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Abstract

Reliable secular time series of essential climatic variables are a fundamental

element for the assessment of vulnerability, impact and adaptation to climate

change. Here, we implement a readily portable procedure for building an

upgradable long-term homogeneous climate dataset using monthly and daily

observations of temperature and precipitation over a given area of interest,

exemplified here with Abruzzo, a region in Central Italy characterized by com-

plex orography. We process the dataset according to a preliminary ranking of

stations based on data quantity and quality, and we exploit the Climatol algo-

rithm for inhomogeneity correction. The corrected time series show trends in

broad agreement with external databases (CRU, Berkeley Earth, E-OBS), and

highlight the importance of relying on a local network for a better representa-

tion of gradients and variability over the territory. We estimate that maximum

(TX) and minimum temperature (TN) increased by ~1.6 and ~2.2�C/century,
respectively, over the period 1930–2019, while in the recent decades 1980–2019
we found an accelerated trend of ~5.7 and ~3.9�C/century. Precipitation (RR)

decreased by ~10%/century in 1930–2019, while it has been increasing at a rate

of ~26%/century in 1980–2019. The Köppen–Geiger climate classification is

sensitive to the increase of precipitation in the recent decades, which is attrib-

utable to decreased summer precipitation overcompensated by more rain in

late spring and early autumn. The cold climate types are retreating upwards

along the slopes of the mountain ranges. Over the period 1980–2019, extreme

values are also displaying significant trends. Every 2 years, there is one less

frost day (TN <0�C) and one more summer day (TX >25�C) in the Apennines

area, while there is one more tropical night (TN >20�C) in the Adriatic coastal

area. Precipitation extremes are increasing, especially along the coast, with

rain accumulated in the rainiest days increasing at a rate of 1–2%/year.

Abbreviations: BER, Berkley Earth; CAR, Centro Agrometeorologico Regionale; CRU, climate research unit; CSV, comma separated values
(a common ASCII file format); ISPRA, Istituto Superiore per la Protezione e la Ricerca Ambientale (Higher Institute for Environmental Protection
and Research); QC, quality check; RR, accumulated precipitation; TM, mean temperature; TN, minimum temperature; TX, maximum temperature;
UIM, Ufficio Idrografico e Mareografico della Regione Abruzzo (Hydrographic and Mareographic Office of the Abruzzo Region).
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1 | INTRODUCTION

Reliable climate time series from near-surface observational
networks are the backbone of any climate service, that is,
the ensemble of data and information products aimed at
supporting the response of society to climate change and
climate-related risks (Brasseur and Gallardo, 2018). The his-
torical time series, after proper treatment for correcting
inhomogeneities due to station drift, substitution and relo-
cation (Brunetti et al., 2006; Ribeiro et al., 2016), are used to
obtain a detailed picture of the climate state and its trend in
the region of interest (Peel et al., 2007; Brunetti et al., 2014).
The same kind of dataset is the basic input for regional cli-
mate statistical downscaling (Maraun, 2016) and the neces-
sary validation reference for dynamical downscaling
(Giorgi, 2019).

Several datasets collecting meteorological observa-
tions from stations around the globe or a continent have
been developed in recent decades. Despite rigorous
control protocols, also products such as the widely used
E-OBS dataset (Cornes et al., 2018) may present distor-
tions, with respect to more densely distributed and con-
trolled local networks, which may have significant
repercussions in the results of downstream applications
(Hofstra et al., 2009; Kyselý and Plavcová, 2010).

A comprehensive review of temperature and precipi-
tation trends in the last century in the Abruzzo region,
which is the focus area of this work, and its consistency
with trends in the Mediterranean basin and the rest of
Italy, may be found in Scorzini and Leopardi (2019). The
Mediterranean basin is often considered a climate ‘hot
spot’, because of its vulnerability against even small
changes in climate dynamics. Indeed, the basin is at the
interface between the arid tropical (Northern Africa) and
the rainy mid-latitude (continental Europe) climate
regimes, and thus a relatively small change in the cyclonic
and anticyclonic synoptic patterns may result in substan-
tial modifications to for example, the regional precipitation
distribution in both space and time (Guijarro et al., 2006;
Giorgi and Lionello, 2008).

Similarly to most places on the globe, temperature in
Italy has been found to have increased in the last century,
with a trend of the order of 1�C/century: in Central and
Southern Italy, minimum temperature increased at a
rate of about 1.3�C/century, about twice as much as the
0.7�C/century of maximum temperature (Brunetti
et al., 2006). A similar increasing trend was reported also

for the Abruzzo region, where Aruffo and Di Carlo (2019)
estimated a 20-fold mean temperature increasing rate from
~0.3�C/century in the period 1924–1979 to ~6.0�C/century
in 1980–2015, in line with the nation-wide study by
Fioravanti et al. (2019). The extreme temperature indices
are also displaying significant trends in the recent decades:
for example, on average, in the Abruzzo region the number
of ‘summer days’ (maximum temperature TX higher than
25�C) is increasing by one every year, and the number of
‘frost days’ (minimum temperature TN less than 0�C) is
decreasing by one every 2 years (Scorzini et al., 2018).

Regarding precipitation, Brunetti et al. (2006) estimated
a generally decreasing trend of the mean annual precipita-
tion over Italy in the last century, while the seasonal precipi-
tation trend showed a variable sign also depending on the
area of interest (Caporali et al., 2021). For what concern
Southern Italy, annual precipitation is decreasing by about
−104 mm/century, mostly attributable to a reduction in
spring and autumn months (Brunetti et al., 2000). In
Abruzzo, Scorzini and Leopardi (2019) found precipitation
trends in the eastern coastal area of the region amplified
compared to the western mountainous part (see Figure 1 for
a map of the topography of the region). The long-term
trends of mean annual precipitation in the period
1951–2012 are similar in the two areas (−160 mm/century
and −136 mm/century, respectively in the coastal and the
mountainous cluster), while the estimated rates are
−290 mm/century in 1951–1981 and +540 mm/century in
1982–2012 for the coastal area, and −77 mm/century and
+226 mm/century, respectively, in the mountainous area.
The increasing precipitation trend in the recent decades was
found in all seasons, in particular in spring and autumn.
Summer precipitation was found to increase also in the
long-term (+16 mm/century in 1951–2012), but the rate has
been slowing down in the recent decades (+160 mm/cen-
tury in 1951–1981 and +11 mm/century in 1982–2012).

