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REVIEW

Targeting the hERG1 and β1 integrin complex for cancer treatment
Annarosa Arcangelia,b,c, Jessica Iorioa and Claudia Durantia,c

aDepartment of Experimental and Clinical Medicine, Section of Internal Medicine, University of Florence, Firenze, Italy; bCSDC (Center for the Study 
of complex dynamics), University of Florence, Sesto Fiorentino (FI), Italy; cMCK Therapeutics srl, Pistoia (PT), Italy

ABSTRACT
Introduction: Despite great advances, novel therapeutic targets and strategies are still needed, in 
particular for some carcinomas in the metastatic stage (breast cancer, colorectal cancer, pancreatic 
ductal adenocarcinoma and the clear cell renal carcinoma). Ion channels may be considered good 
cancer biomarkers and targets for antineoplastic therapy. These concepts are particularly relevant 
considering the hERG1 potassium channel as a novel target for antineoplastic therapy.
Areas covered: A great deal of evidence demonstrates that hERG1 is aberrantly expressed in human 
cancers, in particular in aggressive carcinomas. A relevant cornerstone was the discovery that, in cancer 
cells, the channel is present in a very peculiar conformation, strictly bound to the β1 subunit of integrin 
receptors. The hERG1/β1 integrin complex does not occur in the heart. Starting from this evidence, we 
developed a novel single chain bispecific antibody (scDb-hERG1-β1), which specifically targets the 
hERG1/β1 integrin complex and exerts antineoplastic effects in preclinical experiments.
Expert opinion: Since hERG1 blockade cannot be pursued for antineoplastic therapy due to the severe 
cardiac toxic effects (ventricular arrhythmias) that many hERG1 blockers exert, different strategies must 
be identified to specifically target hERG1 in cancer. The targeting of the hERG1/β1 integrin complex 
through the bispecific antibody scDb-hERG1-β1 can overcome such hindrances.
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1. Introduction

Despite great advancements in the understanding of cancer 
biology and molecular features, which have led to improved 
both early diagnosis and therapeutic options in many cancer 
types, novel therapeutic strategies are still needed, especially 
for some carcinomas. In particular, the metastatic stage of 
many cancers, i.e. breast cancer, colorectal cancer, pancreatic 
ductal adenocarcinoma, lung cancer, and the clear cell renal 
carcinoma [1] still need novel and improved therapies. In 
particular, novel and more efficient targeted therapies and 
immunotherapies are needed to fight the most aggressive 
carcinomas, especially in the metastatic stage. Indeed, an 
increasing number of novel antibodies, comprising both 
Antibody Drug Conjugates (ADCs) and novel antibody for-
mats, as well as novel cellular therapies, such as CAR-T/CAR- 
NK cells, are being released on the market to push cancer 
therapeutic options forward [2]. This huge amount of work 
from Academia and Pharma Companies (often in conjunction) 
is based on both the improvement/amelioration of therapeu-
tics directed against ‘classical’ oncological targets (i.e. HER2/ 
Neu antigens in breast [3]) and the identification of novel 
targets, new tumor-associated or tumor-specific antigens, 
which can be addressed by novel therapeutics [4]. Among 
new tumor antigens, whose relevance in cancer is emerging 
in the last years, ion channels must be included [5]. Indeed, an 
increasing number of studies has led to show that ion chan-
nels are frequently mis-expressed in cancer cells where they 

contribute to regulate different cancer hallmarks (e.g. cell 
proliferation, survival and apoptosis, migration, invasion, and 
angiogenesis). Overall, ion channels can nowadays be consid-
ered novel cancer biomarkers and novel targets for therapy 
[6–9]. Among ion channels which are frequently dysregulated 
in tumors, K+ channels are pivotal, being broadly expressed in 
several types of tumors [10,11], where they collectively mod-
ulate the cancerogenic processes through different mechan-
isms [5,12,13]. Particularly relevant in this context is the EAG 
family of voltage-gated K+ channels, whose most important 
members KV10.1, also known as EAG1, encoded by the KCNH1 
gene [14,15] and KV11.1, also known as hERG1, encoded by 
the KCNH2 gene [16,17], are highly represented in human 
cancers and deeply involved in the regulation of different 
cancer hallmarks. Indeed, hERG1 is the main subject of the 
present review and we will discuss its functional characteristics 
in normal and cancer cells, as well as the struggles encoun-
tered over the years for its targeting in cancer.

