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Abstract

Artificial Intelligence (AI) will likely affect healthcare systems significantly and it could
play a key role in clinical decisionmaking in future. Deep learning and radiomics methods are
extremely promising machine learning tools to analyze complex and high-dimensional medi-
cal images. But unfortunately, machine learning models that work with imaging data require
massive amounts of data. For this reason, their implementation in healthcare settings remains
limited, mostly due to the lack of very large datasets on which to test the generalizability
and reliability of the trained models. Although many institutes are collaborating to produce
publicly available datasets of medical images, the access to medical images remains limited
and the small sample sizes and lack of diverse geographic areas hinder the generalizability
and accuracy of developed solutions. Moreover, the process of data acquisition is severely
limited by different challenges. These obstacles are mainly related to privacy regulations
and the effort of domain experts to assess imaging data quality and produce high-quality
ground truth. Medical data are often stored in disparate silos which in turn results in the
difficulty of managing large medical imaging datasets. Furthermore, simply achieving access
to large quantities of image data is insufficient to allay these shortcomings. Adequate cura-
tion, analysis, labeling, and clinical application are critical to achieving high-impact clinically
meaningful AI algorithms.

This Ph.D. thesis describes the process of labeling, curating, managing and sharing medi-
cal image data for AI algorithm development for optimal clinical impact, while maintaining a
high degree of privacy and security in exchanging sensitive data. The pros and cons of having
heterogeneous or homogeneous data have been taken into consideration. The first, caused by
the diversity of the populations included in the dataset, leads to incompleteness for the differ-
ent data acquisition standards and practices. The second, although it returns complete and
uniform datasets, does not fully consider the natural variability of the population. This work
provides an application of the various approaches proposed in the literature to alleviate the
problem of small data samples in AI. Well-established techniques such as unsupervised hier-
archical clustering and transfer learning in the context of rare diseases stratification have been
analyzed. Moreover, a U-net was trained from scratch with the help of data augmentation
merging public datasets while trying to contain data and label heterogeneity.

The results are promising, showing that transfer learning technique can enable the training
of custom models on small datasets by exploiting the powerful feature extraction modules of
Convolutional Neural Networks. Different methods to select and combine features allow to
incorporate more information and to reach high level of abstraction which in our case led to a
natural clustering of data. Moreover, data augmentations combing different public dataset is
also an effective technique to carry out a complete training.

In clinical context, build effective models based on small data is an urgent task since
machine learning systems allow the identification of extremely difficult correlations among
medical imaging and clinical endpoint. This path is viable, there are the right tools to deal
with it, but one need to know how to use them with full knowledge of the facts, adapting
them to the needs of the case.

This work has been developed in the framework of the INFN-funded AIM projects, that
aims to exploit the expertise of INFN and associated researchers on medical data process-
ing and enhancement, and turn it in the development of advanced and effective analysis
instruments to be eventually clinically validated.
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Chapter 1

Introduction

AI, described as being able to perform tasks that normally require human-like cogni-
tive functions, is having considerable potential in all areas ofmedicine (Langlotz et al.,
2019; Hashimoto et al., 2018; Shen et al., 2020a), exponentially rising in popularity
over recent years (Cai et al., 2020). With the advent of precision and personalized
medicine, AI has received great interest as a promising tool for identifying the best
diagnosis and treatment for an individual patient.

The aim is to achieve patient stratifications, monitoring and treatment design
using quantitative, patient-specific datasets, integrated via algorithmic analyses.
This implies embedding diagnostics and treatments with features derived from an
advanced data analysis in order to create complete datasets describing multivari-
ate aspects of individuals’ health across time. Thus, it is also essential to identify
measurable and accurate indicators, the biomarkers, which potentially can predict
disease initiation and progression. To exploit the potential of such datasets, it is
necessary to develop transparent and replicable mathematical frameworks able to
describe and/or extract information from high-dimensional, dynamic, noisy and
sparsely sampled processes to highlight time patterns in a disease. For this reason,
we need mathematical modeling methods and statistical data analysis algorithms to
be robust and able to adapt to errors and uncertainties.

Mathematical modeling can be mechanistic and non-mechanistic, such as AI
techniques. The mechanistic models focus on the description of elements forming a
system, their mutual interactions and the interaction with the environment with the
possibility to also describe the resulting emerging behavior and average properties
of the systems. AI models, instead, aim to simulate the logical decision-making
process taking advantage of available data. These models can predict the behavior
of a system searching for relationships between inputs and outputs or identifying
specific or recurrent patterns. In other words, in classical science rules are applied to

1



2

data to obtain results, while in AI data and results are fed to algorithms to obtain
rules.

BothMachine Learning (ML) andDeep Learning (DL) are subsections of artificial
intelligence. Machine learning is the discipline that builds mathematical models by
recognizing common patterns and uncovering disease characteristics through the use
of a large number of handcrafted features manually extracted from data (Sollini et al.,
2019) without being explicitly programmed to conduct these tasks (Avanzo et al.,
2020). Deep learning algorithms can be seen as a combination of simple non-linear
functions with the potential to model very complex systems, capable to automatically
learn a set of features, usually over a certain number of layers making the model
’deep’, from a labelled dataset and compute the final desired task (Yamashita et al.,
2018).

Machine learning and deep learning algorithms have shown great potential in
streamlining clinical task such as improve workflows in healthcare systems or to
assist clinicians in decision making by automating tasks such as lesion detection or
medical imaging quantification. The first category includes prioritizing worklists
(JL, 2017) and triaging (Yala et al., 2019), while the second one covers detection
of pulmonary nodules (Hwang et al., 2019), Alzheimer disease (Ding et al., 2019),
and urinary stones (Parakh et al., 2019), CT coronary calcium scoring (de Vos et al.,
2019), MRI prostate classification (Schelb et al., 2019), mammography breast density
(Lehman et al., 2019).

To train such models, a great amount of available data is fundamental. Just think
that in a radiomics study, a ML approach applied to the quantitative analysis of
radiological images, up to some hundreds or thousands of features can be reached
and in DL a network can manage millions of parameters to be optimized (Avanzo
et al., 2021). This causes that, nearly all limitations can be attributed to one substantial
problem: lack of available image data for training and testing of AI algorithms.
Currently, most research groups have limited access to medical images, while the
small sample sizes and lack of diverse geographic areas hinder the generalizability
and accuracy of developed solutions (Soffer et al., 2019).