In this work, we implement a procedure to quality
check (QC), homogenize and facilitate the continuous
update of the climate dataset of the Abruzzo region in
Central Italy. The procedure is solely based on publicly
available software and information and it could be read-
ily applied to other regions of interest around the globe.
The manuscript is organized as follows. Firstly, we illus-
trate the raw dataset and the selected combination of
existing methods applied for QC and correction of inho-
mogeneities. Secondly, we display the results of the
homogenization procedure and compare results with
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other gridded datasets (CRU, Berkeley Earth, E-OBS) and
with past work on the same raw dataset used here. Then,
we incrementally analyse the dataset in order to gather a
consistent picture of the climate over the region and its
change in the last century (since 1930). We begin with
maps of the long-term annually average temperature and
precipitation and the illustration of estimated trends
throughout the period. We also use the Köppen–Geiger
classification to illustrate the signal of climate change
contained into the observations. Finally, we further spe-
cialize the picture focusing on the daily time series
starting in 1980, employing Walter–Lieth diagrams and
extreme climate indices as analysis tools.

2 | DATA AND METHODS

2.1 | Abruzzo region ground-based
weather database

The list of stations considered in this study is displayed in
Table 1 and Figure 1. We use the observations of temperature
andprecipitation over theAbruzzo region collected by the sen-
sorsnetwork,distributedoverabout200 locations,managedby

the regional public Hydrographic and Mareographic Office
(Ufficio Idrografico eMareografico, Regione Abruzzo, https://
www.regione.abruzzo.it/content/idrografico-mareografico,
denoted ‘UIM’ afterwards). UIMdelivers its digitized database
on request for research purposes. We selected only stations
measuring both temperature and precipitation and we choose
1930 as starting year for subsequent analysis, because earlier
only a few stations were available. More extensive notes on
data rescue are provided in Supporting Information.

2.2 | QC procedures

We apply basic QC procedures before any attempt to pass
the data through a homogenization procedure, as com-
monly recommended (Peterson et al., 1998; World Meteo-
rological Organization, 2008). The QCs procedures are
those applied by ISPRA (the national Higher Institute for
Environmental Protection and Research) (Fioravanti
et al., 2016), which in turn are derived from international
standards, and are divided in two main sequential parts:
the first applies to single stations, the second to group of
stations. The first part is aimed at identifying non-
physical values (such as unrealistically high or low

FIGURE 1 Location of temperature and precipitation stations used in this study focused on the Abruzzo region in Central Italy (the

position of the region is illustrated inn the Google Maps insets on the right; the whole region is contained approximately in a

130 km × 130 km box). The stations are divided in six groups according to data quantity and quality, for homogenization purposes (see text

and Table 1 for details) [Colour figure can be viewed at wileyonlinelibrary.com]
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temperatures, maximum temperature lower than mini-
mum temperature, etc.) and non-physical temporal
sequences of data (e.g., repeated values, abrupt jumps,
etc.), while the second is mostly aimed at identifying out-
liers by inter-comparing values among nearby or most
correlated stations. In Table S3, we list the QC tests
applied to the dataset, with the number of flagged values.
The test that flags more data is the check on the number
of consecutive zeros for precipitation. For temperature,
the most populated test is the spatial corroboration test.
Overall, the number of flagged values is about 0.01–0.03%
for temperature and 1.4–2.8% for precipitation. Excluding
the test on the repeated series of zeros (which is usually
due to erroneous transcription of missing precipitation
data as zeros [Peterson et al., 1998]), the fraction for pre-
cipitation is similar to that of temperature. These propor-
tions are consistent with expectations from QC
procedures (Durre et al., 2010). For the sake of illustra-
tion, some examples of flagged data are reported in
Supporting Information. We discard the flagged values
from any further analysis and proceed with the homoge-
nization procedures using the remaining values.

2.3 | Homogenization procedures and
preliminary station selection

We use the homogenization procedure implemented in
the R package Climatol (Guijarro, 2019). R is a free pro-
gramming environment for data analysis and graphics
(R Core Team, 2020). The worldwide user community
delivers and maintains the quality-checked optional pack-
ages on the Comprehensive R Archive Network (CRAN).
Here we employ version 3.6 of R software. The tool was
chosen for two reasons: (1) it is a state-of-art automatic
homogenization software and (2) it is publicly available
and integrated into controlled and maintained software
repositories. Moreover, in recent inter-comparison exer-
cises (http://www.climatol.eu/MULTITEST/, (Fioravanti
et al., 2019)), the skill of the algorithm in detecting breaks
in timeseries has been shown to be similar or superior
to other homogenization tools. Although a completely
unsupervised homogenization procedure is not rec-
ommended (Aguilar et al., 2003), the implementation
of these procedures in automatic and semi-automatic
software packages is now common practice (Ribeiro
et al., 2016), because most of the homogenization methods
exploit lengthy iterative inter-comparisons of several
nearby and correlated stations. Some basic recommenda-
tions in approaching homogenization of historical time
series are (Brunetti et al., 2006; Ribeiro et al., 2016):
(1) inter-compare results obtained with different methods,
(2) apply corrections only when the uncertainty on the

detection of the breaks is much larger than the variability
of the time series, in order to avoid the introduction of
even larger inhomogenities and (3) try to validate the
results with independent information, such as metadata
information or other reference time series. We consider
these recommendations in the form illustrated below.

