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A B S T R A C T   

Over the last decades, maintenance has experienced a transition from being a necessary evil to being a pivotal 
resource to create value for enterprises. Within the process of maintenance planning, distinct decisions could be 
responsible for different outcomes concerning profit and equipment reliability. Consequently, maintenance 
optimization has become pivotal to achieving relevant business goals. One of the most popular approaches to 
conduct maintenance optimization is simulation-based optimization, especially Discrete-Event Simulation (DES). 
Most works related to DES for maintenance optimization purposes focus on modeling imperfect maintenance or 
imperfect inspection and prognosis, while failures are often generated through a Weibull distribution. However, 
failure strongly depends on the production rate or the stress level, defining a Dynamic Non-Homogeneous 
Poisson Process (DNHPP). To this end, this paper proposes an algorithm for scheduling such DNHPP failure 
events in a DES framework model and, as a first implementation to apply it, an open-access library capable of 
generating stress level-dependent failures within the Rockwell ARENA© simulation environment. The developed 
package, that in the future will be ported to other relevant off-the-shelf simulation environments, provides a 
more realistic tool for maintenance engineers and researchers to optimize or compare maintenance strategies 
from an economic perspective.   

1. Introduction 

The importance of implementing a proper maintenance policy has 
progressively cleared up, due to the rise in availability requirements 
(Alabdulkarim et al., 2013). This has led to the development of several 
Preventive Maintenance (PM) policies, including Condition-Based 
Maintenance (CBM) (Florian et al., 2021; Havinga and de Jonge, 
2020) and Total Productive Maintenance (Hung et al., 2022). CBM in-
volves monitoring one or more degradation parameters, when a given 
threshold is reached, a maintenance task is scheduled. On the other 
hand, TPM is a holistic strategy that aims at pursuing the highest 
operational efficiency by involving the machine operators. This trend is 
also facilitated by the advances in technology, which are pivotal to 
improve the maintenance policies (Saihi et al., 2022). Any PM strategy 
may be described as a series of decisions that influence both operation 
cost and asset availability. Indeed, an appropriate maintenance strategy 
is fundamental to assure good working conditions, but it could result in 
high expenses (Peng et al., 2022). Accordingly, the adoption of distinct 
maintenance policies could lead to different profits and costs for the 

companies. As a result, there is an ongoing effort to optimize mainte-
nance plans (Dursun et al., 2022; Mena et al., 2021). 

Among the optimization approaches, there are some analytical 
models that can be adopted, however they conceal some limitations due 
to their assumptions, which could make the analytical models ineffec-
tive for real problems (Omoleye et al., 2019). As a result, Artificial In-
telligence (AI) and simulation approaches have gained popularity for 
optimization purposes (Sharma et al., 2011). Simulation models require 
fewer assumptions compared to analytical model, allowing the model-
ling of more complex systems (Marsaro and Cavalcante, 2017). Thus, 
there is a great deal of research focused on maintenance 
simulation-based optimization (Davari et al., 2022; Nili et al., 2021). 

Different simulation techniques such as agent-based simulation, 
system dynamics, and numerical approaches to solve an analytical 
problem could be adopted to model machinery degradation. Among 
these techniques, Discrete-Event Simulation (DES) is the most common 
employed (Alrabghi and Tiwari, 2015). Indeed, DES is very popular for 
modeling manufacturing environments with a general-purpose 
approach (Alrabghi and Tiwari, 2013). Within the context of DES for 
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maintenance applications, there are two main simulation tools: General 
Purpose Tools (GPTs) and Special Purpose Tools (SPTs). GPTs encom-
pass simulation software that is not specifically designed for mainte-
nance purposes, whereas SPTs are exclusively dedicated to maintenance 
simulation. SPTs have great potential and capabilities in modeling the 
downtime related to failures and failure generation. However, they 
usually neglect logistical and production factors. Conversely, GPTs are 
more flexible and could integrate logistics, production, and resource 
availability, but they have greater limitations for downtime and failure 
modeling. Accordingly, GPTs are generally preferable when there is the 
need to consider production aspects or spare part replenishment. 

Considering DES, the machine failures are usually scheduled using 
an a-priori probability distribution (e.g., exponential or Weibull) based 
on the machine’s operating state at the time of failure scheduling. 
However, the state of a real system could change over time, possibly 
leading to a change in the failure parameters. The former failure 
behavior is often referred to production-dependent or operation- 
dependent since it is strongly related to the production (or operation) 
condition (e.g., production rate). Accordingly, when the machine’s state 
changes before a failure occurrence, the failure should be rescheduled. 
Failure rescheduling is a complex task, which is not generally considered 
within a DES environment. The inability to properly represent 
production-dependent failure behavior leads to less realistic models. 
Moreover, despite its significance, little interest has been devoted to 
production-dependent failures in a DES environment. Including such 
dependencies enables the simulation model to capture more realistic 
information about the occurrence of failures. This, in turns, brings 
simulation-based inferences about economic and operational perfor-
mance closer to the actual behavior of the system, allowing to under-
stand its sensitivity to the operating conditions and maintenance 
philosophies employed. To this end, this paper aims at developing an 
algorithm capable of re-scheduling the failure as soon as a change of the 
operation state is observed. Additionally, an open-access library to 
implement production dependent failure generation within one of the 
most popular GPT environment. This choice is made to enable the 
consideration of other aspects during the simulation. 

The remainder of this paper is organized as follows. Section 2 pre-
sents the literature review with a particular focus on the adopted failure 
distributions and simulation tools. Section 3 gives an overlook of the 
concepts behind the model with a discussion on Weibull distribution and 
production-dependent failure rate. Section 4 describes the algorithm to 
generate failures and reschedule them based on a stress-level dependent 
failure rate. In Section 5, two practical applications and a numerical case 
study are presented. Finally, Section 6 presents the discussion, while 
Section 7 reports the conclusions along with limitations and possible 
future developments. 

2. Background 

This paper contributes to proposing a framework capable of dealing 
with production-dependent failure generation in a DES environment, 
while allowing the possibility to include imperfect maintenance. To ease 
the transition from theory to practice, an open-access library has been 
developed as well for one of the most common DES tools. In Section 2.1, 
a brief overview of recent papers on maintenance optimization and 
planning through DES is presented with a specific focus on the consid-
ered maintenance policy and simulation software. In Section 2.2, a 
summary of the considered failure generation for modelling mainte-
nance activities in a DES environment is presented, along with the 
research gap and aim of the present paper. 

Thanks to its advantages and strengths, DES has attracted significant 
attention during the past years. Table 1 reports a summary of papers 
between 2016 and early 2023 found through Scopus and Google 
Scholar, considering keywords such as “discrete event simulation”, 
“discrete-event simulation”, “maintenance”, and “optim*”, which could 
stand for optimization, optimization, and optimal. For each considered 

Table 1 
Considered papers and their related simulation tool and failure generation.  

Failure generation Reference Year Journal Simulation 
tool 

Weibull; 
General and 
generalized 
renewal process; 
NHPP 

Velasquez 
et al. 

2023 Sustainability ARENA 

Blas et al. 2023 JART DEVSJAVA 
Savolainen 
and Urbani 

2021 JIM Python 

Azevedo 
et al. 

2020 AMM – 

Golbasi and 
Turan 

2020 CAIE ARENA 

Ugurlu et al. 2020 EJPI ARENA 
Wakiru et al. 2020 RESS ARENA 
Turan and 
Golbasi 

2019 ISMPES ARENA 

Goti et al. 2019 AS – 
Tan et al. 2019 IOP conference 

series 
WITNESS 

Alqahtani 
et al. 

2019 IJPE ARENA 

Wang and 
Djurdjanovic 

2018 Machines – 

de Santana 
et al. 

2018 MAR – 

Wakiru et al. 2018 Procedia CIRP ARENA 
Alrabghi 
et al. 

2017 JMS WITNESS 

Alqahtani 
and Gupta 

2017a JMSE ARENA 

Alqahtani 
and Gupta 

2017b JIEM ARENA 

Alrabghi and 
Tiwari 

2016 RESS WITNESS 

Exponential Mwanza et al. 2023 Modelling Python 
Davari et al. 2022 JS ARENA 
Cacereño 
et al. 

2021 Mathematics – 

Orlov et al. 2021 AS CPN Tools 
Alrabghi 2020 JQME Simio 
Turan et al. 2020 RESS Python 
Golbasi and 
Turan 

2020 CAIE ARENA 

Linnéusson 
et al. 