Overall, the novel therapeutic strategies to beat cancers, 
and in particular metastatic cancers, should take into account 
the targeting of ion channels, K+ channels in particular. 
However, the targeting of ion channels has several issues, 
due to the broad expression of channel proteins and their 
functional relevance in normal cells and tissues. Hence, efforts 
must be devoted to find more selective and cancer specific ion 
channels’ modulators, both small molecules and biologics. In 
this scenario, antibodies represent a great advantage in 
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targeting ion channels [18]. An emblematic example in this 
field is represented by hERG1, which is broadly expressed in 
cancers, and in particular in hard to treat and metastatic 
carcinomas, but in the meanwhile represent ‘an antitarget’ 
because of the potentially life-threatening effects of its block-
ade. We will describe below how it is possible to overcome 
challenges to target hERG1 in cancer.

2. Area covered

2.1. hERG1: structure, expression and physiological 
functions

hERG1 is an outward rectifying K+ channel belonging to the 
EAG family, encoded by the ether-à-go-go related gene 1 
(KCNH2). The gene was cloned in 1994 from a human hippo-
campus cDNA library and mapped on chromosome 11, in 
q35–36 position [19]. The corresponding protein is composed 
by 1159 amino-acids, with both amino- and carboxy-terminals 
located in the cytoplasm. hERG1 channels assemble as tetra-
mers, each monomer being made by 6 transmembrane 
domains (S1-S6, with S4 representing the voltage sensor 
[20]) and a long loop forming the pore. The four loops con-
tribute to form the aqueous pore in the center of the tetra-
meric structure. The amino-terminal domain is typical of the 
EAG channel family and comprises a PAS (Per Arnt Sim) 
domain [21]. Adjacent to the PAS domain there is a specific 
hERG1 domain called the proximal domain [19]. hERG1 struc-
ture is shown in Figure 1a.

hERG1 shows peculiar voltage-dependent gating proper-
ties, which justify its physiological roles in normal excitable 
cells. Briefly, as the membrane potential (Vm) depolarizes, 
hERG1 rapidly activates but quickly inactivates. However, 
when Vm repolarizes, hERG1 inactivation is quickly removed 
and the channel hence sustains strong and long lasting out-
ward, repolarizing K+ currents. Next, the channel slowly deac-
tivates and then closes [22]. These cycles of activation/ 
inactivation/deactivation/closure make hERG1 an effective reg-
ulator of action potential (AP) in mature excitable cells, as 

cardiac myocytes. Indeed, the heart is the main tissue where 
hERG1 is physiologically expressed. In the heart, hERG1 under-
lies the cardiac repolarizing current IKr, which is mirrored by 
the QT interval in the superficial ECG (Figure 1b). This explains 
why mutations in the KCNH2 gene retard the cardiac AP 
repolarization phase, leading to a longer QT interval and 
hence to the onset of a cardiac arrhythmia, known as the 
long QT type 2 (LQT2) syndrome [23,24]. In other excitable 
cells hERG1 contributes to regulate (i) hormone release (e.g. in 
pancreatic neuroendocrine cells) [25,26]; (ii) neuronal spike 
frequency adaptation [27] and other aspects of excitability 
(reviewed in [28]); (iii) contractility in smooth muscle cells 
[29]. It is worth noting that, in normal excitable cells hERG1 
associates with its canonical accessory subunits MinK1 (KCNE1) 
and MirP1 (KCNE2) [20] (Figure 1c). Thanks to this association, 
functional repolarizing currents can be generated. This point 
has a great relevance for the purposes of hERG1 targeting in 
cancer, and this point will hence be detailed below.

2.2. hERG1 in cancer: expression and functions

The first indication concerning the aberrant expression of 
hERG1 in neoplastic cells, and of its role in the control of cell 
proliferation was obtained in 1995 in neuroblastoma cells. 
From these studies it emerged that the biophysical character-
istics of the channel, and in particular its activation kinetics, 
are correlated with the cell cycle phases [30]. It is well known 
that neoplastic cells are characterized by lower values of the 
resting membrane potential (Vrest) than cells of the corre-
sponding healthy tissues and it has been proposed that this 
is an essential prerogative for the uncontrolled growth typical 
of tumors [31]. Starting from the assumption that hERG1 
regulates Vm, studies have been conducted to evaluate its 
role in neoplastic cells. In a paper published in 1998 [32] it 
was first shown that the KCNH2 transcript is overexpressed in 
neoplastic cell lines of different histogenesis and peculiar 
hERG1 currents (Figure 2, inset) can be registered in these 
cells. The first demonstration of the presence of the KCNH2 
gene transcript and its protein in human primary solid neo-
plasms was obtained from the analysis of endometrial adeno-
carcinoma samples [33]. Subsequently it was demonstrated 
that hERG1 is also aberrantly expressed in several primary 
solid tumors [9] [33–50].