The working principle of Climatol is to calculate
abrupt changes in the anomalies at one station with
respect to the time series at the same location estimated
from data collected at other stations (Guijarro, 2019).
Since this procedure would require time series of the
same lengths, which is not generally possible due to miss-
ing data or network restructuration in time, Climatol iter-
atively infill missing data from neighbouring locations,
until a stable estimate of the mean is reached at each sta-
tion. The series of anomalies after data imputation is then
used to: (1) identify possible outliers and (2) test the
homogeneity of the series applying the Standard Normal
Homogeneity Test (SNHT; Alexandersson, 1986; see the
Supporting Information section 3). Every time a series
has a SNHT value overpassing a threshold (the default is
25, but may be adjusted by the user) the series is split in
two parts at the time when the maximum SNHT is
detected. The procedure is repeated iteratively, until no
further inhomogeneous series is found. Moreover, since
the presence of two or more breaks in a series cannot be
detected by the SNHT test, the actual algorithm is devised
in two phases: a first application to series regularly
divided in overlapping time windows, a second applica-
tion to the whole series. The data filling procedure may
be applied to both daily and monthly series, without any
upper limit to the length of the timeseries, but requiring
a minimum of three neighbouring stations having valid
data at all time-steps.

As a check on the automatic procedure, we first visu-
ally inspected the results of Climatol break detection and
fine-tuned the statistical thresholds, then we compared
them with the information available on station mainte-
nance documented in UIM yearbooks, as well as with the
breaks documented in the two previous studies from inde-
pendent research groups that homogenized the same
dataset (Aruffo and Di Carlo, 2019; Scorzini et al., 2018),
both using the homogenization software HOMER (Mestre
et al., 2013). The HOMER package was developed during
the European COST Action ES0601 «HOME», Advances
in Homogenization Methods of Climate Series: An Inte-
grated Approach (Venema et al., 2012): we verified that
the code is still currently available, but not updated or
integrated in the CRAN (Comprehensive R Archive
Network, https://cran.r-project.org/mirrors.html) since
2013. We point out that the procedures we developed are
not strictly dependent on Climatol, but are modular: the
homogenization part could be plugged-in with alternative
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algorithms, without affecting the rest of the procedures,
and this is indeed a desirable future development.

The selection of stations for the analysis appears to be
always affected by some degree of subjectivity and to be
dependent on the time period selected for the analysis: for
example, regarding the analysis of the temperature dataset,
the previous studies focused on different periods and used
slightly different selection procedures, which resulted in a
different mix of selected stations for the final analysis
(Aruffo and Di Carlo, 2019; Scorzini et al., 2018; Scorzini
and Leopardi, 2019). Here we build on the same criteria
used in the construction and continuous update of the
European ECA&D database (ECA&D, 2013), now called
E-OBS and integrated in the European Copernicus service
(Copernicus Climate Change Service, 2020), which requires
a minimum length of 20 years of the time series and 70% of
valid data over the period of interest. We further make a
preliminary screening of the quality of the time series
applying the four tests against the null hypothesis of homo-
geneity illustrated in (Wijngaard et al., 2003), and still cur-
rently used also for the E-OBS database (ECA&D, 2013).
Based on these tests, which are illustrated in Supporting
Information, each time series is independently classified as:

• Class A: the station is ‘useful’ for both temperature
and precipitation

• Class B: the station is ‘useful’ for precipitation and
‘doubtful’ or ‘suspect’ for temperature

• Class C: the station is ‘doubtful’ or ‘suspect’ for both
temperature and precipitation

• Class D: the station has an insufficient number of data
for both temperature and precipitation

Moreover, since the final aim of the work is to build a
set of reference time series which could be updated pro-
gressively in the future, we check for the presence of a
sufficient number of data (at least 70% or 9 months of
valid values) in the last year of the dataset (2019 in this
study), to verify that the station is currently operational.
The detection of significant break points is performed on
the monthly time series, for both computational expedi-
ency and improved detection capability, which is more
effective with less noisy data. The homogenization of the
daily time series is carried out building on the monthly
time series break detection: the daily series are split at the
same times of the respective monthly series, and corrected
series are calculated with the same data filling procedure
used for monthly data.

As a final assessment, we compare our homogenized
series with other international climatic reconstructions,
namely: (1) the Climate Research Unit (CRU) gridded
global dataset version 4.03 at 0.5� × 0.5� resolution
(Harris et al., 2014) (https://crudata.uea.ac.uk/cru/data/

hrg/); (2) the European E-OBS gridded dataset version
20.0e at 0.1� × 0.1� resolution (Cornes et al., 2018)
(https://www.ecad.eu/download/ensembles/ensembles.php);
(3) the Berkley Earth global gridded dataset at 1� × 1� reso-
lution (http://berkeleyearth.org/data/).

2.4 | Köppen–Geiger climate
classification maps

We employ a spatial interpolation of station data apply-
ing the kriging method proposed by Hiemstra et al.
(2009). The spatial distribution over the region is reason-
ably representative of the complexity of the territory
(Figure 1): the station density tends to increase around
the mountains with respect to the plain near the coast
on the East. The distribution in altitude of the stations
is roughly half below 500 m and half in the range
500–1,500 m. We thus employ a universal kriging inter-
polation using both a digital elevation model (DEM) and
a land cover map as predictors. We use the EU-DEM
v1.0 at 1 km × 1 km (EU-DEM, 2020), the same used as
background for the map in Figure 1, and the CORINE
Land Cover v2018 at 0.1 km × 0.1 km (CLC, 2018), both
provided by the Copernicus Land Monitoring Service. We
interpolate the station point data over the 1 km × 1 km
grid of the EU-DEM, clipped on the borders of the
Abruzzo region. We remap the CORINE Land Cover
onto the EU-DEM grid and we collapse the original 44
land cover categories into the 8 proposed by the Land
and Ecosystem Accounting (European Environment
Agency, 2006) as used by Lai et al. (2020). We acknowl-
edge this is a first reference version of the maps, which
could potentially be further improved with additional
auxiliary variables such as distance to the coastline and
satellite products (Vicente-Serrano et al., 2017; Beguería
et al., 2018; Baronetti et al., 2020), but we leave these
possible revisions for future development.

