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Abstract
We present an algorithm for triobjective nonlinear integer programs that combines
the ε-constrained method with available oracles for biobjective integer programs. We
prove that our method is able to detect the nondominated set within a finite number
of iterations. Specific strategies to avoid the detection of weakly nondominated points
are devised. The method is then used to determine the nondominated solutions of
triobjective 0–1 models, built to design nutritionally adequate and healthy diet plans,
minimizing their environmental impact. The diet plans refer to menus for school
cafeterias and we consider the carbon, water and nitrogen footprints as conflicting
objectives to be minimized. Energy and nutrient contents are constrained in suitable
ranges suggested by the dietary recommendation of health authorities.Results obtained
on two models and on real world data are reported and discussed.
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1 Introduction

Multiobjective optimization is used by decision makers
when considering more than one conflicting objective function simultaneously.

Multiobjective optimization is applied to several fields such as chemical engineering,
energymanagement, drug design (Rangaiah andBonilla-Petriciolet 2013;Ulusoy et al.
2022; Nicolaou and Brown 2013), just to name a few. Some applications may require

to model the problem using integer variables, see e.g. Hugo et al. (2005); Legendre
et al. (2018); Pascual (2021). In these cases, we are in the context of multiobjective
(mixed) integer programming (MOIP). It is the purpose of this paper to define and
solve triobjective integer models to design nutritionally adequate and sustainable diet
plans. In particular, we look for diet plans for school cafeterias that simultaneously
minimize their carbon, water and nitrogen footprints. When dealing with more than
one objective function, one looks for the so called nondominated solutions, points for
which none of the objective functions can be improved without degrading some of
the other objective values. In some applications, like ours, it is desirable to find the
complete set of nondominated solutions so that the decision maker is able to choose
among them. In this case, an exact algorithm is needed, i.e. an algorithm able to find
the whole set of nondominated points of a MOIP.

There is a growing interest on exact algorithms for multiobjective mixed integer
optimization and we mention the recent survey from Halffmann et al. (2022) for
a comprehensive overview on solution approaches for multiobjective mixed integer
linear problems. Exact methods for nonlinear integer problems also exist and there
is a distinction between those that work in the space of the decision variables (see
e.g Burachik et al. (2022); De Santis and Eichfelder (2021); De Santis et al. (2020);
Eichfelder et al. (2022); Merenchige and Wiecek (2022)), and those that work in the
space of the objective functions (see e.g. De Santis et al. (2020, 2022); Tamby and
Vanderpooten (2021)). This work presents an exact algorithm for triobjective integer
programming problems of the following form

min ( f1(x), f2(x), f3(x))T

s.t. x ∈ X ∩ Z
n,

(TOIP)

where X ⊆ R
n and f1, f2, f3 : R

n → R are continuous functions. Nonlinear func-
tions can be handled by our approach, as long as they satisfy the so called positive γ

property introduced in De Santis et al. (2020) that will be recalled later. The image
of the feasible set X ∩ Z

n under the vector-valued function f : R
n → R

3 repre-
sents the feasible set in the criterion space, or the image set. The efficient solutions
of problem (TOIP) are points x∗ ∈ X ∩ Z

n such that there exists no other feasible
point x ∈ X ∩ Z

n for which f j (x) ≤ f j (x∗), j = 1, 2, 3 and f (x) �= f (x∗). The
images f (x) of efficient points x ∈ X ∩ Z

n are called nondominated points. Further-
more, a point x̄ ∈ X ∩ Z

n is called a weakly efficient point of (TOIP) if there is no
x ∈ X ∩ Z

n with f (x) < f (x̄), where < is meant componentwise. The images f (x)
of weakly efficient solutions x ∈ X ∩ Z

n are called weakly non-dominated points. In
the following, we will denote the set of non-dominated points of (TOIP), also called
the non-dominated set, by YN and the set of weakly non-dominated points by YwN .
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The paper is organized as follows. In Sect. 2, we present our method for triobjective
integer nonlinear problems. We analyze its correctness and present a strategy to avoid
the detection of weakly nondominated points. A comparison on linear instances with
two solvers for triobjective integer linear programming problems is reported in the
Appendix. In Sect. 3, we present our application and two triobjective integer programs
modeling the design of sustainable diet plans. We finally discuss the results obtained
by solving the models using our algorithm. In Sect. 4, we draw some conclusions.