Although small data sets may be sufficient for training of AI algorithms in the
research setting, large data sets with high-quality images and annotations are still
essential for supervised training, validation, and testing of commercial AI algorithms.
This is especially true in the clinical setting (Park and Han, 2018). In my short
career I have had the pleasure to use only a clinically validated system available
on the market, which performs both chest structures segmentation and diseases
classification on medical images. A key aspect for the success of these deep learning
models on these tasks is the availability of large labeled datasets of medical images,
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containing thousands of examples (more than 10000) and a continuous reinforcement
learning. However, it is challenging to curate large labeled medical imaging datasets
of that scale and indeed such a database has been wanted and created following
the COVID − 19 pandemic. In recent years, some international competitions have
released rich labelled medical images, which provides a potential data source to train
models specific to medical applications (https://grand-challenge.org).

Taking up and deepening the discussionmentioned above,ML andDL algorithms
require a large amount of training samples and an unappropriated sample size
will lead to a reduction in the confidence of the prediction. As a matter of fact,
datasets used for training AI have a small number of samples with respect to the
dimensionality of data and of the desired tasks (Torgyn et al., 2015), to the point
that, frequently, there are more features per subject than subjects in the entire dataset
(Chatterjee et al., 2018). Under these circumstances, overfitting, a condition where
models are more sensitive to noise in the data than to their patterns, and instability
occur, making the model poorly reproducible and generalizable, meaning that it
will perform badly on unseen datasets (Cui et al., 2020; Nensa et al., 2019). In other
words, overfitting arises when the algorithm fits the training data too tightly; this
leads to overestimated results and the model loses the ability to generalize on new
data. However, techniques and methodologies have been developed to minimize
this pitfall, such as following appropriate data pre-processing procedures (features
selection (Parmar et al., 2015; Lian et al., 2016)) or implementing cutting-edge AI
algorithms (Generative Adversarial Network (Zhang et al., 2022a; Talha and Hazrat,
2018; Ma et al., 2021b)).

The easiest way to try to compensate for overfitting is Cross-Validation (CV).
K-fold cross-validation is the most common technique for model validation and
model selection (Rodriguez et al., 2010), based on the idea that each sample in the
dataset has the opportunity of being a test sample. The process involves splitting the
dataset into k parts and the model is trained k times. Each time one part is used as
a test set and the other k − 1 parts are merged and used to train the model (Figure
1.1). By doing this, each sample in the dataset will get a chance to be a test sample.
The main drawback of this approach is that, since the model selection is performed
on the whole dataset, split into k folds, there is no separate test set to estimate the
chosen best model’s generalization ability.

To overcome this drawback, another more robust method of model validation,
namely nested Cross-Validation (nCV), is recommended in most AI applications
for small to moderate-sized datasets. nCV, which was first described by Varma and
Simon (Rivals et al., 2007) when working with small datasets, is a procedure that
offers a workaround for small-dataset situations that shows a low bias in practices

https://grand-challenge.org
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Figure 1.1: Overview of CV scheme. The training set is split into k smaller sets for training
and validation. A model is trained using k − 1 of the folds as training data; the
resulting model is validated on the remaining part of the data. The procedure is
followed for each of the k-folds. The performance measure reported by k-fold
CV is then the average of the values computed in the loop.

where reserving data for independent test sets is not feasible. The method of nCV
is relatively straightforward as it merely is a nesting of two k-fold CV loops: the
inner loop is responsible for the model selection and the outer loop is responsible for
estimating the generalization accuracy (Figure 1.2).

In the sphere of DL, the main power of a Deep Neural Network (DNN) lies in its
deep architecture (Szegedy et al., 2015; Zeiler and Fergus, 2014), which allows for
extracting a set of discriminating features at multiple levels of abstraction. However,
training a DNN from scratch (also called full training) is not without complications.
First of all is the scarcity of data in the medical context which leads to overfitting
and convergence issues, whose resolution frequently requires repetitive adjustments
in the architecture or learning parameters of the network to ensure that all layers
are learning with comparable speed. To reduce the problem of overfitting due to
small training samples, another promising AI technique has been developed in the
literature called Transfer Learning (TL) which allows transferring knowledge of a
pre-trained Neural Network (NN) from a source task into a target task (Durgut
et al., 2022). In this regard, a model is adapted reusing the pre-trained NN weights,
obtained from the source domain rich in samples, rather than starting the training
from scratch within the small target domain. Often to improve the output it is
convenient to make a fine-tune of the weights on the target task (Figure 1.3). There
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Figure 1.2: Overview of nCV scheme. Model optimization is performed via inner CV on the
Train/Validation partition of each outer fold, where the optimally tuned model
is selected based on average performance across the Validation inner partitions.
The selected as optimalmodels are subsequently fit on the entire Train/Validation
partition of the particular outer fold and deployed on the respective Test partition.
Average Test scores and standard deviation across outer folds, provide estimates
of model performance and generalization, respectively (Lavasa et al., 2021).
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are various strategies, such as training the whole initialized network or "freezing"
some of the pre-trained weights. With this in mind, the pre-trained network can be
fine-tuned in a layer-wise manner, starting with tuning only the last layer (shallow
tuning), then tuning all layers (deep tuning). In general, the early layers of a DNN
learn low level image features, which are applicable to most vision tasks, but the
late layers learn high-level features, which are specific to the application at hand.
Therefore, fine-tuning the last few layers is usually sufficient for transfer learning.
However, if the distance between the source and target applications is significant,
one may need to fine-tune the early layers as well. Therefore, an effective fine-tuning
technique is to start from the last layer and then incrementally include more layers
in the update process until the desired performance is reached.

Figure 1.3: Transfer learning scheme. The last layers are replaced with custom layers for the
proposed problem. The fine-tuning is carried out in the top-level layers, while
the rest of the transfer networks remains temporarily idle or frozen (i.e., the
weights stay unchanged during the optimization process) (Ovalle-Magallanes
et al., 2020).

Data augmentation is an alternative method to training with more data, which
involves the generation of more samples by applying simple or more sophisticated ex-
pedients. They can be cheap transformations (Figure 1.4) like affine transformations,
cropping, adding noise, zooming, histogram equalization, sharpening, adjusting
contrast or more expensive transformations such as deformable transformations
(Chlap et al., 2021; Nalepa et al., 2019). While an innovative and very expensive
resource regards the use of the Generative Adversarial Network (GAN) (Yang et al.,
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2022; Han et al., 2019). The GAN model architecture consists of two deep learning
networks (Figure 1.5), namely a generator that captures data distribution and a
discriminator that tries to categorize the incoming input as a real or fake example
(Goodfellow et al., 2014a). The learning procedure involves an adversarial process
where the generator and the discriminator compete for one against the other in the
creation of new synthetic images.