2020 EJOR FACTS 
Analyzer 

Turan and 
Golbasi 

2019 ISMPES ARENA 

Wakiru et al. 2018 Procedia CIRP ARENA 
Alrabghi and 
Tiwari 

2016 RESS WITNESS 

Gamma Alrabghi 2020 JQME Simio 
Omoleye 
et al. 

2019 JS ARENA 

Alrabghi 
et al. 

2017 JMS WITNESS 

Degradation 
model based on 
number of 
produced items 

Bouslah et al. 2018 IJPE C++ and 
ARENA 

Bouslah et al. 2016a Omega C++ and 
ARENA 

Bouslah et al. 2016b IJPE C++ and 
ARENA 

Other (e.g., beta, 
normal, 
lognormal 
different mean 
TTFs, or not 
clearly 
specified) 

Assid et al. 2023 CAIE ARENA 
Fauadi et al. 2022 Journal of 

advanced 
manufacturing 
and technology 

Anylogic 

Akl et al. 2022 RESS Python 
Meissner 
et al. 

2021 RESS PreMade 

Orlov et al. 2021 AS CPN Tools 
Darmawan 
and Sheu 

2021 PMR Flexsim 

Triska et al. 2021 IFAC R – Simmer 
package 

Aliunir et al. 2020 JNCRS Simevents 

(continued on next page) 
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paper, Table 1 lists the journal, the year, the adopted simulation tool, 
and the Time To Failure (TTF) distribution. Since a study could adopt 
different failure generations (e.g., Weibull and exponential), the same 
study could fall in multiple categories. The following journals are 
identified through acronyms in Table 1: International Journal of Pro-
duction Economics (IJPE), Reliability Engineering & System Safety 
(RESS), Journal of Intelligent Manufacturing (JIM), Applied Sciences 
(AS), Production & Manufacturing Research (PMR), Journal of Quality 
in Maintenance Engineering (JQME), Applied Mathematical Modelling 
(AMM), Computers & Industrial Engineering (CAIE), European Journal 
of Operational Research (EJOR), Engineering Assets and Public In-
frastructures in the Age of Digitalization (EJPI), Journal of Simulation 
(JS), Journal of Manufacturing Systems (JMS), International Sympo-
sium on Mine Planning & Equipment Selection (ISMPES), Maintenance 
& Reliability (MAR), Joint Journal of Novel Carbon Resource Sciences & 
Green Asia Strategy (JNCRS), Journal of Management Science and En-
gineering (JMSE), Journal of Industrial Engineering and Management 
(JIEM), Journal of Applied Research and Technology (JART), Discrete 
Event Dynamic System (DEDS). 

2.1. Maintenance policy and simulation software 

First, PM and CBM are the most analyzed maintenance policies. 
Additionally, opportunistic maintenance, which was considered in many 
works (Alrabghi, 2020; Alrabghi et al., 2017; Alrabghi and Tiwari, 2016; 
Golbasi and Turan, 2020; Turan and Golbasi, 2019), has gained atten-
tion. As a matter of fact, time-based PM remains one of the most com-
mon maintenance strategies due to its simplicity and management with 
spare part replenishment. Furthermore, CBM has witnessed increase in 
popularity thanks to the advancements in software and data capabilities. 
However, the selection of the most suitable maintenance strategy 
heavily relies on factors such as the kind of failure, the available data, 
the ability to monitor an equipment, and the organizational needs. Thus, 
the present paper focuses on a generic algorithm that can be adopted for 
planning or optimizing any maintenance policy under the assumption 
that the failure or degradation could be modelled as a Weibull distri-
bution with parameters that depend on the operating condition. 

As shown in Table 1, most of the works adopted GPTs, with Rockwell 
ARENA© being the most commonly employed tool in fifteen papers 
(Bouslah et al., 2016a, 2016b, 2018; Alqahtani and Gupta, 2017a, 
2017b; Omoleye et al., 2019, Alqahtani et al., 2019; Turan and Golbasi, 
2019; Golbasi and Turan, 2020; Ugurlu et al., 2020; Wakiru et al., 2018, 
2020; Davari et al., 2022; Assid et al., 2023; Velasquez et al., 2023). 
WITNESS seems to be another common software used for simulation 
purposes with three studies that employed it (Alrabghi and Tiwari, 
2016; Alrabghi et al., 2017; Tan et al., 2019), while Flexsim was used in 
two papers (Darmawan and Sheu, 2021; Lahiani et al., 2016). Other 
adopted tools are DEVSJAVA (Blas et al., 2023), FACTS Analyzer 
(Linnéusson et al., 2020), Python (Mwanza et al., 2023), and R- Simmer 
package (Triska et al., 2021). This finding is aligned with the one re-
ported by Dias et al. (2016), who identified Rockwell ARENA® as the 
most popular DES tool. Accordingly, this study selected Rockwell 
ARENA® as the simulation environment. 

It is worth noting that many papers address relevant concepts such as 
imperfect maintenance (Azevedo et al., 2020; Wakiru et al., 2020; Goti 
et al., 2019; Alqahtani et al., 2019; Wang and Djurdjanovic, 2018; de 
Santana et al., 2018; Wakiru et al., 2018; Alqahtani and Gupta, 2017a; 
Alqahtani and Gupta, 2017b; Bouslah et al., 2016a) or joint optimization 
of spare part management (Turan et al., 2020; Aliunir et al., 2020) or 
workforce (Akl et al., 2022). Other papers are also incorporating 
agent-based (Fauadi et al., 2022), continuous simulation (Assid et al., 
2023), or system dynamics (Savolainen and Urbani, 2021). These topics 
are really relevant for enhancing DES modelling by incorporating more 
realistic aspects. Indeed, maintenance or repair activities could not be 
able to completely restore the life of a given equipment. In this case, the 
maintenance is addressed as imperfect. Moreover, maintenance opti-
mization could be particularly effective just for the management of 
maintenance activities. However, all the real industrial environments 
are complex systems, thus, the optimization of one process could 
negatively influence the others. Accordingly, including other factors in 
the optimization such as spare part management could be useful to 
obtain overall more profitable operations. According to the previous 
considerations, the possibility of specifying imperfect maintenance is 
considered in the developed algorithm. Moreover, since the algorithm is 
developed in a DES environment, it provides high flexibility for incor-
porating maintenance planning with other industrial aspects. 

2.2. Failure generation 

Given the relevance of the topic, researchers have focused on 
developing frameworks that can account for operation-dependent or 
production-dependent failures outside the field of GPT for DES (Colle-
dani and Tolio, 2011; Colledani and Tolio, 2012; Martinelli and Piedi-
monte, 2008; Ouaret et al., 2017; Zied et al., 2011; Celen and 
Djurdjanovic, 2012; uit het Broek et al., 2021). This includes approaches 
like Markov modeling. However, as indicated by Table 1, limited 
attention has been given to production-dependent failures within the 
context of DES. Most of works consider classic failure distributions and 
particularly exponential, Weibull, and NHPP or Generalized Renewal 
Process. These distributions are common and appropriate for modelling 
various failure behaviors. Specifically, the exponential distribution is 
very common for electric devices characterized by random failures. 
However, it could also be used for other devices like pumps such as in 
Cacereño et al., 2021. On the other hand, the Weibull distribution could 
model wear-in failures of mechanical components, which are charac-
terized by an increasing failure rate during the last part of their lives. In 
the work by Orlov et al. (2021), the authors also adopted a normal 
distribution. Indeed, even though normal distribution is usually 
considered for maintenance or repair activities, it could also be a proper 
distribution to model complex system whose failure depends upon many 
components. Finally, the gamma distribution is usually adopted to 
model the degradation within CBM framework (Alrabghi, 2020; Omo-
leye et al., 2019). It is worth mentioning that Goti et al. (2019) adopted 
the concept of a Weibull distribution that changes when a certain 
deterioration level is reached. This aligns with equipment that experi-
ences a rapid increase in the failure rate in the last part of its life. 
Similarly, Wakiru et al. (2020) employed an impact rate to reduce the 
TTFs of different units as soon as a given deterioration of the lubricant is 
reached, denoting a state-rate interaction. The concept of 
production-dependent failure or stress-dependent failure or 
operation-dependent failure is usually associated with equipment whose 
deterioration process is influenced by the production rate or the type of 
operation that the equipment is performing. In real life, the majority of 
devices exhibit operation-dependent failure behavior. However, 
modelling such failures is much harder compared to classic 
time-dependent failures (Ait-El-Cadi et al., 2021). Accordingly, 
including production-dependent failure rate is a major challenge, and 
neglecting them is a limits the realism of the models. 