2 Algorithm TrIntOpt

The algorithm we propose extends the ideas used in De Santis et al. (2022) in order to
define an exact criterion space method for triobjective nonlinear integer programs.
Our algorithm, named TrIntOpt, is based on the ε-constraint method, a well-
known scalarization technique.The idea is to iteratively solve biobjective subproblems,
defined by adding further constraints to the original feasible set. More precisely,
given (TOIP), at every iteration k our method determines the nondominated set of
biobjective problems of the following form:

min ( f1(x), f2(x))	
s.t. f3(x) ≤ εk

x ∈ X ∩ Z
n,

(BOIPk)

where the parameter εk varies between minx∈X∩Zn f3(x) and the value f3(x̂0) − δ,
being δ a positive step size and x̂0 the point defined as follows. Among the efficient
points of the biobjective problem minx∈X∩Zn ( f1(x), f2(x))	, x̂0 is one that achieves
the maximum with respect to the objective function f3. As it will be clarified later on,
the step size δ controls the exacteness of TrIntOpt. The role of f1, f2 and f3 in the
definition of Problem (BOIPk) can be interchanged.

For the definition of TrIntOpt we need to have an oracle able to detect the
nondominated set of the biobjective nonlinear integer problem (BOIPk):

Assumption 1 There exists an oracle able to detect the complete nondominated set
of Problem (BOIPk) after having addressed a finite number Bk of single-objective
integer programs. For each nondominated point y ∈ R

2 detected, the oracle is able
to compute one of its preimage, namely one efficient point x ∈ X ∩ Z

n such that
( f1(x), f2(x)) = y.

In the following, we denote by Ek the set of efficient points detected by the oracle
in Assumption 1. We cite (De Santis et al. 2022, 2020) as works where algorithms
satisfying Assumption 1 are defined. Furthermore, we need to assume the existence
of the ideal point, in order to be guaranteed that the nondominated set is a finite set:

Assumption 2 We assume that the ideal objective values f idi := minX∩Zn fi (x), i =
1, 2, 3, and thus the ideal point f id := ( f id1 , f id2 , f id3 ) ∈ R

3, exists.

We report in Algorithm 1 the scheme of our method TrIntOpt. TrIntOpt starts
by computing x∗ ∈ X ∩ Z

n as the minimum with respect to f3 and E0 as the set of
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efficient points detected when addressing minx∈X∩Zn ( f1(x), f2(x))	. The images
of points in E0 are nondominated points of Problem (TOIP) and define the set M0.
The output of TrIntOpt, M ⊆ R

3, is initially set equal to M0. The starting ε1 is
set equal to f3(x̂0) − δ and we enter in a loop. At every iteration k, the biobjective
problem (BOIPk) is handled, the set Ek and its image Mk are computed and M is
enriched by the points in Mk . As it is shown in Proposition 4, the points in Ek are at
least weakly efficient. Then, the new value εk+1 is set equal to f3(x̂ k) − δ, being x̂ k a
maximum with respect to f3 over the set Ek and we go on until εk is less than f3(x∗),
meaning that the whole criterion space has been visited.

Algorithm 1 TrIntOpt
Input: (TOIP), δ > 0, k = 1;

Output: Set YN ⊆ M ⊆ YwN of nondominated points of (T O I P);

1: Compute x∗ ∈ argminx∈X∩Zn f3(x)
2: Compute E0 by addressing minx∈X∩Zn ( f1(x), f2(x))

	
3: Compute x̂0 ∈ argmaxx∈E0 f3(x)

4: Set M = M0 = { f (x) : x ∈ E0}
5: Set ε1 = f3(x̂

0) − δ

6: while εk ≥ f3(x
∗) do

7: Compute Ek by addressingminx∈X k∩Zn ( f1(x), f2(x))
	, withX k = X ∩ {x ∈ R

n : f3(x) ≤ εk }
8: Compute x̂k ∈ argmaxx∈Ek f3(x)

9: Set Mk = { f (x) : x ∈ Ek }
10: Set M = M ∪ Mk

11: Set εk+1 = f3(x̂
k ) − δ

12: Set k = k + 1
13: end while
14: Return M

In order to prove that TrIntOpt detects the complete nondominated set of Prob-
lem (TOIP), we need to assume that the objective functions are positive γ -functions,
a concept first introduced in De Santis et al. (2020). Basically, we need to assume
that a positive value exists that underestimates the distance between the image of two
integer feasible points of (TOIP), componentwise.

Definition 1 (Positive γ -function) Let γ > 0. A function g : X → R is a positive
γ -function over X ∩ Z

n if it holds |g(x) − g(z)| ≥ γ for all x, z ∈ X ∩ Z
n with

g(x) �= g(z).

Assumption 3 The functions fi : R
n → R, i = 1, 2, 3 in Problem (TOIP) are positive

γ -functions as in Definition 1 for some γ > 0.

Linear or quadratic functions defined over Q
n are examples of functions satisfying

Assumption 3. Table 1, in Section 4.3 in De Santis et al. (2022), shows some classes
of functions for which Assumption 3 holds and reports how to compute γ .