Figure 1.4: Applying affine and pixel-level transformations can help significantly increase
the size of training sets. In this example, new images based on the original MRI
have been generated (adapted from (Nalepa et al., 2019)).

In addition to what has already been announced, there are other challenges and
pitfalls that undermine the success of a training and the achievement of a reproducible
and generalizable AI model. Adequate curation, analysis, labeling, class imbalance,
data leakage, external independent test, ethical issues and costs are detrimental
for AI performance and critical to achieving high-impact clinically meaningful AI
algorithms, if not properly accounted for (Lemaître et al., 2017; Buda et al., 2018;
Dawud et al., 2019). Reliability and reproducibility of the results are mandatory for
medical applications based on AI. Training AI models with limited annotated data
samples poses specific challenges on the robustness and generalization ability of AI
models. Specific guidelines should be defined regarding the definition of efficient
training algorithms and rigorous cross-validation protocols either to enable the use
of AI techniques in case of limited data availability for a specific study, or to discard
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Figure 1.5: Illustration of GAN concept. The overall idea is to use two adversarial networks
(G(z) and D(x)), where one generates a photorealistic image in order to fool the
other net (generator G(z)) trained to better distinguish fake images from the
real ones (discriminator D(z)). In other words, the generator task is to minimize
a cost function V(D, G) (for example maximum likelihood), while discriminator
needs to maximize it (Mikołajczyk and Grochowski, 2018)

the possibility of using them.
In the described framework, it falls the present thesis. It addresses the possibility,

with proper precautions, of using artificial intelligence algorithms within small
and real hospital database to fulfill specific clinical needs and to support clinical
decision-making process. The thesis is organized into six parts.

• Chapter 2 explains and comments the fundamental steps which I followed for
preparing medical images datasets to AI algorithm development. They can
be summarized as follows: ethical approval, data access, querying data, data
de-identification, data transfer, quality control, structured data and label data.

• Chapter 3 offers an overview of what was done in literature with small medical
images databases. In particular, a systematic review was conducted to provide
a comprehensive survey of recent advances in this field.

• Chapter 4 is related to the development of a radiomic-dosiomic workflow
combined with machine learning algorithms in order to clustering patients
in an unsupervised fashion, with special focus on exploiting Magnetic Reso-
nance (MR) and dose images, as biomarkers of radio-induced neurotoxicity in
pediatric patients affected by medulloblastoma.

• Chapter 5 and 6 present the use of artificial intelligence for the identification,
segmentation and quantification of COVID − 19 pulmonary lesions. The lim-
ited data availability and the annotation quality are relevant factors in training
U − net based algorithms. The effects of using multiple public datasets of
COVID − 19 CT scans, heterogeneously populated and annotated according
to different criteria were investigated.
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• Chapter 7 refers to a still-ongoing project that attempts to describe the prediction
of patients’ outcome with soft tissue sarcomas to radiotherapy, in terms of the
development of distant metastases. Transfer learning and fine-tuning have
been investigated to perform domain adaptation on a smaller private dataset.

• Finally, in Chapter8, conclusions and future works are presented.

This work has been carried out within the AIM and next AIM projects funded
by INFN (CSN5, 2019 − 2021 and 2022 − 2024, respectively). The AIM and next
AIM projects aim to exploit the expertise in advanced data processing and analysis
techniques handled by National Institute of Nuclear Physics (INFN) and associated
researchers on medical data processing and enhancement, and turn it in the devel-
opment of advanced and effective analysis instruments to be eventually clinically
validated and translated into innovative products for precision medicine. The AIM
projects aspire to focus efforts on (i) the exchange of know-how on algorithms, data
access, and codification of common problems, (ii) the training of young researchers
on advanced cross-disciplinary problems, and (iii) the dissemination of acquired
know-how to the scientific communities to achieve specific results on clinically-driven
challenges. One of the objectives of the AIM project is to implement, optimize, de-
velop and test ML, DL and network-based algorithms. In particular, to put in place
predictive medicine solutions and it includes the prediction of treatment outcome in
oncologic patients. While, for the next AIM project one of the purposes is to address
the following specific challenge related to methodological aspects of the application
of AI in medicine: how to manage limited datasets with AI techniques (no-so-big
dataset).



Chapter 2

Medical Databases

The leading hurdles to development and implementation of AI algorithms in the
clinical setting include availability of sufficiently large, curated, and representative
training data that includes expert labeling (i.e. annotations). To make matters worse,
medical imaging datasets acquired in clinical practice are often incomplete, and this
could limit the applicability of models that instead require undamaged multiple
modalities as input. These obstacles lead to possible biases of which one must be
aware, which may affect generalizability of AI algorithms. Moreover, supervised
AI methods for evaluation of medical image require a curation process for data
to optimally train, validate, and test algorithms. Currently, most research groups
have limited data access based on small sample sizes and/or from small geographic
areas (Brehaut et al., 2006). In addition, the preparation of data is a costly and
time-intensive process, the results of which are algorithms with limited utility and
poor generalization.

Nowadays to alleviate the problem of data access in medical research and in large
amounts, an increasing number of data sets has been open sourced. Data sets are
available in a wide range of domains from brain MRI (Bakas et al., 2017; Di Martino
et al., 2014; Jack et al., 2008; Mennes et al., 2013; Menze et al., 2015; Van Essen et al.,
2013), breast imaging (Lee et al., 2017; Xi et al., 2018), chest radiographs (Irvin
et al., 2019; Wang et al., 2017b), and others. Unfortunately, these databases concern
common and routine pathologies, in fact they manage to reach large numbers also
and above all for this reason. Often clinicians would like to be able to stratify or isolate
rare diseases and therefore poorly known and uncommon. There are other important
limitations as well. First, there is a wide variety of number and quality of images and
availability of metadata and clinical information. Second, some open-source data
sets contain low-quality images, lack expert labeling or data curation (Langlotz et al.,
2019). Therefore, most academically developed AI algorithms in medical imaging,

10



2.1 Data Preparation Overview 11

including mine, have been trained, validated, and tested with local data from a single
institution.

In this section, the fundamental steps which I followed for preparing medical
images data sets to AI algorithm development will be described. One more footnote
should be added. The creation of a medical database involves many professional
roles: administrators, technicians, medical physicists, physicians and researchers.
From this point of view, my task was also to interface with all these experts and act
as a bridge between them.

