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Summary

Global warming is a severe problem for our planet. In the last decades, sustainable policies of countries,

climate actions, and commission strategies have led to substituting hydrocarbon fuels, such as oil and

coal, with Natural Gas (NG) which is a fossil fuel with the lowest carbon and environmental impact.

However, this solution on its own will not be able to satisfy the targets defined by the EU 2050 long-term

strategy. Europe and Italy in particular are large consumers and importers of NG and this means that

their transport and distribution networks are extremely ramified and capillary. The Italian Natural Gas

Distribution Network (NGDN) includes thousands of NG metering and pressure reduction stations, called

City Gate Stations (CGS), for injecting gas into low-pressure networks from high-pressure transport

networks. These plants are mainly based on the constant-enthalpy throttling of the gas flow to reduce

its pressure, which leads to a significant reduction of its temperature by the Joule-Thomson effect. Gas

preheating systems that avoid excessive cooling are installed upstream of pressure reduction valves and

usually exploit conventional gas boilers. For this process, not negligible amounts of thermal energy are

required, usually obtained by burning part of the gas flow rate. In addition to the necessary and rightful

urgency of reducing the carbon footprint of the natural gas infrastructure, the objective of containing the

NG consumption could also help the system to be more resilient to price variations which in recent months

have reached unprecedented levels, hurting the European economy and exacerbating energy poverty

conditions. This Ph.D. thesis work pursued two different approaches to address this challenge and to

contribute to its resolution: the development of white-box models, i.e., based on the first principles of

thermodynamics, to carry out techno-economic feasibility analyses and propose solutions to decarbonize

preheating demand by lowering natural gas consumption, and, on the other hand, the development of

black-box, or data-driven, models to replicate the behavior of the analyzed systems and thus build digital

twins that can be useful for monitoring the energy consumption of the systems themselves, as well as for

evaluating the impact of possible energy efficiency solutions. First, the work started with the selection of

a cluster of real plant datasets belonging to a partner local DSO. Eventually, 7 CGS are selected, with

maximum operative gas flow rates and pressure drop varying from 300 Smc/h to 6000 Smc/h and from

about 23 barg to more than 60 barg, respectively. Results of the data analysis showed that the peculiarity

of these plants is the strong dependence on seasonality, with a clear division between thermal summer

and winter and, at the same time, a wide variability in size and plant layout, especially considering the

gas preheating system. Furthermore, there was a strong correlation between the gas flow rate consumed

for preheating and the plant’s operating conditions, namely the gas inlet conditions, such as flow rate,

pressure supplied by the Transmission System Operator (TSO), and gas temperature at the inlet point.

An ad hoc thermodynamic model was developed to estimate the thermal energy demand for preheating,

exploiting experimental data from various real plants and simplified models of heat pumps and renewable

systems. The super-simplified models already present in the literature were expanded with an accurate

calculation model of the Joule-Thomson coefficient, based on the NIST regulation, a model based on the

data provided by the DSO to estimate the gas inlet temperature, and the knowledge of the partner DSO
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viii Summary

and the author on real operating conditions of such systems. The model was not suitable for detailed

consumption estimation of an individual system, but it has proven to be a sufficient tool for estimating

preheating consumption from a techno-economic feasibility analysis perspective. This model was flanked

by: PV output calculation tools, air-water heat pumps and gas boilers models, and economic investment

estimation tools, including the energy-saving certificates calculation. Three different plant layouts were

analyzed to decarbonize the system: off-grid, partially on-grid with only sale opportunity, and on-grid

with the possibility of the grid purchasing to provide the heat pumps with electricity. Once the optimal

techno-economic solutions were found, they were subjected to sensitivity analyses to changes in electricity

and gas prices. Results showed that it is possible to install heat decarbonization systems based on a

combination of PV and heat pumps with low payback times, starting from 3 to 5 years. However, the

solutions are very dependent on the fluctuation of absolute prices and the ratio between the price of gas and

that of electricity and it has not been possible to decarbonize 100% of the pre-heating without distancing

from the optimum of the techno-economic analysis. Considering the problem from another point of view,

it is not enough to propose viable plant solutions, but also to monitor whether their implementation

impacted the decarbonization of the monitored plant. In addition, monitoring preheating also allows the

system to be kept safe from failures, as insufficient preheating would lead to component damage and

disruption to users downstream of the CGS. Finally, the difficulty of modeling the system accurately with

0-D models based on the first principles of thermodynamics opens the way to the possibility of solving

this problem by developing data-driven models for each plant. Several regression-based machine learning

models were developed and trained, a Multiple Linear Regression (MLR) and Artificial Neural Network

(ANN) algorithms. The selection of the inputs for these models was obtained through the features selection

and engineering process. The algorithms were trained on a training data set relating to a complete year of

operation for two real plants and their predictive performances were tested on another data set relating to

the subsequent operating conditions of the same plants. The algorithms performed greatly, in terms of all

the metrics chosen for their evaluation on the testing dataset. The algorithms, and in particular the ANN

models, which are capable of understanding the non-linear interactions of the system, performed extremely

satisfactorily on both datasets in terms of all the metrics chosen for their evaluation, such as R2, RMSE.

Values higher than 0.98 were obtained for the R2 coefficient, with mean square percentage errors lower

than 3% for both models and plants. The models were integrated into an energy monitoring system using

the CUSUM technique and it was possible through these to identify malfunctions and waste within the

testing period. This method allowed for the creation of "baseline" consumption models and to evaluation

of the performance of the CGS over time using the CUSUM technique to find the variations between

the actual and the modeled gas consumption, being an essential tool for monitoring the effectiveness

of the natural gas preheating system. With this thesis work, methods and tools have been developed

for the techno-economic analysis of efficiency and decarbonization solutions and machine learning-based

monitoring of CGS for NG reduction. This will allow support and help DSOs, providing them with

a series of tools that can be useful to address, acting immediately, the challenge of decarbonizing gas

infrastructures.



Nomenclature

Acronyms

ANN Artificial Neural Network

ASHP Air Source Heat Pump

BU Boiler Unit

CAPEX Capital Expenditure

CD Coefficient Of Determination

CF Cash Flow

CGS City Gate Station

CHP Combined Heat and Power

COP Coefficient Of Performance

CUSUM Cumulative Sum

DSO Distribution System Operator

EEC Energy Efficiency Certificates

FM Fiscal Measurment

LHV Lower Heating Value

MAE Mean Absolute Error

MAPE Mean Absolute Percentage Error

ML Machine Learning

MLP Multi-Layer Perceptron

MLR Multiple Linear Regression

MSE Mean Squared Error

NG Natural Gas

NGDN Natural Gas Distribution Network

NN Neural Network

NPV Net Present Value
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x Nomenclature

OD Odorizer

OPEX Operational Expenditure

PBT Pay Back Time

PH PreHeater

PI Profit Index

PRS Pressure Reduction Station

PV Photovoltaic

RMSE Root Mean Squared Error

SCR Self Consumption Ratio

SSR Self Sufficiency Ratio

TSO Transmission System Operator

Latin symbols

C Specific cost, €/kW

c Specific heat, kJ/kgK

E Energy, kWh, kJ

G Irradiance level, W/m2

I Investment, €

P Pressure, barg

Q Volumetric flow rate Smc/h

r Correlation coefficient, kJ/kgK

r Interest rate , %

S CuSuM, -

T Temperature, °C

V Volume, m3, L

W Power, kW

Greek symbols

η Efficiency, (-)

µ Joule-Thomson coefficient, °C/MPa

ρ Gas density, kg/Smc

Subscripts and superscripts

el electrical



Nomenclature xi

gas natural gas

grid electricity from grid

H constant enthalpy

hp heat pump

in inlet

JT joule-Thomson

lift temperature lift

max maximum

min minutes

out outlet

p constant pressure

peak power peak

ph re-heating

ref reference

sell electricity to grid

soil buried pipeline surrounding soil

SP set point

st standard conditions

th thermal

wat preheating water

y yearly
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Chapter 1

Introduction

Global warming is a severe problem for the planet. In the last years, sustainable policies of countries,

climate actions and commissions strategies have led to substitute hydrocarbon fuel, such as oil and coal,

with natural gas which is lower carbon fuel. While burning NG does emit greenhouse gases, it contributes

far less CO2 and air pollutants than many of the fuels it is increasingly replacing, especially coal. Natural

gas now accounts for about a quarter of global electricity generation. While in the medium term it is seen

playing a major role supporting a transition to net zero energy systems, its longer-term use is uncertain

in a world dominated by non-emitting renewable energies. According to the last IEA reports of [1], in the

Net Zero Emissions by 2050 Scenario, unabated gas-fired generation continues its growth in the short

term, displacing coal-fired generation, but starts falling by 2030 and is 90 % lower by 2040 compared

to 2020. Increasingly, existing gas-fired power plants will need to be retrofitted with Carbon Capture

systems or co-fired with low-carbon fuels such as hydrogen to be consistent with Net Zero Scenario levels.

The depth and intensity of today’s crisis have led to concerns about the future cost and availability of

NG which have damaged confidence in its reliability and put a major dent in the idea of it serving as a

transition fuel. As a result, the era of rapid global growth in NG demand is drawing to a close. In the

Stated Policies Scenario (STEPS), demand rises by less than 5% between 2021 and 2030, compared with

a 20% rise between 2011 and 2020. It then remains flat from 2030 at around 4 400 billion cubic metres

(bcm) through to 2050, with growth in emerging market and developing economies offset by declines

in advanced economies. According to the above-mentioned report, in the Announced Pledges Scenario

(APS), demand soon peaks and is 10% lower than 2021 levels by 2030. In the Net Zero Emissions by

2050 (NZE) Scenario, demand falls by 20% to 2030, and is 75% lower than today by 2050. Theese three

scenarios for the future of Natural Gas usage are showed in 1.1.

The projections released by the IEA 2022 report suggest that the peak of NG consumption in the

world is yet to come, and it will probably be around 2030-2033; after this peak, the NG world consumption

will face a constant reduction, but this fossil fuel will still be present in 2050. Since the progressive

substitution of fossil fuel energy sources with renewable ones will require decades, eliminating unnecessary

energy consumption could reduce CO2 emissions in the medium term. Natural gas (NG) will be the last

fossil fuel to be abandoned because of its low carbon content and wide availability. Thus, it is worthwhile

to pay particular attention to reducing NG consumption, especially in the distribution network. This

chapter will show the Italian and European context of NG, with a particular focus on gas transport and

distribution networks. Subsequently, a component of this infrastructure will be analyzed in detail and its

importance and relative interest on the part of the scientific community will be explored in greater depth.

Finally, the objective and methodology of the thesis will be presented.
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Figure 1.1: Comparison of the three world natural gas consumption scenarios according to [1]

1.1 Natural gas: European and Italian scenario

In the European Union in 2022 the NG baseline consumption was of about 360 bcm (billions of cubic

meters). On the other hand. gas prices in Europe have reached unprecedented levels in the last year. That

is hurting the European economy, compromising its ability to completely overcome all of the dramatic

issues associated to the post-pandemic era. Moreover, the continuous pay rise in energy prices exacerbates

energy poverty conditions by increasing the number of people in need and widening inequalities. Figure

1.2 shows how this baseline consumption is divided: about half is imported through pipelines, a little

less than half through gas liquefaction (LNG) systems, and the remainder is obtained from domestic

production.

Figure 1.2: Baseline level of gas supply available to the European Union in 2023 [1]

Focusing on the national scenario, Italy is a huge importer of NG form different origins, such as Lybia,
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Tunisia, Northen Europe, etc...According to Figure 1.3, Natural Gas in 2021 accounted for more than

40% of the share of primary energy supply. One of the main reason why Italy is so dependent on Natural

Gas is because is the first user of this fossil fuel for generating electricity (see Figure 1.4) and the heating

sector is still mainly based in buring NG in convetional boilers. As a consequence of this fact, the gas

transport and distribution network in Italy is extremely important and widespread.

Figure 1.3: Distribution of the total primary energy supply by source in Italy in 2021 [2]

Figure 1.4: Leading country by gas electricity generation in Europe in 2021 [2]

1.2 Italian natural gas infrastructure

The Italian natural gas distribution system is composed of several components: pipelines, compression

stations, City Gate Stations (CGS), Pressure Reduction Stations (PRS), control valves, etc... The

Italian gas network accounts more than 32,800 km of pipelines at various pressure levels, more than 13

recompression stations with a total installed power of more than 900 MW and more than 9000 monitored

CGS of a multitude of different sizes and layouts. Currently, the volume of gas transported annually

by the Italian transport network is approximately 75.40 billion cubic metres [3]. Figure 1.5 is obtained

directly from the Italian TSO website and shows which are the main import points and routes of major

inter-regional and regional pipelines across the Italian peninsula.

The entire network is divided into two main parts:

• The national High-pressure network: including the systems involved in the transportation of natural

gas from the injection points to the regional interconnections and storage sites. It consists of
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Figure 1.5: Italian transport grid map [3]

pipes, usually of large diameter, with the function of transferring quantities of gas from the entry

points of the system (imports and main national productions) to the points of interconnection with

the regional transport network and with the storage structures. Some inter-regional gas pipelines

functional to reaching important consumption areas are also part of it. The transport operator in

italy, or Transport System Operator (TSO) is SNAM.

• The regional Low-pressure network, including the systems required for the local transportation of

natural gas and the supply of industrial/urban users and power plants. The Distribution System

Operator (DSO), on the other hand, is a figure that changes by region and sometimes even by
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province, depending on what areas of the territory are covered.

Pipes are the elements of the network through which the gas is transported and distributed. Gas

networks and consequently pipes are classified [4] according to the working pressure of the gas, as shown

in table 1.1. Gas network pipes can also be divided up into high-pressure (1a, 2a, 3a species), medium-

pressure (4a, 5a, 6a species) and low-pressure (7a species) pipes. High-pressure pipes are pipelines used for

long-range gas transportation. Medium/low-pressure pipes are responsible for distributing gas in urban

zones.

Table 1.1: Pipes species and relative working pressures according to Italian UNI.

Transportation Distribution

Species 1st 2nd 3rd 4th 5th 6th 7th

P barg >24 24 ÷ 12 12 ÷ 5 5 ÷ 1.5 1.5 ÷ 0.5 0.5 ÷ 0.04 <0.04

Figures 1.6 shows a real transportation and distribution pipes of a gas network. Pipelines are tubes of

large diameter (up to 1.200 m) made from unprotected iron and carbon steel. Medium/low-pressure ducts

are manufactured by high/medium-density polyethene or polytetrafluoroethylene lined carbon steel or

carbon steel (old tubes). Distribution pipe diameter depends on gas pressure and flow rate. Typically,

values are included between 80 mm and 300 mm.

(a) (b)

Figure 1.6: Transport pipeline (a) and local distribution pipes (b) examples.

Gas standards determine a maximum gas flow velocity for transmission and distribution pipes’ species.

Velocities into the pipes of the network should be lower than maximum allowed values to minimize

pressure drop, impurity dragging and noise phenomena. The overcoming of the velocity limit can produce

undesirable high-pressure drops in the network and consequently inadmissible pressure values at demand

nodes.

Figure 1.7 shows all the components of the Italian Natural Gas infrastructure. The element embedded

in red is the one that couples these two infrastructural levels and it is called in Italian the "ReMi"

(Regolazione e Misura in Italian, which means Regulation and Measurement) cabin, or City Gate Station

(CGS) in the literature, which means that facility equipped with a series of components to regulate the

pressure of natural gas as its main task. Moreover, the CGS absolves also to several other purposes, such

as natural gas odorization, which is a key task to ensure the detection of gas leaks, fiscal measurement to

evaluate the amount of energy delivered to the users located downstream of the CGS, gas filtering to avoid

impurities to enter the pressure reduction stage and gas preheating. The CGS is the physical connection
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point between the national transport network and the local distribution network. The gas is taken from

the national and inter-regional transport networks at high pressure whose values vary approximately from

10 to 70 bar. At these pressure values, the gas is not suitable for distribution and so it is necessary to

carry out an initial pressure reduction in the "ReMi", also known as first-stage cabins. Then it represents:

• A delivery point for the transport network

• A withdrawal point and the gas source for the distribution network

Figure 1.7: CGS location inside NG infrastructure [3]

It is very hard to obtain the hourly consumption profiles of all the plants present on Italian territory,

however Snam [3] provides a list of all the CGS present in Italy correlated with the values of allocated

flow rate (which can be understood as the maximum flow rate that can be supplied by the TSO and that

can cross the transmission network), pressure drops and so on. It is interesting to note from figure 1.8

that most plants in Italy are small to medium-sized, i.e. with maximum rated flow rates less than or equal

to 50000 Smc/h, which then correspond in practice to much lower maximum annual flow rates (even half),

as the allocated flow rate differs greatly from the actual flow rate.

There are different types of connected consumers to the CGS: industrial (I), distribution (D), auto-

traction (A), thermoelectric (E) and so on[5], below what the authority classifies as consumption profiles:

• D’: ’Distribution network’

• I 5/7: Industrial and other uses with offtake days equal to 5 out of 7.

• E 5/7: Thermoelectric with offtake days equal to 5 out of 7.

• A 5/7: Autotraction with offtake days equal to 5 out of 7.

• I 7/7: Industrial and Other with offtake days equal to 7 out of 7.



Italian natural gas infrastructure 7

(a) (b)

Figure 1.8: Italian TSO - Delivery points analysis: Segmentation of the flow rates processed by the various
plants and analysis of the types of users connected downstream of these plants.

• E 7/7: Thermoelectric with offtake days equal to 7 out of 7.

• A 7/7: Autotraction with offtake days equal to 7 out of 7.

1.2.1 City Gate Station layout

As mentioned earlier, the CGS performs many different tasks within the NG infrastructure.

1. Upstream inlet step: including the section of pipe ranging from the point of delivery to upstream

manifold of the filters. They are also included: shut-off valve, insulating joint, emergency valve. The

gas velocity must be less then 30 m/s.

2. Filtering step: intended for the separation of liquid and/or solid particles possibly present in the

gas. The load losses of the clean filter must be less than 3 % of minimum inlet pressure

3. Preheating step: the natural gas preheating process it is required by law for powered systems

from an inlet pressure of 12 bar. It must prevent excessive lowering of temperature produced by

the relevant jump of reduction of gas pressure The gas temperature must not be lower than 5°C

according to safety regulations. The formation of ice would cause serious problems operation of the

regulating devices until reaching even when blocking the supply. Hot water generally produced with

gas burners that exploit part of the gas is used as fuel processed

4. Pressure regulation step: ts purpose is to reduce the pressure of the gas in transit to a value

constant. It is the main element taht includes, in addition to service regulators, also the control and

emergency regulators, any locking devices, vent valves to the atmosphere, related accessories, pilots

and connections, pressure ports, relief and safety valves and so on.

5. Fiscal measurment step: Measurement of output quantities (pressure, volumetric flow rate, temper-

ature).This step guarantees fiscal measurement of gas in transit in the RE MI cabin. Are allowed

:deformable wall meters, mostly for private users or in any case small flow rates, turbine meters,

rotary counters, ultrasonic counters, diaphragms with pressure difference meters, Venturi pipes, etc...

6. Odorization: Natural gas is odourless and thus an odor is required for leak detection. Substances

called odorants are used. Two kind of possible technologies: lapping odorization, injection odorization;

usually theese two are used in combnation and the lapping acts as a reservoir for injection.
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Figure 1.9: CGS filtering stage.

7. Downstream outlet step: it is the section that connects the exit of the group measurement with the

shut-off valve general output of the plant. Connect the CGS to the network of distribution. Output

pressures typically at values of pressure between 12-10 and 1-5 bar. It comprehends the downstream

emergency valve and the shut-off valves and the insulating joint.

Figure 1.13 shows the trend of natural gas conditions in terms of pressure and temperature inside the

CGS and along the path followed by the gas itself. The gas generally enters between 12 and 75 barg or

between 1.2 MPa and 7. 5 MPa with a temperature varying from the area and topology of the upstream
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Figure 1.10: CGS preheating heat exchangers and monitors for pressure reduction stage.

Figure 1.11: CGS fiscal measurment stage.

section, then it is filtered and its condition remains almost unchanged except for a small pressure drop

after filtering, then it is preheated and the temperature rises to 40-60°C, then it undergoes the actual

lamination and both P and T decrease sharply, and finally it passes through the various metering and

odorization stations and exits in useful condition to be transported downstream of the CGS by the local

distribution network.

1.2.2 Natural gas withdrawal profiles and climate zones

In Italy, there are different climate zones depending on the region and geographical area; depending on

whether the CGS is located in one area rather than another, there will be different thermal seasons (winter,
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Figure 1.12: CGS odorization stage: injection and lapping systems in series.

Figure 1.13: Italian CGS typical layout steps.
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Figure 1.14: Italian CGS typical layout: real example.

where heating is allowed on, and summer, where heating is turned off) of different durations. Figures 1.15

shows the different areas in Italy corresponding to different climate zones.

Figure 1.15: Climate zones in Italian area according to heating degree days.

The 7 CGSs used for this analysis all belong to the most common climate zones in Italy, i.e. zones D

and E. The next figure (1.16), on the other hand, shows the periods when the heating is switched on and

off for each climate zone. This factor is important and has an impact on the operating conditions of the

CGS, especially when the users downstream of the CGS are mostly residential/commercial or in any case

not industrial only and therefore strongly influenced by seasonality and the presence or absence of gas

heating.

Climate regions are based on the concept of degree days, described by the 1.1 equation.
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Figure 1.16: Times and periods of switching on heating in italy according to the network regulation
authority [5]

HDD =

n∑
i

(T0 − Tenv) (1.1)

Where T0 is the indoor environmental temperature, Tenv is the external temperature, i is the pedix for

the considered day and n is the number of days in one year, i.e. 365. Heating degree days (HDD) are

defined by an Italian legislative decree as the "sum, extended to all days of a conventional annual heating

period, of only the daily positive differences between the room temperature, conventionally set at 20°C,

and the daily average outdoor temperature; the unit of measurement used is the degree day (DD)." In

simpler words, degree days are the difference between the average daily temperature and the 20°C we

have in the house, for all days of the heating period.

Thus, it is clear that the working profile of a CGS and consequently its preheating consumption profile

will be influenced by some of the factors and conditions described in the previous sections: type of utilities,

type of climate zone, and distribution of the type of utilities in the cluster of utilities downstream of the

CGS.

1.2.3 Preheating requirements: Joule–Thomson Effect

The temperature change undergone by the gas during an adiabatic expansion depends not only on the

final and initial pressure states, but also on the way the expansion is carried out. In a free expansion the

gas does no work and absorbs no heat, so the internal energy is conserved. Expanding in this way, the

temperature of an ideal gas would remain constant, but the temperature of a real gas decreases, except at

very high temperatures. The Joule-Thomson expansion method, on the other hand, is an intrinsically

irreversible method. During this expansion, the enthalpy remains unchanged, but unlike a free expansion,

work is done that causes a variation in internal energy. This change due to the irreversibility of the process

means that much greater cooling or heating can be achieved than in the case of free expansion. The
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operating principle of the NG grid is based on sequentially controlled multiple gas expansions, commonly

performed by throttling valves that dissipate the energy previously spent on NG compression. This

dissipation of energy causes by the Joule-Thomson effect a reduction in the gas temperature as well, and

this can cause plant engineering as well as technical problems for the entire network downstream of the

CGS. Expansions involve cooling the gas and possible hydrate formation, potentially compromising the

integrity of components installed downstream of the pressure reduction stations.This effect is compensated

for by pre-heating systems that use part of the natural gas flow to feed conventional gas boilers that heat

water that exchanges heat with the gas entering the CGS.

Figure 1.17 shows the P-H (Pressure - Entalphy) plane of methane, which is used to better understand

this phenomenon. Although NG is a mixture of hydrocarbons, it is mainly composed of methane, the

molecule with formula CH4,. From the graph, two points (A represents the starting of the expansion and

B the arrival) can be seen highlighted; it can be seen that one moves in the area outside the bell in the

gaseous state vertically (iso-enthalpy) and that a reduction in pressure consequently leads to a shift to

another iso-temperature of lower value.

Figure 1.17: P-H diagram for methane gas

While before this energy dissipation, gas consumption and CO2 emissions be considered acceptable and

part of the "operating costs" of the gas infrastructure, nowadays with decarbonization targets becoming

more and more stringent and rigid on the one hand, and the gas prices skyrocketing, on the other hand, it

is crucial to act on these systems to reduce and if possible completely decarbonize their internal processes.

1.3 Literature review

The EU’s climate neutrality goals include energy efficiency in the energy sector, and the NG sector,

despite being based on the cleanest fossil fuel and having the longest survival horizon, must still ensure an

increase in energy efficiency and progressive decarbonization. There are several areas to act on for the
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decarbonization of the gas transport infrastructure, to name a few:

• decarbonization of the gas carrier through injection of green gases such as bio-methane [6, 7] or

hydrogen [8–10];

• reduction of gas fugitive emissions into the atmosphere [11];

• energy recovery or energy efficiency in pre-heating systems in CGS (see tables 1.3 and 1.2).

