b, a-path
is (b, v, a), a contradiction (recall that both paths must exist as {a, b} ⊆ S).

For the second part, suppose by contradiction that {hxy, hyx} ⊆ S and |S ∩ H | > 2. Let a ∈ (S ∩ H) \ {hxy, hyx}. By Claim 4
we can suppose, without loss of generality, that a ∈ {hxw , hwx} for some w �= y. Observe also that the previous paragraph
tells us that one of the temporal paths between {hxy , hyx} and a must contain (y, f , w) or its reverse, where f ∈ {hyw , hwy}.
Since such a path contains 4 edges, by letting xy be equal to ei , yw be equal to e j and wx be equal to e	 , we get i < j < 	.
Thus in this case we have that w f is active in time at least m + 1, which in turn gives us that a = hxw . We can now verify
that a does not reach hxy . Indeed, every a, hxy-path starting with edge aw must contain some internal vertex h of H , in
which case it cannot be a temporal path as it starts with an edge active at time at least m + 1 (namely aw) and contains
an edge active in time at most m (namely one of the edges incident to h). A similar argument can be applied if the path
starts with edge ax, since it must be distinct from (e, x, hxy) (recall that λ(ax) = 	 > i = λ(xhxy)). �

Now, recall that we are in the case |S ∩ H | ≥ k + 1. By our assumption that k ≥ 3, note that Claim 5 gives us that
|S ∩{hxy, hyx}| ≤ 1 for every xy ∈ E(G), which in turn implies that |E S | = |S ∩ H |. Additionally, observe that, since |S ∩ H | ≥ 4,
Claim 5 also gives us that there must exist w ∈ V such that e is incident to w for every e ∈ E S . Indeed, the only way that
3 distinct edges can be mutually adjacent without being all incident to a same vertex is if they form a triangle. Supposing
that 3 edges in E S form a triangle T = (a, b, c), since |E S | ≥ 4, there exists an edge e ∈ E S \ E(T). But now, since G is
a simple graph, e is incident to at most one between a, b and c, say a. We get a contradiction to Claim 5 as in this
case e is not incident to edge bc ∈ E S . Finally, by letting C ′′ = {v1, . . . , vk} be any choice of k distinct vertices such that
{w v1, . . . , w vk} ⊆ E S , Claim 5 gives us that vi and v j are adjacent in G , for every i, j ∈ [k]; i.e., C ′′ is a clique of size at
least k in G . This finishes the proof as the case S ∩ H ′ �= ∅ is clearly analogous. �

The following result concerns tcc and tucc in directed temporal graphs. It is important to remark that for tcc and τ
unbounded, we already know that the problem is W [1]-hard because of Theorem 2 which holds for undirected graphs
and extends to directed ones. However, the following reduction applies specifically for directed ones already for τ = 2. The
technique used here is the previously mentioned semaphore technique, made parameterized by exploiting the direction of
the edges. Namely, we reduce from k-Clique by replacing every edge uv of G by two vertices huv and hvu and the directed
temporal paths (u, 1, huv , 2, v) and (v, 1, hvu, 2, u). Fig. 4(b) shows the temporal graph obtained by applying the reduction
to the graph in Fig. 4(a). One can check that G has a clique of size at least k if and only if G has a TCC of size at least k.
For tucc, we only need to add one of huv or hvu .

Theorem 3. Given a directed temporal graph G and an integer k, deciding if G has a TCC of size at least k is W[1]-hard with parameter
k, even if G has lifetime 2. The same holds for TUCCs.

Proof. As previously said, we make a reduction from k-Clique. See Fig. 4(b), which is a temporal graph obtained from the
graph in Fig. 4(a), to follow the construction. Let G be a graph and consider the directed graph DG constructed as follows.
First, add to DG every vertex of G . Then, for each uv ∈ E(G), add to DG vertices huv and hvu , directed edges uhuv and vhvu ,
and directed edges huv v and hvuu. Denote by H the set {huv , hvu | uv ∈ E(G)}. To construct the directed temporal graph G
we start from DG and for every uv ∈ E(G)

• make edges uhuv and vhvu active in timestep 1; and
• make edges huv v and hvuu active in timestep 2.

Assume k ≥ 3. We now prove that G has a clique of size k if and only if G has a temporal connected set of size at least
k. The theorem follows by Remark 1. Notice that every vertex of G is contained in V (G), and that G has lifetime 2.

If C is a clique in G , then for every u, v ∈ C , we get that u reaches v and v reaches u in G because of the paths
(u, 1, huv , 2, v) and (v, 1, hvu, 2, u). It remains to show that if G has a temporal connected set of size at least k, then G
has a clique of size at least k. Let C ′ be such a temporal connected set. We prove that C ′ ⊆ V (G) and uv ∈ E(G) for every
u, v ∈ C ′ . First observe that G1 has only edges from V (G) to H , and G2, from H to V (G). This implies that a temporal path
must be of length at most 2. Observe also that if uv /∈ E(G), then every u, v-path in DG has length at least 4 and hence
is not a temporal path in G . As C ′ is temporal connected, we get that C ′ ∩ V (G) must be a clique. Now suppose that there
exists huv ∈ C ′ ∩ H . Observe that huv has exactly one incoming edge, active in timestep 1, and exactly one outgoing edge,
active in timestep 2. Additionally, observe that every edge outgoing from v is active in timestep 1. This means that v is the
11

I.L. Costa, R. Lopes, A. Marino et al. Journal of Computer and System Sciences 144 (2024) 103548
G

X

u

v

z

(a)

G

u

huv

hvu

v

hvz

hzv

z

1
2

12

1 2

12

(b)

G
uin

uout vin

vout zin

zout

1,
31

,3

2

2

1,
31

,3

2

2

1,
3 1

,3

(c)

G

Y

u

huv hvu

v hvz hzv

z

1,
3,

5

2,4

1
,3

,5

1,3,5 2,4 1,
3,

5

(d)

Fig. 4. Examples for some of our reductions. Given the graph in (a), Theorem 3 constructs the directed temporal graph in (b), Theorem 4 constructs the
directed temporal graph in (c), and, given additionally set X in (a), Theorem 7 constructs the temporal graph G and set Y in (d). Sets X and Y are
represented inside dashed circles.

only vertex of V (G) reachable from huv , contradicting the fact that k ≥ 3. Thus we conclude that C ′ ⊆ V (G) and the result
follows.