Let Assumption 3 hold for all the objective functions in (TOIP) with γ > 0. Let
δ > 0 be the input parameter for TrIntOpt. In case δ > γ TrIntOpt could miss
some nondominated points of Problem (TOIP), since the step size δ may be wider
than the distance between two nondominated points. On the other hand, if δ is chosen
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to be less than or equal to γ , we have that TrIntOpt is able to detect the complete
nondominated set of (TOIP), as shown in the following.

In Proposition 4, we first prove that any point detected by TrIntOpt is at least
a weakly nondominated point. Then, Proposition 5 shows that every nondominated
point is detected at some iteration of TrIntOpt, so that no nondominated point is
left undetected, meaning that the set M, output of TrIntOpt, is a superset of the
nondominated set YN .

Proposition 4 Let Assumptions 1 and 2 hold. Let Assumption 3 hold with γ > 0 and
assume that δ ≤ γ in Algorithm 1. Let x̃ ∈ Ek . Then f (x̃) ∈ YwN .

Proof Assume by contradiction that f (x̃) /∈ YwN , namely x ∈ X ∩ Z
n exists such

that

fi (x) < fi (x̃) i = 1, 2, 3. (1)

Since x̃ ∈ X k ∩Z
n we have that f3(x̃) ≤ εk . Therefore, x ∈ X k ∩Z

n and f3(x) ≤ εk ,
otherwise f3(x̃) < f3(x), getting a contradiction to (1). Since x̃ is an efficient point
for Problem (BOIPk), we have that

� x̂ ∈ X k ∩ Z
n such that f1(x̂) ≤ f1(x̃), f2(x̂) ≤ f2(x̃),

with fi (x) �= fi (x̃) i = 1, 2; so that (1) cannot hold. �
Proposition 5 Let Assumptions 1 and 2 hold. Let Assumption 3 hold with γ > 0 and
assume that δ ≤ γ in Algorithm 1. Let y ∈ YN . Then k ∈ N and x̃ ∈ Ek exist such
that f (x̃) = y.

Proof Let k ∈ N be the iteration of Algorithm 1 where it holds

εk+1 < y3 ≤ εk . (2)

Note that such value k ∈ N exists from the definition of εk within Algorithm 1 and
since f3 : R

n → R satisfies Assumption 3. Note also that since y3 ≤ εk , we have that
x ∈ X k ∩ Z

n exists such that y = f (x). Assume by contradiction that x /∈ Ek . Two
possibilities need to be considered:

i) if we assume that x /∈ Ek as it is not an efficient point for (BOIPk), we have
that (y1, y2) = ( f1(x), f2(x)) does not belong to the nondominated set of Prob-
lem (BOIPk). Then, x̂ ∈ X k ∩ Z

n exists such that

f1(x̂) ≤ y1, f2(x̂) ≤ y2,

with fi (x̂) �= yi , i = 1, 2. Since y ∈ YN it must hold

y3 < f3(x̂) ≤ εk .

SinceAssumption 3 holds and δ ≤ γ , necessarily y3 ≤ εk+1, that is a contradiction
to (2),
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ii) if we assume that x /∈ Ek as it has not been detected by the Oracle satisfying
Assumption 1 usedwithinAlgorithm 1,wewould have that ( f1(x), f2(x)) belongs
to the nondominated set of Problem (BOIPk) but x̄ ∈ Ek , x̄ �= x exists such that
( f1(x̄), f2(x̄)) = ( f1(x), f2(x)) = (y1, y2). From Proposition 4, it holds that
f (x̄) ∈ YwN . Then, since y ∈ YN , we have that y3 = f3(x) �= f3(x̄) only if
y3 = f3(x) < f3(x̄). As before, necessarily y3 ≤ εk+1 and we get a contradiction
to (2). �
Based on the previous lemmata we are able to prove the following.

Theorem 6 Let Assumption 1 and Assumption 2 hold. Let Assumption 3 hold with
γ > 0. Let δ ≤ γ . Algorithm 1 finds the complete nondominated set YN of (TOIP)
after having addressed a finite number of single-objective integer programs.

Proof By Proposition 4 and Proposition 5 we have YN ⊆ M. Thanks to Assump-
tion 3, choosing δ ∈ (0, γ ] allows the while loop to take at most m =⌊ (

f3(x̂0) − f3(x∗)
)
/γ

⌋
iterations. Furthermore, taking into account Assumption 1,

we have that Mk can be detected after having solved Bk single-objective integer
programs.