Overall, nowadays we know that hERG1 is aberrantly over-
expressed in different types of human cancers where it con-
tributes to regulate different cancer hallmarks, covering 
almost all stages of tumorigenesis (from cell proliferation and 
survival to the modulation of angiogenesis, cell invasiveness 
and metastasis [51]; [references [52–73] in Table 1] (Figure 2). 
For example, in lymphoid leukemias, hERG1 mainly regulates 
cell survival, while it is implicated in the control of transen-
dothelial migration in myeloid leukemia. In colorectal and 
gastric cancer, it regulates the secretion of the angiogenic 
factor VEGF-A, and in turn affects neo angiogenesis and the 
tumor metastatic spread [50]. What is particularly important in 
the present context is that growing evidence reviewed in 
[17,74,75] indicates that hERG1 is implicated mainly in those 
processes which are regulated by cell adhesion to the Extra 
Cellular Matrix (ECM). This suggests that a unifying mechanism 

Article highlights

● Ion channels must be included among new tumor antigens and their 
relevance in cancer is emerging in the last years.

● Particularly relevant is the example represented by hERG1 (KV11.1) 
which is broadly expressed in cancers, but it is considered ‘an anti-
target’ because of the potentially life-threatening effects of its 
blockade.

● The most relevant and tumor-specific characteristic of hERG1 chan-
nels is that a common molecular partner of hERG1 in tumor cells is 
the β1 subunit of integrin receptors.

● hERG1/β1 integrin complex can be considered a novel tumor antigen, 
as it does not occur in the heart, where hERG1 assembles with its 
canonical accessory subunits and it is present exclusively in tumors, 
especially in those advanced cancers where a hERG1 overexpression 
was previously detected.

● It has paved the way for a novel strategy to target the hERG1/β1 
integrin complex, through bispecific antibodies (scDb-hERG1-β1) cap-
able of harnessing the complex. The scDb and its derivatives are able 
to inhibit relevant cancer functions, such as cell motility, angiogen-
esis, and metastasis in the preclinical setting.
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in the hERG1 role in neoplastic progression might be repre-
sented by the functional interaction of the channel with adhe-
sion receptors, especially those of the integrin family [17]. 
Indeed, the interplay between the channel and the integrin 
can modulate different ECM-triggered, cancer-related signal-
ing pathways, such as FAK, ERK, and AKT phosphorylation, the 
activation and nuclear translocation of NFkB and HIF-1α, the 
modulation of f-actin organization and dynamics, either 
directly or through the involvement of small GTPases 
[60,74,76]. In addition, hERG1 regulates the Vrest in cancer 
cells, because of its steady-state properties. The hERG1 activa-
tion and inactivation curves cross around −40 mV. Hence, the 
hERG1 ‘window’ current is centered around the typical Vrest of 
cycling and tumor cells [20]. In conclusion, hERG1 appears to 
exert peculiar roles in cancer cells, which are apparently dif-
ferent from those typically observed in those adult organs 

where the channel is present, i.e. the modulation of action 
potential shape and firing. These hERG1 roles in cancer cells 
are mainly related to its interaction with integrin receptors 
and ECM interaction (see below, paragraph 2.4). Finally and 
more relevant, growing preclinical evidence indicated that 
blocking hERG1 currents with specific hERG1 blockers (see 
below) had antineoplastic effects in vivo, both in leukemias 
and solid cancers [58,61].

2.3. Targeting hERG1 for antineoplastic therapy: a big 
challenge

The numerous preclinical evidence showing that hERG1 block-
ers exerted antineoplastic activity in vivo, would encourage to 
consider the channel a good target for antineoplastic therapy, 
if many hERG1 blockers did not produce cardiotoxic effects in 