2.1 Data Preparation Overview
Before medical images can be used for the development of an AI algorithm, certain
steps need to be taken. Typically, approval from the local ethical committee is required
before medical data may be used for development of a research. In my case, however,
retrospective studies have been conducted and therefore existing data are used.
Because the patients in this type of study do not need to undergo any additional
procedures, explicit informed consent is not formally required.

After ethical approval, relevant data needs to be accessed, queried, properly
de-identified, and securely stored. Any protected health information needs to be
removed both from the Digital Imaging and Communications in Medicine (DICOM)
metadata, as well as from the images (https://mircwiki.rsna.org/index.php?
title=MIRC_CTP). The quality and amount of the images vary with the target task
and domain. The next step is to structure the data in homogenized and machine-
readable formats (Harvey and Glocker, 2019). The last step is to link the images
to ground-truth information, which can be one or more labels or segmentations.
The entire process to prepare medical images for AI development is summarized in
Figure 2.1.

2.2 Accessing and Querying Data
Fortunately, for the role I hold within the hospital and having received approval
from the ethics committee, I have direct access to medical imaging data through
the Picture Archiving and Communication System (PACS). In fact, only accredited
professionals can access to PACS environments. Once data are accessible, different
strategies are available to search for medical images and clinical data. The most
efficient and immediate search queries take place through the use of names and
identification codes of patients. It is necessary to underline the fact that the data to

https://mircwiki.rsna.org/index.php?title=MIRC_CTP
https://mircwiki.rsna.org/index.php?title=MIRC_CTP
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Figure 2.1: Diagram shows process of medical image data handling.

search and extract necessary to develop the project often do not belong to the same
PACS storage environment, but rather to two or three different repositories and the
only common denominator that allows a transversal search is the patient’s name.
This happens because different departments can, and indeed often have, different
storage systems that do not communicate with each other.

2.3 De-Identification
Although written informed consent from patients is not always necessary, retrospec-
tively gathered data require proper de-identification. Sensitive information includes
but is not limited to name, medical record number, and date of birth. Identifiable
information is commonly present in the DICOM metadata (header) and multiple
tools are available to automatically remove this information (Aryanto et al., 2015); I
relied on MATLAB (MATLAB 2020b, The MathWorks, Inc., Natick, Massachusetts,
United States). For spreadsheets I have adopted anonymization with k-anonymity,
which transforms an original data set containing protected health information to
prevent potential intruders from determining the patient’s identity (El Emam and
Dankar, 2008). Other strategies that can be employed act in such a way that the
DICOM metadata is often removed completely or converted to another format such
as NIfTI (Neuroimaging Informatics Technology Initiative) which retains only voxel
size and patient position. Totally removing the DICOM metadata certainly prevents
privacy issues but reduces the value of data, because metadata contain important
information for AI algorithm development.
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2.4 Data Storage
In my situation, data are transferred to a local data storage and more precisely on
two different hard drives to ensure their use and backup. The advantages of this
type of archiving include data security and availability but as you can well imagine
in this way the possibility of real-time sharing with colleagues is lost.

2.5 Quality control and Structured data
It is fundamental in a database to have quality data; it is not enough to have a large
amount of information available if it is of little value. Therefore, it is necessary to
carry out a quality control of the collected images. The first check to be implemented
concerns the integrity of the files. Often the data is stored in archives and when they
are restored, they can become corrupted. Even if at first glance they seem flawless,
reading them returns an error which renders them unusable. Or the DICOM header
may be corrupted and essential information for the correct use of the images are lost.
The second step concerns the quality of the image itself, such as an excessive presence
of noise or artifacts due to movement, breathing, presence of metal prostheses or
contrast medium. Subsequently, a standardization of the nomenclatures within the
database must be obtained, eliminating variations in terminology and building the
mapping to a common controlled terminology. This is recurrent in the segmentation
phase in radiotherapy where the process is performed by different physicians. Even
if they have a common vocabulary it is usual to find differences in the identification
of the same Region Of Interest (ROI), even simply deviations between uppercase
and lowercase letters.

Making the information stored in the database easily accessible to the AI model
developer, the data must be arranged in such a way to create a set of structured
data, i.e. organized in an orderly manner, according to a set of predetermined rules.
For example, if researchers are dealing with multimodality images from different
scanners (i.e. CT and MRI), for each patient they should sort the images with the
same orientation and direction (head first or feet first protocol, supine or prone); or
if the individual slices are taken into consideration, it is useful to associate each one
with its own segmentation or binary mask if available. Nor is it essential to hook the
appropriate label to undertake supervised learning. Thus, objects structured in an
equal and repetitive way are obtained, which can be easily implemented in a training,
validation and test algorithm.
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2.6 Appropriate Label
Current AI algorithms for medical image classification tasks are generally based
on a supervised learning approach. This means that before an AI algorithm can be
trained and tested, the ground truth needs to be defined and linked to the image. The
term ground truth typically refers to information acquired from direct observation
(such as biopsy, autopsy or laboratory results). For this reason, in my studies, the
term ’image labels’ will refer to a (retrospective) annotations performed by medical
experts such as radiologists or radiotherapists. These annotations have to be under-
stood as the result of a condensation of different diagnoses and information, such
as free-text radiology report or expert consensus and interpretation (Hwang et al.,
2019). Even simply because, in the clinical setting, the final annotation may require
further confirmations in addition to the diagnostic report such as a pathologic or sur-
gical report, clinical outcome, follow-up (i.e., cancer type, metastases development,
induced toxicity occurrence, etc.).

As far as I’m concerned, since I don’t have the necessary skills or knowledge
to be able to interpret the clinical reports and translate them into a format suitable
for the development of a medical imaging classification AI model, I obtained the
appropriate labels for the patients included in the databases by interviewing the re-
ferring physician supervising the study. As to be expected, manual labeling required
a substantial effort.
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Abstract

Background: Though medical imaging has seen a growing interest in AI research,
training models require a large amount of data. In this domain, there are limited sets
of data available as collecting new data is either not feasible or requires burdensome
resources. Researchers are facing with the problem of small datasets and have to
apply tricks to fight overfitting.

Methods: 147 peer-reviewed articles were retrieved from PubMed, published in
English, up until 31 July 2022 and articleswere assessed by two independent reviewers.
We followed the PRISMA guidelines for the paper selection and 77 studies were
regarded as eligible for the scope of this review. Adherence to reporting standards
was assessed by using TRIPOD statements (Transparent Reporting of a Multivariable
Prediction Model for Individual Prognosis or Diagnosis).