We use the interpolated monthly dataset to illustrate
the change in the climate zones in the Abruzzo region. A
widely used climate zone clustering is the Köppen–Geiger
classification, originally proposed by (Köppen, 1884) and
updated until recently (Kottek et al., 2006; Peel et al., 2007),
which has been demonstrated to provide a compact basic
picture of the climate state and evolution in many disci-
plines. We follow the procedure of Peel et al. (2007), which
relies on the calculation of the following indices: mean
annual temperature (Tann) and precipitation (Pann), the
mean monthly temperature of the coldest (Tcold) and hot-
test (Thot) month, the number of months in a year with
mean temperature higher than 10�C (Tmon10), the mean
monthly precipitation of the driest (Pdry) month, the mean
precipitation of the driest and wettest months in summer
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and winter (Psdry/Pswet, Pwdry/Pwwet). In Supporting
Information, we report the criteria for the selection of the
climate types found in our dataset, while for the complete
list the reader is referred to Peel et al. (2007).

2.5 | ETCCDI climate extremes indices

In addition to the mean climate state and trend, we pro-
vide a first overview of the trends of indices of extreme
climate events, exploiting the daily time series. We
employ the indices recommended by the Expert Team on
Climate Change Detection and Indices (ETCCDI, 1999).
In particular, we show for temperature: the number of
days with TX and TN less than the 10th percentile
(TX10p and TN10p), the number of days more than 90th
percentile (TX90p and TN90p), the number of frost days
(FD, TN <0�C), the number summer days (SU, TX
>25�C), the number of tropical nights (TR, TN >20�C),
and the growing season length (GSL, period with daily
mean temperature >6�C). For precipitation: the maxi-
mum precipitation in 1-day and 5-days events (Rx1day
and Rx5day), the number of days with more than 10 and
20 mm of precipitation (R10mm and R20mm), the total
precipitation above the 95th and 99th percentile of daily
rain (R95pTOT and R99pTOT), and the maximum
lengths in days of dry (RR <1 mm/day) and wet
(RR ≥1 mm/day) spells (CDD and CWD).

3 | RESULTS

3.1 | Homogenization of time series

In Figure 2, we show the station counts in Classes A–C
(please refer to Section 2.3 for details), for several selected
time intervals: the two long periods of the monthly
(1930–2019) and the daily (1980–2019) time series, and a
progression of 30-years blocks overlapping by 10 years,
spanning the whole time interval under analysis
(1930–2019). The total number of stations having a suffi-
cient number of data in at least one 30-years block is 42.
This preliminary analysis of the time series highlights the
general presence of inhomogeneities in the dataset; more-
over, the lack of a reference station, which could be used to
drive the correction of other inhomogeneous stations, moti-
vated the use of the Climatol algorithm (Guijarro, 2019) to
homogenize the time series before any further analysis,
given that this tool does not necessarily require one or more
reference stations. Details of the method are provided in
Section 2.3.

For data analysis subsequent to time series homogeni-
zation, we divide the set of 42 stations into five groups

according to their quality and quantity, as reported in
Table 1 and displayed in Figure 1. The first group con-
tains eight stations that are at least Class C in all the
periods and have sufficient data in 2019. The second
group is made of seven stations that are at least in Class
C in both long-term periods and have sufficient data in
2019. The third (11 stations) and fourth (eight stations)
groups are at least in Class C in the 1930–2019 and
1980–2019 periods, respectively. The fifth is in Class D
for both long-term periods (remaining eight stations).

Climatol set breaks at times when the SNHT statistic
overpass a threshold, which could be adjusted by the
user. After the application of the algorithm one may look
at the distribution of SNHT values found in the final set
of homogeneous pieces of the time series, and check if
the chosen threshold delimits more or less abruptly the
tail of the distribution of SNHT values. In this way, one
may decide to increase or decrease the SNHT threshold
in order to obtain a sharper cut of the distribution tail.
The distributions of SNHT values of the time series
employed here and the related counts of breaks are
reported in section 3 of Supporting Information. From
visual inspection of the distributions, we selected the
following SNHT thresholds: 30 for TX, 35 for TN and
25 for RR. With this SNHT values, the Climatol proce-
dure locates a total number of breaks for the 42 stations
over the period 1930–2019 equal to 236, 239 and 82 for
TX, TN and RR, respectively. The sensitivity of the break
detection to the input parameters and stations selection
is further explored in Section 3.6.

In Figure 3 we show the yearly averaged time series
for the three variables under examination (monthly
values of TX, TN and RR) for ‘first group’ stations (see
Table 1 and Figure 1). It is possible to appreciate the
effect of the homogenization procedure in reducing the
unrealistic oscillations in some of the original tempera-
ture timeseries and in making the trends more qualita-
tively comparable, with respect to the original data, to
the three comparison databases (E-OBS, CRU and Berke-
ley Earth). While no substantial trend is evident for pre-
cipitation, the homogenized series and those of the three
external databases all clearly indicate a warming trend in
the region, especially after 1980. Although the time series
are similar in terms of trends' shape, they substantially
differ in terms of absolute values, and there might be dif-
ferences of up to 5�C and 500 mm/year among the
datasets. None of the datasets is systematically closer to
the homogenized series for all stations and all variables.
This highlights the importance of building a reliable ref-
erence from local measurements for climatic applica-
tions: for example, it may be seen how the maximum
temperature is much more uniform among the stations
than suggested by the global/continental databases, while
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the minimum temperature and the precipitation have
much larger variability in local observations. Similar
plots for stations in the other groups are given in
Supporting Information.

Possible reasons for the large discrepancies among
the external datasets and the local one are the number of
stations used and the resolution of the dataset. To corrob-
orate these hypotheses, we show in section 5 of
Supporting Information the scatterplot of temperature
and precipitation versus altitude for the different
datasets. The original and homogenized local data show
a relatively compact relationship, especially for maxi-
mum temperature. The CRU and EOBS database display
more scatter and in general a steeper gradient for temper-
ature and less steep gradient for precipitation with
respect to local series. These observations support the
hypotheses we made to explain the differences, however
the issue deserves more in-depth analysis in the future.