CGS modelling and monitoring and NG preheating efficiency and energy recovery have already been

studied in several scientific papers. Academic studies generally deepen two main approaches: energy

recovery in the gas through expanders that exploit the residual pressure drop to produce electricity

or systems for reducing or abating the energy cost of preheating the gas. A third strand, which is

much poorer in terms of published papers, concerns the analysis and monitoring of these facilities using

data-driven techniques or reliability and safety approaches. The studies that are more widespread concern

techno-economic feasibility analyses involving different types of technologies and with the ultimate aims

of both energy recovery analysis and pre-consumption reduction analysis.

Figures 1.19 and 1.18 show the results of the literature review for the CGS analysis. According to

scientific papers, there are several technologies that could be implemented inside the CGS; these devices

could be use in place of the conventional gas boilers or in support of them. The literature on these topics

has grown rapidly in recent years, with several dozen papers on CGS coming out between 2018 and 2021.

This proves that the attention paid by the scientific world to these topics is higher than ever.

Figure 1.18: CGS literature review: analysis vs approaches.

One of the most common system upgrade consists of the installation of turbo-expanders to recover

energy from the pressure cascades; generally speaking, these kind of devices allows a quick return of the

investment if the CGS flow rates are very high and the pressure drops are average-low. Some plants are

instead equipped with solar collectors and heat recovery systems to avoid burning fuel in the boiler for

pre-heating needs. The high capital and operating costs can be justified in these cases if the demand curve

(preheating gas consumption) and supply curve (solar radiation) are as coincident as possible. Considering

the European and especially the Italian panorama, the majority of CGSs are of small to medium size. In
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Figure 1.19: CGS literature review: techs vs years.

order to be able to recover energy from these plants, expansion systems based on volumetric expanders

are designed, which are better suited to processing small flows and medium to large pressure drops. In

this case, the reduced gain in terms of recovered energy is counterbalanced by a much lower capital cost

compared to turbo-expanders. Heat pumps, air or geothermal, have been widely designed to support or

completely replace gas boilers. The advantages of these technologies are many: two to three times the

efficiency of boilers depending on the region of use and demand, lower capital costs than expanders, and a

general technological trend that is continuing to lower prices given the wide spread in other industrial

and civil sectors. The use of heat pumps to partially and fully decarbonise pre-heating costs is therefore

an interesting concept that can still be explored further. Still in terms of technologies, there are, finally,

some studies concerning more specific and particular technologies. To name a few: Ranque-Hilsch vortex

tubes, Allam cycles, heat pipes, ORC cycles and so on.

1.3.1 Preheating reduction approach

Farzaneh-Gord et al. [12] propose a heat production system as a partial replacement for the traditional

boiler consisting of a solar collector coupled to a tank, applied to a CGS placed in Akand. The authors

find the optimal number of collectors and storage tank capacity based on the technical-economic analysis,

in fact as the number of collectors increases, the fuel cost decreases, but the capital cost increases.

Farzaneh-Gord et.al. [13] then propose a new system to eliminate the fuel consumption of CGSs,

using a ground-coupled vertical heat pump. The performance of the system is studied under two different

climatic conditions in Iran and two different NG compositions. Results show that the system is fully

capable of eliminating the preheating gas consumption by more than 65% and reducing CO2 emissions by

up to 79%. The discounted payback period is computed to be around 2 years.

Deymi-Dashtebayaz et al. [14] present a new approach for optimizing fuel consumption in a CGS by

defining the minimum possible controller output temperature. The minimum temperature is based on the

gas hydrate temperature and was calculated by applying the fundamental thermodynamic equations and

the equation of state, validating the model with the measured temperature of the CGS at Abbas Abad.

Results show that the method can reduce gas consumption by approximately 35%, and the production of

carbon dioxide due to incomplete combustion can be significantly reduced.

Englart et al. [15] propose the use of renewable energy sources in CGS Polish gas pre-heating to reduce
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thermal energy consumption, analysing various combinations with conventional heat pump, absorption,

and ground heat exchanger. Results highlight that the application of a gas heat pump to replace the

traditional gas boiler could reduce gas consumption by up to 27-42% for the case study considered. The

extension of the gas pre-heating system with an additional ground heat exchanger, used as a heat source

for the heat pump, could lead to greater energy savings in gas consumption of between 30 and 44%.

In a study for the following year, the authors focus on renewable energy source (RES)-based electrical

technologies, such as air source and ground source heat pumps, coupled with air-to-ground heat exchangers,

horizontal and vertical heat exchangers. The pre-heating estimation model is improved from previous

work by considering the gas composition to estimate the basic properties of the fuel chemical compounds.

Analyses were performed for three climate types (from cold to hot) and for the two operating modes.

Results shows that the electric pre-heating solution with a RES system can save more than 50% of the

primary energy, reducing greenhouse gas emissions [16].

Alizadeh et al. [17] study the possibility of improving the energy recovery efficiency in CGS using

a heat pipe designed specifically for this purpose. This system is tested with real data from one year

operation of pressure reduction stations, Results indicate that the heat pipes is capable to reduce gas

consumption by more than half a million cubic meter a year and it annually prevents 756 tons of CO2

from being emitted .

1.3.2 Preheating energy recovery approach

Borelli et al. [18] investigate the integration of a CGS with low-temperature thermal energy sources by

means of a two-stage expansion system. The risk of NG hydrate formation was evaluated for several

Operating Conditions (OCs) with a transient model. The energy efficiency of the cabinets with low and

high temperature configuration is compared. Results highlight that the expansion could achieve better

energy performance and be integrated with low-enthalpy heat sources. The same authors investigate

and propose key performance indicators for energy recovery in CGS, considering a theoretical reference

process, in which a Joule-Thompson expansion and emission reduction indicators occur. Results showed

that the proposed KPIs proved to be a useful, simple, and easily interpretable tool for managing the

design development of heat recovery systems at CGS [19].

Danieli et. al. [20] study several kinds of mechanical expanders combined with different preheating

devices based on gas boilers, cogeneration engines or heat pumps to identify the best combination by

evaluating the combination of maximum net present value and minimum payback period, applied to

Pressure Reduction Stations (PRS). Results show that small size volumetric expanders with low expansion

ratios and coupled with gas-fired preheaters have the highest potential for large-scale deployment of energy

recovery from PRSs with a maximum recover percentage of about 15% of the available thermal energy . In

a following paper, the same authors evaluate the economic and technical feasibility analysis of a thermal

energy recovery system based on the Ranque-Hilsch vortex tube. A model of the entire system is included

in an optimisation method. A new empirical model of the device is proposed. Finally, a complete set of

PRS from the Italian NG grid is chosen as case study, using the actual operating conditions collected

by the DSO of each station. Results point out that the ambient temperature strongly influences the

techno-economic feasibility of the proposed device, but 95% of pre-heating costs could be eliminated with

a payback time of less than 20 years [21].

Mohammad Ebrahimi Saryazdi et al. [22] perform a multi-objective optimization of a NG preheating

system composed of a turbo-expander supplied by a waste heat recovery device or a boiler unit. The total

cost of the proposed configuration and the total exergy are used as objective functions. Results show that

the configuration without the gas boiler unit is advantageous for both economic and exergy indicators.
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1.3.3 Data-driven approaches

Few studies involve the use of data-driven approaches to these facilities; the main ones will now be

described and are summarized in the table 1.4 and in figure 1.20. The use of data-driven approaches

requires first the presence of a substantial data set, which is available to DSOs, but also a compelling need

and a specific goal. Until now, there was no need to reduce gas grid consumption because of abundant

supplies and low prices. The only data-driven approaches have involved plant health monitoring through

fault detection or risk analysis approaches, with the sole objective of avoiding failures and malfunctions

so as not to incur supply interruptions. With the rapidly changing global energy scenario, rising and

fluctuating prices, and the demand for decarbonization, a need for energy monitoring aimed at controlling

and reducing consumption by companies and DSOs has taken hold.

Figure 1.20: CGS data-driven methods literature review: approaches vs years.

Aramesh et. al. [23]present a novel approach to NG flow prediction at CGS using fuzzy-ANN by

building a model based on data from a first station which is then subsequently tested to predict NG

transmission from a second station and optimize the neural network error. The results showed that the

predictive model was usable after adaptations even at a station that did not provide training data and

the range of the transmitted NG volume was different. This approach was useful to develop data-driven

predictive models of delivered NG in CGS with a lack of data but similar consumption to save building

cost a new model for each CGS.

Farzaneh-Gord et.al. [24] propose a method based on Artificial Neural Networks (ANN), namely the

Multiple Layer Perceptron (MLP), to predict the physical properties of NG as it transits through a CGS.

Subsequently, the method is used to directly calculate the temperature drop along a throttling process. To

train, validate and test the network, a large database of natural gas fields in Iran and some experimental

data (30,000 random data sets) were collected from the literature. The results indicate that the developed

machine learning methods exhibit high accuracy in calculations over a wide range of gas mixtures and

input properties.

Bryan Leo et al. [25] developed a framework for uninterrupted condition monitoring of reduction

and measurement cabins by developing a mathematical-physical model of the cabin behavior, which

incorporates a real gas equation through a meta-model using an Artificial Neural Network (ANN). The

results highlighted several potential health problems in a PRS and suggested various smart strategies to
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control them by illustrating the application of the proposed method through a case study of a pressure

reduction cabin with one year of data.

Sharma et al. [26] proposed a method for condition monitoring of a PRS, which was modelled using

computationally cheap ML-based surrogate, avoiding the use of First Principles Models (FPM), which are

computationally expensive. The gas filter chocking was monitored to predict its remaining useful life and

a dashboard was implemented for health monitoring of the PRSs to be merged with online plant data for

predictive maintenance aim. The results showed that this approach could increase the DS reliability and

reduce maintenance costs.

Fan et al. [27] proposed a novel DR method for predictive management in multi-level natural gas

markets with different stakeholders. This method included three parts: dynamic pricing model, intelligent

decision making and data-driven demand forecasting. A Markov decision process-based model is developed

to illustrate the process of dynamical optimizing energy prices. Then, deep learning and reinforcement

learning are integrated to efficiently solve the sequential decision-making problem, based on the physics

constraints of natural gas pipeline networks. The proposed dynamic pricing method was able to optimize

the pricing strategies in accordance to the demand patterns, and dynamically improve the system stability

and energy efficiency. Finally, they applyed the developed method to a natural gas network with relatively

complex topology and different CUs. Results showed that the proposed method can achieve the targets of

peak shaving and valley filling under different pricing periods.

Table 1.2: Energy recovery approaches for preheating

Title Year Techs Reference

«An investigation of the performance of a hybrid turboexpander-fuel cell system for power recovery at natural gas pressure reduction stations» 2011 Turboexpander, Fuel Cell [28]

«Producing electrical power in addition of heat in natural gas pressure drop stations by ICE» 2012 ICE [29]

«Modeling and optimizing a CHP system for natural gas pressure reduction plant» 2012 CHP [30]

«Recovery of Wasted Mechanical Energy from the Reduction of Natural Gas Pressure» 2014 Turboexpander [31]

«Thermoecological cost of electricity production in the natural gas pressure reduction process» 2014 Expander [32]

«Energy and exergy analysis of electricity generation from natural gas pressure reducing stations» 2015 Turboexpander [33]

«Defining a technical criterion for economic justification of employing CHP technology in city gate stations» 2016 CHP [34]

«Energy consumption minimization in an innovative hybrid power production station by employing PV and evacuated tube collector solar thermal systems» 2016 Solar Collector [35]

«Performance assessment of vortex tube and vertical ground heat exchanger in reducing fuel consumption of conventional pressure drop stations» 2016 Vortex [36]

«Proposal and design of a natural gas liquefaction process recovering the energy obtained from the pressure reducing stations of high-pressure pipelines» 2016 Other [37]

«Feasibility study on energy recovery at Sari-Akand city gate station using turboexpander» 2016 Turboexpander [38]

«Use of Rolling Piston Expanders for Energy Regeneration in Natural Gas Pressure Reduction Stations—Selected Thermodynamic Issues» 2017 Expander [39]

«Energy recovery from natural gas pressure reduction stations: Integration with low temperature heat sources» 2018 Turboexpander [18]

«Development and application of screw expander in natural gas pressure energy recovery at city gas station» 2018 Expander [40]

«Key performance indicators for integrated natural gas pressure reduction stations with energy recovery» 2018 Turboexpander [19]

«Optimal retrofitting of natural gas pressure reduction stations for energy recovery» 2018 Turboexpander [41]

«Thermodynamic modeling and analysis of a novel heat recovery system in a natural gas city gate station» 2019 ORC [42]

«Techno-Economic Assessment of Turboexpander Application at Natural Gas Regulation Stations» 2019 Turboexpander [43]

«Optimal design and thermo-economic analysis of an integrated power generation system in natural gas pressure reduction stations» 2019 ORC [44]

«Performance research on a power generation system using twin-screw expanders for energy recovery at natural gas pressure reduction stations under off-design conditions» 2019 Expander [45]

«Thermodynamic and Economic Feasibility of Energy Recovery from Pressure Reduction Stations in Natural Gas Distribution Networks» 2020 Expander [20]

«Comprehensive techno-economic and environmental sensitivity analysis and multi-objective optimization of a novel heat and power system for natural gas city gate stations» 2020 Other [46]

«Optimal working conditions of various city gate stations for power and hydrogen production based on energy and eco-exergy analysis» 2020 Turboexpander, Fuel Cell [47]

«Proposal and analysis of a coupled power generation system for natural gas pressure reduction stations» 2020 Expander [48]

«Using the potential of energy losses in gas pressure reduction stations for producing power and fresh water» 2021 Turboexpander [49]

«Optimal detailed design and performance assessment of natural gas pressure reduction stations system equipped with variable inlet guide vane radial turbo-expander for energy recovery» 2021 Turboexpander [50]

«A Smart Energy Recovery System to Avoid Preheating in Gas Grid Pressure Reduction Stations» 2022 Vortex [21]

«Energy, exergy, and eco-environment modeling of proton exchange membrane electrolyzer coupled with power cycles: Application in natural gas pressure reduction stations» 2021 Turboexpander [51]

«Exergetic and economic evaluation of a novel integrated system for trigeneration of power, refrigeration and freshwater using energy recovery in natural gas pressure reduction stations» 2021 Turboexpander [52]

«Energy, exergy and economic analysis of utilizing the supercritical CO(2)recompression Brayton cycle integrated with solar energy in natural gas city gate station» 2021 Brayton Cycle [53]

«Thermodynamic analysis of a comprehensive energy utilization system for natural gas pressure reduction stations based on Allam cycle» 2022 Other [54]

«Performance analysis of a power generation system for pressure energy recovery at natural gas city gate stations» 2022 Turboexpander [55]

«Energy and exergy analysis and multi-objective optimization of using combined vortex tube-photovoltaic/thermal system in city gate stations» 2022 Vortex, PV [56]
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Table 1.3: Energy efficiency approaches for preheating

Title Year Techs Reference

«Feasibility of accompanying uncontrolled linear heater with solar system in natural gas pressure drop stations» 2012 Solar Collector [12]

«The minimum gas temperature at the inlet of regulators in natural gas pressure reduction stations (CGS) for energy saving in water bath heaters» 2014 Boiler [57]

«Energy and exergy analysis of natural gas pressure reduction points equipped with solar heat and controllable heaters» 2014 Solar Collector [58]

«Employing geothermal heat exchanger in natural gas pressure drop station in order to decrease fuel consumption» 2015 Heat Pump [59]

«New energy-saving temperature controller for heater at natural gas gate station» 2015 Boiler [60]

«Integration of vertical ground-coupled heat pump into a conventional natural gas pressure drop station: Energy, economic and CO2 emission assessment» 2016 Heat Pump [13]

«Performance assessment of a novel natural gas pressure reduction station equipped with parabolic trough solar collectors» 2018 Solar Collector [61]

«Energy and environmental analysis of a natural gas pressure reduction station equipped with turboexpander, solar collector, and storage tank» 2018 Turboexpander, Solar Collector [62]

«Application of water reheating system for waste heat recovery in NG pressure reduction stations, with experimental verification» 2018 Other [63]

«Optimization of fuel consumption in natural gas city gate station based on gas hydrate temperature (Case study: Abbas Abad station)» 2019 Boiler [14]

«Renewable energy sources for gas preheating» 2019 Heat Pump [15]

«Improving thermal performance of water bath heaters in natural gas pressure drop stations» 2019 Other [64]

«Modelling of heat supply for natural gas pressure reduction station using geothermal energy» 2019 Heat Pump [65]

«A novel modification on preheating process of natural gas in pressure reduction stations to improve energy consumption, exergy destruction and CO2 emission: Preheating based on real demand» 2019 Boiler [66]

«Optimization of city gas network: a case study from Gujarat, India» 2019 Boiler [67]

«Energetic, exergetic, environmental and economic assessment of a novel control system for indirect heaters in natural gas city gate stations» 2020 Boiler [68]

«Reducing energy consumption for electrical gas preheating processes» 2020 Heat Pump [16]

«Thermal modeling of indirect water heater in city gate station of natural gas to evaluate efficiency and fuel consumption» 2020 Boiler [69]

«A comprehensive assessment of low-temperature preheating process in natural gas pressure reduction stations to better benefit from solar energy» 2020 Solar Collector [70]

«Energy Harvesting by a Novel Substitution for Expansion Valves: Special Focus on City Gate Stations of High-Pressure Natural Gas Pipelines» 2020 Expander [71]

«Performance enhancement of water bath heater at natural gas city gate station using twisted tubes» 2020 Boiler [72]

«Investigation of Operational Scenarios to Mitigate CO2 Emission and Natural Gas Consumption in City Gate Stations (CGSs)» 2021 Turboexpander [73]

«Energy analysis of vacuum tube collector system to supply the required heat gas pressure reduction station» 2021 Boiler [74]

«An experimental investigation on using heat pipe heat exchanger to improve energy performance in gas city gate station» 2022 Other [17]

«Analysis of the effects of forced convective heat transfer to reduce the efficiency of heaters of gas pressure reducing stations» 2022 Boiler [75]

Table 1.4: Data-driven approaches

Title Year Approach Reference

«A general neural and fuzzy-neural algorithm for natural gas flow prediction in city gate stations» 2014 Data-driven prediction [23]

«Design and implementation of an expert system for periodic and emergency control under uncertainty: A case study of city gate stations» 2019 Health monitoring [76]

«A fuzzy expert system for mitigation of risks and effective control of gas pressure reduction stations with a real application» 2019 Risk analysis [77]

«Simulation and health monitoring of a pressure regulating station» 2020 Health monitoring [25]

«Machine learning methods for precise calculation of temperature drop during a throttling process» 2020 Health monitoring [24]

«Natural Gas Hydrate Prediction and Prevention Methods of City Gate Stations» 2021 Data-driven prediction [78]

«Risk analysis of gas leakage in gas pressure reduction station and its consequences: A case study for Zahedan» 2021 Risk analysis [79]

«Natural Gas Consumption Forecasting Based on the Variability of External Meteorological Factors Using Machine Learning Algorithms» 2022 Load forecasting [80]

«A deep reinforcement learning-based method for predictive management of demand response in natural gas pipeline networks» 2022 Demand-response [27]

1.4 Aim

1.4.1 Motivation and research questions

Considering the importance of the continuous decarbonization of the NG transport chain and the safety

issues concerning poor gas preheating, the limitations of the previous studies concern:

• the use of several lumped models for estimating pre-heating consumption that is simplified or not

always compared with experimental data, or the choice of analyzing very complex and specific

systems based on expanders or other technologies, is not always followed by a detailed analysis of

the economic feasibility of the chosen system. If we were to divide a techno-economic analysis into

two main parts, most articles studying this topic do not examine the two aspects comprehensively

and focus on one of them at most. Furthermore, most of the plants present in Italy, but also in

Europe, belong to the operational functioning classes (in terms, for example, of processed flow rate

20 Introduction and pressure drop) of medium-small size; consequently, it is very important to study

also small-sized plants and the technologies that can be coupled to them and not only large and

very large plants which, although characterized by high flow rates and therefore consumption, are

much less widespread and therefore have a relative impact.

• the lack of reliable baseline consumption models of CGS operation that could be used to monitor
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the operation of the thermal station and to assess the effects of possible modernization or efficiency-

enhancing installations. While there are some studies, albeit few, on monitoring or of the state of

health through data-driven methods or on the reliability of these systems, no one has raised the

problem of actually going to evaluate the impact of the various technologies analyzed and proposed

to enhance the efficiency of the preheating systems of the CGS or eventually replace them completely.

Considering the above mentioned gaps and problems, the research questions that this thesis will try to

answer to are the following:

• This work proposes to develop a simplified, yet refined and general thermodynamic model to analyse

the reduction of thermal energy consumption in a CGS equipped with RES-based air-source heat

pumps, exploiting knowledge of the actual OCs of a CGS. Based on previous studies analysing CGS

of comparable size, the authors focus on the inclusion of heat pumps for efficient gas pre-heating,

exploiting dataset from several CGSs located in central Italy. The resulting research questions are:

What kind of studies can be conducted with the simplified models in the literature and whether

they can be improved?

What are the optimal sizes of heat pumps from a techno-economic point of view to be coupled

to these plants?

Is it possible to achieve complete decarbonization of these systems while maintaining economic

feasibility and acceptable resilience to energy price fluctuations?

• The second goal is therefore to develop a methodology to assess the best operating conditions

of CGS from an energy-saving point of view, monitor energy performance and possibly propose

counteractions or improvements. This work attempts to fill this knowledge gap and its aim is

to develop a methodology of a CGS data set analysis and features selection to deploy several

machine learning models, in particular regression models whose target will be the CGS preheating

consumption, that will serve as a tool for monitoring tasks of the performance of the CGS preheating

energy consumption. The resulting research questions are:

What are the actual variables that influence the preheating requirements? What are the effects

of seasonality on these plants? Is it possible to generalize the behavior of these systems?

What types of relationships are there between consumption (the target) and input variables

(flow rates, etc...)? How complex does the machine learning model have to be predictive and robust

enough in these applications?

Is it possible to develop an energy monitoring method for these applications, starting from

energy baseline models?

1.4.2 Methodology

Figure 1.21 clarifies the methodology pursued to answer the research questions described in the previous

section and thus realise the objective of the thesis work. Firstly, a set of super-simplified first-principles

models will be developed to evaluate the preheating requests of 7 CGS whose annual datasets were

provided by the DSO. Coupled with the CGS models, various RES-based tech models or tools were

added for the evaluation of energy efficiency interventions within a CGS. Air source heat pumps are the

key technologies considered for this type of analysis. These tools are applied to the techno-economic

feasibility analysis of coupling conventional systems with renewable energy-based systems to reduce and

possibly lower the carbon footprint of CGS. The study, therefore, turned to the realization of baseline
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models of the energy consumption of these plants mainly for two reasons: the structural deficiency in

realizing validated and precise physical models that can be generalized for this type of application and the

possibility of accessing a lot of data provided by the DSO, which also made it possible to assess which

are the real parameters that influence the consumption of these plants. The data-driven approach will

be followed in the following steps involving the prototyping of models that replicate the behavior of the

plants described above: analysis of the datasets provided by the DSO, realization of correlation studies

between the variables and features engineering, training, and validation of regression models that act as a

consumption ’baseline’ with respect to the training period, and finally, use of these to carry out detailed

energy monitoring analyses using CuSuM techniques. All models were developed in Python using some

of the libraries available to the community, such as Scikit-Learn [81] for building the machine learning

algorithms or CoolProp [82] for calculating the thermodynamic properties of fluids, in this case natural

gas. Other parts of the tools were developed in-house in order to make up for the lack of models already

in the literature, such as the thermodynamic preheating model.

Figure 1.21: Thesis outline and methodology





Chapter 2

Materials and methods: decarbonisation

of gas preheating

This section outlines the tools that will be used for the techno-economic feasibility analysis to decarbonize

CGS plants equipped with renewable-based preheat heat generation systems. First, the proposed control

logic with the various plant layouts is described, then the various sub-models, for preheating requirements,

PV production, and HP output calculation are presented, and finally, the economic indices and references

to energy prices and energy efficiency certificates are described.

2.1 CGS proposed hybrid layout

A new layout for the NG preheating system is proposed, based on the integration of a RES-based Heat

Pump (HP), supported by a small Water Tank (WT), with the conventional gas-fired Boiler Unit (BU).