Now, for the unilateral case, observe that every TCC is also a TUCC, hence from the above paragraph we get that if G
has a clique of size at least k, then G has a TUCC of size at least k. Now, if G has a TUCC of size at least k, then observe
that the same arguments as before can be applied. Indeed, if u, v ∈ C ′ ∩ V (G), then it must be that either u reaches v or v
reaches u, and in any case we have uv ∈ E(G). Additionally, we know that C ′ cannot contain any vertex of H , as k ≥ 3 and
v is the only vertex reachable by huv for every huv ∈ H . �

The next result concerns closed TCCs and closed TUCCs. In this case, we also reduce from k-Clique, but we cannot
apply the semaphore technique as before. Indeed, as we are dealing with closed components, nodes must be reachable
using vertices inside the components, while the semaphore technique would make them reachable via additional nodes,
which do not necessarily reach each other. For this reason, in the following we introduce a new technique subdividing
nodes, instead of edges, in order to break paths of the original graph of length longer than one, being careful to allow that
these additional nodes reach each other. The construction is shown in Fig. 4, which shows how to construct temporal graph
G in Fig. 4(c), given graph G in Fig. 4(a) in a way that graph G has a clique of size k if and only if G has a closed TCC
(TUCC) of size at least 2k.

Theorem 4. Given a directed temporal graph G and an integer k, deciding if G has a closed TCC of size at least k is W[1]-hard with
parameter k, even if G has lifetime 3. The same holds for closed TUCCs.

Proof. Again, we make a reduction from k-Clique. Observe Fig. 4(c), which is the temporal graph obtained from the graph
G in Fig. 4(a), to follow the construction. Let G be a graph and consider the directed graph DG constructed as follows. For
every u ∈ V (G), add to DG vertices uin and uout, an edge from uin to uout, and an edge from uout to uin (notice that each
pair uin, uout induce a cycle in G). Then, for each edge uv ∈ E(G), add to DG an edge from uout to v in and an edge from
vout to uin. The directed temporal graph G = (DG , λ) is such that λ is defined as follows.

• For every u ∈ V (G), make edges between uin and uout active in timesteps 1 and 3 in both directions; and
• For every uv ∈ E(G), make the edges from uout to v in and from vout to uin active in timestep 2.

We now prove that G has a clique of size at least k if and only if G has a closed temporal connected set of size at
least 2k. The theorem follows by Remark 1. Notice that G has lifetime 3. Let C be a clique of size at least k in G , and let
C ′ = {uin, uout ∈ V (G) | u ∈ C}. We prove that, for every u, v ∈ C with u �= v , the set {uin, uout, v in, vout} is a closed temporal
12

I.L. Costa, R. Lopes, A. Marino et al. Journal of Computer and System Sciences 144 (2024) 103548
connected set; note that this implies that C ′ itself is a closed temporal connected set, as desired. By construction, for every
w ∈ V (G) there are temporal paths from w in to wout and the other way around, in other words uin reaches uout, and vice-
versa, and v in reaches vout and vice-versa. Moreover, uin reaches v in in G through the path (uin, 1, uout, 2, v in). Observe
that this also implies that uout reaches v in, and by symmetry, that both v in and vout reach uin. Finally, note that the path
(uin, 1, uout, 2, v in, 3, vout) implies that both uin and uout reach vout, and by symmetry we also get that v in and vout reach
uout. This finishes this part of the proof.

Assume now that C ′ is a closed temporal connected set of G′ of size at least 2k. Let C = {u ∈ V (G) | {uin, uout} ∩ C ′ �= ∅}.
Clearly |C | ≥ k since |C ′| ≥ 2k. To show that C is a clique in G , observe that G consists of a matching at timesteps 1 and
3, containing only edges of the form uinuout and of the form uoutuin, together with edges in timestep 2 that go only from
O = {uout | u ∈ V (G)} to I = {uin | u ∈ V (G)}. This implies that any temporal path in G contains at most one edge from O to
I , which are only defined if the corresponding vertices are adjacent in G . We then get that, if u, v ∈ C with u �= v , then it
must be the case that uv ∈ E(G).

The proof for closed tucc is similar, except that, for every uv ∈ E(G), we only need to add either uout v in or voutuin to
G . Formally, let G = (DG , λ) be a directed temporal graph obtained as follows. For every u ∈ V (G), add to DG vertices uin

and uout, an edge from uin to uout, and an edge from uout to uin; make all such edges active in timesteps 1 and 3. Then,
choose any ordering v1, . . . , vn of V (G) and, for each edge vi v j ∈ E(G), i < j, add to DG an edge from vout

i to v in
j , active in

timestep 2. Even though the proof is quite similar to the previous one, we reproduce it here for completeness.
First, let C be a clique of size at least k in G , and let C ′ = {uin, uout ∈ V (G) | u ∈ C}. Consider vi, v j ∈ C with i < j. We

have that Pi, j = (v in
i , 1, vout

i , 2, v in
j , 3, vout

j) is a temporal path. Note that this implies that {v in
i , vout

i , v in
j , vout

j } is a closed
temporal unilateral connected set, which in turn implies that C ′ is a closed temporal unilateral connected set, as desired.
For the second part of the proof, the reader should observe that the exact same argument used for temporal connected sets
holds also here. �
3.3. FPT algorithms

We now show our FPT algorithms to find (closed) TCCs and (closed) TUCCs in undirected temporal graphs, as for
directed temporal graphs we have proved W [1]-hardness. In particular, we prove the result in Theorem 5. It is important to
observe that for unilateral components, the bounds in Theorem 5 depend only on k, while for TCCs and closed TCCs they
depend on both k and τ . This is consistent with the fact that we have proved that for TCCs the problem is W[1]-hard when
parameterized just by k (Theorem 2).

The idea of the proof of Theorem 5 exploits the fact that finding a TCC (resp. TUCC) in G of size at least k is equivalent
to finding a set S ⊆ V (G) in the reachability graph R = R(G) (see Section 2) of size exactly k such that uv ∈ E(R) and
(resp. or) vu ∈ E(R) for every pair u, v ∈ V (R). As for finding a closed TCC (resp. closed TUCC), we need to have the same
property, except that all subsets of size at least k must be tested (recall that being a closed connected (unilateral) set is not
hereditary). Therefore, if � is the maximum degree of R , then testing connectivity takes time O (�k · n) (it suffices to test
all subsets of size k − 1 in N(u), for all u ∈ V (R)), while testing closed connectivity takes time O (2� · n) (it suffices to test
all subsets of size at least k − 1 in N(u), for all u ∈ V (R)). The proofs then consist in bounding the value � in each case.

Theorem 5. Given a temporal graph G = (G, λ) on n vertices and with lifetime τ , and a positive integer k, there are algorithms running
in time

1. O (kk·τ · n) that decides whether there is a TCC of size at least k;
2. O (2kτ · n) that decides whether there is a closed TCC of size at least k;
3. O (kk2 · n) that decides whether there is a TUCC of size at least k; and

4. O (2kk · n) that decides whether there is a closed TUCC of size at least k.

Proof. Let G be a temporal graph and k be a positive integer. We first prove points 1 and 2. Denote by F the graph obtained
from the reachability digraph R(G) by removing all edges that are not symmetric and taking the underlying graph. Formally,
F is an undirected graph with vertex set V (G) and edge set {uv | {uv, vu} ⊆ E(R(G))}. Lemma 1 and Remark 1 tell us
that tcc is equivalent to finding a clique of size k in F . As for closed tcc, observe that Lemma 1 tells us that if G has a
closed TCC, then it must form a clique in F . Therefore, if all cliques of size at least k in F are not closed connected sets,
by Remark 1 we can conclude that G does not have a closed TCC of size at least k. In other words, solving closed tcc is
equivalent to finding a clique S of size at least k in F such that G[S] is connected. Observe that if �(F) ≤ � for some value
�, then the former can be solved by testing, for every u ∈ V (F) and every S ⊆ N F (u) with |S| = k − 1, whether S ∪ {u}
is a clique in F ; this takes time O (�k · k2 · n). Now for the latter, we need to test for the existence of such sets of bigger
sizes. This is because closed TCCs are not closed under inclusion. Nevertheless, since �(G) ≤ � and testing whether G[S]
is connected can be done in time O (|S| · |E(G[S])|), we can test for the existence of a closed TCC in time O (2� · �3 · n) by
searching all cliques of size at least k in N[u], for every u ∈ V (G). We finish the proof by bounding the value of �.