Then, considering the single-objective integer programs tackled at the beginning
of Algorithm 1 for the computation of x∗ andM0, that is B0 + 1, the total number of
single objective integer programs addressed by Algorithm 1 is B0 + ∑m

k=1 B
k + 1. �

2.1 Avoiding the detection of weakly nondominated points

Starting from the ideas presented in Mavrotas (2009), we propose to modify Prob-
lem (BOIPk) addressed at Step 7 ofAlgorithm1.An additional nonnegative continuous
variable s ∈ R is introduced to avoid the detection of weakly nondominated solutions
along the iterations of TrIntOpt. The biobjective nonlinear mixed-integer problem
we consider is as follows:

min ( f1(x) − ρs, f2(x) − ρs)	
s.t. f3(x) + s = εk

x ∈ X ∩ Z
n

s ≥ 0,

(BOMIPk)

where ρ > 0 is an adequately small number (usually between 10−3 and 10−6)
(see Mavrotas (2009)). Despite Problem (BOMIPk) is a mixed-integer problem, its
nondominated set is finite and can be detected by the same oracle used for addressing
Problem (BOIPk). We denote by Ẽk the set of efficient points detected by the oracle
in Assumption 1, when solving Problem (BOMIPk).

Proposition 7 Let Assumption 2 hold. Let Assumption 3 hold with γ > 0. Then,
Problem (BOMIPk) has a finite nondominated set. Furthermore, if x ∈ Ẽk then f (x) ∈
YN .
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Proof Recall that by X k we denote the set X ∩ {x ∈ R
n : f3(x) ≤ εk}. From

Assumptions 2 and 3, we have that the set { f3(x) | x ∈ X k ∩ Z
n} ⊂ R is a finite set.

Furthermore, given x̄ ∈ X k ∩ Z
n , a unique s̄ exists such that

s̄ = argmax s
s.t. f3(x̄) + s = εk

s ≥ 0.

Therefore, the nondominated set of Problem (BOMIPk) is finite. Let x ′ ∈ Ek be an
efficient solution of (BOIPk). From Proposition 4 we have that f (x ′) ∈ YwN . Let
(x̂, ŝ) ∈ Ẽk be an efficient solution of (BOMIPk) and assume by contradiction that x ′
dominates x̂ , with

f1(x
′) = f1(x̂) and f2(x

′) = f2(x̂).

Then, f3(x ′) < f3(x̂) = εk − ŝ, with ŝ ≥ 0. This implies that s′ ≥ 0 exists such
that f3(x ′) = εk − s′ and s′ > ŝ. However, this contradicts the efficiency of (x̂, ŝ) for
Problem (BOMIPk), as (x ′, s′) is feasible for (BOMIPk), with

f1(x
′) − ρs′ < f1(x̂) − ρ ŝ and f2(x

′) − ρs′ < f2(x̂) − ρ ŝ.

�

3 Designing sustainable diet plans through triobjective 0-1 models

Sustainable diets are defined by the Food and Agriculture Organization of the United
Nations [17] as “those diets with low environmental impact that contribute to food
and nutrition security and to a healthy life for present and future generations”. A sus-
tainable diet must therefore be healthy, have low environmental impact and respect
cultural habits in order to be acceptable to the population. These issues are often
incompatible, for example low-cost diets correspond to high energy density, whereas
diets of higher nutrient density and nutritional quality have higher costs. The healthi-
ness of food is guaranteed by following the advices of nutritionists and variousmedical
and governmental institutions, which mainly consist of dietary guidelines (Institute
of Medicine 2005) defining nutrient requirements, recommended nutrient intakes as
well as recommended consumption levels of some foods [19].

The environmental impact of food production refers to the level of greenhouse gas
emissions, the use of land and water resources, pollution, phosphorus depletion and
the impact of chemical products such as herbicides and pesticides.Cultural habits, i.e.
the composition of meals, food preferences and preparation techniques, are strongly
influenced by the traditions, beliefs and values shared by a community. They therefore
define the structure of each meal and the set of foods and dishes that are considered
edible and acceptable (Fjellstrom 2004). In addition, the attractiveness and variability
ofmealsmust also be consideredwhen designing a diet. Ameal plan, ormenu, consists
of the sequence and composition of dailymeals over a given period of time. This can be
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done by selecting dishes from a given set of recipes with a portion size that generally
depends on age, weight, gender, and level of physical activity. The design of a menu
can therefore be modeled as the assignment of dishes (resources) to given places in a
schedule (slots).

The case study considered in this paper is the design of school lunch menus for
primary schools in Italy. The set of dishes available to be served was determined
by collecting a sample of several Italian primary school menus (children aged 6-11
years) and results in a list of 178 dishes grouped as 66 first-course dishes (in general
including pasta or other carbohydrate sources), 75 s-course dishes (in general a source
of protein), 35 side dishes (vegetables, potatoes, or salad), fresh fruit, and bread. Tap
water is the only beverage allowed for lunch.