The system is equipped with an Air Source Heat Pump (ASHP) fed by a Photovoltaic (PV) field, as it’s

shown in Figure 2.1. The system is also connected to the national grid and can either sell electricity only

or be bi-directionally connected and buy it to power the electric heat pump. The various components of

the CGS described in the figure will be explained in the following paragraphs. The assumptions underlying

the operation of the HP are to utilise the outside air as a thermal reference well and to send water at

a temperature of about 55 °C to the Preheater (PH), to preheat the gas before it enters the Throttling

Valve (TV). This assumption is reasonable to maintain a safety coefficient at the heat exchanger to avoid

flow crossings at any time of the year and at the same time not to penalise the efficiency of the heat

pump too much. The flow rate of the preheating water is not calculated, since it is assumed that the

system is able to modulate it with an inverter controlling the pumps speed, to manage the heat to be

supplied to the gas optimally. In the following table, see 2.1, the assumptions are summarized with the

respective symbols and values used in this chapter. There are three configurations that will be analysed

in this chapter: the first, called off-grid, which only involves the installation of the HP with an auxiliary

hot WT without any connection whatsoever to the grid, the second which only allows the PV electricity

surplus to be sold, and the third and last which also allows purchases from the grid.

2.1.1 Hybrid system control logics

Every timestep ∆t, assumed equal to 1 hour, the power balance between the pre-heating thermal demand

of natural gas WPH , for the given input conditions and output set points, and the heat output that can

23
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Figure 2.1: Natural gas preheating hybrid system layout

Table 2.1: Technical assumption for hybrid system operating conditions and models

Symbol Name Hypotesis

COP Variable HP coefficient of performance COP = f(∆Tlift)

CF Boiler capacity factor CF = f(WBU,max,WBU )

ηBU Variable boiler efficiency ηBU = f(CF )

ηPH Constant preheater efficiency ηPH = 0.95

Tsupply Supply water temperature constant Tsupply = 55 °C

Tgas,in Gas inlet temperature dependency with air temperature Tgas,in = f(Tenv)

Ti,SP SET POINT temperatures according to thermal season Ti,SP = f(winter, summer)

Wph Preheating variables in Standard conditions Wph = f(ρst,gas, cpst,gas, LHVst,gas)

WPV PVGis tool for PV panel output calculation PVGis tool [83]

µJT Joule-Thomson calculation library REFPROP [84]

Wtank,losses Perfect mixing tank Wtank,losses = f(UAtank,∆T )

be supplied by the heat pump WHP,th is calculated. The heat pump always has priority; if there is a

surplus of renewable thermal energy, i.e., electric power from the PV, all the preheating requirements are

fulfilled with the heat pump and the equivalent surplus electricity is sold to the grid, if the control logic

allows it. On the other hand, if the heat output supplying the HP is zero or insufficient, the water tank
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and if necessary the auxiliary boiler comes into action and the necessary NG flow rate is obtained from

the primary flow via the Splitting Valve (SP). The control balance of the logic is described by (2.1).

∆W (t) = WPH(t)−Wth,HP (t) (2.1)

The electric power exploitable by the ASHP every hour is obtained following a control logic that

compares the power output of the solar panels with a “cut-off” threshold: when the solar field output is

equal or higher to this threshold, the heat pump is switched on, but when the value of the PV output falls

below the threshold, the heat pump is switched off. The threshold works that if the demand is less than

20 % of the heat pump’s producibility, i.e. the size, the pump shuts down; this was decided discussing

with the DSO, and because heat pumps have very constant part load efficiency curves, but the efficiency

drops sharply for very high part load values (usually from 20 percent to 0 % of the maximum load). The

heat output that the heat pump can provide every hour will be given by the product of the available

electrical power and the actual coefficient of performance COP (t), see (2.31).

Wth,HP (t) = COP (t)×Wel,HP (t) (2.2)

Depending on whether the system can produce renewable electricity from PV alone or can purchase it

from the grid, the Wel,HP equation will change. In general form, therefore, equation (2.3) will be:

Wel,HP (t) = WPV (t) +Wgrid(t) (2.3)

Table 2.2 summarises the possible control logic configurations that will be analysed in this chapter for

this thesis work. The possible logics are as follows:

• Logic 1: off-grid : the heat pump can only receive electricity from the PV, see (2.4), or recharge

the hot water tank, so the pre-heating requirement can only be met by a combination of WHP,PV ,

WTANK or WBU .

WHP,PV (t) = COP (t)×Wel,PV (t) (2.4)

• Logic 2: on-grid (mono-directional): the heat pump can only receive electricity from the PV or

recharge the hot water tank, so the pre-heating requirement can only be met by a combination of

WHP,PV , WTANK or WBU . In addition to that, the system can sell the PV surplus, i.e. when the

WPH < WHP,PV , to the grid as Wsell to increase the profitability of the investment.

Wsell(t) = (WHP,PV (t)−WPH(t))/COP (t) (2.5)

• Logic 3: on-grid (bi-directional):the heat pump receive electricity both from the PV and from the

grid and can also recharge the hot water tank, whose storage energy may be used when the heat

pump output is not sufficient, so the pre-heating requirement can be met by a combination of

WHP,PV , WHP,grid, WTANK or WBU . Likewise the second logic, the system can sell the PV surplus

to the grid as Wsell.

WHP,grid(t) = (WPH(t)−WHP,PV (t)−WTANK(t))/COP (t) (2.6)

If the ∆W (t) in the (2.1) is less than zero, i.e. we are in a thermal deficit condition even using the

mains as a backup of electrical power, we are in a case where the pre-heating power is also greater than
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Table 2.2: Powers involved in the balance of the various control logics

WPV Wtank Wsell Wgrid

Logic 1: off-grid ■ ■ □ □

Logic 2: on-grid (mono-directional) ■ ■ ■ □

Logic 3: on-grid (bi-directional) ■ ■ ■ ■

the maximum size of the HP plus the energy stored in the WT and therefore the boiler is switched on.

For those scenarios, the power to be delivered by the boiler unit is given by (2.7:)

WBU (t) = ∆W (t)−WTANK (2.7)

The annual thermal energy demand request for the NG preheating process Egas,y (kWh/year) is

obtained from (2.8), assuming the value of timestamp ∆t =1h for a constant thermal power requirement

every hour.

Egas,y =

Nhours∑
i=1

WPH,i (t)×∆t (2.8)

The annual total volume of NG that need to be burnt in the BU is obtained with the following (2.9),

considering the same hypothesis of the annual thermal energy demand calculation. In order to change

from power to flow rate and then to volume of natural gas, it will be necessary to know the value of the

Lower Heating Value (LHV) of NG, which will be introduced and described in the next sections.

Vgas,y =

Nhours∑
i=1

QBU,i (t)×∆t (2.9)

The total annual thermal energy saved will be the thermal energy supplied by the pump instead of or

together with the auxiliary boiler and it is given by (2.10).

Eth,save,y =

Nhours∑
i=1

Wth,HP,i (t)×∆t (2.10)

2.1.2 Control logics evaluation parameters

Speaking of RES systems based on PV plants, the main parameters to be considered to assess the

self-sufficiency level of the system are the SSR (Self Sufficiency Ratio) and SCR (Self Consumption Ratio),

generally defined as ratios of amounts of electricity [85]. These are two indices that are used to evaluate

the performance of control logic in renewable energy-based systems, particularly solar PV systems. In

this study, since annual demand is thermal, the SCR of the RES system is adjusted to the considered

case study and defined as the ratio between the self-consumed thermal energy and the total yearly energy

demand 2.8; these two parameters are obtained from the following equations (2.11 and 2.12).

SSR =
Eth,sav,y

Egas,y
(2.11)

The SCR, on the other hand, can be expressed as the ratio of the self-consumed electric energy and

the total yearly energy production.
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SCR =
EPV,HP,y

EPV,y
=

EPV,HP,y

EPV,HP,y + EPV,grid,y
(2.12)

Where EPV,HP,y is the percentage of electricity produced by the PV throughout the year that is

actually converted in heat with the HP and it is obtained directly from the knowing the actual COP value

every timestep according to environmental conditions, see (2.4), EPV,y is the annual PV electric energy

output and EPV,grid,y is the annual electricity sold to the grid.

2.2 Models

2.2.1 CGS preheating station

The thermal power WPH required to preheat the standard gas flow rate Qst,gas before it enters the

throttling valve is given by the equation below:

WPH =
Q̇st,gas · ρst,gas · cp,st · ∆Tgas

ηph
(2.13)

Where ρst,gas is the NG density, cp,st is the specific heat capacity, both evaluated according to standard

conditions (P = 1 atm, T = 15 °C) [5], ∆Tgas is the gas temperature increasing and ηph is the preheating

system efficiency, equal to 0.95 [20]. Henceforth, all volume or flow rate definitions will be expressed

in standard cubic metres (Sm3). The NG thermodynamic properties in general are assumed constant

and equal for example to ρst,gas = 0.763 kg/Sm3 and to cp,st = 2.160 kJ/kgK, according to the annual

values given by the Italian TSO. For this thesis work, thermodynamic properties are calculated using the

CoolProp open source library database [82], which relies on the Nist RefProp libraries [84]. The following

three quantities are then calculated knowing the standard conditions and concentrations of the chemical

species (see Table 2.3) of the gas and passed to the software which returns the value of these:

LHVst,gas = LHVgas(Pst, Tst, [X1, X2, ..., Xn]) (2.14)

cp,st = cp(Pst, Tst, [X1, X2, ..., Xn]) (2.15)

ρst,gas = ρgas(Pst, Tst, [X1, X2, ..., Xn]) (2.16)

Table 2.3: Comparison between different natural gas origins: mixture composition percentage [84]

Gas Name CH4 N2 CO2 C2H6 C3H8 Iso-Butane C4H10 Iso-Pentane C5H12 C6H14

CH4 100 0 0 0 0 0 0 0 0 0

Amarillo 90.6 3.12 0.46 4.53 0.83 0.103 0.156 0.032 0.044 0.039

Gulf Coast 96.5 0.26 0.60 1.82 0.46 0.098 0.101 0.0473 0.032 0.066

Ekofisk 85.9 1.01 1.50 8.50 2.30 0.349 0.351 0.051 0.048 0

Typical 95.1 0.09 2.56 1.84 0.24 0.040 0.016 0.014 0.011 0.08

In order to transit safely through the CGS, the gas must be preheated before the lamination step. The
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required gas temperature increase is calculated using (2.17), where ∆Tgas is the sum of the difference

between the gas inlet temperature and the gas outlet temperature ∆Tout,in, given by (2.18), plus the gas

temperature decreasing due the Joule-Thomson effect of (2.19).

∆Tgas = ∆Tout,in + ∆TJT (2.17)

∆Tout,in = Tgas,out − Tgas,in = Tgas,SP − Tgas,in (2.18)

∆TJT = µJT ·∆Pgas (2.19)

The temperature decreasing due the Joule-Thomson effect is given by 2.26, where µJT is the Joule-

Thomson coefficient in °C/MPa and ∆Pgas is the pressure drop, which is calculated with the following

equation.

∆Pgas = Pgas,in − Pgas,out = Pgas,in − Pgas,SP (2.20)

Where Pgas,in is the gas inlet pressure and Pgas,out is the value of the gas outlet pressure, which is

kept fixed in real and obtained giving the valve set point Pgas,SP .

The Joule-Thomson coefficient is generally assumed to be constant and equal to 0.4-0.5 °C/MPa in

many studies [15, 16], however, for this thesis work, it is calculated for all different CGS conditions and

for the type of gas chosen. To finally evaluate the NG flow rate to be taken from the main gas stream for

feeding the Boiler Units QBU , the following equation is used:

QBU =
WBU

LHV ·ηBU

(2.21)

Where WBU is given from the balance of control logic, see (2.1), ηBU is the Boiler Unit mean efficiency

(∽ 0.85 or according to the Capacity Factor (CF) of the Boiler [20], as shown in Figure 2.2) and LHV is

the Lower Heating Value of the Natural Gas, taken from the TSO database and depending on gas mixture

origin.

Figure 2.2: Boiler unit efficiency versus capacity factor according to [20]
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It can be seen from this figure that the boiler tends to work at a very good efficiency and above 80%

as long as the Capacity Factor CF is greater than 20%; for CF values below 20% the efficiency plummets

and reaches zero for CF = 0%. CF is obtained from (2.22) as the ratio of the heat output required from

the boiler to the maximum heat output that can be extracted from the BU.

CF =
WBU

WBU,max
(2.22)

Gas inlet temperature models

The temperature of the gas arriving at the CGS is generally unknown, because of the lack of sensors

placed at the station inlet, and that’s the reason why is usually assumed constant in several scientific

works and equal to the worst case possible, i.e. 5 or 0°C. In several other works, the authors exploit a

more realistic model [13], which calculates the soil temperature surrounding a 1 meter depth buried pipe

close to the CGS according to the variation of the air ambient temperature, assuming the NG temperature

inside the pipes equal to the soil temperature, see (2.24) and (2.23).

Tsoil = 0.0084 T 2
env + 0.3182 · Tenv + 11.403 (2.23)

Tgas,in = Tsoil (2.24)

Figure 2.3: Natural gas inlet temperature vs air ambient temperature according to DSO (in blue) and to
literature [58] (in orange)

This model proposed in the literature, however, when compared with the experimental data provided by

our partner DSO, tends to greatly overestimate the incoming gas temperature for medium to high ambient

temperatures. Consequently, in order to overcome this problem, it was decided to use a model obtained

by interpolating the data provided by the DSO relating to a measurement of the inlet temperature at one

plant, in particular CGS7 among those in the cluster of cabins provided. The equation is the following:

Tgas,in = −0.000004 · (T 3
env) + 0.0009 · (T 2

env) + 0.0382 · (Tenv) + 7.2727 (2.25)

The data collected by the DSO to generate the second correlation curve are not shown for confidentiality
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reasons. The limits of these two models are such that when the parabolic curve reaches the minimum, that

is the point at which the curve would reverse giving rise to nonphysical behavior (inlet gas temperature

increasing as the ambient temperature decreases), and therefore it is necessary that the value from the

above condition be constant and was obtained equal to Tenv = -18°C for the first model and Tenv = -7°C

for the DSO model.

Joule-Thomson coefficient

The Joule-Thomson effect is a phenomenon whereby the temperature of a real gas decreases following

expansion conducted at constant enthalpy. In literature, this parameter is often assumed constant and

equal to 4-5 °C/MPa during the gas throttling process inside a CGS or its calculation is avoided by

imposing an isenthalpic transformation between the starting point and the end point. For this work

purpose the authors calculate the coefficient according to the following formula:

µJT =

(
∂T

∂P

)
H

(2.26)

The Joule Thomson coefficient µJT is calculated for several NG mixtures, stored in the Cool Prop

database [82], which are enlisted and described in Table 1 and for customized mixtures that represent

the Italian Scenario. The gas outlet condition (Pout, Tout) is kept fixed an equal to the ideal set point

values for pressure and several set point temperatures (3 bar, 10 °C) to compute the isenthalpic process

necessary for the µJT evaluation. Figure 2.4 shows the linear dependence between the Joule-Thomson

coefficient, which approximately varies between 4.1 °C/MPa and 5.2 °C/MPa, and the inlet pressure for

all the considered NG mixtures. The pure methane (CH4) turns out to be the fluid with the lowest value

of µJT , while the Ekofisk (North European) NG is the mixture with the highest temperature drop during

the throttling phase at constant enthalpy. The Typical NG µJT curve is chosen to be the one that will be

used in the following chapters, to consider a NG mixture composition more general as possible, since in

Italy there is a very high variability of gas composition due to the multitude of import origins. Focusing

on the typical NG µ-curve, Figure 2.5 highlights the effect of a different output temperature set point on

the µJT coefficient and thus on the final preheating energy demand. Increasing the output temperature

set point causes the coefficient to decrease with the same input conditions. As the gas outlet set point

increases, the temperature drops to be made by the gas at the same inlet pressure at the CGS are reduced,

and thus the share calculated with (2.18). On the other hand, a higher set point leads to an increase in

the preheating factor calculated with (2.19). Thus, the gas outlet set point will affect the two components

of the overall temperature drop equation in opposite ways.

.

Real operating conditions

In this section, a real dataset covering one year of operation of two plants, called CGSA and CGSB , located

in central Tuscany, will be exploited as a comparison to the model results. The gas outlet temperature

Tgas,out is the key parameter to be monitored and it is strictly dependent on the value of the outlet

temperature Set Point which is set by the DSO inside all the CGS. According to the Italian framework,

this value must be at least equal or above 5 °C , but for safety reason is generally set at higher values and

it can be modulated for two types of working seasons: winter, and summer. In this work two different

values for the outlet gas temperature are considered, replicating the actual output temperature setting

inside a CGS in Italy, as it can be seen in the following equation:
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Figure 2.4: Joule-Thomson coefficient µJT for several gas mixtures vs the inlet pressure Pin

Figure 2.5: Joule-Thomson coefficient µJT for the natural gas typical composition for several gas outlet
temperature set points vs the inlet pressure Pin

Tgas,out = Tgas,SP =

8 C if winter thermal season

10 C if summer thermal season
(2.27)

Another important hypothesis concerns the control logic of the preheating system: to generalise the

work as much as possible and after talking with the DSO, it was decided to follow a logic based on

modulation of the water flow rate according to the heat to be supplied to the gas. Once the water flow

temperature to the PH is fixed and the gas conditions are known, the flow rate is derived accordingly to

perfectly match the thermal demand at PH.

The model used to calculate preheating gas consumption was refined by adding improving assumptions

if compared to similar 0-D models used in literature, see for example [15, 16, 20]. The hypotheses that

have been added gradually are as follows:

• Hp1: Variable gas flow rate crossing the CGS instead of a single constant value.

• Hp2: Real outlet temperature set point according to DSO.

• Hp3: Variable gas inlet pressure
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• Hp4: Variable gas inlet temperature depending on ambient air temperature with model of (2.25)

Table 2.4: Description of all and hypotheses that were added to the model successively

Model ID Qgas Tgas,out Pin Tgas,in

BL (Base Load) Design Max (10 °C) Max (7.5 MPa) Min (0 °C)

BL + Hp1 Real Max (10 °C) Max (7.5 MPa) Min (0 °C)

BL + Hp1 , Hp2 Real Real SP (10/8 °C) Max (7.5 MPa) Min (0 °C)

BL + Hp1 , Hp2 , Hp3 Real Real SP (10/8 °C) Real Pin Min (0 °C)

Final Model Real Real SP (10/8 °C) Real Pin Tgas,in = f(Tenv)

Table 2.4 shows the starting point of the model, called Base Load, and the end point at which it could

be reached by adding improving assumptions called HPi. The first assumption that was added was to

consider a variable gas flow rate instead of a constant design flow rate, the second that of adding realistic

outlet gas set points, the third to use values of real inlet and outlet gas pressures and not jumps in design

pressure, and finally to add the inlet gas temperature model instead of evaluating only a lower boundary

temperature, such as for example 5°C or 0°C, as is done in several scientific papers in the literature. Figure

2.6 shows the effect of including each hypothesis on the final result. Adding a real flow rate changes the

estimate from about more than 600% from the final value obtained with the final model to about 160%.

You then get less pronounced but still important improvements by adding seasonally varying set points,

more accurate inlet pressure and inlet temperature values.

Figure 2.6: Preheating requirements with different hypotesis showed in Table 2.4.

Preheating requirements model errors

Models results have been compared with real data related to the one-year operation of CGSA and CGSB .

Figures 2.7 and 2.8 show the percentage error of the model prediction, throughout the year. The percentage

error was calculated as the ratio between the difference of the model output with the real value and the

real value itself for each timesample, through the following equation:
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e = (WPH,model −WPH,real) ∗ 100/WPH,real (2.28)

Error-values as high as 400% of the actual value are observed, indicating that the model prediction is

4 times higher than the measured consumption. The percentage of errors is very high, especially for the

summer and intermediate seasons. If, on the other hand, only the winter season is considered, as shown

in Figures 2.9 and 2.10, the percentage error is greatly reduced, ranging from +40% to -60%. For both

plants, the model underestimated the thermal energy demand by up to 60 percent for CGSA and about

42 % for CGSB . This is because in summer there is no demand for preheating, and the model tends to

overestimate the prediction with very high percentage errors but very low absolute values (less than 0.6

Smc/h versus pilot flame consumption estimated to be around 0.25 Smc/h per boiler). Considering winter,

where preheating consumption is relevant, the percentage error is reduced to orders of magnitude around

50 percent. In this case, it is not possible to estimate individual plant losses, losses in the circuits, and

any inefficiencies in the plant’s operation.

Figure 2.7: Percentage error of the preheating model output respect to the real data for the CGSA

Figure 2.8: Percentage error of the preheating model output respect to the real data for the CGSB

Figures 2.11 present the results of comparing hourly trends of heat load power calculated with the

model during the year and during 4 typical days related to operation of CGSA, respectively. The demand

curves of the model and real data are scaled dimensionally to make the treatment generic for any CGS:

the model with real inputs can faithfully replicate the consumption trends for all seasons of the year in

qualitative terms, as can be seen in the above figure. Figure 2.11 shows that the model is very accurate
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Figure 2.9: Percentage error of the preheating model output respect to the real data for the CGSA,
considering the winter season

Figure 2.10: Percentage error of the preheating model output respect to the real data for the CGSB,
considering the winter season

when the system is operating at maximum load (daytime peak hours and winter seasons). On the other

hand, the model tends to underestimate or overestimate at other times of the day, particularly at night

and in summer, when the gas flow rate is very low and the system presumably retains some amount of

heat loss. It is clear from the figures that the operation of the cabin is strongly influenced by the OCs in

which it operates: when it is at maximum load, the relationship of (2.13) between consumption WPH and

gas flow rate Qgas, with all the assumptions added during model development, is optimal.

The results of the comparisons of the model just described with actual values are reported directly in

this section and not in the Results section, since validation of the model is beyond the scope of this thesis.

It was not possible to validate the previously described model for the 2 plants considered. The plants in

question are the only ones that have access to a data-set of preheating consumption among all the plants

we will consider for this work which will be described later in Chapter 4. It is very difficult to validate an

instrument based on super-simplified equations with actual data recorded by the instruments of the plants

that the DSO provided us with the data. Validation of these instruments would require an effort that

for techno-economic study and scenario analysis would not be justified by the final result, for two main

reasons: the variety of plants in terms of power sizes and plant layouts is an obstacle to using a simple

model in a massive and generalized way and the difficulty of including thermal circuit losses for each

plant in a single model based on thermodynamic equations.In any case, our model managed to perform

significantly better (up to 600% more precise if compared to real data), analogized to a type of treatment
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often used in the literature, i.e. assuming the various operating parameters of the system constant and

with very conservative coefficients. To achieve sufficient accuracy to faithfully represent the plant and also

in light of these results, we defer to the next conceptual step followed by this thesis: the development of

machine learning models through data-driven approaches, which would allow for accurate digital twins

without requiring excessive and unwarranted validation efforts.

2.2.2 Techs

PV model

To evaluate the solar PV panel production nearby the several CGS, the European Commission tool PVGIS

is used. PVGIS stands for Photovoltaic Geographical Information System and provides information about

solar radiation and photovoltaic (PV) system performance for any location in Europe and Africa, as

well as a large part of Asia and America [83]. The panel power for each size is obtained by multiplying

the dimensionless curve obtained based on the location of the CGS with the specific size considered, as

described in (2.29).

WPV (t) = WPV,1kW × PVsize (2.29)

Figure 2.12: PV production output example for a 1 KWp solar panel using PVGis tool.

Heat pump model

The HP is a very efficient technology for heating and cooling purposes, since its efficiency, the COP

(Coefficient of Performance), usually varies from 2 to 5 and is particularly high when used to heat a utility

or process. The value of the COP is defined according to 2.30 as the ratio of the thermal output with the

electricity input but for this work will be computed using 2.31, considering the efficiency dependence on

the temperature difference between the water supply temperature Tin and the ambient air temperature

∆Tlift [86], describe in (2.32).

COP = Wth,HP /Wel,HP (2.30)

Of the various types of heat pumps, it was decided to focus on just one, and in particular on the most



36 Materials and methods: decarbonisation of gas preheating

commercially popular, the ASHP (Air Source Heat Pump); the advantages are that it is easy to install

and works as a heat sink with the surrounding air. The trend of the COP of the HP chosen for this work

is plotted in 2.13, which follows the model of (2.31).

COPref (t) = 6.81 − 0.121 ·∆Tlift(t) + 0.00063 ·∆Tlift(t)
2 (2.31)

(a) (b)

Figure 2.13: (a) COP for ASHP according to Kozarcanin et. al. for different values of Tin and environmental
temperature Tenv vs (b) COP map for different Tin vs ∆Tlift [86].

The equation shows a quasi-linear trend as the ∆Tlift varies and consequently the external temperature

Tenv, for the same delivery temperature Tin. Very high values of COP could be reached if the outside

air temperature is very high and the supply temperature is reduced to values close to the environmental

temperature ones. In that case you may reach values up to 7 of the efficiency of the HP. However, the

system will have mainly to work more in winter season when the preheating request is higher and the

ambient temperature lower, and the delivery temperature will have to exceed a certain safety value,

generally higher than the maximum temperature reachable by the gas exiting the heat exchanger, to avoid

heat flow inversions in the preheater. Because of this combination of facts, the HP will generally work in

the zone that varies from 2 to 4 for the COP. This can also be seen clearly from the second figure, the

efficiency curve of the machine will decrease as the delivery temperature to the gas preheater increases.