A popular option to address the production-dependent condition in a 

Table 1 (continued ) 

Failure generation Reference Year Journal Simulation 
tool 

Golbasi and 
Turan 

2020 CAIE ARENA 

Omoleye 
et al. 

2019 JS ARENA 

Turan and 
Golbasi 

2019 ISMPES ARENA 

Alrabghi 
et al. 

2017 JMS WITNESS 

Lahiani et al. 2016 IFAC Flexsim  
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DES environment is linking the age of the machine to the number of 
parts produced (see sixth column of Table 1). Examples are Bouslah et al. 
(2016a, 2016b), and Bouslah et al. (2018). Specifically, the authors of 
the previous works developed through ARENA a machine’s degradation 
based on the cumulative number of items produced. In other words, a 
higher productivity leads to more frequent failures. However, only the 
age of the machine varies based on productivity or the cumulative 
number of items produced, while the parameters characterizing the 
failure generation (e.g., shape and scale of a Weibull distribution) 
remain unchanged over time based on the production rate. In Bouslah 
et al. (2018), the concept of quality-dependent failure has also been 
introduced. In another interesting work by Meissner et al. (2021), a 
prescriptive maintenance for aircraft tires is proposed. The degradation 
of the tires is modelled through a degradation module which considers 
the assumed ambient conditions to define the health increment. 
Accordingly, the degradation of a given tire gradually increases. As a 
matter of fact, the degradation models allow to consider future condi-
tions and schedule maintenance in case a given threshold is reached. 
Nevertheless, a reliability model would allow to extend the analysis to 
system or equipment which are not characterized by degradation 
parameters. 

Based on the highlighted gaps and previous considerations, the main 
objective of this paper is to develop an algorithm capable of generating 
production-dependent failure in a DES environment, considering a 
reliability modelling. Moreover, the failure generation is characterized 
by parameters that vary according to the production state (e.g., pro-
ductivity, worked items). Considering such a generation will allow to 
model a failure behavior that depends on both the time and the history 
of the operational state (i.e., the consumed life up to the state change). 
Thus, at a given time, the failure rate and the probability of failure are 
influenced by both time and operation-degradation history. To address 
such failures, the developed algorithm schedules and reschedules failure 
events as soon as a change in the production or operating condition 
occurs. Additionally, this work aims to build an open-access software 
library for DES commercial tools, capable of generating the aforemen-
tioned failure distributions. The developed library can also include 
imperfect maintenance condition. Based on the previous considerations, 
it is possible to state that the developed algorithm and library could be 
used to perform more realistic sensitivity or optimization analysis, 
enabling improved economic or availability-related decision-making 
process. It is worth pointing out that production-dependent or 
operation-dependent or stress-dependent failures will also be addressed 
as Dynamic Non-Homogenous Poisson Process (DNHPP), which is 
extensively described in Section 3.2. Although the algorithm is of gen-
eral applicability in DES modeling, the software library was specifically 
developed for the Rockwell ARENA © environment, which is the most 
popular DES tool used in the industry (Dias et al., 2016). Rockwell 
ARENA © can generate failures based on a binary failure rate (i.e., an 
operating state and a stand-by state characterized by the absence of 
failures), however, there is no possibility to define multiple Weibull 
distributions related to distinct stress levels. At best, life-consuming can 
be tied to a resource state. Nevertheless, when failure occurs, the 
downtime can only be modelled as an independent probability distri-
bution and is not easily bound to a logistic process, producing delays and 
waiting times due systems’ state, the resource availability (both active 
resources like maintenance operators and spare parts) or external fac-
tors. To the best of the authors’ knowledge, no one has attempted to 
create such a library for public use. 

3. Conceptualization of the model 

3.1. Stress level dependent failure rate 

Any asset’s behavior can be characterized by a specific lifetime dis-
tribution, which depends on several factors such as aging or environ-
mental agents. In reliability analysis, the Weibull distribution is widely 

used for modelling lifetime data (T. Zhang and Xie, 2007). Indeed, in 
many reliability applications, the failure rate is considered following the 
so-named bath-tub curve (Jiang, 2013), and the Weibull distribution has 
proven itself as really flexible in modeling all its three sections (Xie and 
Lai, 1996). 

The failure behavior of a given asset is strongly influenced by the 
production parameters, including throughput, working cycle, speed, and 
power usage. As a matter of fact, the reliability of certain machines could 
depend on how they are used (Francie et al., 2014). In other words, 
changes in production parameters lead to changes in failure parameters. 
Accordingly, assuming constant failure parameters oversimplifies the 
problem. Let u = (1,…,m) be a vector defining a discretization of pro-
duction rates or states (i.e., stress levels). Accordingly, the Weibull 
Probability Density Function (PDF) for a given state k is given by Eq. (1). 
This equation is a practical extension of the typical three-parameters 

Weibull distribution, expressed as f(t) = β
η

(
max{t− γ,0}

η

)β− 1
e− (

max{t− γ,0}
η )

β 

(Wais, 2017). 

f (t, k) =
βk

ηk

(
max{t − γk, 0}

ηk

)βk − 1

e
−

(
max{t− γk ,0}

ηk

)βk

1≤ k ≤ m (1)  

Where βk, ηk, and γk denote respectively the shape, the scale, and the 
location parameters related to the k-th stress level. Considering a single 
stress level, the reliability distribution can be expressed as shown in Eq. 
(2). 

R(t, k)= e
−

(
tmax{t− γk ,0}

ηk

)βk

(2) 

However, when the stress level varies in time, the reliability could 
not be calculated based on Eq. (2), but it should take into account the 
different visited states and the period of time spent in each state. 

3.2. Dynamic Non-Homogenous Poisson Process 

The failure process is a stochastic point process since its realizations 
are point events in time (i.e., the failures). When times between two 
consecutive failures are independent and identically distributed, the 
process is known as Homogenous Poisson Process (HPP). Under these 
circumstances, the time between two failures, also known as Time To 
Failure (TTF), follows an exponential distribution. Accordingly, failures 
are characterized by a constant arrival rate, which could be referred as 
rate of occurrence of failure (ROF). On the other side, if the TTFs are 
neither independent nor identically distributed, the stochastic point 
process is referred as Non-Homogenous Poisson Process (NHPP). The 
NHPP identifies a failure behavior with a variable ROF, which can be 
expressed through the Power Law Process (PLP), shown in Eq. (3) 
(BahooToroody et al., 2019). 

ROF(t)=
(

β
η

)( t
η

)β− 1
(3)  

where β and η are the shape and scale parameters respectively. It is 
worth mentioning that NHPP and the related PLP refers to repairable 
items, and the first TTF is Weibull distributed with parameters β and η 
(Kelly and Smith, 2009). β and η are usually considered constant, 
however, when failures are influenced by production factors, their 
values should vary based on the production state, or the operation state, 
or the stress level. In this paper, we propose a novel concept called 
DNHPP, which refers to an NHPP with failure parameters (i.e., β and η) 
that depend on a variable stress level arising from distinct production 
parameters. 

3.3. Problem description, main assumptions, and notation 

In this study, a machine characterized by a production-dependent 
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failure behavior is considered. In other words, the failure parameters 
depend on the production state (e.g., production rate, working speed, 
worked material, worked item), while the failure rate depends on the 
actual production state and the history of the machine (i.e., the state that 
the machine has been in and the period the machine has spent in each 
state). Accordingly, the age of the machine is significantly affected by 
both the actual and past production states. In this context, the mainte-
nance engineers should decide which is the best maintenance strategy to 
implement for the machine. Different maintenance policies can be 
considered and compared such as CM, time-based PM, and CBM. 
Moreover, for the same maintenance policy different parameters could 
be selected (e.g., different maintenance interval for a time-based PM). 
The main objective is to find out the best maintenance policy from 
economic or operational perspectives by adopting a GPT for DES. 