Figure 1. a) hERG1 potassium channel structure. PAS: PAS (acronym of per Arnt Sim) domain; cNBD (cyclic nucleotide binding domain). b) Ionic currents contributing 
to the ventricular action potential (top panel) and ECG (bottom panel); the action potential is aligned with its approximative time of action during the ECG. c) hERG1 
in normal adult cells in collaboration with its canonical accessory subunits MinK1 and MirP1. Created with BioRender.com.
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humans. Indeed, it is well known that blocking hERG1 can 
cause serious cardiac arrhythmias by retarding cardiac repo-
larization, lengthening the electrocardiographic QT interval, 
which can give rise to torsade de pointes, a ventricular 
arrhythmia that may lead to ventricular fibrillation [77]. These 
effects are related to the physiological role exerted by hERG1 
in the human heart (see above). Among hERG1 blockers, 
which can trigger life- threatening arrhythmias, we must con-
sider class III antiarrhythmic drugs, such as dofetilide and 
E4031, first. However, also structurally different compounds 
which can interact with specific amino acids usually in the 
pore sequence, can block ion conduction through the chan-
nel. Although some compounds effectively block hERG1 with-
out facilitating arrhythmia (addressed as ‘nontorsadogenic’ 
hERG1 blockers [78]), for the hindrances considered above, 
hERG1 is generally considered an undesirable pharmacologic 
target [79]. Given this, one can hypothesize different possible 
pharmacologic approaches in clinical trials to exploit the antic-
ancer effects of hERG1 inhibition in cancer cells while avoiding 
cardiotoxicity. The simplest possibility is using the above men-
tioned ‘nontorsadogenic’ hERG1 blockers, such as fluoxetine 
(Prozac; Eli Lilly) as suggested by Pointer [80], or macrolide 
antibiotics, which were found to have hERG1-dependent anti-
neoplastic effects in preclinical studies [59,81].

Another possible therapeutic strategy is seeking to target 
tumor-specific hERG1 features. We tested this possibility exploit-
ing the fact that hERG1 has two isoforms, hERG1A and hERG1B 

[82] and that leukemias preferentially express the isoform 
hERG1B. The latter is less relevant than hERG1A in heart physiol-
ogy [83]. On this basis we studied a pyrimidoindole derivative 
with a more selective inhibitory activity on hERG1B, CD160130 
[84], which showed to exert very good antileukemic activity. 
CD160130 could hence represent a first in- class compound to 
develop isoform-specific hERG1 blockers.

However, the most relevant and tumor-specific feature of 
hERG1 channels is that, in neoplastic cells, they do not 
associate with the classical accessory subunits MinK1 
\MIRP1, as occurs in cardiac cells. The discovery that 
a common molecular partner of hERG1 in tumor cells is 
the β1 subunit of integrin receptors [74–76,85]; represented 
a relevant breakthrough to envisage different strategies to 
specifically target hERG1 in cancers avoiding the blockade 
of hERG1 currents in the heart.

2.4. The hERG1/β1 integrin complex in cancer

Co-immunoprecipitation experiments, further confirmed by 
fluorescence resonance energy transfer (FRET) data, clearly 
showed that hERG1 interacts with β1 integrin on the plasma 
membrane of human cancer cells, giving rise to a hERG1/β1 
integrin macromolecular complex [17,74,75]. The complex 
assembly does not involve the intracellular domains of hERG1 
or the cytoplasmic C-terminal domain of the β1 integrin [86]. 
Hence, it is the transmembrane domain of the β1 integrin that 

Figure 2. hERG1 potassium channel main functions in neoplastic cells and peculiar hERG1 currents (inset). ↑: increase; ↓: decrease. Created with BioRender.com.
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putatively interacts with the hERG1 voltage sensor [86]. 
Interestingly, the presence of KCNE1 (MinK) accessory subunit 
in cardiomyocytes alters the interaction between hERG1 and β1 
integrin [86]. Since KCNE1 is not expressed in cancer cells, this 
lack may explain the presence of the hERG1/β1 integrin complex 
in cancers [86]. Recently another explanation has been provided 
for the frequent overexpression of hERG1 as well as of the 
hERG1/β1 integrin complex in cancer. In fact, a mathematical 
model developed to interpret the data related to the dynamics of 
hERG1 interaction with the β1 integrin, focused on the role of the 
tumor microenvironment. The latter would trigger the transloca-
tion of hERG1 channels to the plasma membrane, and hence 
their over-expression, through the engagement of cellular integ-
rins by ECM proteins [87]. The same paper also clarified the 
dynamics of the mutual relationship between hERG1 and integ-
rins: when the β1 integrin is activated by cell adhesion onto the 
ECM or by specific antibodies, hERG1-mediated currents increase 
which in turn is accompanied by the triggering of several signal-
ing pathways mediated by integrin receptors [75,76,88]. Such 
integrin-dependent hERG1 stimulation of hERG1 conductive 
functions determines Vrest hyperpolarization [88] and regulates 
FAK phosphorylation and cell proliferation [75,86]; Next, hERG1 
associates with the β1 integrin subunit, which preferentially 
recruits hERG1 in the closed state [59,86], which progressively 
restores the initial Vrest [87]. The recruitment of hERG1 in the 
closed state within the hERG1/β1 integrin complex suggests that 
the signaling pathways triggered by the complex mainly rely on 
signal transfer by conformational coupling, more than to the ion 
flux [17]. For example, in colorectal cancer (CRC) cells integrin- 
dependent cell adhesion triggers the recruitment of the PI3K p85 