∆Tlift(t) = THP,out − Tenv(t) (2.32)

The heat output that the heat pump can provide every hour will be given by the product of the

available electrical power and the coefficient of performance under those operating conditions, i.e. as the

outside air temperature varies.

Wth,HP (t) = COP (t)×Wel,HP (t) (2.33)

Storage water tank

The sizing of a small hot water tank is planned for the storage of the excess thermal energy produced by

the heat pump. These systems do not allow for seasonal energy storage, to which a long-term storage

system would be preferable, as is gaining ground lately through bidirectional hydrogen green fuel cell -
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-electrolyzer systems, but they allow for the storage of a small amount of energy and discharge it to avoid

using the boiler and reduce waste when there is a renewable surplus.

The assumptions upon which the tank sizing is based are:

• Tank temperature working range between Ttank,SP = 60°C and Ttank,low = 40°C

• Maximum energy storage capacity: 50% of WPH for 1 hour

• Water properties equal to ρH2O = 997 kg/m3 and cpH2O = 4.187 kJ/kgK

In fact, the tank functions as an inertial buffer between the heat pump and the gas preheating circuit,

only that compared to a domestic solution, the tank will always be undersized if we only consider the

heat pump. The heat transfer coefficient U [W/m2K] is taken from [87] and it’s used to compute the

overall heat transfer coefficient UA [W/K] of (2.34). The area of the tank is calculated starting from the

calculation of the Vtank, as it can be seen in (2.35).

UAtank = Utank ×Atank (2.34)

Vtank =
Etank

cpH2O × ρH2O × (Ttank,SP − Ttank,low)
(2.35)

Tank losses each time-step due to heat loss to the atmosphere are given by (2.36).

Wlosses = (UAtank × (Ttank,in − Tenv)) (2.36)

Once the losses are calculated, they are used to derive the tank temperature at the end of the timestamp.

This temperature will then be the temperature Ttank (t+1) at the start of the next timestamp. The

temperature is given henceforth by (2.37).

Ttank(t+ 1) = Ttank(t) +
Wtank(t)−Wlosses

(mtank/∆t)× cpH2O
(2.37)

Where ∆t is the calculation timestamp equal to 1 hour, Ttank is the temperature of the previous

timestamp, mtank is the mass of the water contained in the tank [kg] and cpH2O is the specific heat of the

water.
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Figure 2.11: Daily comparison between the hourly required dimensionless thermal power: final model vs
real data of CGS1 for 4 different seasons
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2.3 Economics

This section presents the economic indices used to calculate the techno-economic feasibility of the proposed

plant solutions and the results of which will be shown in chapter 5. The Net Present Value (NPV) formula

of the investment is applied for each individual configuration analysed and the results will be shown in

the next section. The following assumptions were included in the formula (2.38):

• Interest rate i = 6 %.

• Number of years n = 20

• Overall cash flow rate given by the total amount of energy efficiency certificates EECtot for the

number of years granted by the system operator [88] nEEC.

NPV formula:

NPV =

n∑
j=1

CFy

(1 + i)
j
− I0 +

EECtot if j < nEEC

0 if j > nEEC
(2.38)

The yearly cash flow is given by (2.39): the saving of natural gas is a gain, together with the sale

of renewable surplus to the electricity grid; on the other hand, expenditure items include the cost of

purchasing from the electricity grid when allowed by the control logic and the cost of plant maintenance

for all three logics.

CFy = CNG × Vsave,y + Cel × Esell − CO&M − Cel,1 × Egrid (2.39)

Where Cel,1 is the purchased electricity price, Cel is the electricity selling price, Vsave,y is the amount

of NG volume saved per year and Egrid and Esell are the amount of energy purchased and sold to the

grid, respectively.

Techs capital costs

The initial investment costs for technology acquisition are given by the following equations: (2.40), (2.41),

(2.42) for the PV panels, the heat pump and the tank, respectively. The overall capex is then computed

with (2.43) as the sum of the previous three economic components.

IPV = CPV ×WPV,peak (2.40)

IHP = CHP ·WHP,peak (2.41)

Itank = Ctank · Etank (2.42)

I0 = IPV + IHP + Itank (2.43)

All prices for the photovoltaic panel investment cost were taken from the IRENA report of 2020 [89],

while the capital cost of the heat pump from a more recent study on the decarbonisation of the NG sector

in Italy [90]. The assumption is that the system is equipped with an inverter and that its price is included

inside the capital cost and its useful life is 15 years, after which it must be replaced and its cost is around

cinv = 5% of the capital cost of installing the PV array, see (2.44).
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Iinv = IPV × cinv (2.44)

Table 2.5: Techs capital costs.

Unit Cost (overall) Reference

PV panel installation cost CPV e/kWp 1200 [89]

Inverter replacement installation cost % 5 [1]

ASHP installation cost CHP e/kWth 1855.2×HP−0.262
size [90]

TANK installation cost Ctank e/kWhth 120 [91]

Techs operative costs

The investments operating costs are calculated with (2.45) and the values chosen are summarized in Table

2.6. The operative costs of the tank are neglected.

CO&M = CPV,O × IPV + CHP,O × IHP + Ctank,O × Itank (2.45)

Table 2.6: System operative & maintenance costs.

Unit Specific cost Reference

PV panel O&M CPV,O % 2 [1]

ASHP O&M CHP,O % 2.07 [90]

TANK O&M Ctank,O % 0 [91]

2.3.1 Energy efficiency certificates and energy prices

The first step in the economic evaluation will be to calculate the number of Energy Efficiency Certificates

(EECs) one can access based on the volume of natural gas saved in the year, expressed in tonnes of oil

equivalent (TOE). A certificate is awarded for each TOE of natural gas, using the conversion between Sm3

of NG and TOE, and approximating this value by default if the TOE unit is less than half, or by excess

if equal or greater. For this work, a conversion factor of 0.836 TOE per 1000 Sm3 of natural gas saved

was chosen [5, 88]. Following the Inter-ministerial Decree of 11 January 2018 [88], the tariff contribution

recognized for the White Certificate is €260 (the effective reimbursement of which is equal to €250) and

is paid from 3 to 10 years depending on the type of intervention carried out. For this reason, the type of

energy efficiency intervention that allows access to tax relief for 7 consecutive years at a price that was

decided to set equal to 250 €, or the net gain of the DSO, was considered.

• Unitary revenue of energy efficiency certificate EECi = 250€.

• Number of years for the EECs equal to nEEC = 20

Electricity and gas prices have been recently fluctuating disproportionately compared to the pre-crisis

and pre-war in Ukraine, and the fluctuations have been very wide and often unpredictable. As a price
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baseline for calculating the NPV of the profit of each individual pair of technologies (HP + PV) for each

individual plant, an average price was chosen for both gas and electricity, relating to the period used for

the analysis.

Table 2.7: Energy prices

Unit Cost (operating year average) Reference

Natural gas price e/Smc 1.2 [88]

Electricity price (purchase) e/kWh 0.35 [88]

Electricity price (sell) e/kWh 0.05 [88]

Figure 2.14: NG prices according to [92] for the considered period

Figure 2.15: Electricity prices according to [92] for the considered period

The figure shows how the price of gas skyrocketed starting in September 2021 and reached peaks during
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Figure 2.16: Prices ratio obtained from the ratio of the NG price and the electricity price for the considered
period

the period when the war in Ukraine began, i.e., from February 2022, and after a period of readjustment

returned to values even above €2/Smc. The average price for the period under consideration is about 1.2

€/Smc. The price of electricity has proportionally followed that of gas, in fact as can be seen from the

figure 2.16, the ratio of the price of gas to that of electricity has fluctuated around an average value of

about 4.2. This is certainly interesting for our analysis: it is not only the absolute value that influences

the cost of technology and the gain that can be obtained from a given investment, but also the ratio of

gas to electricity that is crucial. Since the objective of the work is to reduce gas consumption, therefore

work on the price of the gas energy component, through 100% renewable and therefore free energy, or

with energy developed from the grid, which has a cost comparable to that of gas, it will be important

to keep focus on all these aspects at the same time. To answer this question, a sensitivity analysis was

carried out which will be presented in the section of the results of the techno-economic analysis which will

exploit the tools just presented.



Chapter 3

Materials and methods: machine

learning-based energy monitoring

This chapter presents the method developed for data-driven modeling of preheat consumption in CGSs

and describes all the tools needed to implement these models. Machine learning with its paradigms and

approaches is briefly introduced, and then all the tools necessary for analyzing a dataset, choosing features,

training and validating a model, and verifying its performance are described. Finally, the concepts of

energy monitoring, baseline energy models, and the CuSUM method are introduced.

3.1 Machine learning: a brief introduction

Machine Learning (ML) is a subset of artificial intelligence (AI) that deals with creating systems that

learn or improve performance based on the data they use. Artificial intelligence is a generic term and

refers to systems or machines that mimic human intelligence. The terms machine learning and AI are

often used together and interchangeably, but they do not have the same meaning. Deep Learning (DL)

is that research field of machine learning and artificial intelligence that is based on different levels of

representation, corresponding to hierarchies of characteristics of factors or concepts, where high-level

concepts are defined based on low-level ones. In other words, deep learning means a set of techniques

based on artificial neural networks organized in different layers, where each layer calculates the values for

the next one so that the information is processed in an increasingly complete manner. Algorithms are the

engines that power machine learning. The two main types of machine learning algorithms currently used

are: supervised machine learning and unsupervised learning. The difference between these two types is

defined by the way each algorithm learns data to make predictions. There is also a third category called

reinforcement learning.

• Supervised machine learning: it is defined by its use of a labeled data-set to train algorithms that

to classify data or predict outcomes accurately. As input data is fed into the model, it adjusts its

weights until the model has been fitted appropriately, which occurs as part of the cross-validation

process. Linear and logistic regression algorithms, multi-class classification and support vector

machines are some examples of supervised machine learning.

• Unsupervised machine learning: it uses a more independent approach, in which a computer learns

to identify complex processes and patterns without the careful and constant guidance of a person.

Unsupervised machine learning involves training based on unlabelled data for which no specific

43
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Figure 3.1: Venn diafram represening the relationship between AI-ML and DL [93]

output has been defined. The k-means clustering algorithms, principal and independent component

analysis and association rules are examples of unsupervised machine learning.

• Reinforced learning: is a machine learning technique that aims to create autonomous agents capable

of choosing actions to perform to achieve certain objectives through interaction with the environment

in which they are immersed. It is one of the three main paradigms of machine learning, along

with supervised and unsupervised learning. Unlike the other due ones, this paradigm deals with

sequential decision problems, in which the action to be performed depends on the current state of

the system and determines its future.

Figure 3.2: Machine learning paradigms: supervised vs unsupervised [94]

Supervised learning can be separated into two types of problems, called regression and classification

(see Figure 3.2):

• Regression is used to understand the relationship between dependent and independent variables. It

is commonly used to make predictions, such as for sales revenue for a given business. Examples of

popular regression algorithm are: linear regression, logistical regression, and polynomial regression.

• Classification uses an algorithm to accurately assign test data into specific categories. It recognizes

specific entities within the dataset and attempts to draw some conclusions on how those entities

should be labeled or defined. Common classification algorithms are support vector machines (SVM),

decision trees, k-nearest neighbor, and random forest.
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For this thesis work we will focus exclusively on supervised learning and, specifically, on regression

algorithms.

3.2 Tools for machine learning modeling

This second paragraph describes all the tools that are to be exploited in support of or following the training

of machine learning algorithms; to name but a few that will be described later: metrics for evaluating the

performance of predictive models, correlation coefficients for analyzing datasets and choosing the input

variables to the models among the various candidates, machine learning regression models and training

approacehs, and so on.

3.2.1 Machine learning algorithms

Multiple Linear Regression (MLR)

Linear Regression (LR) models are ML models which establish a linear relation between a dependent

variable, typically called the target variable, and one or several independent variables, namely the features.

The equation of a LR model can be generally written as reported in (3.1); where y is the target variable,

x is the input feature belonging to a group of n features, a represents the model coefficient and ε the

stochastic error.The function can also be expressed using normal notation, see (3.2).

y = a0 + a1x1 + a2x2 + . . .+ anxn + ε (3.1)

y = Xβ + ε (3.2)

The advantages of Multiple Linear regression are:

• Simple and fast implementation.

• Performs best on Linear Data.

The disadvantages of Multiple Linear regression include:

• Prone to underfitting.

• Sensitive to outliers.

• Assumes that data is independent.

Artificial Neural Networks (ANNs)

Artificial neural networks (ANNs), usually simply called neural networks (NNs) are computing systems

inspired by the biological neural networks that constitute human brain. An ANN is based on a collection

of connected units or nodes called artificial neurons, which loosely model the neurons in a biological brain.

Each connection, like the synapses in a biological brain, can transmit a signal to other neurons.

There are many types of neural networks available or that might be in the development stage. They

can be classified depending on their: structure, data flow, neurons used and their density, layers and their

depth activation filters etc. The main 9 typologies are the following:

• Perceptron
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Figure 3.3: Neuron and myelinated axon, with signal flow from inputs at dendrites to outputs at axon
terminals

• Feed Forward Neural Network

• Multilayer Perceptron

• Convolutional Neural Network (CNN)

• Radial Basis Functional Neural Network

• Recurrent Neural Network (RNN)

• LSTM – Long Short-Term Memory

• Sequence to Sequence Models

• Modular Neural Network

A Multi-layer Perceptron (MLP) is a fully connected class of feed-forward artificial neural network

(ANN), which is s an artificial neural network wherein connections between the nodes do not form a cycle.

As such, it is different from its descendant: recurrent neural networks. The feed-forward neural network

was the first and simplest type of artificial neural network devised. In this network, the information

moves in only one direction—forward—from the input nodes, through the hidden nodes (if any) and to

the output nodes. There are no cycles or loops in the network. MLP actually is a supervised learning

algorithm that learns a function f(x) : Rn −→ Ro by training on a dataset, where m is the number of

dimensions for input and o is the number of dimensions for output. Given a set of features and a target,

it can learn a non-linear function approximator for either classification or regression. It is different from

logistic regression, in that between the input and the output layer, there can be one or more non-linear

layers, called hidden layers. Figure 3.4 shows a one hidden layer MLP with scalar output.

The leftmost layer, known as the input layer, consists of a set of neurons {xi|x0, x1, ..., xn} representing

the input features. Each neuron in the hidden layer transforms the values from the previous layer with

a weighted linear summation w1x1 + w2x2 + ... + wnxn, followed by a non-linear activation function -

like the hyperbolic tan function. The output layer receives the values from the last hidden layer and

transforms them into output values. The advantages of Multi-layer Perceptron are:
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Figure 3.4: Multi-layer Perceptron layout with one hidden layer [81]

• It can be used to solve complex nonlinear problems.

• It handles large amounts of input data well.

The disadvantages of Multi-layer Perceptron (MLP) include:

• MLP with hidden layers have a non-convex loss function where there exists more than one local

minimum. Therefore different random weight initialization can lead to different validation accuracy.

• MLP is sensitive to feature scaling.

• MLP requires tuning a number of hyperparameters such as the number of hidden neurons, layers,

and iterations.

Focusing on the latter disadvantage, it is important to define what an hyperparameter is. A hyper-

parameter is a parameter whose value is used to control the learning process. By contrast, the values of

other parameters (typically node weights) are derived via training. Hyperparameters can be classified as

model hyperparameters, that cannot be inferred while fitting the machine to the training set because they

refer to the model selection task, or algorithm hyperparameters, that in principle have no influence on the

performance of the model but affect the speed and quality of the learning process. An example of a model

hyperparameter is the topology and size of a neural network. Examples of algorithm hyperparameters are:

activation functions, learning rate, batch size, hydden layer sizes and so on. In artificial neural networks,

the activation function of a node defines the output of that node given an input or set of inputs. A

standard integrated circuit can be seen as a digital network of activation functions that can be "on" or

"off" , depending on input. Main activation functions commonly used in literature are enlisted below and

shown also in figure 3.5.

• Logistic: f(x) = 1
1+e−x
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• Relu: f(x) = max(0, x)

• Linear: f(x) = x

• Tanh: f(x) = tanh(x)

Figure 3.5: Typical activation functions used for ANN layers

The way a NN is trained can be explained introduction the concept of back-propagation. Back-

propagation computes the gradient of a loss function with respect to the weights of the network for a

single input–output example, and does so efficiently, computing the gradient one layer at a time, iterating

backward from the last layer to avoid redundant calculations of intermediate terms in the chain rule;

this can be derived through dynamic programming. The term back-propagation strictly refers only to

the algorithm for computing the gradient, not how the gradient is used; however, the term is often used

loosely to refer to the entire learning algorithm, including how the gradient is used, such as by stochastic

gradient descent. The learning rate is a hyper parameter that controls how much to change the model in

response to the estimated error each time the model weights are updated. Choosing the learning rate is

challenging as a value too small may result in a long training process that could get stuck, whereas a value

too large may result in learning a sub-optimal set of weights too fast or an unstable training process.

The number of neurons in the hidden layers (HLN) of an artificial neural network is an important

architectural hyperparameter that can significantly impact the model’s ability to learn and generalize to

unseen data. The hidden layers of an ANN are responsible for learning and representing the underlying

patterns and relationships in the input data. Traditionally, the number of neurons in the hidden layers

of an ANN has been chosen heuristically, based on the size and complexity of the input data and the

desired model capacity. However, these must be chosen, along with all other hyperparameters, during the

hyperparameter tuning phase.
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Figure 3.6: Learning rate effect on solution convergin speed and effectiveness

Training, validation and testing of machine learning models

The input data used to build the model are usually divided into multiple data sets. In particular, three

data sets are commonly used in different stages of the creation of the model: training, validation, and test

sets. The model is initially fit on a training data set, which is a set of examples used to fit the parameters

(e.g. weights of connections between neurons in artificial neural networks) of the model. The model is

trained on the training data set using a supervised learning method, for example using optimization

methods such as gradient descent or stochastic gradient descent. In practice, the training data set often

consists of pairs of an input vector (or scalar) and the corresponding output vector (or scalar), where

the answer key is commonly denoted as the target (or label). The current model is run with the training

data set and produces a result, which is then compared with the target, for each input vector in the

training data set. Based on the result of the comparison and the specific learning algorithm being used,

the parameters of the model are adjusted. The model fitting can include both variable selection and

parameter estimation. Successively, the fitted model is used to predict the responses for the observations in

a second data set called the validation data set. The validation data set provides an unbiased evaluation of

a model fit on the training data set while tuning the model’s hyperparameters (e.g. the number of hidden

units—layers and layer widths—in a neural network). Validation datasets can be used for regularization

by early stopping (stopping training when the error on the validation data set increases, as this is a sign

of over-fitting to the training data set). This simple procedure is complicated in practice by the fact

that the validation dataset’s error may fluctuate during training, producing multiple local minima. This

complication has led to the creation of many ad-hoc rules for deciding when over-fitting has truly begun.

Finally, the test data set is a data set used to provide an unbiased evaluation of a final model fit on

the training data set. If the data in the test data set has never been used in training (for example in

cross-validation), the test data set is also called a holdout data set. The term "validation set" is sometimes

used instead of "test set" in some literature (e.g., if the original data set was partitioned into only two

subsets, the test set might be referred to as the validation set). Deciding the sizes and strategies for data

set division in training, test and validation sets is very dependent on the problem and data available.

Consequently, to correctly perform the training process, the available dataset must be divided into three

parts as follows:

• the training set (70%): shown to the algorithm to perform the learning

• the validation set (10%): used to evaluate the performance of the model at the end
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• the test set (20%): used at the end of the process to evaluate the prediction performance of the

trained model. of each iteration of the learning process

Performance evaluation during the learning process is very important to ensure that the process goes

smoothly. The main risk is that the model focuses too much on the data it is shown, failing to predict

instants with different characteristics from those in the training dataset, and losing generality. A correct

learning process, consequently, must exhibit consistent variations in the loss function (i.e., the chosen

error metric which, in this case, is the mean squared error) along the various Epochs (iterations). From

the moment that a continued increase in validation loss occurs with a continued reduction in training loss,

the model will have lost its effectiveness on data not previously seen (overfitting).

3.2.2 Features selection methods

Feature Selection and Engineering is a key step for a machine learning model development project, since it

allows to choosing of the optimal subset of input features starting from the raw data database and permits

increasing the data-driven model interpretability and generalization, adding the previous knowledge to

increase the transparency of the input-output relation, and that’s why it is strongly recommended to

follow a systematic method of choosing the starting subset. Feature selection methods are intended to

reduce the number of input variables to those that are believed to be most useful to a model to predict

the target variable. One way to think about feature selection methods is in terms of supervised and

unsupervised methods. An important distinction to be made in feature selection is that of supervised

and unsupervised methods. When the outcome is ignored during the elimination of predictors, the

technique is unsupervised. The difference has to do with whether features are selected based on the target

variable or not. Unsupervised feature selection techniques ignore the target variable, such as methods

that remove redundant variables using correlation. Supervised feature selection techniques use the target

variable, such as methods that remove irrelevant variables. Another way to consider the mechanism used

to select features which may be divided into wrapper and filter methods. These methods are almost

always supervised and are evaluated based on the performance of a resulting model on a hold-out dataset.

Wrapper feature selection methods create many models with different subsets of input features and select

those features that result in the best-performing model according to a performance metric. These methods

are unconcerned with the variable types, although they can be computationally expensive. RFE is a good

example of a wrapper feature selection method [94]. All these cases are described in Figure 3.7.

Figure 3.7: Features selection methods [94]
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Figure 3.8 shows which are the best tools to carry on a filter method when the configuration of

Input/Output is : Numerical Input -Numerical Output. This is a regression predictive modeling problem

with numerical input variables. The most common techniques are to use a correlation coefficient, such as

Pearson’s for a linear correlation, or rank-based methods for a nonlinear correlation, such as Spearman

correlation index. Exactly these two will be used in this thesis work and will be described in the following

section.

Figure 3.8: Filter methods and corresponing tools and correlation indexes according to different pairs of
input and output datatypes [94]

3.2.3 Correlation coefficients

Several different types of coefficients assessing the correlation existing between two populations of data

are present in literature: for this study the authors decided to take advantage of Pearson and Spearman

correlation coefficients.

• Pearson product-moment correlation coefficient is a measure of the linear correlation between two set

of data and is given by the ratio between the covariance of two variables (X, Y) and their standard

deviation product. The Pearson coefficient can only assess a linear correlation, ignoring all other

types (quadratic correlation, etc...).

r (Xi, Yi) =
cov (X,Y )

σX · σY
=

∑n
i=1

(
Xi − X̄

) (
Yi − Ȳ

)√∑n
i=1

(
Xi − X̄

)2∑n
i=1

(
Yi − Ȳ

)2 (3.3)

• Spearman’s rank correlation coefficient is a measure of rank correlation, that is the statistical

dependence between the rankings of two variables and is given by the Pearson correlation coefficient

of the two ranks. It assesses how well the relationship between two variables can be described using

a monotonic function (whether linear or not) and it’s also less sensitive to strong outliers than the

Pearson correlation.

ρ (Xi, Yi) =
cov (R(X), R(Y ))

σR(X) · σR(Y )
(3.4)

3.2.4 Dataset scaling

Standardization of a dataset is a common requirement for many machine learning estimators: they might

perform badly if the individual features do not more or less look like standard normally distributed data

(e.g. Gaussian with 0 mean and unit variance).
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xscal,std = (x− u)/σ (3.5)

Sometimes an input variable may have outlier values. These are values on the edge of the distribution

that may have a low probability of occurrence. Outliers can skew a probability distribution and make

data scaling using standardization difficult as the calculated mean and standard deviation will be skewed

by the presence of the outliers. One approach to standardizing input variables in the presence of outliers

is to ignore the outliers from the calculation of the mean and standard deviation, then use the calculated

values to scale the variable. This is called robust standardization or robust data scaling. This can be

achieved by calculating the median (50th percentile) and the 25th and 75th percentiles. The values of

each variable then have their median subtracted and are divided by the interquartile range (IQR) which is

the difference between the 75th and 25th percentiles.The robust scaler removes the median and scales

the data according to the quartile range (defaults to IQR: Interquartile Range). The IQR is the range

between the 1st quartile (25th quartile) and the 3rd quartile (75th quartile).

xscal,rob = (x− u)/(p75˘p25) (3.6)

The resulting variable has a zero mean and median and a standard deviation of 1, although not skewed

by outliers and the outliers are still present with the same relative relationships to other values. Both of

these methods were exploited via the Scikit-Learn dedicated library [81].