Based on the former considerations, users of the developed algorithm 
and library should specify as inputs which are the possible production 
states and their corresponding Weibull failure parameters (i.e., shape, 
scale, and location). The user should also specify as input how the 
production state changes over time or which are the events or causes 
that lead to a change in the production state. It is worth mentioning that 
the changes of state could be related to a stochastic process. In other 
words, the production strategy should be specified by the users. Finally, 
users should specify which are the maintenance policies to be considered 
and their respective parameters. The main output of the described 
problem could be one or more economic or operational indicators for 
each maintenance policy, facilitating the determination of the most 
suitable one. To evaluate distinct maintenance strategies, it could also be 
possible to consider production and logistic aspects, along with their 
associated costs. Indeed, GPT for DES can include the previous aspects in 
the analysis. If production and logistic aspects are included, the eco-
nomic indicators will include information related to the overall man-
agement of maintenance, production, and logistic activities, providing a 
more comprehensive point of view and higher flexibility. 

The main assumptions of the present problem are as follows.  

• The failure behavior of the machine is known, and it is characterized 
based on the stress level or production state.  

• The possible stress levels or production states are known.  
• The production parameters could either be controlled or not. In the 

first case, there is the potential for joint optimization of maintenance 
and production. Otherwise, in case the production parameters are 
not controllable, or their sequence is fixed over time, only mainte-
nance activities can be optimized (potentially with the inclusion of 
logistic activities). 

To sum up this section, Table 2 reports the notations of the former 
variables and parameters, along with additional parameters described in 
the following sections. 

4. Problem formulation: modelling DNHPP by means of discrete- 
event simulation 

DES consists of modelling a system that evolves through events; that 
is in certain moments the system state changes due to an instantaneous 
event which can happen because of two reasons.  

a) a state change in the system which enables or produces the event.  
b) the end of a time period (deterministic or stochastic), which usually 

represents a process or a task duration. 

Between two consecutive events, the system’s state remains 
unchanged. 

Such a property of the system model allows for the implementation 
of a timing mechanism, typically based on a time-sorted calendar of 
events, where all the events of type b) are scheduled using an appro-
priate probability distribution. That means that the stochasticity of 

events is usually modelled using a-priori probability distributions or 
specific probability distributions based on the past or present state of the 
system. Thus, the times of future events could not be easily updated in 
case the state of the system changes. For instance, given a certain stress 
level at which the system is operating, the simulator schedules a failure 
time, which may not be modified when the stress level changes. This is 
the common behavior in simulation software, which usually has no 
straight functionality to automatically reschedule events in response to 
system changes. This constitutes a limitation because the representation 
of the system in the simulation context is far different from its real 
behavior. This issue encouraged the authors to develop a computational 
model to cope with this need of rescheduling the events. Then, the model 
can be implemented in the desired simulation language or software tool. 

Let HPE1 be a variable belonging to an HPP with a mean equal to 1, i. 
e., belonging to an exponential distribution, following Eq. (4): 

HPE1= − ln(U) Uϵ(0, 1) (4) 

As stated by Leemis and Schmeiser (1985), a time arising from an 
NHPP could be generated by applying the cumulative inverse function of 
the failure rate to an HPP variable characterized by a mean value of 1, as 
shown by Eq. (5). 

t=Λ− 1(HPE1) (5)  

where t is a time extracted from an NHPP, while Λ− 1 denotes the inverse 

cumulative function of the failure rate, i.e., Λ(t) =

∫t

0

λ(τ)dτ. For a 

Weibull distribution, the cumulative function of the failure rate is 
expressed as shown in Eq. (6) (Razali et al., 2009). 
⎧
⎨

⎩

Λ(t) =
(t − γ

η

)β
t ≥ γ

Λ(t) = 0 0 ≤ t < γ
(6) 

Consequently, the inverse cumulative function of the failure rate is 
obtained through Eq. (7). 
{

Λ− 1(y) = ηy
1
β + γ = t y > 0

non − disclosed y = 0
(7)  

Table 2 
Decision variables and parameters characterizing the problem.  

Decision 
Variable  

Mk k-th maintenance policy 
VarMk Variables of the k-th maintenance policy 
Parameter 
Pj j-th production strategy 
SLi i-th stress level, or production state, or operating state 
βi Shape parameter of the i-th stress level 
ηi Scale parameter of the i-th stress level 
γi Location parameter of the i-th stress level 
λi( ⋅) Failure rate of the i-th stress level at a time t 
ht History of the machine till t 
To,i Virtual origin of the i-th NHPP interval 
Tpi Instant of failure of the i-th NHPP interval 
Tci Final instant of the i-th NHPP 
HPE1 Homogeneous Poisson Extraction with mean equal to 1 
HPE1ci Consumed life up to Tci 

HPE1e Consumed life at the beginning of the DNHPP 
HPE1f Consumed life at the end of the DNHPP 
Λ( ⋅) Cumulative distribution of the failure rate 
F( ⋅) Cumulative distribution of TTF 
KPIk,j Economic or operational indicator associated with the k-th 

maintenance under the j-th production strategy  
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4.1. Generating a Dynamic Non-Homogeneous Poisson Process 

GPTs for DES could include a binary DNHPP characterized by a 
working state (1) and a standby, or non-operating, state (2). In this 
model, a failure (denoted by 0) could occur only if a given asset is in the 
working state, as shown in Fig. 1. 

As revealed in Fig. 1 there is only one failure function responsible for 
the transition from a working state to a failure state. Thus, only one 
Weibull distribution is considered. On the other side, the inverse process 
depends on the Time To Repair (TTR) distribution. However, this is 
insufficient to fully represent a production-dependent (or stress level- 
dependent) failure rate. Indeed, there could be several operating con-
ditions (or working states), each of which is characterized by distinct 
failure parameters (i.e., distinct scale, shape, and location parameters). 
Therefore, the actual capabilities of a GPT should be extended to include 
multiple production states or stress levels, as illustrated in Fig. 2. 

The notation λi(t, βi, ηi, γi, ht) means that the failure rate of the i-th 
change of stress level (SLi) depends on the Weibull parameters related to 
the i-th stress level (βi, ηi and γi), the time (t) and the history (ht). The 
history considers the stress level changes up to t. Indeed, based on the 
visited operating states and the residence time in each visited operating 
state, the consumed life changes. For a more comprehensive failure 
generation, the framework presented in Fig. 2 should also include a 
stand-by or non-operating state, as visible in Fig. 3. 

To incorporate a DNHPP into a GPT for DES, including also a stand- 
by or non-operating state, the flowchart in Fig. 4 should be 
implemented. 

A brief description of the algorithm is reported below. 

Step 1. Set the origin of the NHPP process equal to 0 (see Eq. (8)), and 
extract HPE1, which is maintained constant for all the DNHPP. 

T0 =Tci = To,i = 0 ; i = 0 (8)  

Step 2. Given a stress level, characterized by a Weibull distribution 
with βi, ηi and γi as parameters, generate a TTF based on the inverse 
cumulative distribution of the failure rate as shown in Eq. (9). Indeed, as 
previously mentioned, this process is required to randomly generate a 
failure time. In case the new state is a stand-by one (i.e., To,i = − ∞), 
Tpi+1 is set to infinity (i.e., Tpi+1 = ∞). The only assumption is that the 
location parameter (i.e., γi) must be a positive value. This is a fair 
assumption since the location parameter denotes the failure free life and 
it is unlikely that a component could fail before the start of the 
operation. 

Tpi+1 =Λ− 1
i (HPE1) + To,i = ηi⋅HPE1

1
βi + γi + To,i (9)  

Step 3. Increment the counter i by 1. Let Tci be the time when a stress 
level transition occurs. There could be two distinct scenarios. 

Step 3.1. (Tci ≥ Tpi ): A failure occurs in Tpi and the process restarts 
from Step 1. 

Step 3.2. (Tci < Tpi AND Tpi = ∞): The state changes in Tci . This con-
dition is required to check if the previous state was stand-by. Particu-
larly, if the previous phase was a non-operating one, then consider the 
consumed life estimated up to the previous cycle, as shown in Eq. (10). 
Indeed, if a non-operating state lasts, the failure generation is stopped, 
and no useful life is consumed. Thus, as soon as a transition to an 
operating state is observed, the consumed life is set equal to the 
consumed life of the previous cycle. Next, proceed with Step 4.2. 