Results: To solve the small data issue transfer learning technique, basic data
augmentation and GAN were applied in 75%, 69% and 14% of cases, respectively.
More than 60% of the authors performed a binary classification given the data scarcity
and the difficulty of the tasks. Concerning generalizability, only 4 studies explicitly
stated an external validation of the developed model was carried out. Full access to
all datasets and code was severely limited (unavailable in more than 80% of studies).
Adherence to reporting standards was suboptimal (< 50% adherence for 13 of 37
TRIPOD items).

Conclusions: The goal of this review is to provide a comprehensive survey of
recent advancements in dealing with small medical images sample size. Transparency
and improve quality in publications as well as follow existing reporting standards
are also supported.

Keywords: Small Data, Artificial Intelligence, Medical Imaging, Transfer Learning, Data
Augmentation, Classification
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3.1 Introduction
Data-driven intelligent models have gained immense popularity in recent years,
achieving amazing performance in various fields of our daily life. The essence be-
hind these achievements is that the behavior in unknown domains can be accurately
estimated by quantitatively learning the latent patterns behind the data from suffi-
cient training samples (Romero et al., 2020; Swati et al., 2019). Researchers nowadays
are capable of designing and developing network structures with even more and
wider layers than before also thanks to the availability ofmuchmore powerful compu-
tational resources. The trend of artificial neural networks points towards the idea that
deeper or more complicated networks perform better. However, these techniques are
built up on the assumption of sufficiently large data samples for appropriate model
training, i.e. Big Data. Usually, the term Big Data indicates a massive volume of
data that is too large or complex to be effectively analyzed using traditional software
(D’souza et al., 2020; Ubaldi et al., 2021).

In numerous real-world applications, the number of samples in a dataset can be
relatively limited, constrained by the complexity, ethnicity, high cost or they can be
difficult to obtain in practice, leading to sharply decreases in the performance of deep
learning models. This is the main restriction of the deep learning models: they need
tens of thousands of well-labeled samples for training. This Small Data challenge
would call for a completely different approach from the existing Big Data one, and
the axiom "the deeper and wider we go, the better the performance" is no longer
as robust (D’souza et al., 2020). The limited quantity of available data prevents the
use of large models: indeed, training smaller models is a safer choice since they are
less prone to overfit data. Very large models, if not properly regularized, tend to
memorize the whole dataset causing serious overfitting and a poor generalization
ability of the model (Vabalas et al., 2019). In fact, the small data challenge is not only
about the size of the training database in absolute terms and therefore when the train
data is deficient the learned feature representations are limited and the model only
fits well on train data. But it is essential to contemplate the small data issue in relative
terms with respect to the complexity of the model to be trained. A large, deep and
complex learning algorithm with millions of free parameters to optimize can obtain
an effective knowledge of the available dataset achieving good train performance,
albeit at the expense of heavily parameterizing the available data and loosing model
generalizability.

Another aspect that needs to be brought into view concerns the quality of the
data. In the clinical context, only expert physicians can give high-quality sample
annotations, and such large amounts of annotated data will inevitably be laborious,
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costly and time-consuming. This prevents the creation of sufficiently large samples in
most cases (Xu et al., 2021; Ubaldi et al., 2021). In this perspective, small sample size
issue is of particular interest when neural networks are applied to medical images,
including MRI, CT, dose distributions, ultrasounds, and histopathological images,
which often have limited sample size restricted by the availability of the patient’s
population, scarcity of annotated datasets and experts’ labeling. In general, for
medical images, high-quality annotated datasets are scarce and require specialized
medical knowledge, standardized protocols and considerable time and effort. For
this purview, labeling of data by domain experts is still one of the key issues and often
it may take more time and effort than the algorithm development itself. Moreover,
the intrinsic heterogeneity of retrospective data accumulated in daily clinical practice
creates a trade-off between the quality and the dataset sizes, ranging from a few
dozens to a few hundreds of patients (Trivizakis et al., 2019; Ayana et al., 2022).

Moreover, constructing sufficiently large data sets in the field of medical imaging
is difficult due to the patient privacy and regulations. For this reason, starting
multicenter studies is often a difficult path to take and individual clinical centers try
to train, validate and test artificial intelligence algorithms with the few available data.
But a small sample size from a single study database produces fundamental limits.
Deep learning techniques generally require more than a million samples to train
without overfitting. However, another important aspect present in clinical studies
must be emphasized. In this context, rare diseases are often studied and therefore
lack data per se, or they have to deal with classes or categories that are numerically
very unbalanced (Han et al., 2021). Consequently, many deep learning researchers
agree that a small sample size is insufficient to test the effectiveness of the proposed
method. In recent years, some international competitions have released rich labeled
medical images, which provide a potential data source to train models specific to
medical applications.

The small data issue can be facedmainlywith two approaches: data augmentation-
based and transfer learning/domain adaptation-based, respectively. These methods
try to expand the data volume but in a different fashion. The first method is based
on the generation of new synthetic data from the available data while the second one
resorts on knowledge learned from other domains. These methods could effectively
improve the results and reduce the data size requirement in order to overcome the
Small Data challenge. They are illustrated in detail below.
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Data augmentation

The data augmentation-based strategy aims to synthetically and artificially increase
the number of available samples for training deep learning models by mimicking the
distribution of the original dataset, and providing more general information from
the dataset to solve the small data problem. It is a data preprocessing method and a
type of regularization which can effectively improve the performance of models by
reducing the possibility of overfitting (Adedigba et al., 2022; Gatidis et al., 2015).

Two very simple augmentation processes are generally employed: gray level
disturbance and shape disturbance. In the first case, Gaussian noise or something
similar is added to the original images. In the second one, the data is increased by
oversampling images with translations, rotations, brightness modification, rescaling,
flipping, shearing or stretching and other affine transformations. In general, the idea
behind these operations is that they will assist the learning algorithm to acquire more
comprehensive and robust features which will then be useful in conditions where
the data could be incomplete and/or noisy, favoring the generalization.