Now, we show that � ≤ (k −1)τ , which combined with the previous paragraph gives us the stated running time. For this,
first notice that, for every i ∈ [τ], the vertex set of any connected component C of Gi is a clique in F and a closed temporal
13

I.L. Costa, R. Lopes, A. Marino et al. Journal of Computer and System Sciences 144 (2024) 103548
connected set of G . This means that we can suppose that the size of any connected component of Gi is at most k − 1, for
every i ∈ [τ], as otherwise we have a trivial yes instance for both problems. Now, since Ci(u) = Ri(u) when G is undirected,
apply Lemma 2 to see that |Rτ (u)| ≤ (k − 1)τ . Additionally, by definition we know that Rτ (u) contains exactly the set of
vertices reachable by u in G . Since v ∈ N F (u) if and only if u reaches v and v reaches u, it follows that N F (u) ⊆ Rτ (u).
This finishes the proof of items 1 and 2.

Now we turn our attention to items 3 and 4, namely, algorithms running in time:

• O (kk2 · n) that decides whether there is a TUCC of size at least k; and
• O (2kk · n) that decides whether there is a closed TUCC of size at least k.

Again by applying Lemma 1, a similar argument as the one used for items 1 and 2 can be applied directly to the
reachability graph F = R(G) to say that, if �(F) ≤ �, then tucc can be solved in time O (�k · k2 · n), while closed tucc can
be solved in time O (2� · �3 · n). hence it remains to bound �.

We first bound the degree in G , namely we prove first that dG (u) ≤ k − 2 for every u ∈ V (G). This holds because, given
any pair v, w ∈ N(u), and any choice of values i ∈ λ(uv) and j ∈ λ(uw), either we have i ≤ j, in which case (v, i, u, j, w)

is a temporal path, or i > j, in which case (w, j, u, i, v) is a temporal path. In other words, for every v, w ∈ N(u), either v
reaches w or w reaches v , which implies that NG [u] is a clique in F , for every u ∈ V (G). Hence if dG (u) ≥ k − 1, we are in
a trivial yes instance. To finish, just observe that any temporal path forms a closed TUCC, which is always contained in a
TUCC. Therefore, we can suppose that any vertex reachable from u is reached by a temporal path containing at most k − 1
edges. Because dG (v) ≤ k − 2 for every v ∈ V (G), we get that dF (u) = |Rτ (u)| ≤ (k − 2)k−1 and the result follows. �
4. Checking connectivity

This section is focused on Question 2, which is open for all definitions of components for both the strict and the non-
strict models. We answer to the question providing the following conditional lower bound, which holds for both models,
where the notation Õ (·) ignores polylog factors.

Theorem 6. Consider a (directed) temporal graph G on M temporal edges. There is no algorithm running in time Õ(M2−ε), for some
ε , that decides whether G is temporal (unilateral) connected, unless SETH fails. This holds for the strict and non-strict models.

We apply the technique used for instance in [49–51] to prove lower bounds for polynomial problems, falling within
the fine-grained complexity framework. We use quasilinear Karp reductions, i.e. Karp reductions running in quasilinear time,
whose formal definition is given in [49]. Intuitively, it consists of a Karp reduction where the new instance I ′ obtained from
I has size at most Õ (|I|) and can be obtained also in such time. We recall the reader that Õ (·) neglects poly-logarithmic
factors, i.e., Õ (f (n)) equals O (f (n) logk n) for some fixed k.

The key idea is to reduce a starting problem that is known not to be solvable in subquadratic time to our problem using
such kind of reduction. This seed problem is the following formulation of the k-SAT∗ problem. Let φ be a CNF formula on
variables X = {x1, . . . , xn} and Y = {y1, . . . , yn}, with m clauses of size at most k. Let X denote the set of all 2n possible
truth assignments for X , and similarly let Y denote the set of all 2n possible truth assignments for Y . In the k-SAT∗
problem, given I = (φ, X, Y), the goal is to decide if φ is satisfiable. The main difference with relation to the classical k-SAT
problem is the size of the input, which is |I| = �(2n).

Remark 2 ([49]). k-SAT∗ with input I = (φ, X, Y) as before cannot be solved in time O (|I|2−ε) for some ε , even if φ has
logk n clauses, unless SETH fails.

By presenting a quasilinear Karp reduction from k-SAT∗ , and applying Remark 2, we obtain that, unless SETH fails, there
is no subquadratic-time algorithm that decides if a given temporal graph is temporal (unilateral) connected.

In this section, it is helpful to formally define the following two problems.

Problem Temporal Connected.
Input: A (directed) temporal graph G .
Question: Is G temporal connected?

Problem Temporal unilateral Connected.
Input: A (directed) temporal graph G .
Question: Is G temporal unilateral connected?

For both problems, given an instance I = (φ, X, Y) of k-SAT∗ , we construct a temporal graph G = (G, λ) such that G
is not temporal (unilateral) connected if and only if φ has a satisfying assignment. As in the obtained temporal graph all
temporal paths are strict temporal paths, the result holds on both models, strict and non-strict. Additionally, we construct
an undirected temporal graph and get the result for directed thanks to the following straightforward proposition.
14

I.L. Costa, R. Lopes, A. Marino et al. Journal of Computer and System Sciences 144 (2024) 103548
X D1 C D2 Y

f1 d f1c1
c1

c2 d f2c2 f2

3 4

5 6

s
7,8

L L L

1,2

Fig. 5. General structure of the constructed graph in the reduction for the temporal connectivity testing problem. A black edge denotes the existence of all
possible edges. A thick red edge denotes the temporal edges whose existence is conditioned to the assignment not satisfying the clause. L denotes the set
of labels {1, 2, 7, 8}.

F F

F T

T F

T T

C3

C2

C1

F F

F T

T F

T T

s

7,8 L

L

L
1,2

Fig. 6. Graph in the reduction for the temporal connectivity testing problem, related to the formula φ = (x1 ∨ ¬x2 ∨ y1) ∧ (¬x1 ∨ ¬y1 ∨ y2) ∧ (x2 ∨ y1 ∨
¬y2). Blue nodes denote assignments of x1 and x2 (e.g., node T T blue denotes the assignment x1 = T rue and x2 = T rue), while magenta nodes denote
assignments of y1 and y2. Again, black edges denote existence of all possible edges. We put them outside the vertices in order to make the figure clean.
Blue edges are active in times 3 and 4 (from left to right) and magenta edges, in times 5 and 6 (again from left to right). Also, L denotes the set of labels
{1, 2, 7, 8}.