3.2 | Definition of a static picture of the
Abruzzo climate: 1930–2019

In Figure 4, we show the interpolated maps resulting
from the universal kriging for mean temperature and pre-
cipitation over the period 1930–2019. The mean annual
temperature (Tann) is estimated as the average of maxi-
mum and minimum temperature. The eastern part of the
Abruzzo region, delimited by the Adriatic Sea on the East
and the Apennines on the West, is a relatively homoge-
neous band, with a gentle east-west gradient of both tem-
perature and precipitation: the mean annual temperature
(Tann) decreases from 16 to 17�C along the coast to
13–14�C at the base of the Apennines, while the mean
annual precipitation (Pann) increases from 600–700 mm/
year to 900–1,000 mm/year. The western mountainous
part of the region has generally lower mean temperatures
and higher mean precipitation than the eastern part and

is much more heterogeneous, with sharp gradients due to
the complex topography. The mean annual temperature
ranges from 15 to 16�C of the warmest valleys to 2–4�C
of the mountain peaks. The difference of the Tann in the
valleys with respect to the eastern part of the region is
mainly due to the minimum temperature, while the max-
imum temperature is quite similar to that of the coast. As
regards precipitation, we observe 1,400–1,500 mm/year
in mountain areas, compared to the 600–800 mm/year in
the valleys.

3.3 | Trends in climate mean state,
1930–2019

In Figure 5, we show the average value and the trend
(slope of linear fit) calculated in 30-years blocks throughout
the period 1930–2019 for TX, TN, TM and RR, averaged
over the homogenized time series of stations in the first,
second and third groups. TM is the mean temperature esti-
mated as the average of TX and TN. An increasing temper-
ature trend appears after 1960s, while in the previous years
there is no clear tendency. In the last four decades, the
warming rate has been around 5–6�C/century for TX and
3–5�C/century for TN. These magnitudes are consistent
with trends previously reported for Italy and the Abruzzo
region (Aruffo and Di Carlo, 2019; Brunetti et al., 2006;
Fioravanti et al., 2019; Scorzini and Leopardi, 2019).

Precipitation shows a negative trend of −40%/century
during the 1960s, with a difference of −60 mm/year
between the periods 1955–1984 and 1965–1994, and a par-
tial recover after 1980s, with a trend around +20%/century.
A sharp decrease of precipitation over Italy after the middle
of the 1900s was also found by Brunetti et al. (2006), while
the increasing trend in recent decades was also reported by
Scorzini and Leopardi (2019). The origin of these alternate
trends in precipitation are an interesting feature that war-
rants further analysis in the future.

FIGURE 2 Station counts per

Class in selected time periods. Classes

are defined as follows: A, series is

homogeneous for both temperature

and precipitation; B, series is

homogeneous only for

precipitation; C, is inhomogeneous

for both temperature and

precipitation. Stations in Class D

(insufficient data to assess

inhomogeneity) are not shown.

Please refer to text for more details

[Colour figure can be viewed at

wileyonlinelibrary.com]

CURCI ET AL. 9

http://wileyonlinelibrary.com


FIGURE 3 Illustration of the effect of homogenization on yearly timeseries of stations in the first group. From top to bottom: maximum

temperature (TX), minimum temperature (TN), precipitation (RR). Solid lines denote the original (uncorrected) timeseries, dashed line the

series homogenized using Climatol package (Guijarro, 2019). The series are also compared with those interpolated at station location from

the following gridded databases: E-OBS v20.0e at 0.1� × 0.1� (EOBS, dash-dot line), climate research unit TS4.03 at 0.5� × 0.5� (CRU, dotted
line), and Berkley earth at 1� × 1� (BER, long-dashed line) [Colour figure can be viewed at wileyonlinelibrary.com]
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In Figure 6, we compare the trends estimated from
the local timeseries (both original and homogenized)
and from the external databases. Trend quantification is
based on the Theil-Sen slope estimate (Sen, 1968) with
accompanying estimate of the 95% confidence interval
(Ropkins and Carslaw, 2012). We calculate trends over
the two long-term periods, 1930–2019 and 1980–2019.
The original data, especially for temperature, are char-
acterized by a wide scatter among the stations, con-
firming the necessity of a correction procedure for their
use on climatic time scales. The homogenization proce-
dure makes the trends much more similar among the
stations, but avoiding excessive ‘flattening’ of the differ-
ences. The inter-station differences are larger in the
1980–2019 period than in the 1930–2019, as it might be
expected from a shorter timeseries. The global databases
display much less inter-station scatter, with trends that
are almost identical over the region. The European data-
base E-OBS, on the other hand, shows a scatter which is
larger than the local dataset.

We note significantly different trends for the longer-
term series 1930–2019 and the most recent period
1980–2019. Regarding temperatures, the minimum tem-
peratures increased (~2.2�C/century) more than maximum
temperature (~1.6�C/century) in 1930–2019, while in the
1980–2019 period the reverse has been happening (TN
~3.9�C/century vs. TX ~5.7�C/century). These tendencies
are confirmed by the global and European databases, but
the magnitudes are different: the global databases (CRU,
Berkeley Earth) display a spatially uniform magnitude
comparable to the one of the local database, while the E-
OBS database exhibits larger trend slopes, with also larger
spatial variability.

Regarding precipitation, both the local and the global
(CRU) databases suggest a decrease (−5� − 10%/century)
over the period 1930–2019, while in 1980–2019 the trend
is reversed (23�71%/century) in both local and European
datasets, while it is still decreasing in the global CRU
database. The inter-station difference is quite similar in
the local and E-OBS trends, while in the lower resolution

FIGURE 4 Interpolated map, using universal kriging with a digital elevation model as predictor, of mean annual temperature (top-left)

and precipitation (top-right) over the Abruzzo region over the period 1930–2019. Also shown the maps for average maximum (bottom-left)

and minimum (bottom-right) temperature [Colour figure can be viewed at wileyonlinelibrary.com]
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CRU database there is almost no difference among sta-
tions. This again suggests that the dense station network
we adopted here is desirable to represent the spatial vari-
ability of precipitation over this complex terrain region.