Complying with the Italian recommended dietary allowances (RDAs) [21], a fixed
portion size for each dish was considered. Recommended ranges for energy and nutri-
ent intakes (fats, proteins, carbohydrates, sugars, fiber, sodium, calcium, iron, and
vitamin B12) for each lunch are also obtained from RDAs. To satisfy these require-
ments, the energy quantity qeni and nutrient quantities q p

i of each dish i and nutrient p
were calculated from its ingredients using the Italian Food composition and Nutrition
database [22]. Other recommendations include limiting or avoiding consumption of
some food groups and increasing consumption of others. For example, health author-
ities recommend eating more plant-based foods, limiting animal products, especially
red meat, and avoiding processed meats. To reflect such recommendations, different
food groups are defined (white meat, red meat, eggs, fish, dairy, and vegetables) and
dishes are assigned to the appropriate food group g. In addition, dishes containing
processed meat are not included in the list of available dishes.

The impact of food production on the environment was characterized by some
standard consumption-based indicators, such as the carbon, water, and nitrogen foot-
prints. The first is expressed as carbon dioxide equivalent and takes into account all
the primary greenhouse gases, i.e., carbon dioxide CO2, methane CH4, and nitrous
oxide N2O , emitted during food production. The second takes into account for the
freshwater withdrawals required to produce food and the last the pollution of water
bodies and ecosystems due to the excess of nitrogen in agricultural production sys-
tems. The carbon and water footprints associated to each dish i , denoted by qcfi and

qw f
i respectively, were computed from its ingredients using the database developed
in the framework of the EU SU-EATABLE LIFE project (Petersson et al. 2021). The
nitrogen footprint qn fi associated to each dish i was estimated from its ingredient using
the model presented in Leach et al. (2013).

We report in Fig. 1 the carbon, water and nitrogen footprints of second-course
dishes and side dishes containing vegetables. As expected, the second-course dishes
containing red meat are the less sustainable ones.

Cultural habits are naturally complied with the choice of the set of recipes from
which to select the dishes of the menu, and with the structure of the lunch which must
consists of one first-course dish, one second-course dish, one side-dish, fresh fruit
and bread. On the other hand, attractiveness and variability of the menu is pursued by
fixing the minimum and maximum number of times that each dish, and dishes of the
same food group g, can be served in the menu.
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Fig. 1 Carbon, water and nitrogen footprints of second-course dishes and side dishes containing vegetables
(one fixed-size portion)

The design of a lunch menu over D days can be modelled as the assignment of
D × 178 binary variables xid , each one associated to each available dish i and day d,
assuming value 1 if the dish i is served in the lunch of the day d, and 0 otherwise.

Nutritional recommendations consists of recommended nutrient intakes and can
then be modeled as lower and/or upper bounds on energy and nutrients contents of
each lunch and of the overall menu as follows:

Lday
p ≤

178∑

i=1

xid · q p
i ≤ Uday

p , ∀d, p

Lweek
p ≤

5∑

d=1

178∑

i=1

xid · q p
i ≤ Uweek

p , ∀p (3)

where Lday
p , Uday

p , Lweek
p , and Uweek

p are the lower and upper bounds on the rec-
ommended daily and weekly intake of nutrient p. The recommendations limiting or
increasing the consumption of some food groups, as well as those related to the attrac-
tiveness and variability of the menu, can be modeled as lower and/or upper bounds on
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Table 1 Lunch energy and
nutrient constraints for children
aged 6-11 years

p Ldayp Uday
p Lweek

p Uweek
p

energy (kcal) 500 900 3000 4000

fats (g) 10 40 100 150

proteins (g) 15 40 100 175

carbohydrates (g) 70 130 450 550

sugars (g) - 40 50 150

fiber (g) - 20 25 75

sodium (mg) 100 700 1500 2500

calcium (mg) - - 1000 -

iron (mg) - - 25 -

vitamin B12 (μg) 0.35 - - -

Table 2 Food groups repetition
constraints for health,
acceptability and variability
requirements

g mg Mg

white meat 1 2

red meat - 1

eggs 1 2

fish 1 2

dairy 1 2

vegetables 4 -

the number of dishes of the same food group g served during the week as follows:

mg ≤
5∑

d=1

∑

i∈g
xid ≤ Mg, ∀g (4)

where mg , and Mg are the lower and upper bound associated to group g. Moreover,
variability is increased by imposing that each dish cannot be served more than once
in the menu, that is

D∑

d=1

xid ≤ 1, ∀i (apart from fruit and bread)

The values of the above defined lower and upper bounds are given in Tables 1 and
2.