3.2.5 Cross-validation and one-hot encoding

Cross-validation is a statistical technique that can be used in the presence of a huge observed sample

size. In particular, so-called k-fold cross-validation consists of dividing the total data set into k parts of

equal samples and, at each step, the k part of the data set comes to be the validation part, while the

remaining part always constitutes the training set. Thus, one trains the model for each of the k parts,

thus avoiding problems of overfitting, but also of asymmetrical (and thus biased) sampling of the observed

sample, which is typical of splitting the data into only two parts (i.e. training/validation). In other words,

one divides the observed sample into groups of equal numerosity, iteratively excludes one group at a time,

and tries to predict it with the non-excluded groups, in order to verify the goodness-of-fit of the prediction

model used. One-hot encoding is a method of data presentation for which the features are encoded using

a one-hot (aka ‘one-of-K’ or ‘dummy’) encoding scheme. This creates a binary column for each category

and returns a sparse matrix or dense array. A classic example concerns the days of the week or the various

months, instead of using a single vector ranging from 1 to n, n vectors of 0 or 1 are used. Figures 3.9

explains better what is one-hot encoding.

3.2.6 Prediction quality evaluation indices

To evaluate the predictive accuracy of the developed model, several performance indicators are introduced

and used for this work, according to following equations, where yi is the real value, ȳi the mean value, y∗

the predicted value and N represents the dataset size.

• Mean Absolute Percentage Error (MAPE)

MAPE =
100%

N

N−1∑
i=0

yi − ŷi
yi

. (3.7)
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Figure 3.9: One-hot encoding explanation [95]

• Mean Absolute Error (MAE)

MAE =
1

N

N∑
i=1

|y∗i − yi| (3.8)

• Mean Squared Error (MSE)

MSE =
1

N

N∑
i=1

(y∗i − yi)
2 (3.9)

• Root Mean Squared Error (RMSE)

RMSE =

√√√√ 1

N

N∑
i=1

(y∗i − yi)
2 (3.10)

• R2 or Coefficient of Determination (CD)

R2 = 1−
1
N

∑N
i=1 (y

∗
i − yi)

2

1
N

∑N
i=1 (ȳi − yi)

2
(3.11)

The MAPE index is massively used in literature for models’ performance evaluation since it’s easily

interpretative and gives a rapid overview of the prediction errors in terms of percentage values. MAE

is the average absolute error between actual and predicted values: the closer MAE is to 0, the more

accurate the model is. But MAE is returned on the same scale as the target you are predicting for and

therefore there isn’t a general rule for what a good score is. How good your score is can only be evaluated

within your dataset. RMSE is obtained from the MSE value, and it gives immediately the measure of the

difference between the values of two populations of data, that is the predicted and real values groups. The

coefficient of determination R2 is a statistical parameter and provides a measure of how well-observed

outcomes are replicated by the model, assuming values from 0 to 1.
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3.3 Energy monitoring and targeting

Energy monitoring is primarily a management technique that enables industries to control energy

consumption accurately. Monitoring is an approach in energy management to eliminate waste, reduce

current level of energy use and improve the existing operating procedures. Monitoring and targeting

(M&T) is an activity, which uses information on energy consumption as a basis for the control and

management of energy use and is based on the management principle that effective management requires

accurate measurement. It essentially combines the principles of energy use and statistics. Monitoring

is essentially aimed at preserving an established pattern. Target setting is the identification of energy

consumption level, which is desirable as a management objective to work towards. M&T techniques are

based on some key steps that create a continuous feedback loop, thereby enhancing the control of energy

utilization.

• Measurement and data gathering: the initial step involves the continuous metering of key quantities

and the gathering of data from various meters.

• Baseline energy modeling: the collected data are used to define the baseline. This is essentially

a mathematical model that represents the energy demand of the system based on the identified

energy drivers, that is, those parameters that influence its performance. The methods used can vary,

including machine learning-based ones. The resulting model will then be used as an indicator of the

system energy demand in "standard" conditions.

• Monitor variations: the subsequent step involves monitoring the discrepancy between the predicted

energy consumption and the actual consumption as recorded by meters. One commonly utilized

tool for this purpose is the CuSuM CUmulative SUM), which stands for the cumulative sum of

differences. CuSuM charts are often used when the detection of small changes in a process parameter

is important [96].

• Causes identification and targets definition: the CUSUM graph is exploited to determine the root

causes of deviations in energy consumption. Such deviations may be due to changes in faulty system

behaviors, process modifications, alterations in external conditions, and so on. Upon establishment

of the baseline and identification of factors affecting energy consumption, it becomes possible to set

meaningful targets for future consumption.

3.3.1 CuSuM control chart

A CuSuM chart is a plot of cumulative sequential differences between each data point and process average

over time. CuSuM is a technique to see through random scatter and to detect changes in the pattern in

monitoring the energy consumption and helps target setting. The CuSum method consists of calculating

the differences between the real consumption and the predicted one and using them to generate the control

chart. The following equation shows how the CuSum is calculated for the dataset:

Sj = Sj−1 + εj = Sj−1 + (Cj − Cstd,j) (3.12)

where Sj is the cumulated sum of the j-th time-step, Cj is the current consumption value, Cstd,j is the

standard consumption calculated for the current time-step with a model and εj is the current residual

value. Therefore, a positive Sj will imply a higher energy consumption than the standard one and a

negative Sj will imply a lower energy consumption than the expected one. The CuSum control chart is a

memory control chart and can quickly detect small and moderate shifts in the considered process.



Chapter 4

Case studies analysis

This chapter presents the real datasets used for this thesis and the results of their analysis. The material

provided by the DSO relates to the operation of seven CGSs for at least one year. The various CGSs are

located in central Italy and serve regions belonging to predominantly D and E climate zones. The cluster

of cabins supplied includes different sizes in terms of gas volume flow and pressure differences. In addition,

the actual consumption of the preheating plant is also reported for two of the CGSs. From now on, the

plants will be labeled with numbers from 1 to 7 to distinguish them for the techno-economic analysis

(chapter 5). Plants 1 and 2 will be renamed A and B for energy monitoring analysis using machine learning

algorithms (chapter 6).

4.1 Schematic description of a CGS thermal plant

Figure 4.1 shows a typical layout of a CGS plant. The system includes the High Pressure (HP) inlet, two

redundant lines with gas Filters (F), Preheaters (PH), gas expansion Valves (V), and the stations for

Fiscal Measurement (FM) and Odorant (OD) injection before the gas is fed back into the low pressure

(LP). The control logic of the installed system does not provide for an inverter-controlled flow rate, as

assumed in the theoretical study, but a constant value of the preheating water flow rate regardless of

the gas conditions at the CGS inlet. This affects preheating efficiency, as the minimum flow rate of

water required for preheating is never supplied, and the two pumps (P1 and P2) always run at constant

revolutions and process the same water flow rate. Boilers generally operate alternately: the one or those,

with three or more boiler layouts, that do not operate, remain in standby mode and consume an almost

constant amount of gas for the pilot flames, estimated by the DSO to be about 0.25 Smc/h.

Although this plant represents a standard for the many CGSs scattered across Italian territory, some

plant details may vary and consequently impact the actual energy consumption to manage to preheat.

Table 4.1 shows a list of possible monitored variables for the operating of the CGSs. Several temperatures

could be measured, such as the environmental air temperature (Tenv), the gas outlet temperature (Tgas),

the gas stream outlet set point (TSP ) and the preheating water temperature (Twat) with its set point if a

thermal control system is working in that specific plant (Twat,SP ). Even though the gas inlet conditions

are crucial to calculate the preheating requirements, it is less common to measure the natural gas inlet

temperature. To avoid this issue, several academic studies correlate the environmental air temperature

with the soil depth to obtain the gas inlet temperature. For this work, a data-driven correlation suggested

by the partner DSO is used in the thermodynamic equations, as already described in chapter 2. On the

other hand, inlet pressure value (Pin) is usually monitored by the DSO and, along whit this, the outlet

pressure (Pout) is given as well. The main flow rates that are monitored are the natural gas flow rate

55
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Figure 4.1: Italian CGS typical layout

passing through the plant (Qgas) and the natural gas flow rate feeding the boiler units for preheating

requirements (QBU ). Both of them are calculated in terms of standard cubic meters per hour, since the

fiscal meter is designed to compute the energy passing through the CGS.

Table 4.1: List of possible signals acquired in a standard CGS

ID Name Unit

Pin Gas relative inlet pressure barg

Pout Gas relative outlet pressure barg

Tenv Environmental air temperature °C

Tgas Gas outlet temperature °C

Tgas,in Gas inlet temperature °C

TSP Gas outlet temperature SET POINT °C

Twat Preheating water temperature °C

Twat,SP Preheating water temperature SET POINT °C

G Solar irradiance W/m2

Qgas NG standard volumetric flow rate (gas flow) Smc/h

Cmin Boiler on-off sensor min/h

QBU NG standard volumetric flow rate (boiler units consumption) Smc/h

4.2 Case studies: real CGS datasets

Figure 4.2 shows the daily demand curve each CGS (rows) and each season (columns). Several conclusions

can be drawn from the analysis of this graph: there are at least 2 peaks approximately located in the

same time slots and which are shared by all the systems analyzed, these relate to the morning (from about

7 to 9) and the evening (roughly from 18/19 in the afternoon on-wards until 22). The motivation behind

these peaks is that, despite the variability of users downstream for these cabins, the main consumption

is always found in the morning (when everyone wakes up and uses the domestic hot water for washing
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and preparing breakfast) and in the evening (returning from work and for dinner). Some plants, on the

other hand, may also have a third peak, around noon; the latter may be due to an agglomeration of

predominantly domestic users which also expects a peak for lunchtime, but which tends to be lower than

the two extreme peaks. All the previous considerations acquire greater validity in the winter seasons when

consumption is very high and the dependence on the external temperature is marked and evident. For the

summer seasons, on the other hand, the demand for natural gas can also drop considerably, except for

plants that serve various industrial users downstream, which have load profiles that vary less with the

seasons and during the day itself.

Figure 4.2: CGS volumetric flow rates: plant (rows) vs season (columns)

Figure 4.3 shows the yearly variation of the natural gas flow rate for each plant. Despite small

differences among the considered plants, there are two main thermal seasons: the winter one which starts

between October and November and ends between March and April, and the summer one, which lasts for
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the remaining period and is characterized by mean values that could also be 1/4 of the mean values in

the winter season. During the summer season, there is no dependence between the external temperature

and NG consumption, because the gas heating systems are switched off from a certain period of spring

onwards and switched on only in late autumn. This goes back to what was described in the section on

climate zones on Italian scenario in Chapter 1.

Figure 4.3: CGS volumetric flow rates

Table 4.2 reports the mean values of the main parameters describing the entire annual operating

conditions of each CGS, such as the natural gas flow rate that passes through the plant Qgas, the gas

inlet pressure Pin, and the set point of the gas outlet pressure Pout. Cabin sizes vary from a minimum of

a few hundred cubic meters per hour for the CGS1 (300 Smc/h) and CGS2 (500 Smc/h) to a maximum

of several tens of thousands of cubic meters per hour of gas for the CGS7 (5700 Smc/h).

Table 4.2: CGS operating conditions: mean values

CGSID Qgas[Smc/h] Pin[barg] Pout[barg]

CGS1 298.269 59.124 3.149

CGS2 493.352 58.876 3.336

CGS3 1334.686 23.364 3.999

CGS4 2170.937 24.112 3.985

CGS5 2086.390 49.114 3.980

CGS6 2644.297 60.905 3.161

CGS7 5712.421 33.774 4.117

The pressure values are more similar as there are few options in terms of the pressure drops for a CGS.

The maximum pressure drop for the NG is experienced in the CGS6 (about 57 barg), while the minimum

pressure reduction is done in the CGS4 (About 20 barg). This variation in the maximum pressure drop

from one plant to another depends on various factors, including the position of the CGS in relation to the

main pipeline, the volumes of gas processed during the year, and the plant layout available, such as the
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capacity of pressure reduction monitors and pre-heating and filtering systems. The outlet pressure, on

the other hand, is between 3 and 4 barg for all cabins, which perfectly reflects the positioning of these

plants in the Italian gas infrastructure: the medium-low pressure networks immediately downstream of the

cabins themselves generally operate at a few bars of pressure. This is due to the fact that large volumes

of gas are still being transported, after which the flows will split and the last pressure variation (from

about 3/4 barg to a few tens of millibars) will be met in small stations, called PRS (Pressure Reducing

Stations), which do not need to preheat the gas given the small pressure jump they have to make and the

negligible Joule-Thomson effect that follows.

Figures 4.4a and 4.4b are violin plots that help to understand the differences among the sample of

plants that are considered for this thesis work. Our cluster of datasets that can be used for the work

shows three more or less distinct groups: a first group with very small sizes in terms of processed gas flow

rates and also quite marked variations between maximum and minimum (see plants 1 and 2), then there

is a second group (2 to 6) and finally the last group (cabin 7). Some plants show less elongated and more

"bellied" flow rate distributions signifying greater constancy of values, while others show more elongated

shapes signifying greater variability of values. The inlet pressure is highly variable for plants 1,2 and 6,

while for cabins 3,4,5 and 7 the fluctuations are greatly reduced, averaging around 25, 50, and 35 barg,

respectively.

(a) (b)

Figure 4.4: CGS violin plots: volumetric flow rate (a) versus inlet pressure (b)

Figure 4.5a shows the statistical distribution of the outdoor air temperature for all the plants; since

all the case studies belong to the same region and climatic zone, the distribution of temperatures is

approximately the same in all seven stations. The environmental air temperature will vary between about

-10°C to more than 37/38 °C with peaks of 40 °C. The most common values lie between 10°C and 20°C; in

fact, the mean temperatures of the one-year datasets vary between 11°C and 18°C. The second figure of

the plot, 4.5b, shows the distribution of the outlet pressures for all the plants; some systems accept larger

fluctuations around the calibration value of pressure monitors, such as CGS2 and CGS4, and systems

with a smaller distribution of output pressure values. Note that these are not the set point values, but the

actual feedback values of the system, which means that they actually represent the gas outlet conditions

of the various plants. Figure 4.6 shows the scatter plots of gas flow rate versus outdoor air temperature

for all seven plants considered; in addition, data points belonging to the "summer" heating season (in

red) and the "winter" climatic season are highlighted for all plots. The trend that emerges is extremely
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clear: depending on the type of plant and its plant configuration and the type of downstream utilities,

there are slightly different trends, but it is an inversely proportional trend to the gas consumed by the

downstream users Qgas as a function of environmental temperature Tenv, and thus of seasonality. The air

temperature reaches values as low as 0°C for the summer season, it runs from mid-March to mid-October.

This is because the second part of March still experienced very low temperatures for the year and the

geographical location considered. The table 4.3 shows the measuremnt position of all sensors and their

sampling.

(a) CGS environmental air temperature distribution (b) CGS outlet pressure distribution

Figure 4.5: CGS outlet pressure distribution

4.2.1 Data set granularity

The proposed data set consists of the behavior of 7 plants for a period from the end of 2020 to the end

of 2022. Data for raw measurements, such as flow rates of passing gas, pressures, and temperatures,

are sampled every 15 minutes. In addition, several weather stations near the plants provide ambient

temperature and irradiation levels with the same sampling. For this work purpose, the data will be used

with hourly granularity, as the gas consumption of the thermal power plant is provided with a one-hour

time step. The values will be averaged over the hour, reducing the data set of each plant from about

35000 data points to the canonical 8760 data points.

Table 4.3: Sensors location and dataset granularity

Symbol Unit Sensor location Sampling

Qgas Smc/h CGS 15 minutes

QBU Smc/h CGS (thermal plant) 1 hour

Pin barg CGS 15 minutes

Pout barg CGS 15 minutes

Tgas °C CGS 15 minutes

Tenv °C Weather station 15 minutes

G W/m2 Weather station 15 minutes
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(a) CGS1 (b) CGS2

(c) CGS3 (d) CGS4

(e) CGS5 (f) CGS6

(g) CGS7

Figure 4.6: NG volumetric flow rates vs environmental air temperatures for the two different thermal
season (summer in orange and winter in blue)
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4.3 Preheating systems dataset analysis

In this section, the datasets for the first two plants are analyzed, which also have data on their respective

heating plants and thus heating consumption and all related parameters whenever possible. The installa-

tions involved are cabins CGS1 and CGS2, which were renamed CGSA and CGSB for the data-driven

study and will be referred to as such from now on until the end of chapter two. Figure 4.7 shows the

plant layouts of the two plants: plant A in Figure 4.7a and plant B in Figure 4.7b. The first layout is

standard, while the second is an experimental layout, which was implemented by the DSO to study the

possibility of accessing energy efficiency certificates. The main substantive difference is the extra boiler

present in the first plant compared to the second plant, which instead has a system using a compression

heat pump connected to an inertial tank; however, this heat pump was only active for a small portion of

the time that is available in the datasets. In contrast, as far as all other devices are concerned, the two

systems are perfectly equal.

(a) (b)

Figure 4.7: Plant specific layouts for CGSA (a) and CGSB (b), including thermal plant

Figure 4.9 and Figure 4.8 show the yearly trend of the NG flow rate and the pre-heating gas consumption,

both in terms of Smc/h. The time period shown is the same chosen for the subsequent analysis and

creation of the machine learning models: one year for training the models, specifically from April 2021 to

April 2022, with the consecutive period used for testing. The preheating output is much higher in the

winter season and tends to go to a very low steady state value in the summer season, as it is affected by

the effect of the temperature increase, which has a twofold impact on preheating consumption: drastic

reduction of the gas flow consumed by the utilities and higher processed gas temperatures.The peak hourly

gas consumption reached by the cabins is respectively 4/5 for cabin A and 7/8 for cabin B. Moreover, the

two cabins are located not many kilometres apart, so the temperature trends are practically the same

throughout the year for both plants. This is an additional consideration that causes the consumption

curves to be practically overlapping, barring errors and size-dependent scaling. Figure 4.10 displays the

trend in gas temperature at the outlet of plants A and B. The outlet gas temperature of the former

is much more variable and follows less the seasonality of the natural gas flow during the year. The

second more closely follows the demand curve. This is because the first plant does not have a thermal

power plant control system and the preheating water temperature set points are not variable; the second

plant has feedback on the operating temperatures of the plant and this allows better utilization of the

energy produced by the boilers. This can also be seen in the next picture, which shows the trends of the

preheating water, i.e. the delivery of water to the pre-heater.

Figure 4.11 shows the trend of the pre-heating water temperature of the two plants A and B: the
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Figure 4.8: CGSA vs CGSB : natural gas consumption for preheating

Figure 4.9: CGSA vs CGSB : gas volumetric flow rate

Figure 4.10: CGSA vs CGSB : outlet gas temperature

temperature of the first is kept constant as there is no control system according to the operating conditions

of the CGS, while that of the the second is made to vary according to the processed flow rate. For this

reason, the trend of the Twater of the CGSB is extremely similar in terms of load profile to QBU and

Qgas. Considering system A, the temperature fluctuates for some periods, particularly around the turn of

January, showing for water temperature the highest values, and then returns to standard values around

44 °C from May on wards.

Correlation analysis

In this section, a more in-depth analysis of the correlation between the variable that will be the target of

our models, i.e., QBU preheat consumption, and all other quantities at play in the plant was carried out.
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Figure 4.11: CGSA vs CGSB : preheating water temperature

To analyze these correlations we will make use of two different but complementary approaches. The first

involves analyzing with a more physical and engineering approach the correlation between consumption

and other parameters, and the second uses statistical-mathematical coefficients to evaluate and quantify

the correlation between two variables. In this section, we will go into more detail on the first approach,

which will be combined later with the second in Chapter 6, which deals with the implementation of

machine learning models. Figure 4.12 shows the scatter plot of gas consumption values versus natural gas

flow rate and environmental air temperature. In this graph we can see that there is a perfectly linear

trend between the flow rate of gas consumed and the total flow rate flowing through plant B; moreover,

the increase of QBU and Qgas are clearly accompanied by the decrease in Tenv. Different discussion for

plant A: for a very low Qgas flow rate the trend is not linear but rather undergoes a kind of surge that

stabilizes on a linear trend after a certain flow rate value, about 200 Smc/h. This is due to two combined

factors: first, Plant A works with very low flow rates of natural gas and ReMi plants are always oversized

in terms of thermal power plants, this could be significant that there is parasitic consumption due to the

use of equipment in a low-efficiency zone because of strong load reduction. In addition, Plant A has 3

boilers instead of the canonical 2, as in the case of Plant B, and does not have a smart thermal power

plant management system. These effects combined cause a nonlinear trend at the bottom of the graph,

which results in an overall linear trend, but with a non-zero intercept and one that is around 0.5 Smc/h

(a) (b)

Figure 4.12: Scatter plot QBU vs Qgas vs Tenv for CGSA (a) and CGSB (b)

The third graph, ie the figure 4.14, is close to the first, only this time the variable z is the pre-
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heating water temperature. It is notable a greater stratification of the variation in the pre-heating water

temperature for plant A. While for plant B the Twat. is modulated according to the Qgas and therefore

this correlation can be seen from the graph, for plant A if, for example, the vertical straight line is analyzed

at about 400 Smc/h, it can be seen that regardless of the gas flow rate that passes through, consumption

increases as the temperature of the pre-heating water increases, this means that in this plant some manual

set point adjustments more manual to open from the gas flow rate Qgas and which however effectively

influenced the consumption of preheater QBU . The next plot of figure 4.13 is the union of the two previous

graphs and was made to simultaneously compare the two systems.

Figure 4.13: Comparative scatter plot QBU vs Qgas vs Tenv for CGSA and CGSB

The fourth figure 4.15 shows the trend of QBU as the temperature of the gas leaving the CGS and the

ambient temperature change. This time the scatters take on more scattered shapes and the correlation

trend is more difficult to detect. For A, some inverse dependence of Tgas on temperature can be observed,

thus a seasonal effect on gas temperature, while the dependence with QBU is weakly inversely correlated.

Regarding plant B, two values of Tgas with a more pronounced frequency are noted, at about 12°C and

14°C, these could be two values related to the two set points of 8°c and 10°C but shifted forward a few

Celsius degrees. Moreover, even for cabin B, there is a seasonal correlation, albeit weak, with the ambient

temperature.

Finally, the last figure, i.e. 4.16, compares the consumption trend against the gas inlet pressure. The

QBU is correlated with the inlet pressure, which in turn is physically correlated with the amount of gas

that can be supplied to the CGS by the TSO. We see not only an increasing trend in consumption as
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(a) (b)

Figure 4.14: Scatter plot QBU vs Qgas vs Twat for CGSA (a) and CGSB (b)

(a) (b)

Figure 4.15: Scatter plot QBU vs Tgas vs Tenv for CGSA (a) and CGSB (b)

Pin increases, but a more than linear trend. This is trend is identical in the modes for both plants. This

is due to the dynamics of the gas transportation system from the TSO to the CGS makes it so that to

pump more flow, a greater pressure jump must necessarily be overcome and thus there is this inherent

relationship that nevertheless definitely goes to influence the correlation between QBU and Pin.

4.3.1 Thermal power plant control system analysis

Plant B, in addition to having a more advanced control system for the thermal power plant, was also set

up to implement certain energy efficiency solutions foreseen by the DSO, in order to reduce the impact of

the plant and gain access to Energy Efficiency Certificates (EECs) or "white" certificates [88]. During the

calendar year 2022, the reactivation of a small heat pump was planned for the CGSB cabin to partially

handle the pre-heating demand of the plant. Figure 4.17 shows the course of the heat pump’s timer, which

assumes values between 0 and 60; this system subsequently had to be interrupted and was switched off

by the DSO for repairs. Therefore, the system could only operate at full efficiency around the period of

May-June 2022.

Figure 4.18 shows the variation of the outlet gas set point imposed by the DSO inside the CGSB . This
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(a) (b)

Figure 4.16: Scatter plot QBU vs Pin vs Tenv for CGSA (a) and CGSB (b)

Figure 4.17: CGSB : heat pump minutes counter

value is given to the feedback control system of the central plant of the CGS in order to matain the safety

margin of the outlet gas temperature to avoid failures due gas cooling and hydrates formations problems

for the machinery and pipes downstream the cabin. It can be seen that the set point may assume only

two value: 8°C usually for the winter season and 10°C for the summer season. For the second summer

under consideration (2022), the DSO decided to keep the gas set point at the CGS outlet lower and thus

keep it at 8°C, instead of 10°C as planned and implemented for summer 2021.

Figure 4.18: CGSB : Outlet gas set point

Figure 4.19 highlights the trend of the water adaptive set point still for the second plant B. The system
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is designed to follow the variation of the NG flow rates that pass through the plant and to adapt to that

flow rate. It is so a value that is highly correlated with the natural gas flow rate and eventually with the

natural gas preheating consumption flow rate.

Figure 4.19: Preheating water adaptive set point for CGSA

Figure 4.20 and Figure 4.21 show which Boiler unit is on or off and the number of minutes per hours

of the overall system (60 minutes could be one boiler unit switched on for one hour or two boiler units

switched on for half an hour at the same time or even in different moments of the same hour).