In Figure 7, we show the maps of the Köppen–Geiger
climates in Abruzzo calculated over two sub-periods of
50 years, namely 1930–1979 and 1970–2019. The overlap is
in correspondence with the marked transition we noted in
Figure 5 during the years 1960–1970, where we showed a
change from a flat to an increasing temperature trend, and
a decrease in precipitation. In both periods, the part of
Abruzzo located east of the Apennines display a prevalent
Cfa climate (temperate without dry season and with hot

summer), while the western part is more variable, from
temperate (C*) in the valleys to cold (D*) on the mountains.
Large parts of the valleys have become wetter in summer
(please note that, ‘summer’ in the Köppen–Geiger classifi-
cation includes months from April to September, see the
Supporting Information), passing from climates Csa/Csb to
Cfa/Cfb. Moreover, there is a retreat of the cold climates
around the slopes of the mountain ranges, which shifted
from Dfb to Cfb. The coldest climate Dfc around the top of
the mountains does not seem to have changed much
between the two periods. These features are broadly consis-
tent with the station trends illustrated in Figure 6, but
implicitly add some detail on the seasonality of the change.

FIGURE 5 (a) Time series of

average TX, TN, TM (mean

temperature, calculated as

[TX + TM]/2), RR over the

homogenized series in blocks of

30-years in the period 1930–2019.
(b) Time series of average trends of

the same variables in the 30-years

blocks [Colour figure can be viewed

at wileyonlinelibrary.com]
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For example, the recent precipitation trend in L'Aquila and
Barisciano indicates a decrease on an annual basis, but
since the precipitation in the warm part of the year slightly
increased, we observe a shift from a ‘dry summer’ (Cs*) to

a ‘without dry season’ (Cf*) classification, consistently to
what is reported in Scorzini and Leopardi (2019). The
emerging climate trend is also consistent with that illus-
trated by Rubel et al. (2017) for the Northern Apennines.

FIGURE 6 Estimated trends of monthly time series for TX, TN, TM, and RR over the periods 1930–2019 (left) and 1980–2019 (right).
Original (circle) and homogenized with Climatol (triangle) series are compared with CRU (plus), Berkeley Earth (diamond) and E-OBS

(cross). The uncertainty of the trends denotes the 95% confidence interval. The horizontal lines denote the station's average trend, whose

numerical value is reported in parentheses in the legend. Only the 15 stations classified in the ‘first’ and ‘second’ groups are displayed
[Colour figure can be viewed at wileyonlinelibrary.com]
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3.4 | Yearly cycles, 1980–2019

In order to illustrate the seasonal variation of mean tem-
perature and precipitation over the region, we employ
here the daily timeseries in the period 1980–2019 to con-
struct Walter–Lieth climate diagrams (Walter and
Lieth, 1967). The Walter–Lieth climate diagram shows
the annual cycle of the monthly temperature and precipi-
tation on the same graph, highlighting the ‘dry’, ‘humid’
and ‘wet’ periods of the year. Moreover, information is
provided around the axes on the extreme values of tem-
perature and the probability of frost days (both of which
requires daily time series), plus the mean annual temper-
ature and precipitation.

In Figure 8, we display the Walter–Lieth diagrams on
the Abruzzo map at the location of the selected stations.
Two illustrative examples of the information given in the
diagrams are reported in the bottom part of the figure. In
Abruzzo, most places along the coast and in the valleys
have a dry summer period, while other seasons are humid,
with the autumn being generally the wettest period. The
chance of frost days is always present at least from
November to April, and in the mountain valleys there is
certainty of having frosts during winter. The locations along
the steep slopes of the mountain ranges are the wettest and
coldest places. Most of them display a wet period in autumn
with no dry summer period, even if in this season the pre-
cipitation is at its minimum.

In Figure 9, we compare the Walter–Lieth diagrams of
two 20-years subperiods 1980–1999 and 2000–2019, using
the average data of two subset of stations: a ‘dry’ group

collecting those with a mean annual precipitation less than
850 mm, and a ‘wet’ group with those with more than
850 mm. This threshold divides the stations in the valleys
and the coast from those over the mountain slopes. Com-
paring the two periods, in both groups of stations there is
an increase of 20–30 mm/year of Pann and a modification
to the temporal distribution of monthly precipitation.
Indeed, we notice a slight decrease of precipitation in
summer and winter, and a more substantial increase of pre-
cipitation in spring and early autumn. The diagram of more
recent years thus shows a summer minimum and a rela-
tively homogeneous distribution of precipitation among the
other seasons, with November still the rainiest month, but
not as outstandingly as in the past.

3.5 | Trends of climate extremes,
1980–2019

The analysis of daily time series allows a more detailed
inspections of climate trends in terms of variability around
the mean values and of extremes values. We use the daily
timeseries 1980–2019, and we calculate the climate indices
elaborated by ETCCDI (1999, see section 2.5).

In Figure 10, we show the estimated trends of the
ETCCDI indices related to temperature extremes, averag-
ing the stations in two groups: ‘Apennines’, which
includes the stations in the western mountainous part of
the region and ‘Coast’, which includes the stations along
the sea in the eastern part of Abruzzo. For TX and TN
percentiles, the trend is similar all over the region: the

FIGURE 7 Köppen–Geiger climate types estimated from the interpolated homogenized temperature and precipitation monthly series in

the Abruzzo region. Two periods are compared: 1930–1979 on the left and 1970–2019 on the right. The dots denote the position of the

stations used as basic data for the implementation of the maps [Colour figure can be viewed at wileyonlinelibrary.com]
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number of days below the 10th percentile is decreasing
at a rate of about −0.25 per year, while the number of
days above the 90th percentile is increasing at a rate of

about 0.25 per year. In the ‘Apennines’ area, frost days
are decreasing at a rate of −1 day every 2 years, while
summer days are increasing at a rate of 1 day every

FIGURE 8 Map of Walter–Lieth climate diagrams on the Abruzzo map for the stations in the first, second, and fourth groups over the

period 1980–2019. In the two bottom panels two exemplificative diagrams of one of the drier and hotter (Sulmona) and one of the wetter and

colder (Campotosto) locations [Colour figure can be viewed at wileyonlinelibrary.com]
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2 years. The GSL also shows a positive trand, with
duration increasing by more than 1 day every year, and
catching up with the GSL on the ‘Coast’ area. In the
‘Coast’ area, the number of summer days is increasing
at a rate of 1 every 3 years, and tropical nights by
1 every 2 years.