subunit within the hERG1/β1 integrin complex, specifically to the 
hERG1 protein. This stimulates AKT phosphorylation and thus 
regulates autophagy [59], through a mechanism that we refer to 
conformational coupling. In addition, we provided evidence that 
the hERG1/β1 integrin complex can recruit other ion channels 
and transporters, such as the Na+/H+ antiporter NHE1, thus con-
trolling intracellular pH and in turn cell motility and migration 
[57]. In pancreatic adenocarcinoma (PDAC) cells, a different 
hERG1-centered mechanism sustains cell motility, which occurs 
through the reorganization of f-actin in stress fibers and the 
modulation of filopodia formation and dynamics, thanks to the 
interplay with small GTPases and the modulation of [Ca2+]i [60]. 
In leukemia cells, the hERG1/β1 integrin complex also comprises 
the chemokine receptor CXCR4, to trigger pro-survival signaling 
pathways and resistance to chemotherapy-induced apoptosis 
[61]. Finally, the hERG1/β1 integrin complex comprises the 
Carbonic Anhydrase IX (CA-IX), in clear-cell renal carcinoma 
(ccRC) cells and primary tissues [38], where hERG1 and CAIX 
together represent biomarkers of ccRC progression [38]. 
Overall, the hERG1/β1-integrin/NHE1 and hERG1/β1-integrin/CA- 
IX complexes may represent functional hubs to locally control 
intra- and extra-cellular pH, especially in hypoxic conditions, 
hence driving pro-metastatic signaling pathways. Figure 3 sum-
marizes all these findings.

2.5. The hERG1/β1 integrin complex is a novel tumor 
antigen and target for antineoplastic therapy

All the data described above lead to the conclusion that the 
hERG1/β1 integrin complex can be considered a novel tumor 

Figure 3. hERG1/β1 signaling pathways in different types of cancer. From left to right: in CRC hERG1/β1 complex triggers AKT-HIF1α centered signaling sustaining 
cancer cell neoangiogenesis; in PDAC hERG1/β1 complex controls RHO-GTPase actin signaling mediating Ca+2 release; in acute myeloid leukemia hERG1/β1 complex 
sustains proliferation, migration and neoangiogenesis via VEGFR-1 interaction through MAPK, PI3K/AKT signaling. Created with BioRender.com.
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antigen. First, the complex does not occur in the heart, 
where hERG1 assembles with its canonical accessory subu-
nits as depicted in Figure 1 [88]. Second, the hERG1/β1 
integrin complex is present exclusively in tumors, especially 
in those advanced cancers where a hERG1 overexpression 
was previously detected. To this purpose we have exploited 
the possibility to use the scDb antibody as a diagnostic tool 
performing immunohistochemistry (IHC) to assess the 
expression of the complex in patients’ derived sections of 
different histogenesis. Table 2 shows a list of all the human 
cancers where the hERG1/β1 integrin complex was detected, 
thanks to different techniques, i.e. co-immunoprecipitation 
and IHC exploiting the hERG1/β1 integrin-specific antibody 
which will be described in the next paragraph. A positive 
statistically significant correlation emerged between hERG1 
and hERG1/β1 integrin complex in CRC, PDAC, breast cancer, 
neuroendocrine tumors of ileum and pancreas, and MALT 
lymphoma primary samples (see Table 2 and related refer-
ences [89–97]).

Finally, the hERG1/β1 integrin complex is the true cancer 
biomarker, which can be exploited not only for diagnostic/ 
prognostic purposes, but also for a novel therapeutic 
approach to cancer. In fact, depending on the pathophysiolo-
gical context, the hERG1/β1 integrin complex can modulate 
different cancer-related, cancer-relevant, signaling pathways, 
which have a relevant functional impact on cancer cell prolif-
eration, survival, motility, etc [17,75]. When the interplay 
between the integrin and the channel involves the activation 
of ion conduction, mainly FAK and ERK phosphorylation are 
switched on, and cell proliferation mechanisms are triggered 
[17,75]. When such interplay involves the formation of multi-
protein complexes, signal transfer mainly occurs by conforma-
tional coupling [17]. This has been proven in the case of the 
AKT-centered pathways, in CRC and PDAC cells [50,60,89], 
which overall indicates that the hERG1/β1 integrin complex 
is mostly implicated in controlling cell motility.