Proposition 1. Let G = (G, λ) be a temporal graph and G′ = (G ′, λ′) be obtained from G by replacing each edge uv by two directed
edges uv and vu with λ′(uv) = λ′(vu) = λ(uv). Then S ⊆ V (G) is temporal (unilateral) connected in G if and only if S is temporal
(unilateral) connected in G′ .

We first present a reduction from k-SAT∗ to the complement of Temporal Connected. See Fig. 5 to follow the construc-
tion. Let C be the set of clauses in φ. Let V (G) = X ∪ C ∪ Y ∪ D1 ∪ D2 ∪ {s}, where D1, D2 are constructed as follows. For
each f ∈ X and c ∈ C such that f does not satisfy c, add d f c to D1. Also add edges f d f c , active at time 3, and d f cc, active
at time 4. Similarly, for each f ∈ Y and c ∈ C such that f does not satisfy c, add d f c to D2 and add edges cd f c , active at
time 5, and d f c f , active at time 6. Denote by D the set D1 ∪ D2. Finally, add all edges between s and C ∪ D , active at times
1, 2, 7, 8, all edges between s and X , active at times 7, 8, and all edges between s and Y , active at times 1, 2. See Fig. 6 for
an example.

We now argue that this is a quasilinear Karp reduction. Observe first that |X | = |Y | = 2n+, |C | = m, and |D| ≤ m · 2n+1;
hence, |V (G)| = O (m · 2n). Additionally, there are at most m · 2n+2 temporal edges non incident to s and at 4 · |V (G) \ {s}|
edges incident to s, totalling also O (m · 2n) edges. Since Remark 2 tells us that m can be considered to be at most logk n, we
get that the new instance has size Õ (2n) = Õ (|I|). It remains to prove correctness. Before we do that, we first argue that
the reachability graph of G always contains uv for every u and v such that either u /∈ X or v /∈ Y . For this, we analyse all
cases below:

• s reaches v and is reachable from v , for every v ∈ V (G) \ {s} by a direct edge;
15

I.L. Costa, R. Lopes, A. Marino et al. Journal of Computer and System Sciences 144 (2024) 103548
X D1 C D2 Y

f1 d f1c1
c1

c2 d f2c2 f2

3 4

5 6

x d1 c d2 y

1,2 1,2 1,2 1,2 1,2

Fig. 7. General structure of the constructed graph in the reduction for the unilateral temporal connectivity testing problem. A black or blue edge denotes
the existence of all possible edges. A red edge denotes the temporal edges whose existence is conditioned to the assignment not satisfying the clause. Blue
edges are represented in different styles so it is possible to better recognize its endpoints.

• u reaches v for every u, v ∈ C ∪ D ∪ X : this holds for both strict and non-strict model using the temporal path
(u, 1, s, 2, v);

• u reaches v for every u, v ∈ C ∪ D ∪ Y : this holds for both strict and non-strict model using the temporal path
(u, 7, s, 8, v);

• y reaches x for every y ∈ Y and x ∈ X : this holds for both strict and non-strict model using the temporal path
(y, 1, s, 7, x).

Observe then the only possible missing reachable pairs are of the form (x, y) where x ∈ X and y ∈ Y , i.e., G is not
temporal connected if and only if there exists x ∈ X and y ∈ Y such that x does not reach y. We now prove that φ is
satisfiable if and only if G is not temporal connected. First, suppose that φ is satisfiable and consider a satisfying assignment
f of φ. Then let x ∈ X be equal to f restricted to {x1, . . . , xn} and y ∈ Y be equal to f restricted to {y1, . . . , yn}. Observe
that for every c ∈ C , either x satisfies c, and hence (xdxc, 3) /∈ E T (G), or y satisfies c, and hence (dyc y, 6) /∈ E T (G). Therefore,
there are no temporal paths from x to y of the form (x, 3, dxc, 4, c, 5, dyc, 6, y). This means that any path starting with
temporal edge (xdxc, 3) for some c must eventually “go down” to s using a temporal edge active at time 7 or 8. However
this cannot be a temporal path because all temporal edges incident to Y are active at time at most 6. A similar argument
can be applied to argue that no path starting with edge xs can be a temporal x, y-path. On the other hand, suppose
that x does not reach y for some pair x ∈ X and y ∈ Y . This means that there are no temporal x, y-paths of the form
(x, 3, dxc, 4, c, 5, dyc, 6, y), which in turn implies that, for every c ∈ C , either x satisfies c or y satisfies c. It immediately
follows that x ∪ y is a satisfying assignment for φ.

Consider now the complement of temporal unilateral Connected. We make a similar reduction. The idea behind the
modification is that we split s into 5 vertices and allow the vertices to reach every other vertex “to their right”, except
for the pairs (x, y) with x ∈ X and y ∈ Y . Observe Fig. 7 to follow the construction. Let V (G) = X ∪ C ∪ Y ∪ D1 ∪ D2 ∪
{x, y, c, d1, d2}, where D1 and D2, as well as the temporal edges incident to D1 ∪ D2 and X ∪ C ∪ Y , are constructed exactly
as before. Then, for each pair (a, A) where a ∈ {x, y, c, d1, d2} and A ∈ {X, Y , C, D1, D2}, add all edges between a and A and
make them active in timesteps 1 and 2. Then, add the following edges, all of them active at timestep 7: all edges between
x and D1 ∪ D2 ∪ C ; all edges between d1 and C ∪ D2 ∪ Y ; all edges between c and D2 ∪ Y ; and all edges between d2 and
Y . Finally, let {x, y, c, d1, d2} be a clique active at timestep 8.