The composition of the lunch of each day d is guaranteed by the following con-
straints:

∑

i∈ f irst

xid = 1,
∑

i∈second
xid = 1,

∑

i∈side
xid = 1, ∀d
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and xdi = 1, ∀d and when i corresponds to fruit and bread.
In this paper two different models are considered, with different objective functions

and different number of days D. The first model refers to a weekly menu, i.i. D = 5,
and the objective functions to be minimized are the carbon footprint (expressed as
grams of carbon dioxide equivalent emitted), the water footprint (expressed as liters
of freshwater withdrawals), and the nitrogen footprint (expressed as grams of nitrogen
released) of the menu, that is

f1(x) =
D∑

d=1

178∑

i=1

xid · qcfi , f2(x) =
D∑

d=1

178∑

i=1

xid · qw f
i , f3(x) =

D∑

d=1

178∑

i=1

xid · qn fi .

(5)

Thismodel results in a triobjective problem of 890 binary variables and 292 constraints
25 of which are equality constraints. As reported above, the objective functions and
the constraints are linear and Assumption 3 is satisfied with γ = 0.01.

The secondmodel refers to amenu for just two days (D = 2). In this case theweekly
constraints (3) and (4) do not apply and the objective functions to be minimized are
the carbon and water footprints of the menu, that is f1(x) and f2(x) in (5), and the
mean square deviation of the daily energy intake with respect to the RDAs reference
value of 700 kcal/day, that is

f3(x) = 1

D

2∑

d=1

[(
178∑

i=1

xid · qeni
)

− 700

]2

.

The model is then a triobjective binary quadratic one, requiring a much heavier
computational burden for our algorithm. This is the reason why the menu runs over
just two days, so that only 356 binary variables are needed. Solving this triobjective
model ended in identifying 5 nondominated solutions, i.e. 5 menus, that are reported
in the table below. Note that every menu is also including bread and fruit for every
day, which are not reported in Table 3.

3.1 Numerical results and discussion

The performance of TrIntOpt strongly depends on the performance of the oracle
satisfying Assumption 1 adopted. In our Python implementation of TrIntOpt we
solve the biobjective subproblems (BOMIPk) by the Frontier Partitioner Algorithm
(FPA) presented in De Santis et al. (2022). Assumption 1 is satisfied by FPA and
the number Bk of single-objective integer programs addressed is equal to |Yk

N | + 2,
being |Yk

N | the cardinality of the nondominated set of the subproblem (BOMIPk).
For how TrIntOpt works, it can happen that single-objective integer problems are
addressed to detect nondominated points that have already been found. In order to
avoid useless computations and save CPU time, we keep a list of the nondominated
points detected along the iterations of TrIntOpt and use the corresponding efficient
points to warmstart the solver of the single-objective integer problems. Within our
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Table 3 Menus obtained solving the second model

First course Second course Side dish

menu 1 Day 1 Soup with rice and
cabbage

Frittata Backed potatoes

Day 2 Creamy bean pasta Baked anchovies with
breadcrumbs

Green salad

menu 2 Day 1 Creamy potato barley
soup

Baked anchovies with
breadcrumbs

Cauliflower with
anchovy sauce

Day 2 Creamy bean pasta Frittata Stewed early potatoes

menu 3 Day 1 Creamy lentil pasta Frittata Stewed early potatoes

Day 2 Creamy bean pasta Baked anchovies with
breadcrumbs

Spinach with olive oil

menu 4 Day 1 Creamy bean pasta Frittata Stewed early potatoes

Day 2 Pasta with peas Baked anchovies with
breadcrumbs

Cabbage with tomato
sauce

menu 5 Day 1 Creamy bean pasta Baked anchovies with
breadcrumbs

Spinach with olive oil

Day 2 Creamy chickpea
pasta

Frittata Stewed early potatoes

Python implementation of TrIntOpt we use the MIP solver of Gurobi (2022). All
experiments have been executed on an Intel(R) Xeon(R) Gold 6252N CPU running at
2.30GHz.

For what concerns the first model, 635 weakly nondominated points were deter-
mined. Each point represents a set of menus with the same carbon, water, and nitrogen
footprint values, and therefore equivalent with respect to the environmental impact.
For example, the simple permutation of lunches within the days of the week, provides
equivalent menus. Moreover, there are dishes sharing the same energy, nutrients, and
environmental impact values that can be interchangeably used,1 and this may further
increase the number of possible equivalent menus. All the menus associated with the
635 points are nutritionally adequate, healthy and attractive, since they satisfy the
constraints.

Projections of weakly nondominated points on the three coordinate planes are
shown in Figs. 2, 3, and 4.