Figure 4.20: Boiler units ID: 0 for both switched off, 1 for BU1, 2 for BU2 and 3 for both switched on

Figure 4.21: Boiler units minutes counter

In many cases, it was necessary to use the two boilers together, particularly during the winter period

from November 2021 to March 2022. The peak of operation of the boilers can be seen from the minute’s

clock graph and particularly towards the beginning of April 2022, with a minute’s clock value of more than



Concluding remarks 69

100 minutes/h, which means almost an hour of uninterrupted operation of two boilers at the same time.

4.4 Concluding remarks

These are the main takeaways from the dataset analysis:

• The daily NG consumption profiles of the CGS plants are slightly different while maintaining some

shared peculiarities: consumption peaks are generally positioned in the same time slots. Knowledge

of the type of users downstream of the CGS would allow us to extrapolate correlations between this

and the type of profile accumulated at the CGS.

• There is a very strong correlation between NG consumed for preheating requirements and the main

gas flow passing through the CGS. This was true for the only two data-set available, nut results

suggest that this trend could be found for all CGS sizes.

• There is a strong seasonal variation regarding preheating consumption for each plant with marked

differences between winter and summer thermal seasons.

• Systems complexity is difficult to generalize due to the disparate solutions that lead to different

interactions between the quantities involved, such as outlet gas temperature, preheating water

temperature, etc...

The cluster of analyzed CGS was selected by discussing with the DSO who provided the data set

itself. The sizes of the different plants were chosen to have as representative a sample as possible of the

framework of pressure reduction and measurement plants on the Italian territory. This allowed the same

technological solution to be tested at various scales of required thermal power and processed natural gas

flows in the next chapters. The group of CGSs is sufficiently representative in terms of the different flow

rates processed and the pressure jump handled. Indeed, small- to medium-sized cabins are enormously

more common than large and very large ones, which generally serve important industrial hubs or residential

agglomerations in larger cities. It is also common to find multiple plants serving geographic points that

require very high daily gas volumes and are less likely to have a single plant managing the total flow of a

large city. The limitation of this cluster relates only to the lack of differentiation in the location of the

systems and thus the downstream users belonging to climate classes. However, the plants considered are

located in geographic areas related to the most densely populated climatic zones D and E and thus have

the majority of gas demand in the Italian scenario. This cluster might be extended considering plants

located in more extreme climate zones. This will affect the absolute value of gas demand at the same

size as the reduction plant, but more importantly the shape of the gas demand curve. Greater annual

consumption with different dependencies on seasonality may have an impact on the techno-economic

feasibility of efficient plant solutions. Generalizing the treatment to different climate classes would be an

additional step to add value to the analysis, but it may be hampered by the difficulty in sourcing data

from various DSO companies, given the fragmentation of grid operators at the local level who control

portions of the distribution network. In any case, this thesis’s proposed method will retain its generality

and may be extended to new plants.





Chapter 5

Results: techno-economic assessment for

the decarbonisation of gas preheating

This chapter shows the results of the techno-economic feasibility analyzes for the decarbonization of CGS

with RES-based HP. Preliminary results of preheating requests are shown first. From these, the PV and

HP sizes on which to calculate the optimum are chosen and the analyses are carried out for three control

logics, comparing three economic indices simultaneously: the NPV, the PBT, and the PI. This section

presents the results of the analysis whose goal is to find the best techno-economic solution proposed by

varying the size of the heat pumps and photovoltaic panels. The section is developed as follows:

1. First of all the calculations of the pre-heating requests are applied to each cabin and the cumulative

curve of annual use is obtained which is used to define the size range of the HP to be analysed.

2. Then, plant n°1 is used to show the differences between the three proposed control logics in terms of

energy production from the heat pump, energy sold and purchased concerning the network and so

on.

3. Subsequently, the economic maps (NPV, PI and PBT) are shown for each solution and from these

the techno-economic optimum for each plant is obtained. The optimum is then subjected to a

sensitivity analysis to changes in gas and electricity prices.

4. Finally, the optimal solution found is analyzed from the point of view of the maximum percentage

of decarbonisation obtainable and the conclusions are drawn.

Following this, the price sensitivity analysis is carried out and finally, the effective decarbonization of

the plants is evaluated, considering the optimal techno-economic solutions found previously.

5.1 Technical analysis

5.1.1 Preheating requirements analysis

First of all, the reference period of the analysis is chosen: the 7 plant datasets are related to the period

September 2021-September 2022, with hourly sampling. Figure 5.1 shows the daily value of the preheating

energy requirements throughout the year selected for all the analyses while 5.2 shows the bar plot of the

yearly preheating energy requirements for the 7 CGS analyzed.

The results of the analysis of the annual preheating request for each cabin are shown in the barplot

figure 5.2: the span of preheating requirements in terms of MWh/year is from approximately 35 MWh for

71
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Figure 5.1: Natural gas preheating requirements for each plant every day.

the CGS1 to about 350 MWh for the last plant, namely CGS7. Within this cluster of plants, we have

the first three that have assumed values of 35 MWh for the CGS1, 50 MWh for both CGS2 and CGS3,

with the latter showing a maximum value of Wph lower than the corresponding of former, but a higher

demand plot on average throughout the year. From 4 to 6 there is a sudden growth in plant size (and

therefore in Eph,y demand): about 90 MWh for CGS4, about 175 MWh for CGS5 and slightly less than

300 MWh for CGS6.

Figure 5.2: Natural gas preheating requirements for each plant yearly.

What is significant to highlight is not only the daily distribution (load curve of figure 5.1) or the annual

total request for preheating, but also the values distribution of the hourly preheating powers for the CGSs

5.3. The flatter and more horizontal the curve is and the faster it drops from the maximum value to

the average value, the more constant the pre-heating requests will be throughout the year; conversely, as

occurs for example in the CGS7, many hours are above a certain quite important pre-heating power value

(30 kWth) considering the maximum value of 145 kWth. Comparing system CGS7 with system CGS6,
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we see how the latter presents a much steeper descent from the frequency of the maximum power value

required, immediately settling on medium-low values if purchased with the maximum. On the other hand,

cabin 7 has a more homogeneous request variation between the maximum and minimum values. This will

influence the techno-economic feasibility of the investment depending on the size of the HP-PV system.

Figure 5.3: Natural gas preheating power distributions within the 8760 hours..

Knowing the distribution curve of the pre-heating power Wph, the creation of the grid of pairs of

sizes (HP, PV) was carried out to choose the sizing of the techno-economic optimum. The underlying

hypothesis is to make a thermal power span of the HP from 25% of the Wph, max for each plant up to

100%. The span relating to the size of the photovoltaic field was obtained by multiplying the span of

thermal sizes of the HP by a seasonal COP, called SCOP, or (Seasonal Coefficient of Performance), which

serves to give an average annual value of the COP of an ideal heat pump according to the place where

they are installed. In italy a reasonable value for the SCOP is set to 3 [97], so the calculation for the i-th

PV size is given by (5.1).

PVsize,i = HPsize,i × SCOP (5.1)

Figure 5.4 shows the percentage of gas that is consumed out of the total that passes through the

cabin, it can be seen that it is around 0.1 % when approximated by excess for almost all plants. However,

consider that the comparison is made between the ideal model and real gas flow rate, so the volume

percentage may increase and even reach values of 0.2-0.3% depending on plant layouts, maintenance status

of the plants, etc...

5.1.2 Control logic preliminary comparison

This section analyses the behavior of the hybrid system according to the different configurations of the

control logic, described in the first section of the chapter. The cabin used for the analysis is CGS1.

The results of the first analysis are two-dimensional operating maps as the sizes of the heat pump and

photovoltaic field vary; in the case of CGS1, the span goes from 1 to 5 kWth for the HP and from 1 kWp

to 15 kWp for the PV field. Figure 1.17 shows the heat maps related to the HP thermal production and

the NG BU consumption for each control logic around the considered sizes of HP and PV. The map of

the production of thermal energy in Figure 5.5(a) tells us first of all that as the size of the HP and the
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Figure 5.4: Natural gas preheating requirements respect to total yearly volume.

solar field increase, the power that can be produced increases. By analyzing Figure 5.5(a) it can be seen

that with the same size of the PV, it is possible to produce up to a certain amount of thermal power with

the HP, after which it is no longer possible since the HP does not receive sufficient electrical power from

PV. The gas consumption map in Figure 5.5(b) is the mirrored version of Figure 5.5(a), as the size of the

HP and the solar array increases, the natural gas that is burned decreases. Consequently, it follows that

a combined linear increase in HP size and PV size does not lead to a linear increase in HP production,

but there is a less than linear increase in HP production since as the PV size increases, one goes to work

in areas that are always little accompanied by high preheat gas demands. This does not change for the

second control logic which only avoids waste by selling the PV surplus on the network, while everything

changes for the third control logic, in which, being able to buy and make up for the lack of PV, one goes

exactly to match the production of thermal energy with the size of HP. For CGS1, already with an 8 kWth

heat pump almost 100% of the preheating request can be met, which in this case is about 33 MWhth per

year; conversely, the use of natural gas for boilers goes to zero with the same trend. The second figure,

i.e. 1.17, shows how moving from top to bottom (from off-grid logic to full on-grid logic) the maps are

turned on such as selling on the network (c) and then buying from the network (e): in the case of off-grid

logic both maps are off, in case of logic 2 (one-way on-grid) there is a sale of PV surplus energy to the

grid according to the dedicated withdrawal price which grows with the PV size, while the purchase from

the network decreases with the increase of the PV size and presents the maximum for the maximum HP

size and minimum PV size. Finally, the relative maps of the SSR and the SCR, defined in the previous

paragraph, are shown for the three control logics. The two parameters do not change as the percentage

of self-produced energy (i.e. only from photovoltaic and not purchased from the grid) relating to the

request WPH is the same for the three logics, while for the SCR it is similarly evaluated how much of

self-produced photovoltaic is consumed for PH. It can be seen from the SSR map that for cabin 1, which

is used as an example of this work, a maximum value between 25 and 27.5 percent of the total energy

required in a year for preheating was obtained. This number is indicative of the decoupling that is present

between the natural gas demand curve and PV production. It means that in the absence of seasonal

backup and storage systems, and the presence of a sufficiently powerful heat pump, it is only possible to

reduce the carbon footprint of the system in off-grid logic by about 1/3. As for the SCR, on the other

hand, the trend is mirrored against the SSR. The highest values of self-consumption ratio are obtained
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for values of the lower Hp sizes regardless of the PV installed because in this case the SCR is defined

concerning the thermal energy produced and does not take into account the high wastage of electricity

confessed with a condition at small HP size and maximum PV size. The lowest SCR values are obtained

for simultaneous high sizes of both HP and PV, standing at values around 30-40% for CGS1 in this case.

(a) Logic1: HP production (b) Logic1: NG consumption

(c) Logic2: HP production (d) Logic2: NG consumption

(e) Logic3: HP production (f) Logic3: NG consumption

Figure 5.5: CGS1: ASHP thermal energy production vs NG consumption from the Boiler Units for the 3
control logics.

5.1.3 SSR and SCR indexes assessment

Figure 5.8 and Figure 5.9 show the results of SSR and SCR analysis for each cabin. The maximum values

achievable by the system with off-grid control logic are: SSRs of 27.5 %, 36 %, 36 %, 30 %, 33 %, 33
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(a) Logic1: energy to grid. (b) Logic1: energy from grid.

(c) Logic2: energy to grid. (d) Logic2 energy from grid.

(e) Logic3: energy to grid. (f) Logic3: energy from grid.

Figure 5.6: CGS1: Energy sold to the grid vs purchased from the grid for the 3 control logics.

% and 32%. with SCRs of about 30 %, 32 %, 40 %, 40 % , 40 %, 40 % and 40%. The trend of the

SSR index value follows fairly closely the trend of HP production in the previous figure, i.e., Figure 5.5.

The SSR cannot increase beyond a certain value as the PV size increases because the system cannot

use the surplus of electricity when there is no preheat demand. It is therefore extremely constrained to

seasonal decoupling summer (high solar irradiance, little gas with preheat demand) and winter (less solar

irradiance, lots of gas with preheat demand). CGS3 and CGS6 are the two cabins with the highest SCR

on average. This can be seen from the values assumed by the colors in the respective figures at the top

right, i.e., for high HP and PV sizes. The maximum achievable in these two cases ranges between 40
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(a) Logic1 : SSR (b) Logic1 : SCR

(c) Logic2: SSR (d) Logic2: SCR

(e) Logic3: SSR (f) Logic3: SCR

Figure 5.7: CGS1: SSR vs SCR for the 3 control logics.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.8: SSR results for all plants with control logic 1
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.9: SCR results for all plants with control logic 1
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5.2 Techno-economic assessment

This section analyzes the economic index maps (PBT, NPT and PI) for all plants, number to number 7,

and for each proposed control logic from off-grid to fully on-grid. In this first part of the paragraph we

will analyze the maps of the NPV (figure 5.10), PBT (figure 5.11 and PI(figure 5.12) obtained using logic

1, ie the off-grid logic. Analysis of the NPV maps show us that the investment configurations leading to

a higher 20-year NPV are found around medium-high PV field sizes and medium-low heat pump sizes:

this is because that with medium to large PV fields, there is maximum electrical production and sale to

the grid, and thus the possibility of exploiting larger heat pumps. On the other hand, however, if the

payback time and profit ratio are also considered, the techno-economically optimal solutions for the first

control logic move into the area of small to medium sizes for the two technologies simultaneously. Thus,

considering the three indices as a whole shows that for a totally off-grid configuration:

• incresing the size of PV pays more only up to a certain size of heat pump, after that size the

investment is no longer profitable. This is due the fact that the maximum amount of saved NG is

reached and after that particular point, the gain due to saving more gas because of the increase

in PV size and HP slows down a lot because of the decoupling of the demand curve with the PV

production curve.

• The area of the map (HP,PV) that never allows it to be profitable is as to be expected the one with

very high heat pump size and very low PV size; this is evidently because that the pump is extremely

oversized compared to its electric counterpart.

• If for PBT and PI the trend of the maps is almost identical, for the NPV map it is noticeable how

the CGSA presents a different trend instead: the zone of highest profit at 20 years is no longer at

high PV sizes but at medium-low sizes. It means that plant 1, which is affected more by fluctuations

due to its size, in fact it is extremely small in terms of volumes of gas processed annually, presents

a point of economic optimum for sizes smaller than the pair (HP,PV). Therefore, a small-scale

intervention allows the point of approximately higher savings of natural gas at lower cost to be

sustained. Beyond that point the intervention already begins to become less profitable.

Now we will analyze the maps of the NPV (figure 5.13), PBT (figure 5.14 and PI(figure 5.15) obtained

using logic 2, ie the on-grid logic with only the selling direction to the grid. In this case, you allow the PV

system to sell the surplus energy back to the grid. This was considered because , while we do not want

to transform these systems from gas-fired reducers of consumption to electricity producers, it certainly

helps the investment to reduce PBT and increase profits by selling the surplus back to the grid. The NPV

maps, if compared with those of the previous control logic, do not show a substantial increase in terms of

maximum absolute values of NPV, but rather an enlargement of the range of sizes which allow to obtain

the highest NPV values after twenty years. Furthermore, the slope of the front with which profitability

is reduced rises for all plants: it means that the increase in PV allows a more positive economic return

compared to the off-grid case alone. Even the PBT and PI maps do not undergo substantial variations,

the range of greater profitability also widens for these and consequently the range that does not lead

to a return on investment during the useful life of the plant is reduced. For the third group of plots we

will analyze the maps of the NPV (figure 5.16), PBT (figure 5.17 and PI(figure 5.18) obtained using

logic 3, ie the on-grid logic with the selling direction to the grid and also the possibility of electricity

purchase. For the NPV it can be seen that the transition to the totally on-grid control logic almost

eliminates the cases in which the NPV is negative. Using the network as a backup allows you to use the

HP for thermal purposes from 40 to 60% more than in the totally off-grid case. Furthermore, the areas of
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excellent economic performance from the point of view of the NPV are for medium-high HP sizes, but not

maximum, and for high PV sizes. This is because that, regardless of the annual cabin demand curve, a

medium-high HP power often allows even more than 3/4 of the preheating request to be covered. If one

remembers the violin graphs of chapter 2 and the preheat graphs of the beginning of this chapter, it will

be deduced that the last HP sizes (the very high ones) are related to very rare occurrences. Due to the

statistical distribution, the NPV basically stands at around 75% of the preheating power for the various

substations. The payback times are lowered by an average of 2-3 years compared to the two previous

cases and the optimal areas widen considerably, while the areas where the investment is almost never

convenient are reduced. For PBT and IP, however, the areas with the highest values for medium-low PV

sizes and medium or medium-low HP sizes remain.

To summarize what can be deduced from the analysis of the graphs just described and reported:

• The optimum NPV tends to shift from the bottom left corner (low HP and PV sizes and therefore

low Capex investments and small Opex that recover little energy) to the top right corner (high HP

sizes and PV, such as important investments that aim to recover almost all the gas regardless of

whether the energy source that feeds the HP is 100% renewable or only partially renewable).

• The PBT value has reached a minimum of 6-8 years for all plants for off-grid logic and one-way

on-grid logic, while it is possible to recover the investment even with a minimum of 3-5 years if one

chooses logic n° 3.

• The profit index PI on the other hand, keeping its optimum in the same position for all three control

logics, i.e. the maximum that can be extracted proportionally to what has been invested, is obtained

for medium-small size plants, i.e. spending little but being sure of recovering a lot of natural gas in

proportion to the amount invested.

The pairs of optimal sizes have been considered for all three indices, but giving precedence to the

actualized payback time, as this is favorable for the DSO who needs an economic payback time as short as

possible, but is nonetheless interested in accessing incentives.The following table 5.1 summarizes the pairs

of optimum sizes for each substation and for each control logic. These sizes of techno-economic optimum

will be subsequently tested through a sensitivity analysis to gas and electricity prices and the results are

presented and analyzed in the following paragraph.

Table 5.1: Summary table of optimum pairs (HP, PV) for each plant and logic.

Logic CGS1 CGS2 CGS3 CGS4 CGS5 CGS6 CGS7

Logic 1 (2,1) (5,3) (8,5) (8,5) (19,11) (30,20) (34,22)

Logic 2 (2,1) (7,5) (8,5) (8,6) (19,11) (32,24) (34,22)

Logic 3 (2,1) (2,1) (6,3) (10,3) (20,9) (40,12) (34,12)

5.2.1 Sensitivity analysis

This section analyses the results of the sensitivity analysis of the techno-economic optimum for each plant

and for each analyzed control logic to changes in gas prices and the relationship between the gas price and

the purchase price of electricity. In this analysis, however, the resale price recommended by the system

operator is kept constant. The sensitivity analysis was carried out as follows: for each plant and each

control logic, different natural gas prices are analyzed simultaneously (from 1.6 €/Smc to 0.4 €/Smc and
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for different price ratios between gas and electricity equal to 3,4 and 5). This allows to understand how

sensitive the investments made with techno-economic studies are.

Control logic 1 and 2

For the two control logics 1 and 2, the sensitivity analysis is with only one degree of freedom, i.e. only

when the gas price varies, since the purchase price for the first two control logics is not influential on the

final techno-economic optimum result. The sensitivity analysis for the first two control logics showed that

the techno-economic feasibility of these solutions is very susceptible to gas prices. The first two plant

logics (no purchase from the network) are extremely penalized if the price of gas settles on pre-crisis values

and is lower than around 0.6-0.5 €/Smc. Therefore, halving the selling price of gas, other conditions

being equal, such as the gas/electricity price ratio, is the maximum limit beyond which the investment

does not become profitable even after 20 years. or its useful life. As regards the payback time, it is still

possible to recover the investment in about 10 years if the gas price is equal or higher than 0.8 €/Smc.

Results are shown in figure 5.19.

Control logic 3

Regarding logic 3, it is necessary to examine three graphs per cabin, as this time the sensitivity analysis is

carried out on two degrees of freedom because now the price ratio affects the final result. Figure from 5.20

to 5.26 show the trend of the sensitivity analysis as the case study varies from CGS1 to CGS7. For all

plants, it can be seen that a reduction in the price ratio between gas and electricity is detrimental to the

resilience of the investment to price variability in this sense. One plant out of 7, or the CGS4, as can be

seen from the figure 5.23(a) never manages to recover the investment for any value of the price of natural

gas. From the various figures it can be seen that plants 4, 5 and 6 are the most susceptible to a reduction

in the price ratio, this is because proportionally they are the three plants whose configuration (HP, PV)

relies more on the electricity purchased from the network in the case of techno-economic analysis. A

scenario that envisages instead a greater increase in the price of gas than that of electricity and hopefully

because of the increasingly greater decoupling between the energy produced from gas and the energy

produced from RES, means that the investment acquires profitability. In that case, it is possible to reduce

the PBT of the investment by about 1-2 years depending on the substation at the same price of natural

gas or it allows to resist even a significant change in the price of gas. In the worst case (gas at 0.4 €/Sm3),

a PBT of less than 7 years would be obtained for some substations and even less than 5 for others.

In conclusion, the off-grid solution and the partially on-grid solution have less impact from an economic

point of view and allow the use of only renewable energy, but present a marked variability with the price

of gas. At the same time, the solution that provides for the possibility of purchasing from the network

guarantees a much greater resilience of the solution and its technical-economic feasibility as gas prices vary

with a control logic 3. This is mainly due to two factors: reduction of the gas price is somehow balanced by

the fact that a significant share of gas is still saved by purchasing electricity at a lower cost and producing

an amount of heat on average three times the amount of electricity purchased and because, the ratio

would also increase the gas and electricity prices, favoring this solution even more. The only scenario in

which even logic 3 would not allow a sure return on investment would be a scenario in which the prices

of gas and electricity are more coupled, which is decidedly unlikely given the prospects of ever-greater

diffusion of renewables and the increasingly insistent debates on the decoupling of these two methods of

electricity production (see thermoelectric from natural gas and photovoltaic) on the two correlated prices.
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.10: Net Present Value with control logic n° 1
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.11: Pay Back Time with control logic n° 1
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.12: Profit indexes with control logic n° 1
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.13: Net Present Value with control logic n° 2
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.14: Pay Back Time with control logic n° 2
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.15: Profit indexes with control logic n° 2
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.16: Net Present Value with control logic n° 3
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.17: Pay Back Time with control logic n° 3
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.18: Profit indexes with control logic n° 3
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(a) (b)

(c) (d)

(e) (f)

(g)

Figure 5.19: NPV sensitivty analysis with control logic n° 1 and n° 2.
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(a) (b)

(c)

Figure 5.20: CGS1 : NPV sensitivty analysis with control logic n° 3.

(a) (b)

(c)

Figure 5.21: CGS2 : NPV sensitivty analysis with control logic n° 3.
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(a) (b)

(c)

Figure 5.22: CGS3 : NPV sensitivty analysis with control logic n° 3.

(a) (b)

(c)

Figure 5.23: CGS4 : NPV sensitivty analysis with control logic n° 3.
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(a) (b)

(c)

Figure 5.24: CGS5 : NPV sensitivty analysis with control logic n° 3.

(a) (b)

(c)

Figure 5.25: CGS6 : NPV sensitivty analysis with control logic n° 3.
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(a) (b)

(c)

Figure 5.26: CGS7 : NPV sensitivty analysis with control logic n° 3.
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5.3 Decarbonization analysis

In the last paragraph, we analyze the effects on the actual decarbonization of the preheating process,

considering the choice of the techno-economic best solution for each control logic applied and for each

plant at the same time. The first figure (5.27 ) shows the decarbonization that can be achieved by the

optimal techno-economic solutions related to control logic 1 (off-grid) and 2 (on-grid with sales only): this

is the same for both, as the second control logic only differs from the first in that the renewable surplus is

not wasted, but sent to the grid. The plant that achieves the highest level of decarbonization is number 3,

with a value of around 27/28 % of the total annual pre-heating energy, while the one that achieves the

lowest decarbonization is number 1. This result is the combination of two factors: the coupling of the

curve of each plant with the production curve of the photovoltaic and then the heat pump. In any case,

the first result that we can highlight is that with these two control logics and in this given configuration

of heat pump plus tank plus auxiliary boiler, for all the systems considered, it is possible to achieve a

percentage of decarbonization of the preheating ranging from around 15% to a maximum of just under

30% of the total energy required in a year. The second figure, 5.28, on the other hand, shows how the

inclusion of control logic 3, i.e. on-grid system with the possibility of purchasing from the grid, changes

the situation compared to the two previous cases. While in the first two cases, the systems that benefited

most from the inclusion of the heat pump were the small- to medium-sized systems within the cluster of

systems analyzed, in the case of control logic number 3 the trend is reversed: the systems benefiting the

most from the decarbonization are numbers 4, 5 and especially number 6. The greater decarbonization

in the off-grid case is easily explained by the coupling of the preheat demand curve and the supply of

energy from renewable sources. The C and F plants have the most favorable SSR and SCR factors in

combination all. CGS3 has a maximum SSR of 36% while maintaining a minimum SCR of 40%, while

CGS3 has a maximum SSR of 33% with a minimum SCR of 40%.