Let G = (G, λ) be the constructed temporal graph. One can see that the number of vertices and edges increased by a
constant factor when compared to the previous reduction, so again we have that G has size Õ (|I|). It remains to prove that
φ is satisfiable if and only if G is not unilateral temporal connected. As before, we first prove that the only missing pairs
are of the type (x, y) with x ∈ X and y ∈ Y . We analyse all the other cases first, as we did for temporal connected. But
first observe that, for each a ∈ {x, y, c, d1, d2} and each A ∈ {X, Y , C, D1, D2}, it holds that: (*) if a reaches some u through
a path starting at time at least 7, then a′ reaches u for every a′ ∈ A. In this case, for simplicity, we write A reaches u. The
arguments below are repetitive, but we add all of it for completeness. The idea is that the reachability graph will contain
all arcs from a to b, if a and b belong to the same set, and all arcs from A to B whenever B appears to the right of A in
Fig. 7, except possibly arcs from X to Y .
16

I.L. Costa, R. Lopes, A. Marino et al. Journal of Computer and System Sciences 144 (2024) 103548
• x′ reaches u for every x′ ∈ X ∪ {x} and every u ∈ V (G) \ Y : first observe that (x′, 1, x, 2, u) is a temporal path in case
u ∈ X . For all other cases, just recall observation (*) and observe that either (xu, 7) or (xu, 8) is a temporal edge in G;

• d reaches u for every d ∈ D1 ∪ {d1} and every u ∈ V (G) \ X : first observe that (d, 1, d1, 2, u) is a temporal path in case
u ∈ D1. For all other cases, just recall observation (*) and observe that either (du, 7) or (du, 8) is a temporal edge in G;

• c′ reaches u for every c′ ∈ C ∪ {c} and every u ∈ V (G) \ (X ∪ D1): first observe that (c′, 1, c, 2, u) is a temporal path in
case u ∈ C . For all other cases, just recall observation (*) and observe that either (cu, 7) or (cu, 8) is a temporal edge in
G;

• d reaches u for every d ∈ D2 ∪ {d2} and every u ∈ V (G) \ (X ∪ D1 ∪ C): first observe that (d, 1, d2, 2, u) is a temporal path
in case u ∈ D2. For all other cases, just recall observation (*) and observe that either (du, 7) or (du, 8) is a temporal edge
in G;

• y′ reaches y′′ for every y′, y′′ ∈ Y ∪ {y}: as y is adjacent to every vertex in Y , we can suppose y /∈ {y′, y′′}. Hence,
(y′, 1, y, 2, y′′) is a temporal y′, y′′-path, as desired.

The proof of correctness is analogous to the previous one. Denote by A the set {x, y, c, d1, d2}. First observe that any path
with more than one edge using a temporal edge active at time 7 or 8 must finish with such edge. One can see that this
implies that the only possible temporal paths between the sets X and Y must contain only vertices of V (G) \ A. Observe
that the temporal edges incident in Y and not in A are active in timestep 6, while the edges incident in X and not in A
are active in timestep 3. This implies that no temporal path from Y to X is possible. Now, we prove that G is not temporal
connected if and only if φ is satisfiable, which, by previous argument, occurs if and only if there exist x ∈ X and y ∈ Y
such that x does not reach y. The proof can be done as before, with the additional knowledge that any such path must go
through D1, C, D2, in this order.

Now observe that we have made reductions from k-SAT∗ to the complements of our problems. However, since a
subquadratic-time algorithm that solves the complement � of a problem �, also solves � (indeed I is a positive instance
of � if and only if I is a negative instance of �), we get that Theorem 6 follows.

5. Checking maximality

We now focus on Question 3. We prove the results in the second column of Table 2, about the problem of deciding
whether a subset of vertices Y of a temporal graph is a component, i.e. a maximal connected set. The question is open both
for the strict and the non-strict model. We argued already in the introduction that this is polynomial for TCCs and TUCCs
for both models. In the following we prove NP-completeness for closed TCCs and closed TUCCs on undirected graphs. The
results extend to directed graphs as well thanks to Proposition 1.

Theorem 7. Let G be a (directed) temporal graph, and Y ⊆ V (G). Deciding whether Y is a closed TCC is NP-complete. The same holds
for closed TUCCs.

Proof. We reduce from the problem of deciding whether a subset of vertices X of a given a graph G is a maximal 2-club,
where a 2-club is a set of vertices C such that G[C] has diameter at most 2. This problem has been shown to be NP-
complete in [52]. Let us first focus on the strict model. In this case, given G we can build a temporal graph G with only
two snapshots, both equal to G . Observe that X is a 2-club in G if and only if X is a closed TCC in G . Indeed, because we
can take only one edge in each snapshot and τ = 2, we get that temporal paths will always have length at most 2. This also
extends to closed TUCCs by noting that all paths in G can be temporally traversed in both directions.

In the case of the non-strict model, the situation is more complicated as in each snapshot we can take an arbitrary
number of edges resulting in paths arbitrarily long. We show the construction for closed TCCs in what follows.

As before, we make a reduction from the problem of, given a graph G and X ⊆ V (G), deciding whether X is a maximal
2-club. Observe Fig. 4(d), which is obtained by applying the reduction to the graph in Fig. 4(a). We obtain G from G by
subdividing each edge uv ∈ E(G) twice, creating vertices huv and hvu , with λ(uhuv) = λ(vhvu) = {1, 3, 5}, and λ(huvhvu) =
{2, 4}. Observe that the first vertex in the subscript of hxy tells us which between x and y is adjacent to hxy . Denote by H
the set {huv , hvu | uv ∈ E(G)}. We now prove that X is a maximal 2-club in G if and only if Y = X ∪ NH (X) is a closed TCC
in G . In fact, we prove that:

1. If X ⊆ V (G) is such that G[X] has diameter at most 2, then Y = X ∪ NH (X) is a closed temporal connected set in G; and
2. If Y ⊆ V (G) is a closed temporal connected set, then X = Y ∩ V (G) is such that G[X] has diameter at most 2.

We argue that indeed 1 and 2 above imply what we want, i.e., that X is a maximal 2-club in G if and only if Y =
X ∪ NH (X) is a closed TCC in G . Observe that, supposing that 1 and 2 hold, if X is a maximal 2-club, then Y = X ∪ NH (X)

must be a closed TCC. Indeed, if Y ⊂ Y ′ and Y ′ is a closed connected set (i.e., Y is not maximal), then by 2 we get that
X ′ = Y ′ ∩ V (G) has diameter 2. Since X ′ contains X , this contradicts the choice of X . Conversely, if Y is a closed TCC, then
X must be a maximal 2-club, as otherwise we could apply 1 to get a closed connected set strictly containing Y .

We first prove 1. So, consider X ⊆ V (G) such that G[X] has diameter at most 2, and define Y as above. Let
u, v ∈ Y ∩ V (G). If uv ∈ E(G), then (u, 1, huv , 2, hvu, 3, v) and (v, 1, hvu, 2, huv , 3, u) witness that u reaches v and v
17

I.L. Costa, R. Lopes, A. Marino et al. Journal of Computer and System Sciences 144 (2024) 103548
reaches u in G[Y]. And if uv /∈ E(G), then, since G[X] has diameter 2, let w ∈ N(u) ∩ N(v) in G . We get the paths:
(u, 1, huw , 2, hwu, 3, w, 3, hw v , 4, hv w , 5, v) and (v, 1, hv w , 2, hw v , 3, w, 3, hwu, 4, huw , 5, u). Therefore, u reaches v and v
reaches u in G[Y]. Now, consider u ∈ X ∩ Y and h ∈ H ∩ Y . Let v ∈ X be such that h ∈ N(v) (observe that v is uniquely
defined). If v = u, then u and v are clearly connected, so suppose otherwise. Because X has diameter at most 2, there exists
a u, v-path P in G[X] of length at most 2, say (u, w, v), with possibly w = v . Then either (u, 1, huw , 2, hwu, 3, w, 3, h) is a
temporal u, h-path, in case w = v , or (u, 1, huw , 2, hwu, 3, w, 3, hw v , 4, hv w , 5, v, 5, h) is a temporal u, h-path, in case w �= v .
One can check that the symmetric path between h and u ensures that also h reaches u in G[Y]. Now, let h, h′ ∈ H , and let
u ∈ N(h) ∩ X and v ∈ N(h′) ∩ X . One can observe that a similar argument can be applied, by possibly starting the previous
path with (h, 1, u), in case h = hux for some x not within the u, v-path P taken in G[X].