HPE1ci =HPE1ci− 1 (10)  

Step 3.3. (Tci < Tpi AND Tpi ! = ∞): The state changes in Tci , moreover, 
the previous state was an operating one. Thus, estimate the consumed 
life up to Tci , as in Eq. (11). Then, proceed with Step 4. 

HPE1ci =Λi− 1
(
Tci − To,i− 1

)
=

(
Tci − To,i− 1 − γi− 1

ηi− 1

)βi− 1

(11)  

HPE1ci is called “Poisson Life consumed” and it could be used to specify 
imperfect maintenance conditions, among which “as bad as old” (ABAO) 
maintenance through the introduction of a recovery factor. This ability 
is better explained in Section 4.3. The consumed life is the equipment’s 
life that has been eroded before the state change. It is required to store 
this variable to re-schedule the failure considering the previous history. 

Step 4. In Tci the new state could be either a stand-by or an operating 
state. 

Step 4.1. (Stand-by state): Set the new virtual origin equal to minus 
infinity as shown in Eq. (12). Then iterate from Step 2. 

To,i = − ∞ (12)  

Step 4.2. (Operating state): Estimate the virtual origin of the new 
Weibull, based on the consumed life, as expressed in Eq. (13). The new 
virtual origin takes into account the consumed life up to the state 
change. Accordingly, the new virtual origin is influenced by what has 
previously happened regarding state changes. 

To,i = Tci − Λ− 1
i (HPE1ci )=Tci − ηi⋅HPE1ci

1
βi − γi (13)  

where βi, ηi, γi denote the parameters related to the Weibull distribution 
characterizing the new stress level. Then, iterate from Step 2 which al-
lows to re-schedule the failure. 

If Step 4.1 is carried out, the new TTF (Tpi+1 ) estimated through the 
subsequent step 2 is equal to ∞ since To,i is equal to − ∞, denoting a 
stand-by state. Accordingly, during Step 3, Tpi = ∞ denotes that the 
previous state was a stand-by one that consumed no useful life. 

4.2. Example of DNHPP 

The generation of a DNHPP heavily relies on the capability of re- 
scheduling failures as soon as a change of the stress level occurs. To 
better clarify the process of failure re-scheduling through the algorithm 
of Fig. 4 a simple example is presented in this section, representing on 
graphs the unreliability vs time, which is easier to interpret compared to 
the failure rate. 

Let T0 = 0 be the start of the operations (Step 1) and SL0 be the first 
stress level characterized by three Weibull parameters denoted as β0, η0 Fig. 1. Distinct states that could usually be represented by GPTs for DES.  
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and γ0. Through Eq. (9), a failure is scheduled in Tp1 (Step 2), as shown in 
Fig. 5 on the curve of unreliability, which is expressed as F0 =

1 − e− Λ0(t). 
Assuming that in Tc1 there is a transition into a non-operating state 

(SL1) and that Tc1 < Tp1 , the stress level changes in Tc1 , while the 
consumed life up to Tc1 (HPE1c1 ) is calculated following Eq. (11) (Step 
3.3). Being SL1 a non-operating state the new virtual origin is set equal 
to minus infinity as illustrated in Eq. (12) (Step 4.1), then the failure 
generation is suspended following Step 2. Accordingly, Tp2 = ∞ as 
revealed in Fig. 6. 

In Tc2 the stress level changes into SL2 which is characterized by the 
following failure parameters: β2, η2 and γ2. Being that Tp2 = ∞, Tc2 

results lower than Tp2 , thus a stress level change occurs in Tc2 . 
Furthermore, since SL1 was a non-operating state, no life has been 
consumed between Tc1 and Tc2 , consequently HPE1c2 = HPE1c1 as 
depicted in Eq. (10) (Step 3.2). Considering the new virtual origin 

obtained through Eq. (13) (Step 4.2), the failure is re-scheduled in Tp3 

according to Eq. (9) (Step 2). The third stress level change is represented 
in Fig. 7. 

A third stress level change is seen at Tc3 . Given that Tc3 < Tp3 , the 
stress level successfully changes into SL3. The consumed life up to Tc3 is 
estimated through Eq. (11) (Step 3.3), along with a new virtual origin 
(Step 4.2). Subsequently, the failure is re-scheduled based on Eq. (9) 
(Step 2). The new TTF is denoted as Tp4 . Finally, the last stress level 
change is foreseen at Tc4 , however, assuming that Tc4 > Tp4 , a failure 
occurs in Tp4 (Step 3.1). The last stress level transition is shown in Fig. 8. 

4.3. Considering imperfect maintenance within a dynamic Non- 
Homogenous Poisson Process 

The developed algorithm and library allow to consider imperfect 
maintenance tasks. When a failure occurs, the entity is associated with 

Fig. 2. Multiple production rates or stress levels. The rate associated with the thin dashed black arrow is the MTTR. The failure rates are associated with the thick 
black arrow. SL stands for Stress Level. 

Fig. 3. Practical extension of Fig.2, considering the presence of a stand-by state which does not consume life, thus it characterized by the absence of failures.  
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an attribute that reports its “Poisson Life consumed” up to the failure. 
Specifically, the “Poisson Life consumed” is estimated through Eq. (11) 
considering the instant of failure. Furthermore, the library allows for the 
specification of the initial “Poisson Life consumed” of any entity into a 
DNHPP process. Accordingly, at first a recovery factor could be defined. 
The former parameter denotes the portion of life that is restored through 
maintenance. Next, before the entity enters the DNHPP process, the 
initial “Poisson Life consumed” could be set equal to the product of the 
one’s complement of the recovery factor and the “Poisson Life 
consumed” when the failure occurred. This choice is made following 
previous works that similarly adopt a factor that restores part of the 
equipment life (Diallo et al., 2018; Khatab et al., 2018). 

Let HPE1e be the “Poisson Life consumed” when an entity enters a 
DNHPP process, while HPE1f be the “Poisson Life consumed” at the 
moment of failure, an imperfect maintenance task could be introduced 

according to Eq. (14) or Eq. (15). 

HPE1e =HPE1f ∗ (1 − recovery factor) (14)  

HPE1e =
(
HPE1f − HPE1f − 1

)
∗ (1 − recovery factor) (15) 

Fig. 4. Required steps to define a DNHPP with a stand-by state through a GPT.  

Fig. 5. Unreliability of the first observed stress level and first scheduled failure.  

Fig. 6. Unreliability after the transition into a non-operating state and sus-
pended failure. 

Fig. 7. Unreliability up to the third re-scheduling of the failure.  
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where HPE1f − 1 is the life consumed up to the previous failure. Thus, in 
case Eq. (15) is adopted a the restore life is just a portion of the time 
consumed between two subsequent failures. Through Eq. (14), a perfect 
or “as good as new” (AGAN) maintenance could be specified by setting 
the recovery factor equal to 1. By contrary, a minimal or ABAO main-
tenance is defined by adopting a recovery factor equal to 0. Finally, an 
imperfect maintenance task is obtained through the adoption of a re-
covery factor that is higher than 0, but lower than 1. 

Based on the previous statements, the flowchart of Fig. 4 could be 
modified to incorporate imperfect maintenance condition as shown in 
Fig. 9. 

According to Fig. 9, when a failure occurs, in case of perfect main-
tenance the process is iterated from Step 1, and nothing changes 
compared to the previous case. Otherwise, after the occurrence of a 
failure, the following steps are required. 

Step 5. Estimate the consumed life up to the failure (HPE1f ) through 
Eq. 11 

Step 6. Determine the initial consumed life (HPE1e) after the intro-
duction of a recovery factor through Eq. (14) or Eq. (15). 

Step 4.2 (Operation restart): When the maintenance ends and the 
operation is restarted, the virtual origin of the new Weibull is estimated 
through Eq. (13) based on the initial consumed life (HPE1e). Then iterate 
from Step 2 and re-schedule the failure after the extraction of a new 
HPE1, which is rejected in case it is lower than HPE1e. 

5. Application of the developed library 

A library capable of generating failures based on a DNHPP was 
created in a Rockwell ARENA© environment. The library is described in 
this section and shared through GitHub. 

To demonstrate the utility and strengths of the developed tool, two 
simple applications are presented in this section. The first application 
focuses on a single asset that undergoes a PM cycle, along with the 
possibility of imperfect maintenance. The second application considers 
an asset characterized by two failure modes. For clarity, both the ap-
plications consider just a single maintenance operator, who is always 
available. The changes in stress level are fed into the model through an 
external block representing the production process (or the operations). 
Thus, the production block is regarded as a black box that gives as an 
output the current stress level. Finally, the symbols from the Business 
Process Modelling Notation (BPMN) are used to visualize the two ap-
plications. Indeed, the BPMN is a common standard for graphical rep-
resentation, which is often adopted as a precursor of DES. 