One such more objective and promising technology that has recently been intro-
duced for data augmentation, is the Generative Adversarial Network (GAN) which
involves generative models and adversarial learning (Goodfellow et al., 2014b; Pan
et al., 2022). The GAN attempts to approximate the true data distribution through a
minimax game between two subnetworks in competition with each other, called the
discriminator and the generator. The generator attempts to create data samples as
similar as possible to the true data while the discriminator seeks to distinguish true
from fake-generated samples. The two subnetworks evolve together during training;
the generator tries to deceive the discriminator by improving its output more and
more, in other words, it learns to approximate better and better the distribution of the
original data. Thereby new completely synthetic data samples can be generated and
used for training in the main task. In general, as a generative model, a well-trained
GAN is used to provide additional fake and synthetic samples that has the same
distribution of the original training data (Levine et al., 2020; Gheshlaghi et al., 2021;
Shi et al., 2020; Zebin and Rezvy, 2020).

Transfer learning

Another possible way to face the small sample size problem is the transfer learning,
that is to use a pre-trained networkwhich cleverly applies the knowledge gained from
a source domain to facilitate the learning problem in a partially related or unrelated
target domain. Transfer learning provides an effective framework for deep learning
with small datasets; it pretrains a model by using existing massive datasets and then
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uses the trained model either as an initialization or as it is for a new task (Alruwaili
and Gouda, 2022; Horry et al., 2020; Bahgat et al., 2021).

The idea is to initialize the neural network with the weights trained from some
previous task and then fine-tune the parameters within the current task when the
current task has insufficient training data. This approach provides a reasonable
initial state and may speed up the training of the model, slightly different form the
traditional learning process where it tries to learn each task from scratch. There
may be three different approaches to reuse the parameters (weights and biases) of a
pre-trained network: (1) reusing the parameters of a pre-trained deep neural network
directly to initialize the new network and fixing without retraining, called freezing.
(2) reusing the parameters of the pre-trained deep neural network directly to initialize
the newnetwork and then fine-tuning the parameters using target domain data, called
fine-tuning. (3) initializing network parameters randomly and tuning parameters
using target domain data, called random initialization and training (Romero et al.,
2020).

The source domain can pertain to a connected sphere of the target task as well
as to a completely different one. As a matter of fact, most studies have made use of
models pretrained from the large-scale ImageNet database (Russakovsky et al., 2015),
containing 1.2 million natural images. These models trained from the ImageNet have
a strong capability for feature extraction. Thus, they are suitable to be transferred
to other contexts which have a small number of image data and they can produce
significant advanced performances better than shallow algorithms. Such a strategy
reduces the need and effort to recollect a large training data, saving data resources
and training time. Transfer learning can be very effective in the field of medical
images where pretraining can mitigate the drawback of having a very large labeled
datasets and can prove very useful in building complex and robustmodels. In general,
the use of deep neural networks even with small data samples can occur thanks to
the pre-training on data-rich domains that share affinities in statistical properties
with the target dataset (Aderghal et al., 2020; Sha et al., 2019; Sanchez et al., 2022).

The aim of this work is to present a systematic review to provide an overview of the
state of the art of deep learning research for clinical applications on small samples.
Specifically, we sought to describe the study characteristics, and evaluate themethods
and quality of reporting and transparency of deep learning studies that compare
diagnostic algorithm performance with the ground truth.
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3.2 Methods

PRISMA

This manuscript has been prepared according to the Preferred Reporting Items
for Systematic reviews and Meta-Analyses (PRISMA) guidelines and a checklist is
available in the supplementary material (Moher et al., 2009).

Literature search and inclusion criteria

We performed a comprehensive search by using free text terms for various forms
of the keywords "small", "data base" and "deep learning" to identify eligible studies.
PubMed MEDLINE database was thoroughly searched to identify original research
articles that investigated the performance of AI algorithms analyzing small medical
images samples. We used the following search query: ("small" OR "limited") AND
("sample" OR "samples" OR "database" OR "databases" OR "dataset" OR "datasets"
OR "data sample" OR "data samples") AND ("medical images" OR "medical imag-
ing") AND ("artificial intelligence" OR "radiomics" OR "machine learning" OR "deep
learning") AND ("classification" OR "prediction" OR "clustering"). PubMed search
engine was questioned without imposing time filters (literature search update until
July 31, 2022).

We selected publications for review if they satisfied several inclusion criteria: a
peer reviewed scientific report of original research; English language; assessed a deep
learning algorithm applied to a clinical problem in medical imaging; application of
the AI techniques on declared small datasets; and compared algorithm performance
with the ground truth. We included studieswhen the aimwas to usemedical imaging
for predicting absolute risk of existing disease or classification into diagnostic groups
(e.g., disease or non-disease). We defined medical images as radiologic images
and other medical photographs (e.g., endoscopic images, retinal images, pathologic
photos, and skin photos) and did not consider any line art graphs that typically
plot unidimensional data across time, for example, electrocardiogram and A-mode
ultrasound. Case reports, review articles, editorials, letters and comments were left
out. Exclusion criteria included also AI algorithms that performed image-related
tasks other than direct diagnostic decision-making, such as image segmentation,
database description and data preprocessing.
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Screening of collected studies

After removal of clearly irrelevant records, two reviewers independently screened
the abstracts of potentially eligible studies. Abstracts with any degree of ambiguity
or that generated differences in opinion between the two reviewers were re-evaluated
at a consensus meeting, to which a third reviewer was invited.

The admissibility of the full text articles was then assessed by the same reviewers
as before who will then extract the data from the study reports. After this sec-
ond screening, articles belonging to one of the following categories were excluded:
methodological works, object detection tasks, focus on explainability and out of the
topic.

Adherence to reporting standards - TRIPOD

We evaluated the quality of the studies according to Transparent Reporting of a
multivariable prediction model for Individual Prognosis Or Diagnosis (TRIPOD)
statement (Collins et al., 2015). This statement rates the transparency of the reporting
of a prediction model study regardless of the survey methods used and in all medical
settings (Moons et al., 2015). It is composed of a 22 items checklist (37 total points
when all sub-items are included), which analyzes the development, validation, or
the updating of a prediction model, whether for diagnostic or prognostic purposes.
The aim was to assess whether the studies broadly conformed to the reporting
recommendations included in TRIPOD, and not the detailed granularity required
for a full assessment of adherence (Heus et al., 2019).

Data synthesis

Aware of heterogeneity of specialties, metrics and outcomes, we reported in Ta-
ble 3.1 the basic qualitative and quantitative characteristics such as anatomical region,
AI technique, sample size, number of classes, best performance, type of images,
programming language and sharing of code and database.

3.3 Results

Study selection

Our electronic search carried out considering only the filter "titles and abstracts",
which was last updated on 31 July 2022, retrieved 147 records. Of the 147 initially
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collected studies, we assessed 105 full text articles; 28 were excluded, which left 77
works for analysis (Figure 3.1).