Now, assume that Y is a closed connected set of G , and consider X = Y ∩ V (G). We want to show that G[X] has diameter
at most 2. Suppose by contradiction that u and v are a distance at least 3 in G[X]. Observe that, since each h ∈ H has degree
exactly 2 in G , we get that every temporal path between vertices of V (G) in G is related to exactly one path of length at
most 2 in G . More formally, if P is a temporal x, y-path in G , with x, y ∈ V (G), then P constrained to V (G) is a x, y-path
in G of length at most 2. Indeed, this occurs because at most two edges between vertices of H can be traversed. We then
get a contradiction as u, v ∈ Y and are at distance at least 3 in G .

Finally, we prove that every closed temporal unilateral connected set is also a closed temporal connected set. Since
the reverse trivially holds, we get that it is also NP-complete to decide whether Y ⊆ V (G) is a closed TUCC. So, consider
Y ⊆ V (G) a closed temporal unilateral connected set, and suppose that x, y ∈ Y are such that x reaches y in G[Y]. Let (x =
x1, t1, x2, . . . , xq, tq, xq+1 = y) be a temporal x, y-path in G[Y]. We argue that P = (y = xq+1, 6 − tq, xq, . . . , x2, 6 − t1, x1 = x)
is a temporal y, x-path in G . For this, observe that if uv is an edge in G and t ∈ λ(uv), then 6 − t ∈ λ(uv). Additionally,
since t1 ≤ t2 ≤ . . . ≤ tq , we have that 6 − tq ≤ 6 − tq−1 ≤ . . . ≤ 6 − t1. It follows that indeed P is a temporal path, as desired.
We then get that every closed temporal unilateral connected set is also a closed temporal connected set, as we wanted to
prove. �
6. Concluding remarks

In this paper, we revisit the notion of connected components in temporal graphs introduced in [12] from the point of
view of parameterized complexity. We then consider unilateral connectivity in temporal graphs, and investigate all related
problems, in both the strict and the non-strict setting, as well as both for directed and undirected temporal graphs, parame-
terizing by the size k of the desired component, the lifetime τ of the considered (directed) temporal graph G , and by k + τ .
We classify all possible entries in Table 1, leaving open just the following questions.

Question 4. Given an undirected temporal graph G , and considering parameterization by k, the size of the searched component, what
is the complexity of deciding the existence of a closed TCC?

Question 5. Given a directed temporal graph G with lifetime 2, and considering parameterization by k, the size of the searched com-
ponent, what is the complexity of deciding the existence of a closed TCC (TUCC)?

We additionally prove a lower bound for testing connectivity, and prove that deciding maximality of closed (unilateral)
connectivity is NP-complete.

CRediT authorship contribution statement

Isnard Lopes Costa: Writing – original draft, Writing – review & editing. Raul Lopes: Writing – original draft, Writing –
review & editing. Andrea Marino: Writing – original draft, Writing – review & editing. Ana Silva: Writing – original draft,
Writing – review & editing.

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential com-
peting interests: Raul Lopes reports financial support was provided by Paris Dauphine University - PSL. Isnard Lopes Costa,
Ana Silva reports financial support was provided by Federal University of Ceara. Andrea Marino reports financial support
was provided by University of Florence.

Data availability

No data was used for the research described in the article.

References

[1] P. Borgnat, E. Fleury, J. Guillaume, C. Magnien, C. Robardet, A. Scherrer, Evolving networks, in: Mining Massive Data Sets for Security, 2007, pp. 198–203.
18

http://refhub.elsevier.com/S0022-0000(24)00043-6/bibD4F0C6BEA5258EA7C55E8BE6B276CB81s1

I.L. Costa, R. Lopes, A. Marino et al. Journal of Computer and System Sciences 144 (2024) 103548
[2] A. Casteigts, P. Flocchini, W. Quattrociocchi, N. Santoro, Time-varying graphs and dynamic networks, Int. J. Parallel Emerg. Distrib. Syst. 27 (2012)
387–408.

[3] M. Latapy, T. Viard, C. Magnien, Stream graphs and link streams for the modeling of interactions over time, Soc. Netw. Anal. Min. 8 (2018) 1–29.
[4] O. Michail, An introduction to temporal graphs: an algorithmic perspective, Internet Math. 12 (2016) 239–280.
[5] D. Kempe, J.M. Kleinberg, A. Kumar, Connectivity and inference problems for temporal networks, J. Comput. Syst. Sci. 64 (2002) 820–842.
[6] P. Zschoche, T. Fluschnik, H. Molter, R. Niedermeier, The complexity of finding small separators in temporal graphs, J. Comput. Syst. Sci. 107 (2020)

72–92.
[7] V. Nicosia, J. Tang, M. Musolesi, G. Russo, C. Mascolo, V. Latora, Components in time-varying graphs, Chaos, Interdiscip. J. Nonlinear Sci. 22 (2012)

023101.
[8] A. Casteigts, A.-S. Himmel, H. Molter, P. Zschoche, Finding temporal paths under waiting time constraints, Algorithmica 83 (2021) 2754–2802.
[9] J.A. Enright, K. Meeks, H. Molter, Counting temporal paths, in: P. Berenbrink, P. Bouyer, A. Dawar, M.M. Kanté (Eds.), 40th International Symposium on

Theoretical Aspects of Computer Science, STACS 2023, Hamburg, Germany, March 7–9, 2023, in: LIPIcs, vol. 254, Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2023, 30.

[10] R. Haag, H. Molter, R. Niedermeier, M. Renken, Feedback edge sets in temporal graphs, Discrete Appl. Math. 307 (2022) 65–78.
[11] M. Rymar, H. Molter, A. Nichterlein, R. Niedermeier, Towards classifying the polynomial-time solvability of temporal betweenness centrality, J. Graph

Algorithms Appl. 27 (2023) 173–194, https://doi .org /10 .7155 /jgaa .00619.
[12] S. Bhadra, A. Ferreira, Complexity of connected components in evolving graphs and the computation of multicast trees in dynamic networks, in: Ad-

Hoc, Mobile, and Wireless Networks, Second International Conference, ADHOC-NOW 2003 Montreal, Canada, October 8-10, 2003, Proceedings, 2003,
pp. 259–270.