Furthermore, this section includes a case study presented as a 

practical numerical example, illustrating the benefits of the developed 
library. Specifically, the case study shows how the developed library 
could be adopted to conduct a sensitivity analysis for optimizing the 
maintenance plan. 

5.1. First application: preventive and imperfect maintenance 

The BPMN diagram of the first application is illustrated in Fig. 10. 
At first, the asset is created and sent into the DNHPP block for the 

failure scheduling. Along with the asset, a PM task and a maintenance 
operator are created. A maintenance interval is defined, while the 
maintenance operator waits for communication of a PM or CM task. 
Indeed, if the DNHPP generates a failure before the end of the mainte-
nance interval, then a CM task is required. On the opposite side, if the 
DNHPP schedules a failure after the maintenance interval, preventive 
maintenance is performed. Whenever a stress level change occurs before 
the scheduled failure or the PM task, a “Stress level variable” is changed 
accordingly and the failure is re-scheduled as described in Section 4. 
Finally, when a CM or PM task is performed, an imperfect of perfect 
maintenance is specified by introducing a “Recovery Factor”. 

5.2. Second application: multiple failure modes 

There could be competing failure modes on the same subsystem, 
subject to the same level of maintenance (e.g., AGAN), thus a failure 
could be provoked by multiple causes or deterioration processes. Fig. 11 
shows the BPMN representation related to an application of the DNHPP 
library in case an asset is characterized by two competing failure modes. 

Initially, the DNHPP schedules failures for both failure modes. 
Denoting by TTF1 and TTF2 the scheduled failure time for the first and 
the second failure mode respectively, the TTF is given as {TTF1,TTF2} . 
Assuming that TTF1 is lower than TTF2, the failure will be caused by the 
first failure mode and will occur after a timespan equal to TTF1. Once the 
failure occurs, a “Stress level variable” is exploited to simulate a stand- 
by operation and suspend the generation of the second failure mode (i.e., 
TTF2 is rescheduled and set equal to infinity). Next, after maintenance 
has been performed to restore the asset to the initial condition and the 
operation has been restarted, both the failure modes are restored and 
two new TTFs are generated. It is worth mentioning that TTF1 represents 
a complete TTF for the first failure mode and a censored TTF for the 
second failure mode. Finally, whenever a stress level change occurs, the 
TTFs of both the failure modes are re-scheduled accordingly. It is also 
worth noting that the two failure modes could be related to two inde-
pendent stress levels. 

In case the occurrence of a given failure mode does not prevent the 
other failure mode from occurring (e.g., the production is not stopped, 
or the failure mode has a dependency on time), the generation of the 
second failure mode should not be blocked. Finally, just consider that it 
is possible to restore a single failure mode when it occurs, leaving un-
changed the consumed life associated with the other failure mode. The 
aforementioned scenarios are illustrated in Fig. 12. 

5.3. Application of the library to a case study 

The case study under consideration is similar to the one depicted in 
Fig. 10, considering the following assumptions.  

• AGAN restoration is considered when a preventive task is performed. 
• ABAO restoration is considered when a corrective action is per-

formed after a failure.  
• The case study includes a single machine able to process two distinct 

items or components, each with its own failure behavior.  
• The first item’s failure behavior follows a Weibull distribution with 

shape and a scale parameter equal to 4 and 200 h respectively. The 
first item represents the first stress level (SL1). 

Fig. 8. Unreliability up to the failure occurrence.  
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• The second item’s failure behavior follows a Weibull distribution 
with shape and scale parameter equal to 4 and 1000 h respectively. 
The second item represents the second stress level (SL2).  

• The machine operates 80% of the time on the first item, resulting in a 
production mix of 80-20.  

• The machine is assumed to worked continuously 24/7 all the year.  
• There is no setup between one item and the subsequent one, thus, the 

only downtime is related to preventive maintenance tasks or failures.  
• The machine is served by a maintenance squad that is always 

available.  
• The machine undergoes a preventive maintenance task every 400 h. 

The preventive maintenance tasks are normally distributed with 
mean equal to 2.5 h and standard deviation of 0.2 h.  

• The corrective actions are normally distributed with a mean of and a 
standard deviation equal to 1.5 and 0.6 h and respectively.  

• The former maintenance durations account for possible logistic 
delay, set-up time, and effective maintenance time.  

• The working time of each item is normally distributed with mean 
equal to 0.5 and standard deviation equal to 0.03 h respectively. 

• In case the machine is working an item when the preventive main-
tenance should be performed, the maintenance squad waits till the 
end of the working phase.  

• Any preventive maintenance task is performed at the end of the 
maintenance interval, regardless of the number of failures occurred 
during the interval.  

• The occurrence of a failure stops the production, which is restored 
after the ABAO has been carried out. In this scenario, the machine 
works the item for the remaining working time at the time of failure. 
In other words, the time that the machine has worked till the failure 

Fig. 9. Required steps to define an DNHPP with a stand-by state and imperfect maintenance through a GPT.  
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is considered as valid, thus, it is not required to start working from 
scratch. 

Accordingly, the machine is subjected to two stress levels (one for 
each item), with the first stress level being more wearisome for the 
machine. A practical example of equipment that could represent the case 
study is a drilling machine that has to work two items made of different 
materials, where the first material is characterized by higher mechanical 
properties (e.g., higher hardness). 

Based on the context presented above, the investigation is focused on 
identifying the best combination of preventive maintenance interval and 
production mix through a DES analysis. The selected parameter to be 
optimized is the operational availability defined as the ratio between the 
actual working hours and the total available time. The only source of 
loss is related to the failures, thus net utilization and operational 
availability coincide. In other words, the operational availability could 
be denoted as KPIk,j. Due to the complex nature of real applications, it is 
often challenging to represent the problem through equations or func-
tions. However, the adoption of DES could overcome this limitation, 
allowing to model the logical-mathematical interactions among events. 
When this is the case, no function is used for the optimization, but a 
sensitivity analysis is carried out. Accordingly, a sensitivity analysis is 
conducted to define the combination of production mix and preventive 
maintenance interval associated with the highest operational availabil-
ity. In this context, nine preventive maintenance intervals and seven 
production mixes are considered. Specifically, the minimum mainte-
nance interval is set at 100 h, while the longest maintenance interval is 

900 h. Based on the previous considerations, the considered mainte-
nance policies (Mk) are time-based PMs, each of which is characterized 
by a single user-defined variable (VarMk), which is the time between two 
consecutive PMs. On the other hand, the production mix ranges from 
801-202 to 201-802, where the first number represents the percentage 
associated with the first item (i.e., the more stressful for the machine), 
while the second one refers to the produced percentage of the second 
item. To avoid any confusion, the subscript 1 refers to the percentage 
associated with the first item, while the subscript 2 is related to the 
percentage of the second item. The different production mixes represent 
distinct production strategies (Pj). The simulation is conducted with 
both the DNHPP library, considering two stress levels (one for each 
item), and without the DNHPP library (i.e., with a single stress level). 
For the second scenario, three different scale parameters are considered 
to model the failure generation: 235, 250, and 280 h. Indeed, since at the 
beginning the first item is produced more than the second one, the scale 
parameter in the single stress scenario should be much closer to the scale 
parameter associated with the first item. 