Records identified through PubMed MEDLINE database (n = 147)

Records screened (n = 147)

Full-text articles assessed for 
eligibility (n = 105)

Studies finally included in analysis (n = 77)

Records excluded (n = 42)
Review articles (16)
Images segmentation (13)
Not in field of interest (9)
Databases description (2)
Manage data preprocessing (1)
No English language (1)

Records excluded (n = 28)
Methodological works (15)
Not in field of interest (8)
Object detection tasks (3)
Focus on explainability (2)
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Figure 3.1: Flow-chart of article selection based on PRISMA (Preferred Reporting Items for
Systematic reviews and Meta-Analyses) guidelines.

General characteristics

Table 3.1 summarizes the basic characteristics of the 77 studies. All of them are about
the development and the validation of a prediction model. Specifically, 75 (97%)
publications deal with diagnostic models and only 2 (3%) with prognostic models.
Most of the works make use of deep learning techniques (86%), only 6% apply only
traditional machine learning techniques and 8% mix both methodologies.
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The top five imaging modalities are X-ray (23/77 = 30%), MRI (19/77 = 25%),
CT (18/77 = 23%), histological (9/77 = 12%), and ocular images (5/77 = 6%).
The remaining types concern ultrasound, endoscopic, PET and SPECT images (Fig-
ure 3.2a). Zooming on the first three categories, X-ray images take care of lungs (12),
breast (8), skeleton (2) and adenoid (1); MR images focus on brain (13), prostate (3),
knee (2) and liver (1); CT images pay attention on lungs (10), Head & Neck (H&N)
(2), colon (2), liver (2), heart (1) and brain angiography (1). As regards the number
of samples in the databases, they present a distribution with an average population
of 16600 ± 45700 samples (mean ± one standard deviation), a minimum of 16 and
a maximum of 299000 (Figure 3.2b). Most of the studies develop AI techniques by
exploiting the clinical images of the anatomical regions most investigated in the clinic
and therefore with the greatest probability of finding adequate databases: brain,
breast, lung (Figure 3.2c). Furthermore, as can be expected, given the scarcity of data
in small samples and the difficulty of the tasks, more than 60% of the authors perform
a binary classification (Figure 3.2d). Concerning reproducibility, data are public and
available in 47 studies. In 25 analyses the collected data are private and 7 operate over
both types of databases. Fifty per cent of the studies managed only one repository,
31% acted on 2, 10% employed 3 databases, and the rest of the publications more
than three. Additional plots relative to the quantity of available data with respect to
the anatomical region, the imaging technique and the dataset origin can be found in
the Supplementary Materials (3.1).

To solve the small data issue transfer learning technique, basic data augmenta-
tion and GAN were applied in 75%, 69% and 14% of cases, respectively. All three
methodologies are exploited simultaneously in only 8 studies, while 26 used none of
these techniques. The two main metrics used are accuracy and AUC. The first was
used in 65/77 studies to evaluate the performance of the algorithm on the test set,
obtaining an average value of 0.90 ± 0.11, while the second was used in 48/77 works
with an average value of 0.90 ± 0.10.

Fiftythree of 77 (69%) studies claimed in the discussion that the prediction model
could have a potential clinical use (e.g. to identify high risk groups to help clinicians
in decision making, or to triage patients for referral to subsequent care). Moreover,
90% of the authors declared that improvements and future research are necessary
(e.g. a description of what the next stage of investigation of the prediction model
should be). Relative to transparency and sharing, code (for preprocessing of data,
modeling and reproducing the evaluation) is available in only 13 studies (17%).
Funding was predominantly academic (45/77, 58%) and mixed with commercial
supporters in 3 cases (4%). Ten studies stated they had no funding and 19 others
did not report on funding.
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Figure 3.2: General characteristics concerning the imagingmodalities (a), distribution of the
number of samples in the databases (b), the most popular anatomical regions
(c) and the preferred type of classification (d).

In the following analysis, in order to better interpret the results and since most
of the works take into consideration a binary classification as mentioned before, we
focused only on these studies and we wanted to verify a possible increase in the
performance ofAI algorithms in terms of accuracy andAUCas function of publication
year (Figure 3.3). None of the data is statistically significant but a growing trend can
be visually appreciated. This could be due to the growing use of transfer learning
(Figure 3.4). By comparing the performance metrics with respect to the use or not of
this technique, differences can be noted (Figure 3.5). For both accuracy and AUC,
if transfer learning, data augmentation or both AI techniques are exploited, the
dispersion of data is more limited, both in terms of interquartile range and whisker
extension. Furthermore, even if for accuracy the median values of the distributions
with and without the use of different techniques are comparable, for the AUC the
difference between these values is considerable. In point of fact, the use or not of
data augmentation is statistically significant (p = 0.03).
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Figure 3.3: Performance of AI algorithms in terms of accuracy and AUC as function of
publication year for binary classification studies

Adherence to reporting standards

Adherence to reporting standards less than 50% is present in 13 of 37 TRIPOD items
(Figure 3.6). Overall, publications adhered to between 52% and 88% of the TRIPOD
items: median 68%, interquartile range 61 − 71%, confidence level at 5 and 95% are
55 and 81%, respectively, corresponding to two studies below the 5% threshold and
three studies above the 95% threshold.

Two items deserve deep comments: number 1 (identify the study as developing
and/or validating a multivariable prediction model, the target population, and
the outcome to be predicted) with an adherence of 3% and number 16 (report
performance measures with confidence intervals for the prediction model) with an
adherence of 29%. In the first case such low adherence has been found because in the
title the authors have not reported the words development, validation, incremental
/ added value (or synonyms). While in the second one, the confidence interval
(or standard error) of the discrimination measure and/or the measures for model
calibration are often not indicated.

The full results of TRIPOD adherence assessment form for this study are available
in the online supplement material.

For the moment, quantity and quality have not helped to improve performances
(Figure 3.7). On one hand, perhaps the quality of the data needs to be boosted
and/or even if a large database is available, it is not guaranteed to obtain excellent
performance because it probably contains greater heterogeneity by representing the
real variability in a more objective way. On the other, having a high TRIPOD index is
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Figure 3.4: Use of transfer learning (a) and data augmentation (b) as function of publication
year.

not a guarantee of having good performances since it mainly evaluates the reliability
and transparency of the studies. Additional plots relative to the performances with
respect to the quantity (available data) and the quality (TRIPOD index) by anatomi-
cal region, imaging technique and dataset origin can be found in the Supplementary
Materials (3.2 and 3.3).