Overall, it is not hERG1 but the hERG1/β1 integrin complex 
that can be targeted to obtain a good therapeutic response in 
cancer without affecting the cardiac hERG1, and hence with-
out cardiotoxicity. How can this specific targeting be 
obtained? The development of novel, specific antibodies was 
the answer to this question.

2.6. Targeting the complex: the hERG1/β1 integrin 
bispecific antibody

Moving from an anti-hERG1 monoclonal antibody developed 
in 2006, a single chain variable fragment (scFv) antibody, 
anti-hERG1scFv, was derived. The antibody was mutagenized, 
to substitute a Phenylalanine residue in the third framework 
of the VH domain with a Cysteine residue. The resulting scFv- 
hERG1-Cys had higher stability, also mirrored by much higher 
protein yield, and increased affinity for the antigen, com-
pared to the ‘native’ anti-hERG1scFv. The scFv-hERG1-Cys 
was hence chosen and characterized both in vitro and 
in vivo, allowing us to conclude that it possesses features 
which make it a suitable tool for application in cancer mole-
cular imaging [98]. Ta
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Furthermore, the scFv-hERG1-Cys was used to develop 
a single chain antibody targeting the hERG1/β1 integrin com-
plex in the format of a Diabody (scDb). Indeed, the scDb- 
hERG1-β1 construct was then generated starting from the 
scFv-hERG1-Cys and an anti β1 integrin scFv, obtained from 
to TS2/16 monoclonal antibody. The two scFvs were linked by 
three peptide linkers and expressed in yeast. The scDb-hERG1 
-β1 bound hERG1 and β1 when they were complexed (i.e. in 
cells seeded onto Fibronectin) at higher strength compared to 
the single proteins, as demonstrated by immunofluorescence 
(IF) data and cell-Enzyme-Linked Immunosorbent Assay 
(ELISA). The latter data were obtained on a reconstituted cel-
lular model, GD25 cells, selectively expressing either hERG1 or 
β1, or both. The antibody has also been characterized for its 
stability in mouse plasma, showing it to remain stable even 
when tested at different timepoints (0, 6, 24, 48, 72, 96 h). In 
vivo evidence was also given concerning the lack of general or 
cardiac toxicity when administered at 20 µg/mice, assessing 
that no changes occurred either in ECG (no lengthening of the 
QT interval) or in kidney perfusion.

The scDb-hERG1-β1 antibody was then characterized 
in vitro on HCT116 CRC cell line. It had an effect of reduction 
on growth rate on a 3D culture of spheroids and it also had 
a deep effect on lateral motility. It is able to decrease AKT 
phosphorylation and HIF1α expression, which resulted to be 
completely shut down, while having mild or null effects on 
FAK and ERK phosphorylation. Such findings allow us to sug-
gest a possible ‘freezing’ effect of the antibody on the 
complex.

Finally, in order to improve the effect obtained using the 
nude scDb-hERG1-β1, we have developed a trifunctional 
recombinant protein able to target the hERG1/β1 integrin 
complex and, at the same time, to induce apoptosis through 
the ‘tumor necrosis factor-related apoptosis-inducing ligand’ 
(TRAIL) mediated pathway. The recombinant protein is com-
posed by our scDb-hERG1-β1 N-terminally fused to a single 
chain TRAIL (scTRAIL). The fusion between scDb-hERG1-β1 and 
TRAIL occurred in two PCR steps: the first one to allow the 
linkage between one segment of the scDb-hERG1-β1 and 
TRAIL; the second one to allow the linkage between the 
other segment of the scDb-hERG1-β1 and product of the 
above-mentioned PCR, using appropriate primers. The full 
construct of the scDb-hERG1-β1-TRAIL, cloned into the mam-
malian expression vector pSectag2A, resulted to be of 2400 bp 
in length, consistently with what expected and, hence, 
sequenced. It presented a point mutation into the scDb- 
hERG1-β1 portion which was reverted via in situ- 
mutagenesis, followed by a further sequencing step, with 
a positive outcome. The scDb-hERG1-β1-TRAIL was then trans-
fected into CHO-K1 cells using Lipofectamine 2000. 
Transfected cells were selected using Zeocin and the super-
natant containing the fusion protein was collected for two 
weeks. We concentrated the antibody supernatant using 
Centricon and tested it on 697 cells, using supernatant derived 
from non-transfected CHO-K1 cells as negative control.