[13] E. Arjomandi, On finding all unilaterally connected components of a digraph, Inf. Process. Lett. 5 (1976) 8–10.
[14] A.B. Borodin, I. Munro, Notes on efficient and optimal algorithms, Technical Report, U. of Toronto and U. of Waterloo, Canada, 1972.
[15] R.G. Downey, M.R. Fellows, Fixed-parameter tractability and completeness II: on completeness for w [1], Theor. Comput. Sci. 141 (1995) 109–131.
[16] A. Casteigts, Finding structure in dynamic networks, arXiv preprint, arXiv:1807.07801, 2018.
[17] A. Casteigts, T. Corsini, W. Sarkar, Invited paper: simple, strict, proper, happy: a study of reachability in temporal graphs, in: S. Devismes, F. Petit, K.

Altisen, G.A.D. Luna, A.F. Anta (Eds.), Stabilization, Safety, and Security of Distributed Systems - 24th International Symposium, SSS 2022, Clermont-
Ferrand, France, November 15-17, 2022, Proceedings, in: Lecture Notes in Computer Science, vol. 13751, Springer, 2022, pp. 3–18.

[18] M. Calamai, P. Crescenzi, A. Marino, On computing the diameter of (weighted) link streams, ACM J. Exp. Algorithmics 27 (2022) 4.3:1–4.3:28.
[19] H. Wu, J. Cheng, S. Huang, Y. Ke, Y. Lu, Y. Xu, Path problems in temporal graphs, Proc. VLDB Endow. 7 (2014) 721–732.
[20] J. Hopcroft, R. Tarjan, Algorithm 447: efficient algorithms for graph manipulation, Commun. ACM 16 (1973) 372–378.
[21] E.L. Lawler, J.K. Lenstra, A. Rinnooy Kan, Generating all maximal independent sets: NP-hardness and polynomial-time algorithms, SIAM J. Comput. 9

(1980) 558–565.
[22] A. Conte, R. Grossi, A. Marino, L. Versari, Listing maximal subgraphs satisfying strongly accessible properties, SIAM J. Discrete Math. 33 (2019) 587–613.
[23] C. Bron, J. Kerbosch, Algorithm 457: finding all cliques of an undirected graph, Commun. ACM 16 (1973) 575–577.
[24] J.D. Eblen, C.A. Phillips, G.L. Rogers, M.A. Langston, The maximum clique enumeration problem: algorithms, applications, and implementations, in: BMC

Bioinformatics, vol. 13, Springer, 2012, pp. 1–11.
[25] D. Avis, K. Fukuda, Reverse search for enumeration, Discrete Appl. Math. 65 (1996) 21–46.
[26] A. Conte, R. Grossi, M.M. Kanté, A. Marino, T. Uno, K. Wasa, Listing induced Steiner subgraphs as a compact way to discover Steiner trees in graphs, in:

MFCS, in: LIPIcs, vol. 138, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, 73.
[27] M.M. Kanté, V. Limouzy, A. Mary, L. Nourine, T. Uno, A polynomial delay algorithm for enumerating minimal dominating sets in chordal graphs, in:

International Workshop on Graph-Theoretic Concepts in Computer Science, Springer, 2015, pp. 138–153.
[28] S. Balev, Y. Pigné, E. Sanlaville, J. Schoeters, Temporally connected components, Technical Report hal-03966327, Normandie Univ, UNIHAVRE, LITIS, 2023.
[29] R. Impagliazzo, R. Paturi, On the complexity of k-SAT, J. Comput. Syst. Sci. 62 (2001) 367–375.
[30] A. Jarry, Z. Lotker, Connectivity in evolving graph with geometric properties, in: Proceedings of the 2004 Joint Workshop on Foundations of Mobile

Computing, 2004, pp. 24–30.
[31] J. Moon, L. Moser, On cliques in graphs, Isr. J. Math. 3 (1965) 23–28, https://doi .org /10 .1007 /BF02760024.
[32] R. Becker, A. Casteigts, P. Crescenzi, B. Kodric, M. Renken, M. Raskin, V. Zamaraev, Giant components in random temporal graphs, in: N. Megow, A.D.

Smith (Eds.), Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2023, September 11-13,
2023, Atlanta, Georgia, USA, in: LIPIcs, vol. 275, Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2023, 29.

[33] A. Casteigts, M. Raskin, M. Renken, V. Zamaraev, Sharp thresholds in random simple temporal graphs, in: FOCS, IEEE, 2021, pp. 319–326.
[34] V. Nicosia, J. Tang, C. Mascolo, M. Musolesi, G. Russo, V. Latora, Graph metrics for temporal networks, in: Temporal Networks, Springer, 2013, pp. 15–40.
[35] C. Gómez-Calzado, A. Casteigts, A. Lafuente, M. Larrea, A connectivity model for agreement in dynamic systems, in: European Conference on Parallel

Processing, Springer, 2015, pp. 333–345.
[36] M. Vernet, Y. Pigné, E. Sanlaville, A study of connectivity on dynamic graphs: computing persistent connected components, 4OR 21 (2023) 205–233,

https://doi .org /10 .1007 /s10288 -022 -00507 -3.
[37] E.C. Akrida, P.G. Spirakis, On verifying and maintaining connectivity of interval temporal networks, Parallel Process. Lett. 29 (2019) 1950009.
[38] V. Levorato, C. Petermann, Detection of communities in directed networks based on strongly p-connected components, in: 2011 International Confer-

ence on Computational Aspects of Social Networks (CASoN), IEEE, 2011, pp. 211–216.
[39] R. Sedgewick, K. Wayne, Algorithms: Part I, Addison-Wesley Professional, 2014.
[40] G.A. Cheston, A correction to a unilaterally connected components algorithm, Inf. Process. Lett. 7 (1978) 125, https://doi .org /10 .1016 /0020 -0190(78)

90058 -3.
[41] J. Bang-Jensen, G.Z. Gutin, Digraphs: Theory, Algorithms and Applications, Springer Science & Business Media, 2008.
[42] T. Mchedlidze, A. Symvonis, Unilateral orientation of mixed graphs, in: International Conference on Current Trends in Theory and Practice of Computer

Science, Springer, 2010, pp. 588–599.
[43] J.F. Fink, L. Lesniak-Foster, Graphs for which every unilateral orientation is traceable, Ars Comb. 9 (1980) 113–118.
[44] D.B. West, et al., Introduction to Graph Theory, vol. 2, Prentice Hall, Upper Saddle River, 2001.
[45] M. Cygan, F.V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk, S. Saurabh, Parameterized Algorithms, Springer, 2015.
[46] R.G. Downey, M.R. Fellows, Fundamentals of Parameterized Complexity, Texts in Computer Science, Springer, 2013.
[47] R. Peeters, The maximum edge biclique problem is np-complete, Discrete Appl. Math. 131 (2003) 651–654, https://doi .org /10 .1016 /S0166 -218X(03)

00333 -0, https://www.sciencedirect .com /science /article /pii /S0166218X03003330.
[48] M. Yannakakis, Computing the minimum fill-in is np-complete, SIAM J. Algebraic Discrete Methods 2 (1981) 77–79.
[49] M. Borassi, P. Crescenzi, M. Habib, Into the square: on the complexity of some quadratic-time solvable problems, in: ICTCS, in: Electronic Notes in