Considering the initial production mix and PM interval, the Welch’s 
method is employed to identify the warm-up period, which was 
cautiously set at 3000 h. The simulation run is chosen to be more than 
ten times longer than the warm-up period. Ten simulation runs and four 
years of simulation (i.e., 35,040 h) for each combination of production 
mix and maintenance interval are conducted. The verification was 
conducted by using the animation and debug feature of ARENA. As an 
additional validation step, one stress level at a time was considered to 
compare the number of failures arising from the simulation with those 

Fig. 10. BPMN representation associated with the first application: preventive and imperfect maintenance. The red block represents the failure scheduling and 
rescheduling through the DNHPP tool. 
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arising from NHPP under minimal repair assumption. The mean oper-
ational availability arising from both the single stress simulation and the 
double stress modelled through the DNHPP are shown in Table 3 and 
Fig. 13. The acronym SS stands for single stress, while the number 
associated with the SS acronym is the scale parameter used for the 
scenario. In Table 3, the highlighted green cells with bold text represent 
the optimal preventive maintenance interval for each production mix. 
To test the differences in operational availability arising from the 
adoption of distinct PM intervals, a one-way ANOVA with Tukey post- 
hoc test was conducted for each production mix. Accordingly, nine 
samples (one for each PM interval) of ten observations (one for each run) 
were compared for each production mix. The ANOVA depicted that 
different PM intervals could result in non-statistically different opera-
tional availabilities. This condition could also be present for the optimal 
PM interval. To underline this finding, a given production mix could 
have more than one green cell representing the optimal PM interval. It 
follows that, in case more than one green cell is shown for a given 
production mix, all the related PM intervals could be considered as 
optimum since no significant statistical difference is found. 

As shown in Table 3 and Fig. 13, the results arising from the single 
stress level with scale parameter of either 235 or 250 h resemble the 
results arising from the DNHPP application considering the initial pro-
duction mix (i.e., 801-202). This fact denotes that the choices related to 
the scale parameter of the single stress level scenarios could be appro-
priate. In other words, it is possible to state that the modelling with a 
single stress level characterized by a scale parameter between 235 and 
250 h could be proper to model the initial production mix. On the other 
hand, adopting a single stress level with a scale parameter of 280 h 
generates slightly different results compared to the 801-202 production 
mix modelled through DNHPP. The maximum operational availability is 

achieved with a production mix of 201-802, adopting a maintenance 
interval between 400 and 600 h. Furthermore, when considering a 
double streel level through the DNHPP library, the optimum preventive 
maintenance interval varies based on the production mix. Specifically, 
the preventive maintenance should be scheduled less frequently for 
production mixes characterized by higher percentage of the second item 
(i.e., the maintenance interval should be longer). However, when 
considering a single stress level, the model is not able to distinguish 
between the two items. Consequently, the optimum maintenance in-
terval remains equal to 200 h for all the tested single stress scenarios 
independently from the production mix, denoting a great limitation of 
the modelling without the double stress level. 

6. Discussion 

The algorithm presented in this paper enables the generation of 
production-dependent failures within a DES environment, assuming that 
the failure behavior under different stress levels follows a three- 
parameter or two-parameter Weibull distribution. This peculiar 
feature provides the possibility to conduct simultaneous optimization of 
production and maintenance planning, instead of optimizing production 
and subsequently the maintenance plan (Zied et al., 2011). The DES 
environment offers greater flexibility compared to analytic models, 
which often rely on strong assumptions, such as deterministic processing 
or working times (Matta and Simone, 2016). Moreover, other assump-
tions such as perfect maintenance (uit het Broek et al., 2021) and 
deterministic deterioration (Martinelli and Piedimonte, 2008) are 
relaxed. 

Previous works introduced the possibility to link the failure rate or 
the probability of failure to the production rate (Francie et al., 2014; uit 

Fig. 11. BPMN diagram of the second application: asset characterized by two failure modes. The red block identifies the failure scheduling and rescheduling through 
the DNHPP tool. 
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het Broek et al., 2020) or the cumulative number of items produced 
(Bouslah et al., 2016, 2018). The proposed model could generate the 
former kinds of failures in case different levels of production rate are 
specified (the cumulative number of items produced could be related to 
the production rate), as they could be seen as different stress levels or 
production states. Additionally, the developed algorithm could generate 
failures that depend on other operating conditions, such as the worked 
item or degradation state. Accordingly, the stress level could also be 
defined as a combination of production rate and worked item or 
degradation state, offering a higher level of flexibility. However, for 
each combination of production rate and worked item or degradation 
state, proper failure parameters should be specified. Furthermore, in 
past studies where production or operating dependent failures are 
considered, the failure generation is usually related to a degradation 
threshold (uit het Broek et al., 2020) or distinct failure rates are 

associated with distinct operating conditions or degradation states 
(Colledani and Tolio, 2012). On the other hand, the proposed model 
reschedules failures when a stress level change occurs, considering the 
consumed life up to the stress level change. Finally, the model could 
handle the generation of competing failure modes as described in Sec-
tion 5.2. 

6.1. Operational availability and downtime cost 

Considering the results presented in Section 5.3, it is possible to state 
that the double stress level modelling introduced through the DNHPP 
library provides more flexibility compared to the modelling based on a 
single stress level. Indeed, the DNHPP failure generation is sensitive to 
variations in production mix. By contrary, the single stress level 
modelling disregards the changes in production mix. This could possibly 

Fig. 12. BPMN diagram of an asset characterized by two failure modes. The occurrence of a failure mode does not prevent the other from occurring, moreover, it is 
only restored the failure mode that has occurred. 

Table 3 
Mean operational availability for each combination of preventive maintenance interval and production mix.    

Mean operational availability 

PM Interval (hours) 100 200 300 400 500 600 700 800 900 

Production mix 801–202 97.47% 98.41% 98.01% 96.72% 94.76% 92.40% 89.39% 86.37% 83.33% 
701–302 97.48% 98.50% 98.39% 97.57% 96.15% 94.29% 92.00% 89.38% 86.80% 
601–402 97.48% 98.58% 98.67% 98.17% 97.31% 95.98% 94.37% 92.24% 90.12% 
501–502 97.48% 98.65% 98.84% 98.63% 98.07% 97.28% 96.12% 94.72% 93.05% 
401–602 97.48% 98.70% 98.99% 98.98% 98.68% 98.21% 97.53% 96.60% 95.59% 
301–702 97.49% 98.71% 99.08% 99.13% 99.09% 98.84% 98.50% 98.02% 97.40% 
201–802 97.49% 98.73% 99.13% 99.28% 99.31% 99.24% 99.12% 98.89% 98.60% 
SS-235 97.46% 98.37% 97.93% 96.59% 94.68% 92.02% 89.06% 85.96% 82.77% 
SS-250 97.46% 98.45% 98.20% 97.20% 95.53% 93.38% 90.71% 88.02% 85.05% 
SS-280 97.48% 98.54% 98.58% 97.93% 96.78% 95.22% 93.29% 91.04% 88.68%  
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generate misleading results, especially when the production mix shifts 
towards a higher percentage of the second item. 

To investigate the results even further, it is worth mentioning that 
the 801-202, 701-302, and 601-402 production mixes are characterized by 
a maximum operational availability when the preventive maintenance 
interval is set at 200 h (or also 300 h for 701-302, and 601-402 production 
mixes). Similar outcomes are obtained in case a single stress level 
modelling is considered. Accordingly, even though the production mix 
changes, it is possible to state that the variation is not sufficient to in-
fluence the optimal maintenance interval. Thus, the single stress level 
modelling is still effective to evaluate the maintenance strategy to adopt 
for a production mix in the range of 801-202 and 601-402. By contrary, 
the simulation of the 501-502 production mix modelled through the 
DNHPP depicts the optimum value in correspondence to a maintenance 
interval equal to 300 h. In fact, exploiting a maintenance interval of 200 
h (i.e., the optimum value arising from the single stress level) would 
generate an operational availability which is close to 0.2% lower 
compared to the optimal operational availability (see Table 3). 
Furthermore, the difference between the optimal operational availabil-
ity arising from the single stress level and the double stress level 
modelling increases for the remaining production. Indeed, the 401-602 
production mix is characterized by an optimum condition when the 
preventive maintenance is scheduled every 300 or 400 h, which results 
in an operational availability of 98.98%. Planning preventive mainte-
nance activities every 200 h would generate almost a 0.3% reduction in 
operational availability for the 401-602 production mix. Finally, the 301- 
702 production mix experiences optimum operational availability in 
case the preventive maintenance is carried out every 300, 400, or 500 h, 
while the optimum of the 201-802 production mix is obtained when the 
machine is subjected to a maintenance interval between 400 and 600 h. 
The 301-702 and 201-802 production mixes would observe a decrease in 
the operational availability respectively close to or higher than 0.4% in 
case 200 h is defined as the maintenance interval. 

All the aforementioned considerations can be translated into eco-
nomic terms by introducing a reference unit downtime cost. Given the 
unit downtime cost (UDC), the total downtime cost (TDC) during four- 
year of operations can be obtained as shown in Eq. (16). 