Moreover, it was possible to upgrade the scDb-hERG1-β1 
antibody, obtaining a potentially more powerful molecule, 
ADC based, which has already been preliminarily tested 

in vitro on ccRCC (clear cell renal carcinoma) Caki1 cells, show-
ing a good anticancer activity. In fact, the scDb-hERG1-β1 
antibody has been conjugated with the anti-CAIX AA38–08 
molecule, chosen among different CAIX inhibitors (e.g. PS, IR, 
SLC, specific inhibitors synthetized by Claudiu T Supuran 
Group University of Florence) that have been tested on 
ccRCC Caki1 cells for their effects.

The strategy used to develop the scDb-hERG1-β1 and the 
different formats which can be produced to improve its effi-
cacy are depicted in Figure 4.

3. Conclusion

Ion channels are becoming more and more relevant in cancer 
physiology, and their specific targeting must be pursued. 
Among ion channels aberrantly expressed in cancer, the 
hERG1 channel must be taken into account. Searching for 
hERG1 targeting strategies, relevant molecular differences 
between the channel expressed in normal tissues (mainly in 
the heart) compared to that present in cancers emerged. In 
particular, it was found the hERG1 forms a macromolecular 
complex with the β1 subunit of integrin receptors, exclusively 
in cancer cells. Hence, the hERG1/β1 integrin complex (and 
not the channel per se) is the proper therapeutic target to be 
addressed for anti-neoplastic therapy. This discovery opened 
the way for a novel strategy to target the hERG1/β1 integrin 
complex, through bispecific antibodies capable of harnessing 
the complex, blocking its assembly and its signaling activity, 
such as through the PI3K-Akt pathway. The developed anti-
body (scDb-hERG1-β1) and its derivatives turned out to inhibit 
relevant cancer functions such as cell motility, angiogenesis, 
and metastasis in the preclinical setting, both in vitro and 
in vivo. Overall, the strategy described in the present review 
is envisaged to improve the therapeutic options for cancers, in 
particular for metastatic carcinomas.

4. Expert opinion

Given the wide aberrant expression of hERG1 in different 
cancer types, and in particular in hard to treat carcinomas, it 
became immediately clear that novel and non-cardiotoxic 
strategies to target hERG1 should be identified, if hERG1 
would be considered a proper oncological target. In fact, 
hERG1 exerts a pivotal role in cardiac physiology, since it 
constitutes the molecular correlate of the rapid repolarizing 
current IKr which starts the repolarizing phase of the cardiac 
action potential. Hence targeting hERG1 for cancer treatment 
must avoid the block of its ion conductive function, since 
blocking hERG1 currents lengthens cardiac repolarization, 
lengthens the ECG QT interval and predisposes to fatal ven-
tricular arrhythmias [20,77,79]. This effect is identical to what 
happens in patients whose hERG1 encoding gene KCNH2 is 
mutated, and hence can develop a genetic Long QT syndrome 
(type 2). What is more, once the role of hERG1 in cardiac 
physiology and pathology [99] became clear, it emerged that 
several drugs, even structurally unrelated to class III antiar-
rhythmic drugs and with completely different therapeutic 
applications, could cause cardiac arrythmias (similar to the 
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type 2 Long QT syndrome) because they were able to block 
hERG1 currents. The discovery of many ‘torsadogenic’ hERG1 
blocking drugs focused the pharma market for years to screen 
potentially cardiotoxic drugs based on testing their effects on 
hERG1 currents. Indeed a ‘hERG1 test’ is still mandatory during 
the early, preclinical phases of drug development [100]. Hence 
the question arises: is it possible to target hERG1 for antineo-
plastic therapy? The answer is no, if we block the conductive 
properties of the channel. Indeed, this could also block hERG1 
currents in the heart, inhibit IKr, retard cardiac repolarization, 
hence facilitating the onset of ventricular arrythmias. For these 
reasons the discovery that hERG1 not only is aberrantly 
expressed in cancer cells, but resides in tumor cells, especially 
in carcinomas, in a very peculiar conformation, i.e. tightly 
bound to the β1 subunit of integrin receptors to form 
a macromolecular complex, represented a relevant corner-
stone. What is more, hERG1 within the hERG1/β1 integrin 
complex is preferentially in the closed, non-conductive con-
formation, i.e. it does not conduct potassium ions.