Figures 2 and 3 show thatmenuswith low/high nitrogen or carbon footprint are gen-
erally those with higher/lower water footprint. On the contrary, menus with high/low
carbon footprint exhibit also high/low nitrogen footprint, see Fig. 4. As a consequence,
menus with high water footprint have low values for both carbon and nitrogen foot-
prints, and menus with low water footprint have high values for both carbon and
nitrogen footprint. This is clearly shown in Fig. 4 checking the color mark for the
water footprint values. An approximate quadratic relation between the footprint val-
ues associated to the (weakly) nondominated points found is obtained by least square

1 This happens when different recipes have the same ingredients with the same quantity, i.e., they have only
a different food preparation such as, for example, Backed potatoes, Boiled potatoes with olive oil, Crispy
backed potatoes, and Sauteed potatoes (see Supplementary material).
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Fig. 2 Projection of the weakly nondominated points on the plane nitrogen-water footprints

Fig. 3 Projection of the weakly nondominated points on the plane water-carbon footprints

fitting with R2 = 0.98, and the corresponding surface is shown in Fig. 5. Hence
water footprint increases on average quadratically when carbon and nitrogen foot-
prints decrease. This allows, for instance, to estimate the minimum water footprint of
a menu fixing some values for the associated carbon and nitrogen footprint.

4 Conclusions

An exact method for detecting the nondominated set of triobjective nonlinear integer
programs has been devised. The method TrIntOpt uses the concept of γ -positive
function in order to properly combine the ε-constrained method with solvers for biob-
jective integer programs. A strategy to avoid the detection of weakly nondominated
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Fig. 4 Projection of the weakly nondominated points on the plane carbon-nitrogen footprints

Fig. 5 Quadratic approximate relation between weakly nondominated points (R2 = 0.98)

points, seen as a disadvantage of the ε-constrained method, is presented. By apply-
ing TrIntOpt to two triobjective 0-1 problems modeling the design of nutritionally
adequate and healthy diet plans, we were able to collect menus, minimizing stan-
dard consumption-based indicators measuring the impact of food production on the
environment. Thanks to the theoretical results proven we are guaranteed that each
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menu detected is a nondominated point of the problem considered and that the whole
nondominated set has been recovered.
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Appendix A A numerical comparison with LSM (Boland et al. 2016)
and QSM (Boland et al. 2017) on linear instances

There exists several approaches for multiobjective linear integer (and mixed-integer)
programming. We mention the works by Ozlen and coauthors (Özlen and Azizoğlu
2009; Özlen et al. 2014; Pettersson and Özlen 2020) and we refer to Halffmann et al.
(2022) for a comprehensive overview on solution approaches for multiobjective mixed
integer linear problems. Among the criterion space methods specifically developed for
triobjective integer linear programming problems, we find the L-shape method (LSM)
(Boland et al. 2016) and theQuadrant Shrinking Method (QSM) (Boland et al. 2017).
In the following, we compare our Python implementation of TrIntOpt with both
LSM and QSM, that are implemented in C++ and rely on the IBM CPLEX Optimizer
as MIP solver.

The L-shape method (LSM) (Boland et al. 2016) is an image space decomposition
method. The algorithm holds a priority queue of rectangles to be explored, in the
image space of two objective functions. The method looks into the rectangles with the
aim of finding all those nondominated points for (TOIP) having their projection in the
rectangle itself. In case an already-found nondominated point outside the rectangle is
detected the rectangle is shrunk. The search can either determine that the rectangle
contains no as yet unknown nondominated point so that the rectangle is discarded, or
find a new nondominated point having its projection in the rectangle. In this case, the
nondominated point found induces an "L-shape" which is explored in the same way,
namely it can be shrunk, discarded or split into more rectangles that are added to the
priority queue.
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Table 4 Results on triobjective assignment problem instances

Instance TrIntOptI L P TrIntOpt LSM QSM
time |M| time |M| time |YN | time |YN |

AP2 17, 18 223 19, 20 221 14, 46 221 10, 75 221

AP3 45, 69 500 53, 43 488 41, 54 483 31, 92 483

AP4 260, 30 2030 340, 38 1962 264, 10 1942 226, 66 1942

AP5 484, 99 3872 617, 47 3765 617, 29 3750 530, 74 3750

AP6 936, 99 5380 1097, 05 5231 1059, 81 5195 874, 00 5195

AP7 2169, 03 10, 996 2913, 69 10, 546 2545, 78 10, 498 2231, 19 10, 498

AP8 3289, 97 15, 373 4693, 06 14, 809 4068, 96 14, 733 3552, 93 14, 733

AP9 6971, 05 25, 684 10, 142, 39 24, 021 7315, 51 23, 941 6626, 87 23, 941

AP10 9437, 76 30, 802 15, 100, 32 29, 259 10, 313, 50 29, 192 9337, 88 29, 193

The Quadrant Shrinking Method (QSM) (Boland et al. 2017) partitions the image
space by splitting it into “quadrants" which are defined starting from an upper bound
point in the image space of two out of three objective functions. A search procedure
looks for nondominated points over the current quadrant. Then, if no nondominated
point is found the quadrant is shrunk. On the other hand, when a nondominated point
is detected, a new search region is defined and the search procedure looks for an
as yet unknown nondominated point. Strategies to avoid the solution of redundant
single-objective integer problems are implemented.