Theoretical Computer Science, vol. 322, Elsevier, 2015, pp. 51–67.
[50] M. Pătraşcu, R. Williams, On the possibility of faster SAT algorithms, in: Proceedings of the Twenty-First Annual ACM-SIAM Symposium on Discrete

Algorithms, SIAM, 2010, pp. 1065–1075.
19

http://refhub.elsevier.com/S0022-0000(24)00043-6/bibC6B11FE451CFC827CD92CBD03E6D6D3Cs1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bibC6B11FE451CFC827CD92CBD03E6D6D3Cs1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bibD1BA1278C445F217C868B6A559F0EE4Bs1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bib5D9642022ECDD2F8382586602986DCD9s1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bib44C29429D50FFFA145CFC2DD0746EDA0s1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bib272D4B7C0F31748309C7EBDA672956E7s1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bib272D4B7C0F31748309C7EBDA672956E7s1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bib7143245A9EAF8F6CA5A77C0424C4AB62s1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bib7143245A9EAF8F6CA5A77C0424C4AB62s1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bibB9C96182B9DE49CF22BA17E4720E5B39s1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bibE070435966B436EA0EE364303704A5FDs1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bibE070435966B436EA0EE364303704A5FDs1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bibE070435966B436EA0EE364303704A5FDs1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bib447CA7049DF38F4D16E072F46AC27E64s1
https://doi.org/10.7155/jgaa.00619
http://refhub.elsevier.com/S0022-0000(24)00043-6/bib94B85AE7CFF54BDA3D169B728063C5F6s1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bib94B85AE7CFF54BDA3D169B728063C5F6s1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bib94B85AE7CFF54BDA3D169B728063C5F6s1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bib5D11391DE8CE034A59DEF5AFF2B1FF29s1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bib10815FF005C232A4DE109611CE540396s1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bibAF4A41277C0035606DD2BB424DE9706Fs1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bibF298A391A0027B3D0C059D91D1CB305Cs1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bibC56B7FFB763EA2B68962E2BF6628701Ds1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bibC56B7FFB763EA2B68962E2BF6628701Ds1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bibC56B7FFB763EA2B68962E2BF6628701Ds1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bibEBB17F2C361A5FABCEA9E202508DB5A1s1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bib65891018E16DD537E0F736F40A942F17s1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bibF7113A78D17C94A1F4E40A5FCED0C9AAs1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bib35989D321E71400965D7F73424F0D512s1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bib35989D321E71400965D7F73424F0D512s1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bibCE4D1A87A30F0C562A6F29F26BC6E0B7s1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bibC3BAD82EECC7704B2890E3BB08BA1F0Cs1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bib5897006A4232F6FC2C0041AD2FCF9788s1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bib5897006A4232F6FC2C0041AD2FCF9788s1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bibA690B70EAC82BB6EF7BCA04D2694F5E4s1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bibB42646A0D1BE92F0CC24DF47413F4C85s1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bibB42646A0D1BE92F0CC24DF47413F4C85s1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bib250B9B04A7316892181F5896FB8E758Es1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bib250B9B04A7316892181F5896FB8E758Es1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bib16D26EC7CD650899CC6E1CF43FB42EC3s1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bib6575171A1FF3CF188DACEFF3EF21FA88s1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bib6FE3D95F5F3BF371C80096285281B822s1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bib6FE3D95F5F3BF371C80096285281B822s1
https://doi.org/10.1007/BF02760024
http://refhub.elsevier.com/S0022-0000(24)00043-6/bibE6F9A0781FA8439278A301E11AE323F2s1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bibE6F9A0781FA8439278A301E11AE323F2s1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bibE6F9A0781FA8439278A301E11AE323F2s1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bib172ACADA4ADF3C0416552F81B55E00DEs1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bib5EA600671D7EC9AF22CDBE734D2D598Bs1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bib95A8A0EFFA9C0CA4BD8555B1F34D22CCs1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bib95A8A0EFFA9C0CA4BD8555B1F34D22CCs1
https://doi.org/10.1007/s10288-022-00507-3
http://refhub.elsevier.com/S0022-0000(24)00043-6/bib50891661762E9BA682249E86BF8986EDs1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bib8E67D84E06B15AAFF17E83ABC3781188s1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bib8E67D84E06B15AAFF17E83ABC3781188s1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bibB126E7D3CFB01D1598A1486F0A21AA08s1
https://doi.org/10.1016/0020-0190(78)90058-3
https://doi.org/10.1016/0020-0190(78)90058-3
http://refhub.elsevier.com/S0022-0000(24)00043-6/bib4A152FD000C3056FBE92812559E667B2s1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bib88DED8D202C72454B18FF584057A68DEs1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bib88DED8D202C72454B18FF584057A68DEs1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bibF10D4DDE433F844343019348FBEFB67Es1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bibF04C03E26508F5879F12FB3788DA8929s1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bib3D93D88A4AB91CB1B59B325D0E54400Bs1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bib99E3533598EBAEE87CB864E363414AE1s1
https://doi.org/10.1016/S0166-218X(03)00333-0
https://doi.org/10.1016/S0166-218X(03)00333-0
https://www.sciencedirect.com/science/article/pii/S0166218X03003330
http://refhub.elsevier.com/S0022-0000(24)00043-6/bibEFC150995AA08D2D82EB895FA971C0C5s1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bibFA831FC8ADFCC31A834CE7A1F4DEB331s1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bibFA831FC8ADFCC31A834CE7A1F4DEB331s1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bib7317A01BAFDAF530D41DA53CF2DAAFC8s1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bib7317A01BAFDAF530D41DA53CF2DAAFC8s1

I.L. Costa, R. Lopes, A. Marino et al. Journal of Computer and System Sciences 144 (2024) 103548
[51] V.V. Williams, R. Williams, Subcubic equivalences between path, matrix and triangle problems, in: 2010 IEEE 51st Annual Symposium on Foundations
of Computer Science, IEEE, 2010, pp. 645–654.

[52] F.M. Pajouh, B. Balasundaram, On inclusionwise maximal and maximum cardinality k-clubs in graphs, Discrete Optim. 9 (2012) 84–97.
20

http://refhub.elsevier.com/S0022-0000(24)00043-6/bibB962CF13B1675EEB8E71ACF52D3FADD4s1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bibB962CF13B1675EEB8E71ACF52D3FADD4s1
http://refhub.elsevier.com/S0022-0000(24)00043-6/bibABCD22BC713824E178E9891409FEBEDCs1

	On computing large temporal (unilateral) connected components
	1 Introduction
	2 Preliminaries
	2.1 Static graphs
	2.2 Parameterized complexity
	2.3 Temporal graphs, paths and components

	3 Parameterized complexity results
	3.1 Parameterization by τ
	3.2 W [1]-hardness by k
	3.3 FPT algorithms

	4 Checking connectivity
	5 Checking maximality
	6 Concluding remarks
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References