Figure 5.27: Decarbonization of gas preheating with control logics 1 and 2.
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Figure 5.28: Decarbonization of gas preheating with control logic 3

Considering the second figure, it is possible to reduce the environmental impact of the preheating system

in hybrid form (part fully decarbonized and part partially decarbonized) for the following percentages

of total energy required annually: 42 %, 28 %, 60 %, 76 %, 79%, 84% and 57 % for plant from 1 to

7, respectively. Beyond what can be deduced from the optimum cases just analyzed and described in

this section, other conclusions can be drawn. If the optimal cases took into account the simultaneous

optimization of both the return on investment, thus the IP, and the payback time, a fundamental value for

convincing DSOs to implement efficiency policies in a scenario of extremely volatile and uncertain energy

prices, it is possible to obtain confidence bands in which to move around the regions of techno-economic

optimal. This could help the DSO choose the best configuration depending on the logic being implemented

and the class of plant that is to be decarbonized.

• For logic No. 1 and No. 2 the tolerance bands are not very wide, this is because the decoupling

between the supply and demand curves, as often repeated in this discussion, means that beyond a

certain value of HP and PV sizes the investment is never worthwhile. Specifically, the upper right

corners (maximum HP and minimum PV) and lower left corners (minimum HP and maximum PV)

will yield PBT values of 16 years or more and up to 20 years. It is not possible to recover more than

27 %, 36 %, 36 %, 30 %, 33 %, 33 %, 32 % with logics 1 or 2 for plants 1 to 7 respectively. In these

cases then the most obvious thing is to seek the trade-off between maximum recovery and minimum

expenditure, as is precisely obtained from the results of the techno-economic analysis.

• For logic No. 3, on the other hand, an additional consideration can be added, the possible energy

recovery is theoretically total, so 100 % of the preheating energy can be provided by the HP, which,

however, will be supplied on an annual basis by a mix of 100 % renewable energy and partially

renewable energy. If one wanted to keep under 8 years as PBT, it would be possible to recover 100%

of the preheat energy for all plants with the assumptions chosen for analysis.
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5.4 Concluding remarks

Through this work, it was possible to analyze a series of innovative plant solutions that can be easily

implemented by the DSO to decarbonize the pre-heating request of the CGS. The pair of optimal PV

and HP sizes follows a generally similar trend for all 7 classes of systems analyzed. The techno-economic

optimum was evaluated taking into account all three indices, namely NPV, PBT, and PI, but for a DSO

it is essential to maximize the return on the investment and obtain results as soon as possible, to the

detriment of a final profit superior. The techno-economic analysis gave this priority first to PI, then to

PBT, and finally to NPV. The shape of the statistical distribution of the flow rate of the plants then

influenced the actual percentage of final decarbonization. Moreover, the solutions were very dependent on

the fluctuation of absolute prices and the ratio between the price of gas and that of electricity and it has

not been possible to decarbonize 100% of the pre-heating without distancing from the optimum of the

techno-economic analysis. The main outcomes of this first part of the work are listed below:

• The use of a super-simplified model, described in Chapter 2, allows for the analysis of possible

decarbonization scenarios for any CGS-type plant with low computational effort.

• Each plant in the analyzed cluster presented a different cumulative preheat demand curve over the

year, meaning different demand distributions within the plant’s operating range. The percentage of

preheat energy was calculated as about 0.2 % of the energy flowing through the CGS in a year.

• The three control logics differ in that they can interact with the network in different ways. Only

with logic No. 3 is it possible to use the HP all year round, but it is never possible to exceed an

SSR of about 36 % and maintain an SCR greater than 48 % regardless of which logic is active.

• The techno-economic analysis shows that investments in low to medium sizes of PV and HP are

the most convenient in terms of PBT and PI for any plant and for any control logic implemented.

Considering the NPV index, the choice should fall on plants with low-medium sizes of HP and

medium-high sizes of PV, especially for logic 2 and 3, which is when surplus electricity can be sold.

Tecnho-economic optimum for each plant with each control logic is obtained.

• The sensitivity analysis of the techno-economic optimum clarifies the dependence of the goodness

of investment on the gas price and the gas/electricity price ratio. The investment maintains its

profitability over time with definitely sustained gas prices and at least equal or higher 0.6-0.8 €/Smc

and with increasing gas-electricity prices ratios, that is, toward scenarios in which gas and electricity

prices are decoupled.

• From the decarbonization analysis, it emerges that it is not possible to recover all the pre-heating

energy with the first two logics, but only with the last logic (totally on-grid). However, it is never

possible to completely decarbonize the system, even in cases where energy from the grid is used and

the size of HP is such as to cover 100% of the annual pre-heating gas requirement. The maximum

is approximately 28% with only 100% decarbonized energy or approximately 84.7% with a mix of

100% renewable energy and energy from the grid, out of the total energy required by preheating in

the CGS.





Chapter 6

Results: energy monitoring of CGS with

machine learning models

In this chapter, the method developed for data-driven modeling of preheat consumption in CGSs is

presented and then its application to two different case studies is described. The chapter is developed as

follows: first, the results of the feature selection and engineering process are presented, then the results of

the machine learning models in terms of performance are discussed, and finally, the models are applied to

the two real cases using the CuSUm technique to evaluate the energy performance of the plants.

6.1 Features selection and engineering

When approaching the modeling of data-driven regression algorithms, the first step to be tackled concerns

the correlation analysis that is present between the output variable, the consumption target in this

case, and the input variables, the features related to the sensors installed in the NG’s pressure-reduction

plants. Figures 6.1 and 6.2 show the Pearson correlation matrix for all the raw features and target

contained in the two datasets of CGSA and CGSB, respectively. Considering the basic sensors and not

those related to the preheating system (set points, preheating water temperatures, etc.), the natural

gas flow rate Qgas processed by CGS is highly correlated with gas consumption, as expected, with very

high correlation coefficient values (above 0.9 and specifically 0.95 and 0.92) and also the ambient air

temperature Tenv, which gives an indication of the seasonality and consequently the gas consumption

of downstream consumers. Environmental air temperature has a high and negative correlation value

(less than -0.7) because as the temperature increases (summer), consumption decreases and vice versa

(winter). The temperature of the pre-heating water, i.e. the hot water supply Twat, also shows high

values of the correlation coefficient (around 0.7) concerning consumption and for the CGSA system. The

correlation between CGSB consumption and Twat is even higher due to the fact the the second plant

has a central management system that adapts the water temperature set point accordingly to the gas

flow rate. The average correlated sensors include the gas inlet pressure Pin (absolute values between 0.6

and 0.4), as a more pressurized gas will require a greater temperature jump to compensate for a stronger

Joule-Thompson effect, and the outlet gas temperature Tout, as outlet conditions are strongly influenced

by the preheating consumption: on summer the system is capable to preheat better a small amount of

volumetric flow rate and the set point is set at a higher value equal to 10°C, while in the winter the

gas outlet set point is lowered to 8°C. To summarise, all the inputs related to gas inlet conditions (flow

rate, temperature, and pressure) and environmental conditions are among the main quantities by order

101
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of correlation between standard sensors. Another sensor that gives us information on the seasonality

and operating conditions of the CGS is the gas outlet set point temperature, which is varied once a year

according to the type of ’thermal’ season, i.e. summer (second half of spring, summer, and first half

of autumn) and winter (second half of autumn, winter and first half of spring). The solar radiation G

and the outlet pressure Pout are two variables that are correlated on average (between 0.4 and 0.2), as

the first one provides additional and complementary information on seasonality and the second one is

less important for the gas preheating consumption since it strictly follows the outlet pressure set point

(downstream network operating pressure). As far as the correlations between characteristics are concerned:

irradiation G is on average correlated with the ambient temperature (0.53) as expected from their seasonal

relationship, and the inlet pressure also has a good correlation with the total gas flow rate ( around 0.55)

as the systems work proportionally to the increase in flow rate with the increase in upstream pressure due

to the transport network. On the other hand, the outlet pressure is poorly (< 0.2) correlated with the

other variables, especially considering the CGSB plant.

Figure 6.1: Pearson correlation matrix: CGSA dataset

A further consideration regarding the variables present in the heating plant management system, active

only in the CGSB plant: there are the boiler ignition minute counters (from 0 to 60), the boiler ID BUID

which is a counter providing the operating condition of the heating plant (0 boilers on, 1 boiler on and

which, 2 boilers on at the same time) and the heat pump timer (from 0 to 60). The first two are highly

correlated, but are very prone to data leakage problem as they insert a forcing of information in the

features that replicate the target and the risk of not having the features in the inference process would

make the model very inaccurate.. In statistics and machine learning, leakage (also known as data leakage

or target leakage) is the use of information in the model training process which would not be expected to

be available at prediction time, causing the predictive scores (metrics) to overestimate the model’s utility
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when run in a production environment For these reason they have been preliminary rejected from the

features candidates.

Figure 6.2: Pearson correlation matrix: CGSB dataset

Figures 6.3(a) and 6.3(b) show the barplot of the correlation absolute values, from 0 to 1, of the

two correlation indexes, Pearson and Spearman, between the target, QBU, and all of the other dataset

variables, the possibile candidate features, for each plant. In these graphs, instead of also analysing the

correlation between all features, we only analyse both the linear (Pearson) and monotonic (Spearman)

correlation between the features and the target QBU : it is interesting to note that variables often have

a Spearman’s coefficient correlation value greater than Pearson’s, which means that there is often a

non-linear correlation between targets and feature candidates.

6.1.1 Features engineering

Feature engineering is a process whereby new information and thus new quantities are extracted from the

available raw data. The following engineered features were extrapolated for this case:

• Tgas,in = inlet gas temperature, obtained with equation 2.23 as a function of the ambient temperature

using established models from the literature and described in the previous chapter.

• Month = month of the year counter (assuming values from 1 to 12)

• Time of the day in terms of sinusoidal functions (Sin(Hπ/12 + ϕ), Cos(Hπ/12 + ϕ). The two

sinusoidal fuctions are correlation-optimized with respect to the target. Twenty-four values are

tested, one per hour, in order to find the sine function with the correct shift value ϕ that gives the

highest possible Pearson and Spearman coeficients together. The two figures show the trends of the



104 Results: energy monitoring of CGS with machine learning models

(a) (b)

Figure 6.3: Correlation barplots between target and raw features: CGSA (a) and CGSB

sinusoidal functions and how they are trying in some way to replicate the trend of the natural gas

consumption curve. In the case of CGSB the two functions placed the extremes (1 and -1) near the

peaks, while the opposite happens for CGSA which obtained sines and cosines in the presence of

the valleys.

Figure 6.4: Optimized sinusoidal engineered features for CGSA

Figure 6.5: Optimized sinusoidal engineered features for CGSB

• Weekday = counter for the day of the week (assuming values from 1 to 7)

• Daytype = counter for the type of the day, such as workday, pre-festivity or festivity (assuming

values from 1 to 3)

Time expressed in sinusoidal form makes it possible to eliminate the discontinuity of values that occurs

in the transition from one day to another, that is, in the transition from time 23:00 to time 00:00. In
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addition, it is important to use both in combination since their sum expresses the completeness of the

hour in sinusoidal form.

Figure 6.6: Correlation matrix with engineered features: CGSA.

Once the engineered features are chosen and created, a complete starting dataset for each thermal

plant is obtained. Figure 6.6 shows the Pearson correlation matrix for the CGSA and figure 6.7 shows the

Pearson correlation matrix for the CGSA and CGSB .

Features selection is the phase in which the inputs to be fed to the training of the various machine

learning models are finally chosen. for this application, the simple but computationally inexpensive method

known as the filter method is chosen, which is a method based on the correlation between variables and

which establishes a threshold of acceptability of the correlation value between the target variable and all

other input variables. The filtering threshold is chosen to be 0.1 for both correlation coefficients used

in this work. Figure 6.8 shows the results of the filtering process with two barplots, one for each plant.

If both Spearman and Pearson coefficients are less than 0.1 for the target and candidate input quantity

tuple, then the candidate variable is discarded and not used as input to the model in the subsequent

training phase. For CGSA, the gas outlet pressure, the time-of-day values in the sinusoidal form (Cos(H)

and Sin(H)), the type of day (weekday, holiday, etc.), and the day of the week are discarded. On the other

hand, for the CGSB , the Cos(H) has a Spearman correlation value with the target greater than 0.1 and

thus is retained. It can be seen from the figure that there is substantial similarity in the values of the

correlation coefficients between the target and the candidates, for both plants used as case studies. In

addition, all those variables that are themselves other targets or targets analogous to the one of interest

for this task are discarded: the hot water outlet temperature and the gas outlet temperature (not the set

point, but the actual temperature) are discarded because the first is almost perfectly correlated with the

set point of its own magnitude, as is rightly expected, and the other because it is physically the result of
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Figure 6.7: Correlation matrix with engineered features: CGSB .

(a) (b)

Figure 6.8: Correlation barplots between target and engineered features: CGSA (a) and CGSB

consumption. The third variable eliminated is the DP pressure drop (i.e., the difference between Pin and

Pout) since it adds no information compared to the two quantities taken individually. List of variables

accepted and eliminated for each cabin after the features selection and engineering phase:

• CGSA

Features accepted: Qgas , Pin , Pout , TSP,wat , TSP , Tenv , G, Month, Tgas,in

Features rejected: Twat , Tgas, Daytype, Weekday, Sin(H), Cos(H)
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• CGSB

Features accepted: Qgas , Pin , Pout , TSP,wat , TSP , Tenv , G, Month, Sin(H), Cos(H), Tgas,in

Features rejected: Twat , Tgas, Cmin, Cmin,HP , Daytype, Weekday

6.2 MLR models deployment

In this section, the results of the MLR models for CGSA and CGSB plants are presented. The MLR

model is trained using a dataset relating to the complete operation of the CGS for one year, specifically

from April 2021 to April 2022 for the CGSA and the CGSB . The dataset is divided into two parts, 80%

for the actual training of the model and 20% for testing the model. For both plants, the procedure was

followed to create a baseline model of MLR, which was then compared with the final MLR model. The

difference between the former and the latter is that only the raw features that can be directly attributed

to preheating consumption are used (see Chapter 3 equation 2.13). In this way, the impact of the addition

of engineered features on the predictive performance of the models can be quantified. Equation 6.1 shows

the shape of the baseline MLR model. Equation (6.2) shows the structure of the MLR model and Table

6.1 shows the values of the multiplicative coefficients for each feature for plant CGSA model. The c0

coefficient is an independent term in the linear model of scikit-learn called intercept. Equation (6.3) shows

the structure of the MLR model and Table 6.2 the values of the multiplicative coefficients for each feature

for plant CGSB. In the basic MLR models, for all plants the following variables are chosen as inputs:

the flow rate of flowing gas Qgas, inlet pressure Pin, outlet pressure Pout, and external environmental

conditions (Tenv and G). This makes it possible to obtain a total "black-box" model, that is, without

having information of what happens inside the plant, but only knowing measurements of what happens

directly upstream (Qgas, Pin), downstream (Qgas, Pout) and outside the plant (Tenv and G).

QBU = c0 + c1 ×Qgas + c2 × Pin + c3 × Pout + c4 × Tenv + c5 ×G+ ε (6.1)

QBU = c0 + c1 ×Qgas + c2 × Pin + c3 × Pout + c4 × Tenv+

c5 ×G+ c6 ×Month+ c7 × Tgas,in + ε
(6.2)

QBU = c0 + c1 ×Qgas + c2 × Pin + c3 × Pout + c4 × TSP,w + c5 × TSP + c6 × Tenv+

c7 ×G+ c8 ×Month+ c9 × Sin(H) + c10 × Cos(H) + c11 × Tgas,in + ε
(6.3)

Table 6.1: CGSA : Final MLR model coefficients.

Coefficient Value Coefficient Value Coefficient Value

c0 2.344785 c3 -0.000605 c6 -0.0371793

c1 0.002270 c4 -0.042019 c7 0.0127065

c2 0.014580 c5 0.0001643 ε 278.03751

Table 6.3 shows the value of the different scoring metrics comparison for the MLR baseline model and

the MLR final model for the first plant, namely CGSA. The MAPE values achieved by the MLR model
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Table 6.2: CGSB : Final MLR model coefficients.

Coefficient Value Coefficient Value Coefficient Value

c0 -4.056984 c5 0.040171 c10 0.446430

c1 0.001718 c6 -0.020291 c11 0.051859

c2 0.005871 c7 0.000163 ε 367.453

c3 0.000469 c8 -0.015831

c4 0.049998 c9 -0.425531

are discrete and are around 16% -15% for the basic and final models, respectively. The MAE results tend

to reflect those of MAPE since MAE fluctuates between 0 and 1 as does MAPE between 0 %and 100 %.

The only difference is that MAE goes one step further, by adding in the actual value division to convert

it to a percentage. The MSE values are also good and equal to 0.166628 and 0.150308. However, what

makes us understand the actual performance of the model are the parameters called RMSE, as they are

dimensional and measured with Smc/h units. The percentage RMSE also is obtained by dividing the

RMSE by the maximum value of the target, i.e., y = QBU , and thus they make us understand respectively

that the model predicts the target with an absolute error of about 0.2 Smc/h and percentage of about

5%. The values of R2 are very high and satisfactory, above 0.94 for both models. The graphs of the error

distribution 6.9a and the predicted vs. actual scatter plot 6.10 show the tendency of MLR models not to

be perfectly generalized for the case study: we see an imbalance of positive outliers (average overestimation

of the value by the model for plant A).

Table 6.3: CGSA MLR models comparison for test dataset: base vs final.

Unit Base Final Final vs Base

MAPE [%] 16.33412 15.83054 -3.08%

MSE [Smc/h2] 0.050089 0.039532 -21.08%

MAE [Smc/h] 0.166628 0.150308 -9.79%

RMSE [Smc/h] 0.223806 0.198826 -11.16%

RMSE% [%] 5.557637 4.937314 -11.16%

R2 [-] 0.947101 0.958251 1.18%

Table 6.4 shows the value of the different scoring metrics comparing them for the MLR baseline model

and the MLR final model for the second plant, namely CGSB . The MAPE values achieved by the MLR

model are higher than for the first plant and are around 38% and 27% for the basic and final models,

respectively. This is beacause the second plant MLR model is affected by range of overestimating values

and the MAPE is much more sensitive and asymmetric and it puts a heavier penalty on negative errors

(when forecasts are higher than actuals) than on positive errors. The MSE values are on the other hand

good and equal to 0.090154 and 0.054624 and better if compared to the first plant model. The RMSE

and the percentage RMSE shows respectively that the model predicts the target with an absolute error

of about 0.3 and 0.23 Smc/h and percentage of about 5% - 3%. The values of R2 are very high and
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satisfactory, above 0.95 for both models (0.7 for the model with engineered features included). At the

same time, both MLR models achieved very high regression performance and were therefore retained as

candidates for the consumption baseline of the two plants. The graphs of the error 6.9b and predicted vs.

actual 6.11 values also confirm for us the tendency of MLR models not to be perfectly generalized for the

case study: we see an imbalance of positive outliers (average overestimation of the value by the model for

plant B).

Table 6.4: CGSB MLR models comparison for test dataset: base vs final.

Unit Base Final Final vs Base

MAPE [%] 38.50541 27.94834 -27.42%

MSE [Smc/h2] 0.090154 0.054624 -39.41%

MAE [-] 0.221811 0.176396 -20.47%

RMSE [Smc/h] 0.300256 0.233718 -22.16%

RMSE% [%] 5.078755 3.873353 -23.73%

R2 [-] 0.950997 0.970904 2.09%

(a) (b)

Figure 6.9: (a) CGSA MLR errors distribution vs (b) CGSB MLR errors distribution

The two scatter plots are plotted by dividing the dataset into training (blue) and testing (green). This

is used to see whether the model is overfitting or underfitting by comparing the results of model predictions

by graphing. In the tables just described, the value of testing is rightly reposted, but it is also important

to observe the performance on training and testing simultaneously. For MLRs, there is no validation

phase. As can be seen from the two figures, both models achieved an excellent level of generalization, with

the test and training points statistically evenly distributed and equispaced concerning the best-fit line

in red. For the first cabin, a greater dispersion of the predictions is observed for medium-high values of

consumption, while for the second plant, a deviation of the scatter trend from the best-fit line is observed

for medium-low values of consumption, i.e., when preheating consumption is limited and the effect of

losses on the total is more incisive in percentage terms.
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Figure 6.10: CGSA MLR scatter plot: predicted vs real.

Figure 6.11: CGSB MLR scatter plot: predicted vs real.

6.3 ANN models deployment

Both neural network models are trained and realized by relying on the sckit-learn libraries (cite scikit

learn), in particular the MLPRegressor module. Using a full year, i.e. 365 days, the dataset is split as

follows: 70% for training, 10% for cross-validation, and 20% for model testing evaluation. In this way,
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80 % of the dataset is divided into 70% for actual training and 10% to go for model validation via the

procedure integrated into the MLPRegressor function. The score of the validation dataset is used as a

metric to block the training of the model before the over-fitting condition is realized. To train the models

the MLPregressor early stopping is set to on. This is a form of regularization used to avoid overfitting

when training a learner with an iterative method, such as gradient descent. Such methods update the

learner to make it better fit the training data with each iteration. Up to a point, this improves the learner’s

performance on data outside of the training set. Past that point, however, improving the learner’s fit to

the training data comes at the expense of increased generalization error. Early stopping rules guide as to

how many iterations can be run before the learner begins to over-fit.

Fine tuning with grid search

A model hyperparameter is a characteristic of a model that is external to the model and whose value

cannot be estimated from data. The value of the hyperparameter has to be set before the learning process

begins. For example, the number of hidden layers or hidden neurons for each layer in Neural Networks.

Hyperparameters are set before training (before optimizing the weights and bias). Grid search is a process

that searches exhaustively through a manually specified subset of the hyperparameter space of the targeted

algorithm. Random search, on the other hand, selects a value for each hyperparameter independently

using a probability distribution. Both approaches evaluate the cost function based on the generated

hyperparameter sets. Among the hyper-parameters that were chosen for the realization of the neural

network for each cabin, we have the following results:

• Activation functions: logistic, relu, tanh.

• Batch size: 5%, 10% and 20% of the training dataset number of data

• Number of hidden neurons: from 2 hidden neurons up to 300 hidden neurons.

• Learning rate

An exhaustive search over specified parameter values for an estimator has been chosen exploiting

the library module of scikit-learn called GridSearchCV. To use that module you have to set the scoring

metrics and the number of folds for the k-fold cross-validation. Cross-validation is a statistical method

used to estimate the skill of machine learning models. It is commonly used in applied machine learning to

compare and select a model for a given predictive modeling problem because it is easy to understand,

easy to implement, and results in skill estimates that generally have a lower bias than other methods. For

this work, we decided to use MAE for scoring and k =3 as number of folds for the k-fold CV. Here are the

results of the grid search for both plants:

• CGSA

Activation functions: logistic

Batch size: 10% of the training dataset number of data

Number of hidden neurons: 10

Learning rate: 0.005

• CGSB

Activation functions: logistic

Batch size: 5% of the training dataset number of data
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Number of hidden neurons: 6

Learning rate: 0.0001

(a) (b)

Figure 6.12: Grid search results for CGSA (a) and CGSB : score of the model for three different activation
functions and as the number of nuerons in the hidden layer varies

.

Figure 6.12 shows the mean scoring values of the models for plant A and B while searching at the same

time the best activation function and the best number of hidden neurons of the one hidden layer. Both

figures highlight the fact that the logistic function and the ReLu are performing better than the tanh

activation function. It can bee seen that for small numbers of hidden neurons the logistic outperforms the

ReLu, but their scoring is almost the same. While the number of hidden neurons increses, the logstic

start to become better more and more.

Final models evaluation

This section presents the performance results of the neural network models for the two plants considered.

The first table 6.5 shows the values of metrics related to the ANN training and testing dataset for the

evaluation of CGSA preheating consumption. Similarly to the case of MLR model traning, the dataset

was divided into 80% training and 20% testing, but the training was divided into 70% actual training and

10% cross-validation. It is critical that in the final training the metrics are similar for both training and

testing, which means that the model is performing and generalized and over or under fitting issues have

been avoided. Figures 6.13a and 6.14 show the error distribution of the model training and the scatter

plot of the predicted values vs the real values for the plant CGS1. Blue shows the points related to the

training set and green shows the points related to the test set. The ANN model of the first plant ultimately

presented the following values of the metrics for the test set: MAPE of about 8.6%, MAE of 0.07, MSE

of less than 0.012 and a RMSE of about 0.1 Smc/h. Moreover, the coefficient of determination is very

high and close to 1 with coefficient values of 0.98. Figures 6.13b and 6.14 show the error distribution

of the ANN model training and the scatter plot of the predicted values vs the real values for the plant

CGSB . The ANN model of the second plant ultimately presented the following values of the metrics for

the test set: MAPE of about 21%, MAE of 0.11, MSE of less than 0.02 and a RMSE of about 0.15 Smc/h.