In Figure 11, we show the precipitation-related
ETCCDI indices. The recent increasing trend of precipi-
tation in the region is accompanied also by a positive
trend of its extremes, especially in the ‘Coast’ area.
There, the accumulated rain in 1-day and 5-days events
is increasing, with a statistically significant trend of

about 0.6 and 0.9 mm/year, respectively. The number of
days with rain higher than 10 and 20 mm used to be
higher in the ‘Apennines’ area in the 1980s, but the
‘Coast’ is slowly catching up at a pace of 0.05–0.1 days/
year. The precipitation accumulated in the rainiest days
(R95PTOT and R99PTOT) is also increasing signifi-
cantly in the ‘Coast’ area, at a rate of about 2–3 mm/
year, while there is no significant trend in the ‘Apen-
nines’ area. The length of dry spells (CDD) has no sig-
nificant trend, while the length of wet spells (CWD) is
slightly increasing both in the ‘Apennines’ and the
‘Coast’ area.

FIGURE 9 Walter-Lieth diagrams resulting from the average of two groups of stations: ‘dry’ and ‘wet’, defined as those station below

or above 850 mm/year in the period 1980–2019. Two 20-years subperiods are compared: 1980–1999 on the left and 2000–2019 on the right

[Colour figure can be viewed at wileyonlinelibrary.com]
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3.6 | Sensitivity tests on the
homogenization procedure

We carry out several sensitivity test on the homogeniza-
tion procedure illustrated in Sections 2.3 and 3.1, in order
to check the robustness of the obtained results.

The first test is aimed at elucidating the effect of the
length of the period selected for the analysis in the

detection of the breaks in the time series. This is relevant
because different studies typically use different periods
and because we expect a continuous update of the data-
base with the inclusion of new data as time goes on. As
reported in Section 3.1, over the period 1930–2019 we
found a total number of breaks for the 42 stations equal
to 236, 239 and 82 for TX, TN and RR, respectively. Con-
sidering the period 1930–2015 used by Aruffo and Di

FIGURE 10 ETCCDI temperature-related climate indices aggregated for two groups of stations, ‘Apennines’ (western part of the region

or altitude higher than 500 m) and ‘Coast’ (along the eastern part of the region). The climate indices denote: TX10p and TN10p the number

of days with TX and TN less than the 10th percentile, TX90p and TN90p the number of days more than 90th percentile, FD n. of frost days

(TN <0�C), SU n. summer days (TX >25�C), TR n. tropical nights (TN >20�C), GSL growing season length (period with daily mean

temperature >6�C). The linear regression fit coefficients are shown inset, with significance (p <.001 = ***, p <.01 = **, p <.05 = * and p

<0.1 = +) [Colour figure can be viewed at wileyonlinelibrary.com]
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Carlo (2019), thus excluding the breaks in 2016–2019, the
numbers are 223, 229 and 80. Re-running the procedure
in the period 1930–2015, the resulting number of breaks
is 218, 225 and 72. The order of magnitude is similar, but
a decrease in the length of the series slightly reduces the
sensitivity of the procedure in spotting the inhomogenei-
ties. We repeated the exercise over the period 1980–2012
used by Scorzini et al. (2018). In the reference case we
found 125, 126 and 39 breaks in the period 1980–2012,

while re-running the procedure with input data from the
period 1980–2012 we found 106, 112 and 27 breaks. The
sensitivity of the break detection is sensibly reduced
when using a consistently shorter time series: it is thus
recommended to use the longest available time series for
the homogenization.

The second test is aimed at clarifying the effect on the
choice of the ensemble of stations. We repeated the pro-
cedure using the subset of 22 stations employed by Aruffo

FIGURE 11 ETCCDI precipitation-related climate indices aggregated for the two groups of stations of Figure 10. The climate indices

denote: Rx1day and Rx5day the maximum precipitation in 1-day and 5-days events, R10mm and R20mm the number of days with more

than 10 and 20 mm of precipitation, R95pTOT and R99pTOT the total precipitation above the 95th and 99th percentile of daily rain, CDD

and CWD are the maximum lengths of dry and wet spells. The linear regression fit coefficients are shown inset, with significance (p

<.001 = ***, p <.01 = **, p <.05 = * and p <.1 = +) [Colour figure can be viewed at wileyonlinelibrary.com]
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and Di Carlo (2019) over the period 1930–2015, because
it is a longer range than that used by Scorzini
et al. (2018). In our reference case, we found a total num-
ber of breaks for these 22 stations equal to 123, 124 and
21 for TX, TN and RR, respectively. Re-running the pro-
cedure using only the subset of the 22 stations, the num-
ber of breaks are 113, 127 and 15: the detection is thus
slightly less sensitive. We also checked the dates of the
breaks detected in both cases, and they differ at most by
a few months (not shown). This result suggests that the
identification of discontinuities is mainly determined by
the comparison between the more continuous series.

In the third test, we illustrate the effect of different
SNHT thresholds on break detection. We again use the
independent work by Aruffo and Di Carlo (2019) as a
term of comparison. In their work, the authors report a
number of breaks detected for their set of 22 stations over

the period 1930–2019 equal to 89 and 80 for TX and TN,
respectively (they do not analyse RR), using a different
homogenization tool (HOMER, see Section 2.3). As
reported in the previous paragraph, with our Climatol-
based procedure we detected 123 and 124 breaks. In
Table S4, we already noted a generally higher number of
breaks detected in our work in comparison to those
detect by the other two studies (both using HOMER).
Our default choice of SNHT thresholds, as reported in
Section 3.1, is 30, 35 and 25 for TX, TN and RR, respec-
tively. It evidently results in enhanced sensitivity to inho-
mogeneities with respect to the HOMER as used in
previous studies. We performed several tests with
increased SNHT values and found that the number of
detected breaks actually decreases. For example, increas-
ing by 10 the SNHT threshold and using the same 22 sta-
tions of Aruffo and Di Carlo (2019) over the period

FIGURE 12 Comparison of average and trends in 30-years blocks (similar to Figure 5) over the period 1930–2019 for the sensitivity

tests described in Table 2. Please note that the ensemble of stations used in the reference case is different from that used for sensitivity tests

[Colour figure can be viewed at wileyonlinelibrary.com]
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1930–2015, we found a number of breaks equal to 87 and
75, which is similar to that reported by the authors.