TDC = 35040 ∗ UDC ∗ (1 − Operational Availability) (16) 

Based on Eq. (16), it is possible to evaluate the TDC when the opti-
mum maintenance interval is adopted. However, as previously 
mentioned, the optimum maintenance interval is not affected by the 
production mix when the single stress modelling is considered. Thus, 
there is a difference between the optimum TDC in case the system is 
modelled with or without the DNHPP library. Considering 1000 €/hours 
and 5000 €/hours as unit downtime costs, the differences between the 
TDCs associated with the optimal maintenance policy arising from the 
single stress and double stress modellings are listed in Table 4. As a 
reminder, the optimal maintenance interval for the single stress 
modelling is equal to 200 h, whereas it ranges between 300 and 600 h 
for the double stress modelled through the DNHPP library. 

It emerged that, in case the UDC is equal to 1000 €/h, the TDC dif-
ference ranges between 67,224 € and 178,893 €. The first value is 
associated with the 501-502 production mix, while the second one refers 
to the 201-802 production mix. Accordingly, modelling the 201-802 
production mix with a single stress level would lead to obtain a TDC 
higher than one thousand euros compared to the double stress model-
ling. The situation is even worse when the unit downtime cost is higher, 
i.e., 5000 €/h. Indeed, scheduling a preventive maintenance every 200 h 
(single stress optimum) would generate a TDC almost nine hundred 
thousand euros higher compared to the TDC arising from the adoption of 
a preventive task every 600 h (one of the double stress optimums). Based 
on the previous considerations, it is possible to state that considering a 
single stress model deeply affects the sensitivity analysis, which points 
out the same optimum independently from the production mix. Thus, 
the real optimum maintenance interval is not detected, possibly leading 
to higher downtime costs, which, in turn, could undermine the profits 
arising from the production. 

6.2. Operating outside the optimum 

It is worth mentioning that a company could decide to adopt main-
tenance interval different from the optimum value arising from the 
simulation. Indeed, the preventive maintenance interval could be 
regulated by national regulations, or a company could decide to adopt 
opportunistic maintenance strategies. Considering the results arising 
from the single stress modelling, it can be seen that moving outside of 
the optimum would generate quite lower operational availability. As a 

Fig. 13. Contour plot of the mean operational availability for each combination of preventive maintenance interval and production mix.  
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matter of fact, considering the 801-202 production mix, the single stress 
simulation underlines that scheduling a preventive action every 400 h 
instead of 200 h would lead to a reduction in operational availability 
close to 2%. Accordingly, the adoption of opportunistic maintenance 
could be discouraged or hindered by this finding. Moreover, the finding 
is independent from the production mix. On the other hand, from the 
DNHPP double stress-based simulation, it emerged that moving outside 
the optimum interval is not very impactful for production mix shifted 
towards the second item (e.g., 301-702). Indeed, as depicted by Fig. 13, 
the areas associated with an operational availability higher than 99% 
and 98% are much broader for the aforementioned production mixes. 
For instance, considering the 201-802 production mix, an operational 
availability lower than 99% is obtained with a maintenance interval 
lower than 300 h or higher than 700 h. Furthermore, the differences 
between the operational availability associated with the optimal main-
tenance interval and the operational availabilities outside the optimum 
are much lower compared to the ones obtained with the single stress 
modelling. Consequently, these findings could be helpful to integrate the 
maintenance activities more effectively with the other needs of 
companies. 

7. Conclusions 

In the process of simulating maintenance activities through a GPT, 
developing an appropriate model for generating failures could be 
regarded as a significant challenge. To this end, this paper presents an 
algorithm capable of generating failures based on an NHPP whose pa-
rameters vary according to the stress level (e.g., production rate), i.e., a 
DNHPP. The aforementioned model schedules failure events by 
extracting a random TTF through the inverse of the cumulative distri-
bution of the failure rate. Moreover, when the stress level changes, the 
failure is re-scheduled or suspended based on the new stress level. To 
ease the transition from theory to practice, this study also introduces an 
Arena library for generating a DNHPP. 

Based on the previous considerations, the main theoretical outcome 
of the present paper is the development of an algorithm capable of 
modeling production-dependent failures in a DES environment. As a 
matter of fact, considering production-dependent failure rate is a pop-
ular assumption outside the field of DES. Being able to incorporate this 
failure behavior into DES simulations allows to relax the usual strong 
assumptions of mathematical models, while including multiple factors 
typical of real operating environments (e.g., multiple resources, multiple 
competing or independent failure modes, and imperfect maintenance). 
From a managerial perspective, the proposed algorithm and associated 
library allow to define more realistic simulation models, serving as 

essential tools for decision-making processes related to maintenance 
activities. For instance, the library could be used to conduct comparison 
or optimization analyses using a general-purpose DES. Users are pro-
vided with a wide range of options to model different equipment and 
failure behaviors, without the need to implement any complex model-
ling or coding. Furthermore, the GPTs allow users to model other aspects 
related to maintenance such as production and logistic activities. Thus, 
managers could adopt the library for a simulation of the entire pro-
duction environment and integrate maintenance and production de-
cisions (e.g., production mix) to optimize a performance indicator (e.g., 
operational availability). 

Furthermore, a practical case study is presented to demonstrate the 
advantages and benefits arising from the adoption of the DNHPP library 
compared to the traditional single stress modelling. Indeed, the single 
stress modelling may indicate optimum maintenance intervals different 
from the ones that are obtain from the simulation of multiple stresses. 
Accordingly, the sensitivity or optimization analysis could result in 
operating outside the real optimum, generating higher costs and lower 
profits. In other words, the developed algorithm and tool could assist 
managers during the decision-making process related to maintenance 
and production activities, possibly leading to cost savings or higher 
operational efficiency. 

On the other hand, even though the library is designed to be user- 
friendly and is accompanied by instructions, there may be a learning 
curve involved in fully understand its functionality. However, the li-
brary comes with a manual, which we plan to progressively extend with 
useful example of applications. Moreover, it could be difficult to deter-
mine the failure parameters related to distinct production rates or 
operating conditions. Accordingly, a robust reliability analysis is 
required to determine the parameters of the simulation. In this regard, a 
possible future development could involve the definition of advanced 
approaches to estimate failure parameters under variable working 
conditions. In addition, even though the library is capable of modelling 
the 3-parameter Weibull distribution, the effect of the location param-
eters on the failure rescheduling is still under investigation. Thus, it is 
recommended to consider a 2-parameter Weibull distribution. Further-
more, the current version of the only compatible with Rockwell 
ARENA©. Thus, we are planning to develop the library also for other 
open-source DES environments such as AnyLogic or WITNESS. Devel-
oping the library for other open-source DES tools could be helpful to 
extend its usage since there could be organizations where only one tool 
is available for DES purposes. Finally, it is crucial to define other li-
braries that allow to create more realistic simulation models within the 
context of maintenance optimization and scheduling, especially for the 
most popular maintenance policies (e.g., CBM). Therefore, another 
future development could be the development of an open-source library 
that allows to model the degradation parameters based on the working 
condition and the working history. In other words, a future development 
could be the implementation of a production-dependent condition 
monitoring. The former library could be useful to optimize CBM policies. 

Data availability 

The ARENA library is shared through GitHub  

Appendix  

Nomenclature 
Acronym Extended name 
ABAO As bad as old 
AGAN As good as new 
AI Artificial intelligence 

(continued on next page) 

Table 4 
Differential downtime cost between single stress and double stress optimization 
for different production mixes.  

Production mix Optimum operational availability Downtime cost difference 

Double stress Single stress 1000 €/h 5000 €/h 

501–502 98.84% 98.65% 67,224 336,121 
401–602 98.98% 98.70% 97,874 489,369 
301–702 99.08% 98.71% 128,341 641,705 
201–802 99.24% 98.73% 178,893 894,466  
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(continued ) 

BPMN Business process modelling and notation 
CBM Condition-based maintenance 
CM Corrective maintenance 
DES Discrete-event simulation 
DNHPP Dynamic Non-Homogeneous Poisson Process 
GPT General purpose tool 
HPP Homogeneous Poisson Process 
NHPP Non-Homogeneous Poisson Process 
PDF Probability Density Function 
PLP Power law process 
PM Preventive maintenance 
ROF Rate of occurrence of failure 
SPT Special purpose tool 
TTF Time to failure 
TTR Time to repair  
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