Moreover, the coefficient of determination is very high and close to 1 with coefficient values of 0.98. Both

ANN models outperformed prediction performance on the test set compared with their respective MLR

rivals for both plants. This confirms what was expected from the beginning of the work: the ANN model

allows to capture the inherent nonlinearity of these types of implants, whereas a simple MLR model fails
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to do so. Very important to note that the distribution of ANN model errors with respect to the overall

training dataset is extraordinarily more symmetrical and balanced than in the MLR case. It means that

in those cases the ANN models managed to be predictive and robust without going over-estimating or

under-estimating.

(a) (b)

Figure 6.13: (a) CGSA ANN errors distribution vs (b) CGSB ANN errors distribution

Table 6.5: CGSA : ANN final model metrics

Unit Test Train Train + Test

MAPE [%] 8.066373 8.71887 8.588371

MSE [Smc/h2] 0.012347 0.01134 0.011541

MAE [-] 0.078659 0.076668 0.077067

RMSE [Smc/h] 0.111116 0.106489 0.10743

RMSE% [%] 2.759271 2.573446 2.633263

R2 [-] 0.986961 0.987549 0.987432

Size [%] 20.00% 80.00% 100.00%

Table 6.6: CGSB : ANN final model metrics

Unit Test Train Train + Test

MAPE [%] 21.04828 22.9781 22.592094

MSE [Smc/h2] 0.023792 0.02477 0.024574

MAE [-] 0.110912 0.111634 0.11149

RMSE [Smc/h] 0.154247 0.157385 0.156762

RMSE% [%] 2.556297 2.469171 2.657338

R2 [-] 0.987327 0.986597 0.986746

Size [%] 20.00% 80.00% 100.00%
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Figure 6.14: CGSA ANN scatter plot: predicted vs real.

Figure 6.15: CGSB ANN scatter plot: predicted vs real.

6.3.1 ANN models prediction comparison with real data

The DSOs, and in particular the partner who provided the data used, do not currently use predictive

models to predict preheating energy consumption. Generally, what is done by the DSO is to go to the plant

site and periodically monitor for malfunctions or energy wasting events.It is an on-call, non-condition-based
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type of maintenance of the thermal power plant operation. To implement condition-based maintenance, it

is necessary to implement models to understand the "state" of the health of the plant from the perspective

of energy performance. Considering the extremely promising results of the developed models, they can be

implemented directly on the machine, and their value is compared with the real value read by the system.

An example of the results is shown in the following figures 6.16 and 6.17. The two figures show the trends

of the ANN models for the two plants compared with the real values for the 4 seasons relating to the

training period. There is an excellent correspondence both in terms of trend and in terms of absolute

value for both systems and the related models developed in this chapter. For both systems, it can be

clearly seen that the two graphs for the most wintry season, i.e., April 15 and February 15, is perfectly

replicated in terms of model predictions, compared to the actual data. A first direct application of the

newly developed models could be to use them directly in comparison with real data, to implement an

instantaneous "anomaly detection" system. Figure 6.18 and figure 6.19 the results of this implementation

for 4 dates after the start of the testing period. The confidence bands of the predicted model are plotted,

to be able to experiment with a first use of the algorithm compared to the real case. The width of the

tolerance interval is obtained by multiplying the standard deviation of the training error of the ANN

models of each plant by a safety coefficient, which for this work was set equal to 3 The following (6.4) is

used to compute the above-mentioned confidence interval.

ϵconfidence = σANN,errors × SC (6.4)

This value may be tuned by the DSO to include more or fewer alarms within its alarms history log. It

is noted that, although the models are extremely performing, for a few days alarms would have arisen due

to the curve of real values which completely goes outside the tolerance bands shown in the figure. For

both plants, problems would be encountered in both May and November and the DSO could be alerted to

the discrepancy between the model and real data. However, in both cases, no malfunction was found by

the DSO. This is because this type of approach is best suited to plants that risk catastrophic breakdowns

or failures that are very frequent and which can be analyzed by instantly comparing a parameter only

with its digital twin counterpart. In addition, because there is a strong dependence on seasonality , each

day may be very different from the previous one or the same one a year earlier. To better use the models

developed based on a "baseline" period, it would be more appropriate to evaluate the development of

errors over time and not just the value of the error over the course of a single day. Therefore, please refer

to the development of the CuSUM-based energy monitoring method in the next chapter. This would allow

an analysis of what the DSO is actually interested in:

• to perceive whether the system is drifting toward a malfunctioning and thus energy-wasting condition

• knowing the date of system upgrades or refurbishments, whether the energy improvement intervention

is bringing benefits over time.
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Figure 6.16: CGSA: comparison results between ANN and real data for training period
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Figure 6.17: CGSB : comparison results between ANN and real data for training period
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Figure 6.18: CGSA: comparison results between ANN and real data for testing period with confidence
intervals
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Figure 6.19: CGSB : comparison results between ANN and real data for testing period with confidence
intervals
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6.4 Energy monitoring results

This paragraph shows the trend of the CuSUM graphs obtained with the regression models developed for

this work for both plants. All CuSUM curves are calculated for the entire duration of the dataset, from

the first day of training (15 April 2021) to the last day of training (15 April 2022), until the end of the

testing period at disposal (15 December 2022). It is immediately noticeable how all four CuSUM curves,

whether obtained as the difference between real and MLR models or real and ANN models, return towards

zero at the end of the training period (highlighted by a dashed green line); that is, it is a testament to

the goodness of the models developed that by definition they reduce the quadratic error between real

data and output throughout the training dataset. Nevertheless, as was to be expected after analyzing

the distribution of training errors for both models, the MLR models are clearly more unbalanced than

the ANN models. They present approximately double the standard deviation of errors for both systems;

moreover, for the former figure 6.20 there is an effective imbalance for almost the entire duration of the

training which is only reduced at the end of the aforesaid period. Figure 6.21 shows the comparison of the

two cusum obtained with the MLR and the ANN trained with the CGSB datasets.

Figure 6.20: CGSA CuSum results: MLR vs ANN

Figure 6.21: CGSB CuSum results: MLR vs ANN

The hypothesis underlying energy monitoring using CuSum techniques is the reliability and robustness

of the "baseline" model; in this case it is clear that the neural network is clearly more performing than

the MLR and therefore it will be used as a test case by comparing the trends of the ANN curves with

respect to what actually happened in the plant. To better explain this misalignment between the MLR

CuSum and the ANN CuSum, it could be useful to plot the errors during the testing phase, then as of

mid-April 2022 in Figures 6.22 and 6.23. For plant A, the greater robustness and accuracy of ANN’s

model is evident from the average of errors for a long period equal to zero. Where the heat pump has
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been turned on, however, i.e., the first few months of testing, both models notice this and in fact the error

is stably negative, meaning that the CuSuM is decreasing and the model predicts higher consumption

than what actually happened. After this, however, the two models diverge, in that the MLR shows a

trend of stably positive errors, thus indicating potential extra consumption, while in contrast, the ANN is

stably on zero mean errors, confirming that nothing significant has happened in the plant. While then

from November onward this trend of misalignment re-couples and in fact, both cusums go back down as

do the errors.

Figure 6.22: CGSA: Errors MLR vs ANN.

Figure 6.23: CGSB : Errors MLR vs ANN.

The two following figures, 6.24 and 6.25, show the trend of the CUSUM given by the ANN models

only for both plants.

This is what can be deduced from the analysis of the CUSUM trend 6.24 for the first plant.

• May - July: the operators carried out a recalibration of the pre-heating water temperature (see

figure 4.11 in chapter 4) and this meant that the predicted consumption was higher than the actual

one. The model has no information in the inputs relating to the water set point or its value and

consequently has predicted a higher consumption than expected.

• July - October: no variation detected with CuSum method.

• October - end of Dataset: another drop in water temperature was detected which led to a reduction
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Figure 6.24: CGSA Cusum results with ANN.

Figure 6.25: CGSB Cusum results with ANN.

in gas consumption, probably this time due to a possible malfunction of the thermal plant (see

figure 4.11 of chapter 4).

Cross-referencing the cusum trend of Figure 6.25 and comparing with the DSO in order to assess the

effects of plant interventions or to ascertain plant malfunction shows that:

• Early May - early June: the CuSum becomes negative with a very marked slope, this would agree

with the effect of turning on the heat pump relative to that period leading to a reduction in gas

consumption under the same conditions and thus a negative CuSum, because Yreal- Ypred < 0.

• early June - late November : the CuSum slows its slope and has both positive and negative

fluctuations around 3 times the standard deviation ell error of the training period. However, in this

period (which is the summer period) there was a change in the natural gas set point temperature,

which is usually kept at 10°C in the summer period, but for some reason it was kept lower and

specifically at 8°C. The model, trained with a perfect set point scheduling in accordance with what

is also described in the previous chapters, would expect a higher consumption with a lower set point

and instead the consumption is lower and consequently the CuSum continues to decrease albeit in a

less marked way than in the previous phase.

• late October - end of the dataset: without subsequent data available, it is not possible to extract

much information, however the model, with its CuSuM variation has noticed a sudden change in

water temperature compared to the previous year. At the end of September the water temperature

is higher than the previous year while at the end of October the water temperature is about 10-15°C

lower than the previous year; this is perceived by the model which signals with the cusum a negative
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drift in consumption due to a lower water temperature. Problem with the water temperature set

point.

6.5 Concluding remarks

Several regression-based machine learning models were developed and trained, a Multiple Linear Regression

(MLR) and an Artificial Neural Network (ANN) algorithms. The selection of the inputs for these models is

obtained through the features selection and engineering process. The algorithms were trained on a training

data set relating to a complete year of operation for two real plants and their predictive performances

were tested on another data set relating to the subsequent operating conditions of the same plants.

The algorithms performed greatly, in terms of all the metrics chosen for their evaluation on the testing

dataset. The algorithms, and in particular the ANN models, which are capable of understanding the

non-linear interactions of the system, performed extremely satisfactorily on both datasets in terms of all

the metrics chosen for their evaluation, such as R2, RMSE. Values higher than 0.98 were obtained for

the R2 coefficient, with mean square percentage errors lower than 3% for both models and plants. The

models were integrated into an energy monitoring system using the CUSUM technique and it was possible

through these to identify malfunctions and waste within the testing period. The main outcomes of this

first part of the work are listed below:

• The filter features selection method meant discards Twat , Tgas, Daytype, Weekday and the following

variables were kept: Qgas , Pin , Pout , TSP,wat , TSP , Tenv , G, Month, Sin(H), Cos(H), Tgas,in.

The features engineering process is fundamental for this type of application. The addition of temporal

and seasonal variables, such as the month of the year or the time of day in sinusoidal form, make it

possible to improve the performance of the models by up to 20% in the case of MLRs for the second

cabin, considering the RMSE score.

• Best ANN models reach values of about 0.98 for the R2„ 0.11 and 0.15 Smc/h for the RMSE and

2.5-2.7 % errors for the percentage RMSE for the testing dataset for both plants.

• Neural network models perform better both in terms of absolute and percentage errors on both the

training and reference test sets, compared to MLR models. Therefore, they are chosen as templates

to create the energy “baseline” curve to be used in the cusum-based method for energy monitoring.

• The process of direct implementation of the models as energy anomaly detection systems is not

sufficiently robust to capture consumption drifts or for any assessments of the impact of efficiency

actions. The CuSUM method, on the other hand, allows for the creation of "baseline" consumption

models and to evaluate of the performance of the CGS over time to find the variations between the

actual and the modeled gas consumption, being an essential tool for monitoring the effectiveness of

the natural gas preheating system.





Chapter 7

Conclusions

This thesis work consisted of two successive steps, the common theme of which was the energy analysis

and the possibility of efficient natural gas pre-heating systems within the City Gate Stations in the gas

distribution network in the Italian Scenario. A third element, preparatory and in support of the previous

two just mentioned, was the analysis of real datasets provided by the DSOs, in particular 7 datasets of real

plants ranging in size from very small to medium-large. In addition, for two of these plants, in particular

the first two, datasets on gas preheating systems were also provided. The analysis of the datasets showed

first of all that working with these systems means having to find correlations and commonalities between

variables within a plant fleet that is extremely varied in terms of plant layouts and operating conditions.

While it is possible to have a variety of configurations concerning the flow rates processed and the pressure

drops to be managed in terms of their annual distributions, it was found that the dependence of the

gas flow rate on the outside temperature follows a similar trend for all plants; this is because the gas

consumption of the distribution network analyzed is strongly influenced by seasonality and consequently

by the outside temperature. Therefore, it can be seen that CGS analysis is a problem that is strongly

influenced by seasonality and plant operating conditions in terms of processed flow profiles, gas pressure

drop values, and plant layout configuration. First of all, the estimation of preheating using lumped

parameter models or models based on first principles does not allow for satisfactory results in absolute

terms, but very good ones in terms of quality and consumption profile. This is unfortunately due to the

almost impossibility of generalizing simple equations and applying them to a CGS park that includes

many different configurations with even different technologies and operating conditions that are never the

same; moreover, the estimation of the losses would require a validation effort not repaid in any case to

analyze decarbonization scenarios. Among the various technologies available to implement the energy

efficiency and decarbonization process of preheating in CGS, it was decided to focus on air source heat

pumps for several reasons: high efficiency, low capital costs when compared to expansion or other types of

solutions, the possibility of rapid installation and immediate decarbonization of gas and, finally, possibility

of access to energy efficiency certificates by the DSO. Starting from the assumption that without a seasonal

storage solution and assuming that only the best techno-economic solutions are considered, which are

feasible by the DSOs in practice, it was not possible to obtain a 100% decarbonization for all the systems

analyzed as case studies. However, the results show that it is possible to obtain a return on investment

in a short time, from 6 to 8 years or around 4-5 years respectively for the control logic which does not

envisage powering the heat pumps even with electricity purchased from the network and for the one that

provides for the purchase of electricity from the national network. The sensitivity analysis showed that

the techno-economic feasibility of these solutions is very susceptible to gas prices in absolute terms and,

in a much less impactful way, to the variation of a gas and electricity price ratio. Assuming that the
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resale price of electricity, known as the minimum withdrawal price, is constant over time and low and

in such a way as not to transform the purpose of the solution from a gas consumption reduction and

efficiency system to an electricity production system, the first two plant logics (no purchase from the

network) are extremely penalized if the price of gas settles on pre-crisis values and lower than around

0.6-0.5 €/Smc. At the same time, the solution that provides for the possibility of purchasing from the

network guarantees a much greater resilience of the solution and its techno-economic feasibility as gas

prices vary. This is mainly due to two factors: the reduction in gas prices is somehow balanced by the fact

that a significant share of gas is still being saved by purchasing electricity at a lower cost and producing a

quantity of heat three times, on average, compared to the electricity purchased and why, the ratio between

gas price and electricity price would also increase, favoring this solution even more. Finally, the results of

the first analysis show that the maximum decarbonization percentage obtainable is on average less than

30% of the annual preheating demand, if an off-grid or partially on-grid control logic is used, or higher

decarbonization can be obtained even if partially green, when the electricity grid is not yet 100% zero

impact, even up to 80% of the total energy of the preheating request if a bidirectional on-grid logic is used.

The second analysis, i.e. the feasibility study of implementing machine learning algorithms for energy

monitoring purposes, was tested on two case studies, which envisaged the presence of datasets of around

two years relating to the pre-heating systems of two small-scale sizes provided by the DSO. The correlation

analysis of the two datasets showed that, as regards the raw features, i.e. the sensors installed in the

system, the most marked correlation with the target is given by the gas flow rate passing through the CGS,

the external temperature, and any control of the preheating plant, if present. This certifies the strong

dependence of the target on seasonality, which in turn is due to the composition of users downstream of

the plant. Several variables also have a greater Spearman coefficient value than the Pearson coefficient

value: this means that the dependence between them and the target is monotonic, but also non-linear,

such as between the ambient temperature and the gas flow rate and therefore consumption. This is very

important as it affects the performance of the regression models used in the next step. The implementation

of the Multiple Linear Regression models has made it possible to obtain already satisfactory results in

terms of regression metrics and to highlight the positive effect of the inclusion in the dataset of engineered

features, i.e. those obtained by extrapolating new information from the raw data with the help of the

physical knowledge of the system. The final MLR model therefore performed better than the baseline

MLR model, increasing the coefficient of determination R2 by an average of 2% and reducing the MAE

by 20% and by 40%, the RMSE by 11% and by 22 % for the two plants, respectively. The gas inlet

temperature and the month of the year for both plants have been included among the candidate features,

as proof of the importance of the gas inlet conditions the seasonality of consumption, and the time of day

of the sinusoidal shapes for the second cabin. The inclusion of a neural network model, which unlike the

MLR allows grasping the non-linear relationships of a regression problem between targets and features,

has paved the way for significant improvements in the performance of the model and made the error

distribution much more homogeneous during training and consequently have a more generalizable model.

This is also reflected in the final energy monitoring analysis: the ANN is more stable during the CUSUM

count in the training phase, with lower standard deviations of the error, and allows to analyze of the

behavior of the plants in a more robust way in the testing phase. The cusum analysis showed that by using

complex, non-linear machine learning algorithms, such as FF-MLP neural networks, it was possible to

obtain a reliable consumption baseline during the training period. During the testing period, changes were

highlighted in the real systems analyzed, such as the switching on of a heat pump for efficient pre-heating

of the system or the adjustment of the hot water and gas set point temperatures. In conclusion, this

thesis work has made it possible to answer the research questions that had initially been posed: simplified
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modeling of the CGS and its preheating requests based on physical models allows us to have useful

tools in the analysis of decarbonization scenarios and therefore to be a good planning tool for all DSOs

who want to maintain their decarbonization commitments and possibly access tax relief related to the

purchase and sale of energy efficiency certificates. However, the presence of a very varied park in terms

of configurations and clusters of users downstream and the marked dependence on the summer/winter

season makes these plants difficult to completely decarbonize through systems that do not provide for

seasonal storage and based on production from renewable energies such as the photovoltaic. Secondly, the

analysis of these plants from the point of view of real datasets makes it possible to understand which are

the parameters most influencing the systems and the correlation between consumption and the rest of

the variables. The data-driven modeling problem collided with the inherent non-linearity of the physical

system that was analyzed but allowed us to understand that with a sufficiently predictive and generalizable

regression model, it is possible to monitor the energy operating status of the systems and possibly also

the improvements. The impact of the work is significant and could be summarised as follows: the work

has led to the creation of a rapid approach that can be easily integrated and scaled by any DSO to

enable rapid decarbonization of the subsystem under consideration. Thermodynamic models are easily

generalizable and scalable and do not require a great deal of computational effort, but they are sufficiently

accurate tools for techno-economic feasibility analysis to immediately propose solutions to reduce and

contain consumption, avoiding focusing on particular plants that are difficult to implement in practice.

Data-driven analysis makes it possible to propose methods to go about creating energy baseline models

very quickly, as all DSOs have access to the histories of all the plants they control and could put in

place a facilitated plant modeling campaign based on the results of the study already done, overcoming

current manual or rule-based procedures. All this allows to support and help DSOs, providing them with

a series of tools that can be useful to address, acting immediately, the challenge of decarbonizing gas

infrastructures.





Appendix A

Published papers

A.1 Offline Monitoring Method for a Natural Gas City Gate

Station Odorization System

Year: 2022 SITE: https://onepetro.org/PSIGAM/proceedings-abstract/PSIG22/All-PSIG22/485454

A.1.1 Abstract

Natural Gas (NG) is odorless and therefore requires an odorizer to be injected into its flow to ensure

detection when a gas leak occurs and thus provide satisfactory safety levels. The odorisation process is a

delicate step that takes place within the City Gate Stations (CGS), which are key elements of the NG

network infrastructure. This work aims to develop a method for offline monitoring of the odorization

process within a CGS located in central Italy, based on the exploiting of the odorization station dataset

through several machine learning models development, to evaluate the odorization process performance.

An unsupervised machine learning method based on two different algorithms, the LOF (Local Outlier

Factor) algorithm and the K-Means clustering, is developed, and then data mining is carried out on the

dataset to extract useful information. The results show that the use of the algorithm made it possible to

identify anomalous points in the dataset and their dependence on the main operating parameters of the

CGS, as well as some clusters of under-odor and over-odor tendencies for the system under consideration.

A.2 Data-driven modelling for gas consumption prediction at City

Gate Stations

Year: 2022 DOI: 10.1088/1742-6596/2385/1/012099

A.2.1 Abstract

City Gate Stations (CGS) are critical elements of Natural Gas (NG) distribution systems, as they connect

national high-pressure transmission networks with local low-pressure networks. One of their main tasks is

to pre-heat the gas to avoid dangerous sub-cooling due to the Joule-Thompson effect after the pressure

reduction stage. For this process, significant amounts of thermal energy are required, usually obtained

by burning part of the gas flow rate. This work aims to develop a data-driven model that will serve as

a tool to predict and monitor the thermal consumption of the CGS. The plant chosen as a case study

for this activity is in a region of central Italy. A Multiple Linear Regression (MLR) model is developed
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and trained, and its predictive performance is evaluated. The model results achieved an accuracy of over

95% for the coefficient of determination. The method makes it possible to create a baseline consumption

model and evaluate the performance of the CGS over time using the CUSUM technique to find variations

between actual and modelled gas consumption, being an essential tool for monitoring the effectiveness of

the NG preheating system.

A.3 Integration of Renewable Energy Systems at City Gate Sta-

tions to Reduce Pre-Heating Gas Consumption

Year: 2023 DOI: https://doi.org/10.13044/j.sdewes.d11.0447

A.3.1 Abstract

The Italian Natural Gas (NG) distribution network includes thousands of NG metering and pressure

reduction stations, called City Gate Stations (CGS), for injecting gas into low-pressure networks. These

plants are mainly based on the isenthalpic throttling of the gas flow to reduce its pressure, which leads to

a significant reduction of its temperature by the Joule-Thompson effect. Gas preheating systems that

avoid excessive cooling are installed upstream of pressure reduction valves and usually exploit conventional

gas boilers. The energy consumption and carbon footprint could be reduced by integrating heat pumps

coupled with renewable energy sources for NG preheating to support gas boilers. For this work, an

ad-hoc thermodynamic model for estimating the thermal energy demand for pre-heating is developed,

exploiting experimental data from a real CGS, and simplified models of heat pumps and renewable systems.

This work aims to assess the actual technical and economic feasibility of energy savings through these

technologies. Results show the validated model to be sufficiently accurate to estimate the need for gas

preheating for these applications. For the considered case study, up to 38%, 32%, or 26% of the total

thermal energy can be recovered with a PBT of less than 20 years, 15, and about 13 years, respectively.

A.4 Other papers

• L. Cheli and C. Carcasci, ‘Modelling and analysis of a liquid-cooled system for thermal manage-

ment application of an electronic equipment’, E3S Web Conf., vol. 197, p. 10008, 2020, doi:

10.1051/e3sconf/202019710008.

• C. Carcasci, L. Cheli, P. Lubello, and L. Winchler, ‘Off-Design Performances of an Organic Rankine

Cycle for Waste Heat Recovery from Gas Turbines’, Energies, vol. 13, no. 5, Art. no. 5, Jan. 2020,

doi: 10.3390/en13051105.

• L. Ciappi, L. Cheli, I. Simonetti, A. Bianchini, G. Manfrida, and L. Cappietti, ‘Wave-to-Wire Model

of an Oscillating-Water-Column Wave Energy Converter and Its Application to Mediterranean

Energy Hot-Spots’, Energies, vol. 13, no. 21, Art. no. 21, Jan. 2020, doi: 10.3390/en13215582.

• L. Cheli, G. Guzzo, D. Adolfo, and C. Carcasci, ‘Steady-state analysis of a natural gas distribution

network with hydrogen injection to absorb excess renewable electricity’, International Journal of

Hydrogen Energy, vol. 46, no. 50, pp. 25562–25577, Jul. 2021, doi: 10.1016/j.ijhydene.2021.05.100.

• L. Cheli and C. Carcasci, ‘Model-Based Development of a Diagnostic Algorithm for Central In-

verter Thermal Management System Fault Detection and Isolation’, in 2021 5th International
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Conference on System Reliability and Safety (ICSRS), Nov. 2021, pp. 14–21. doi: 10.1109/IC-

SRS53853.2021.9660763.

• L. Ciappi et al., ‘Wave-to-wire models of wells and impulse turbines for oscillating water column

wave energy converters operating in the Mediterranean Sea’, Energy, vol. 238, p. 121585, Jan. 2022,

doi: 10.1016/j.energy.2021.121585.

• G. Guzzo, L. Cheli, and C. Carcasci, ‘Hydrogen blending in the Italian scenario: Effects on a real

distribution network considering natural gas origin’, Journal of Cleaner Production, vol. 379, p.

134682, Dec. 2022, doi: 10.1016/j.jclepro.2022.134682.
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