In order to clarify the impact on the downstream
results of the different details explored in the sensitivity
tests for the homogenization procedure, we recalculated
the average and trends illustrated in Figure 5 using the
time series resulting from a selection of these tests. We
added a further case to those discussed above, in order to
verify the potential impact of a homogenization proce-
dure other than Climatol, re-running the procedure using
the list of breaks detected by Aruffo and Di Carlo (2019)
(see their supporting information). The description of the
cases is reported in Table 2, while the results are shown
in Figure 5. The sensitivity tests are generally similar to
each other and the larger differences are found between
the reference case and the sensitivity tests. This implies
that the selection of the subset of stations is the primary
driver of the uncertainty in representing the average cli-
mate state over the region of interest. Focusing on the
differences among the tests, we note that the averages are
very similar, with differences of the order of tenths of
degree for temperature and few mm/year for precipita-
tion. On the other hand, the average trends display larger
differences, especially in periods where there is a change
in the direction of the slope and the absolute magnitude
is not large, such as in the early part of the series for tem-
perature and in the more recent part for precipitation.
There, the differences are up to about 1%/century for
temperature and 10%/century for precipitation, which is
the same order of magnitude of the detected trend in that
subperiods. Interestingly, the scatter among the sensitiv-
ity tests and also the reference case tends to sharply
decrease when the magnitude of the trend is larger, such
as in the most recent decades for temperature and in the
middle of the series for precipitation. The recent warming

appears to be a very robust signal emerging from the
analysis.

4 | CONCLUSIONS

We built a reference climatological dataset for the analy-
sis of temperature and precipitation trends over the
Abruzzo region in Central Italy using monthly and daily
time series in the period 1930–2019. The historical time
series of Abruzzo have been analysed in recent studies
(Aruffo & Di Carlo, 2019; Scorzini et al., 2018; Scorzini
and Leopardi, 2019) and here we improve the past work
under different aspects. We expanded the period of analy-
sis from 1930 until 2019 for both temperature and precip-
itation series, and we employed a more up-to-date
homogenization software that will facilitate both the
technical sustainability and the further extension of the
dataset, both in terms of update frequency and addition
of new stations. We included and analyse within a single
framework both the monthly and the daily timeseries
from a historical perspective. Moreover, we added a sta-
tion in the very western part of the region, strategic for
agricultural practices (Burri and Petitta, 2004; Di Lena
et al., 2018; Di Lena et al., 2019), which was not covered
by the previously cited works. These new steps are aimed
at following the path towards an improved local climate
data rescue (WMO, 2016).

The time series correction procedure greatly reduced
the unrealistic oscillations visible in the raw data and it
resulted in trends more consistent with external observa-
tional datasets available at the global (CRU, Berkeley
Earth) and European (E-OBS) scales. We tested the effect
of several subjective choices, such as the length of the
time series, the ensemble of considered stations, the sta-
tistical thresholds used to identify a break in the series,
on the resulting homogenized dataset, and we verified
that these choices imply little uncertainty when the
trends of the variables are relatively large.

We derived a robust picture of the climate state and
its trend in Abruzzo over the last century. We found, in
broad agreement with previous studies, an increase of
temperature and a decrease of precipitation on the long-
term, partly offset by a positive trend in the recent
decades. These trends are reflected in a visible shift of the
Köppen–Geiger climate classification over the region.
Comparing the periods 1930–1979 and 1970–2019, we
found that the dry summer climates (Csa/Csb) became
wetter temperate climate types (Cfa/Cfb) in the recent
decades, in large parts of the valley in Apennines area
and along the eastern coastal area. The total warm season
precipitation increased due to rain in late spring and
early autumn, although the precipitation in summer

TABLE 2 Sensitivity tests of homogenization procedure used

for illustration of Figure 12

Case Stations Description

Reference 42 stations selected
in this work

Reference case of this work,
same as Figure 5

ADC 22 stations selected
in the work of
Aruffo and Di
Carlo (2019)

Same settings of reference,
but different subset of
stations

ADCS Same as ADC Same as ADC, but SNHT
thresholds for break
detection increased by 10

ADCB Same as ADC Same as ADC, but using
same predefined breaks
reported by Aruffo and Di
Carlo (2019)
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months (JJA) actually decreased, as shown by the
Walter–Lieth diagrams. Winter precipitation slightly
decreased. Moreover, we observed a retreat of the cold
climates of the mountain ranges, with wide bands around
the slopes passing from Dfb to Cfb climate class.

A significant trend in the daily extreme values of tem-
perature and precipitation is also found using daily time
series in the period 1980–2019. The recent changes of cli-
mate extremes in the area and their connection with syn-
optic patterns were investigated in recent literature.
Scorzini et al. (2018) found a high correlation of tempera-
ture indices with the East-Atlantic mode (Barnston and
Livezey, 1987), which is usually associated with above-
normal temperatures in Europe, while Scorzini and Leo-
pardi (2019) reported that precipitation indices correlate
with different circulation modes, also as a function of the
topography of the region. The connection of changes
observed within the extended dataset presented here
could be used as a follow up of these studies.

The climate dataset built in this work constitutes a
basic element for climate adaptation planning and cli-
mate change impact modelling over the Abruzzo region.
The method may be readily implemented over other
areas and updated with new time series at additional
locations and for extended periods. Further development
of this work will include the addition of more stations
with relatively short but recent timeseries and the inte-
gration with operational medium-range and seasonal
forecasts, in order to provide an even finer representation
of the continuously evolving climate of the territory.
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