Overall, completely novel strategies must be figured out to 
target hERG1 in carcinomas, when the channel is bound to 
integrins, in the hERG1/β1 integrin complex. As stated above 
and in Duranti & Iorio [87] this is the usual conformation in 
these tumor types, where the ECM proteins (such as 
Fibronectin and Collagen I) are the main triggers of hERG1 
over expression and hERG1/β1 integrin complex formation. 
One of these strategies could be the repurposing of ‘old’ 

drugs such as Clarythromycin which targets the closed hERG1 
[59] and dissociates the hERG1/β1 integrin complex (Iorio et al., 
personal communication). Another strategy was the bispecific 
antibody developed by us, scDb-hERG1-β1, which specifically 
binds hERG1 and the β1 integrin, but only when the two 
proteins are complexed together. The antibody was developed 
in the format of a diabody, with a peculiar length of the linker 
between each variable domains, in order to assure a proper 
folding, which was predicted through an appropriate structure 
modeling. Such tuning resulted in a protein capable of binding 
only the complex and not the two proteins at distances higher 
than 1.6 nm, i.e. the distance we determined for the complex 
from FRET experiments [86]. The strategy to develop the scDb- 
hERG1-β1 was quite innovative, since two scFv antibodies, 
specifically binding extracellular domains of either hERG1 or 
the β1 integrin [89,101,102] were engineered, and the result-
ing product was expressed in yeasts. This strategy allows an 
easy protocol for its production, with low costs, lower than 
those necessary to produce recombinant antibodies in eukar-
yotic cells, such as CHO cells [103]. What is more, the scDb- 
hERG1-β1 shows a good toxicologic, biodistribution, and ther-
apeutic profile, especially in CRC and PDAC [89]. In particular, 
no cardiac toxicity of the scDb emerged either in mice [89] or 
humans [104]. When tested both in vitro and in vivo on differ-
ent cancer models (e.g. CRC, PDAC, and breast cancer) the 
diabody was shown to significantly decrease tumor burden 
and metastatic spread [89,93]. Moreover, when tested in 

Figure 4. Schematic structure of antibodies directed against hERG1/β1 complex. From top, schematic structure of monoclonal antibodies directed against hERG1 
and β1 (mAb), respectively; below schematic structure of the mAbs’ derived single chain diabody directed against hERG1/β1 complex (scDb-hERG1-β1). On the lower 
panel some of the antibodies derived from the scDb-hERG1-β1 antibody engineering are reported: from left, scDb-hERG1-β1-TRAIL, scDb-hERG1-β1-CAR-T and scDb- 
hERG1-β1-ADC (antibody drug conjugate). Created with BioRender.com.
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combination with different chemotherapeutic agents, such as 
gemcitabine [93] and cisplatin derivatives [105] the antibody 
has demonstrated to potentiate the effect of the drug, which 
could be used at lower doses, preventing severe toxicity of 
such pharmacological treatments.

Another relevant discovery was the fact that hERG1 associ-
ates with β1 integrin prevalently in the closed state [86], 
suggesting a non-conductive function of hERG1 in cancers, 
which can transduce the ECM signals by conformational cou-
pling. In agreement, and interestingly relevant from the ther-
apeutic point of view, is the fact that the newly developed 
scDb-hERG1-β1 antibody impairs complex formation and pre-
fers the hERG1 closed conformation [100].

Which steps are missing to reach the goal of treating 
carcinoma patients with the scDb targeting the hERG1/β1 
integrin complex? First of all, the antibody is fully patent 
protected (‘Novel Antibodies’ IP WO2019015936A1), and the 
patent was licensed to an academic spin-off of the University 
of Florence MCK Therapeutics Srl. Furthermore, the preclinical 
not regulatory steps of drug development have been fully 
accomplished, whereas preclinical, regulatory steps (mainly 
toxicological tests) must be completed before reaching the 
clinical Phase 1. This step requires more time and will be 
accomplished in the next years.

Overall, the identification of a novel target, of a novel 
tumor antigen, the hERG1/β1 integrin complex, has led to 
the development of a completely new bispecific antibody, 
and it is envisaged to tempt researchers (both in Academia 
and in Pharma Industry) to design and develop novel product 
(e.g. small molecules), given the promising results obtained in 
specifically targeting the complex and hard to treat carcino-
mas, such as PDAC and CRC [87,89].
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