In Table 4, we report the comparison among TrIntOptI L P , i.e. TrIntOpt
without the strategy proposed in Sect. 2.1, TrIntOpt, LSM and QSM on instances
of the triobjective assignment problem (AP) available at https://usf.app.box.com/s/
ds0g3ktcjg7vgfsbegzu53ptjgsfq1jg. Such instances are 0-1 linear and the functions
involved have all integer entries, so that Assumption 3 for TrIntOpt is satisfied
with γ = 1.

For each instance and each method, we report the time needed in seconds and the
cardinality of the output set, namely the cardinality of M for both TrIntOptI L P
and TrIntOpt and the cardinality of YN for LSM and QSM. In fact, despite the
adoption of the strategy described in Sect. 2.1, we noticed that TrIntOpt may also
detect weakly nondominated points. From our numerical experience, this depends on
the choice of the parameter ρ within (BOMIPk). The results shown are obtained with
ρ = 10−6, that, in our experiments, leads to the lowest number of additional weakly
nondominated points. We can also notice that solving (BOMIPk), instead of (BOIPk),
comes at a not negligible computational time, as TrIntOpt is always slower with
respect to TrIntOptI L P . This could depend on both the value of ρ and on the
introduction of the additional variable s in (BOMIPk). QSM is the fastest method on
every instance but AP5 and AP8, where TrIntOptI L P is the fastest. Furthermore,
despite TrIntOptI L P detects a higher number of solutions, it is faster than LSM on
seven instances, suggesting that the warmstarting strategy may pay off.
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Appendix B A numerical comparison with AdEnA (Eichfelder and
Warnow 2023) on quadratic instances

In the following, we report a comparison of TrIntOpt with AdEnA, the hybrid
decision-criterion space method proposed in [Eichfelder and Warnow (2023), Algo-
rithm 3] on tri-objective integer nonlinear instances, with convex quadratic objective
functions and linear constraints. We used the code of AdEnA provided on GitHub
(Eichfelder 2023).AdEnA is an exact method forMulti-ObjectiveMixed-Integer Non-
linear Problems (MOMINLPs),meaning that it is able to detect an approximation of the
nondominated set of a MOMINLP according to a prescribed precision. In particular,
AdEnA is able to compute an enclosure of the nondominated set, i.e. a well-structured
set in the image space, as for example a union of boxes, which contains the non-
dominated set as a subset. The precision of an enclosure as an approximation of the
nondominated set is given by its width (we refer to Eichfelder et al. (2021) for further
details on the concept of enclosure). The precision required to AdEnA cannot be set
to zero, so that the approximation of the nondominated set obtained by AdEnA for
purely integer instances cannot be compared - in terms of quality - with the exact
nondominated set detected by TrIntOpt, that is a finite set. We chose to set ε, the
parameter controlling the width of the enclosure released by AdEnA, equal to 0.01.
The instances were randomly generated with a number of variables n = 15, a number
of constraints m = 10. The matrices defining the quadratic terms in the objective
functions were built using the MATLAB function sprandsym and we considered
three different density levels ρ ∈ {0.25, 0.50, 0.75}. Namely, we generated matrices
with approximately ρ · n2 nonzeros entries. For what concerns the linear inequality
constraints Ax ≤ b, we randomly generated matrix A ∈ R

m×n and vectors b ∈ R
m

withm = 10 using theMATLAB functions sprand and rand respectively. For each

Table 5 Results on randomly
generated triobjective quadratic
instances

ρ TimeTrIntOpt TimeAdEnA

inst1 0.25 25.69 113.26

inst2 0.25 39.01 102.50

inst3 0.25 55.67 206.12

inst4 0.25 64.98 460.29

inst5 0.25 61.48 439.78

inst6 0.50 180.97 693.57

inst7 0.50 14.22 86.52

inst8 0.50 47.80 195.50

inst9 0.50 11.48 85.94

inst10 0.50 229.15 364.82

inst11 0.75 36.11 164.87

inst12 0.75 41.23 137.59

inst13 0.75 106.97 354.59

inst14 0.75 169.75 404.57

inst15 0.75 268.47 807.92
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ρ we produced 5 different instances and we report the CPU time (in seconds) needed
by the two algorithms in Table 5. On the instances considered, TrIntOpt is not only
able to reproduce the finite nondominated set, but it is also almost three times faster
than AdEnA.
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