3.4 Discussion
We have conducted an appraisal of the methods and adherence to reporting stan-
dards. These studies are constantly increasing and are pushing more and more to
introduce AI algorithms into clinical practice as quickly as possible. The potential
consequences for patients for immature implementation of these systems without a
rigorous evidence base could be catastrophic. For the moment, the efforts should



3.4 Discussion 31

Figure 3.5: AI performances (accuracy top, AUC bottom) for binary classification studies;
with and without transfer learning (first column), with and without data aug-
mentation (second column), with and without both techniques (third column).

focus on improving design, validation, transparency and sharing (Le et al., 2022).
All the selected works declare that the database at their disposal was small and

therefore limited for an optimal achievement of their objective. But as can be seen
from Table 3.1, certain databases are difficult to classify as small in absolute terms
having more than 100000 data. It is therefore essential to declare the term ’small’
in relative terms with respect to the number of free parameters to be optimized. In
this way it is more evident how difficult it is the task of training a complex model
prone to overfit the data and without an appropriate regularization (DeVries and
Taylor, 2017). Working with small databases there is the risk of creating a bias in
the optimized model due precisely to the few samples available and this negatively
affects its generalizability and reliability. Even if the algorithm is tested on a subset of
data not used during training, if not handled properly, when testing the algorithm on
an external dataset this can lead to a poor performance (Vabalas et al., 2019; Homeyer
et al., 2022; Yu et al., 2022).

The works we encountered are retrospective studies and only four explicitly
stated that they have carried out an external validation of the developed model,
meaning using a completely independent database compared to the previous one,
with another patients’ distribution, coming from a different geographical region or
using a real hospital database. For this reason, they should be considered only a
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Figure 3.6: Completeness of reporting of individual TRIPOD (Transparent Reporting of a
multivariable prediction model for Individual Prognosis Or Diagnosis) items.

proof of concept and there is still a long way to go before being able to arrive at
an effective clinical implementation. There are comparisons of the AI performance
with respect to clinicians, but unfortunately they are still minimal and the very good
performances obtained in silico may not lead to an effective clinical benefit, such as an
unacceptably high false positive rate. Entering in more detail in this area, one should
verify or at least be aware of how clinical ground truths are defined. First, because
there is variability between intra and inter expert clinicians and the most likely value
would be that generated by a suitably large sample of experts to ensure reliability.
Second, because the inclusion of non-experts is starting to take hold, especially in
segmentation tasks. Such a tendency can lower the average human performance and
potentiallymake the AI algorithm perform better than it otherwisemight (Heim et al.,
2018). In this perspective, particular attention should be paid if public databases are
used; however useful and sometimes essential, before throwing yourself headlong
into training AI algorithms, it is better to inquire in detail about how the database
was built and how the ground truths were obtained. In addition to the quantity, the
quality and certifiability of the data should also begin to be considered a must.

Developing AI systems employing tens of thousands of training samples leads to
onerous investments since high level knowledge is required to prepare such data.
Therefore, designing AI algorithms under small amounts of quality data with high
accuracy is of great significance and an important direction of current artificial
intelligent research. To overcome the main drawbacks and pitfalls in this field,
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Figure 3.7: AI performances with respect to the quantity (Available data) and quality (TRI-
POD) of the data.

reliable and efficient strategies must be considered and applied (Alzubaidi et al.,
2021; Dai et al., 2021; Samala et al., 2020).

As the systematic review revealed, researchers rely on data augmentation and
transfer learning. Inherently to the first solution to enrich the dataset via the aug-
mentation strategies, it should be underlined how the use of affine transformations
to create new (similar) versions of existing samples without adding any morpholog-
ical variations cannot fully resolve the overfitting problem. The generated images
become much correlated to each other offering modest improvement for further gen-
eralization over unseen samples. On the other hand, the spread of GANs with their
astounding abilities can help to address overfit, creating morphological variations
in augmented samples while preserving the key characteristic. With regards to the
second method, transfer learning has an incredible potential and can be fully applied
when researchers have neither a sufficient volume of data nor the computational
resources needed to train the algorithm. The resulting models will have an excellent
features extraction capability learned from the large source datasets (Alzubaidi et al.,
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2021; Uemura et al., 2020; Usman et al., 2022). However, they will be validated, tai-
lored, and improved to the specific application to achieve optimal results. Developing
AI models that can learn from limited data is still an open research area, however
these techniques not only tackle the insufficiency issue of data but can also provide a
viable solution to class imbalance problem, which is also an important research area.

An important aspect that needs to be further explored is how the data augmen-
tation affects the bias propagation. When the augmented data does not accurately
reflect the real-world distribution, the model becomes biased. Bias refers to sys-
tematic errors or prejudices that exist in data, leading to unfair or discriminatory
outcomes. When data augmentation techniques are applied, they can inadvertently
amplify existing biases or introduce new biases into the augmented data. Data
augmentation techniques modify the original data samples, potentially altering the
distribution of the training data. Jain et al. (2022) in a recent study pointed out
that, although one expects GANs to replicate the distribution of the original data,
in real-world settings with limited data, finite training time and network capacity,
the generated distribution can only capture a subset of the original distribution. In
this scenario, GANs generate a distribution with significantly less diversity in one or
several dimensions compared to the original data, bringing along the side-effect of
amplifying the bias. The authors explored how the use of synthetic data generated
by GANs, which are currently used in many different fields, are sensitive to this
phenomenon. They analyzed how the societal biases, like gender and skin tone,
present in a dataset of faces of engineering professors collected from a selection of
U.S. Universities would be enhanced by using different types of GANs to generate
synthetic data. The authors recommend a critical and conscious approach in the use
of GANs for data augmentation. In fact, in some situations, even if the data might
seem well balanced, they could be affected by some hidden bias and the augmented
data might be under-representing some crucial feature of the real-world data. In
those cases, the use of more reliable techniques should be considered.

Another important point that needs to be investigated concerns the relationship
between data augmentation and explainability. While data augmentation can signif-
icantly improve model performance by providing more varied and representative
training examples, it can also have an impact on the explainability ofmachine learning
models. Explainability refers to the ability to understand and interpret the decision-
making process of a machine learning model. It is crucial in many domains where
transparency, accountability, and trust are required, such as healthcare. The impact of
data augmentation on explainability can be examined from two perspectives: model
interpretability and feature importance. In the first one, data augmentation can affect
model interpretability by introducing additional complexity and non-linearity into
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the training process. When augmented data is used, the model is exposed to a wider
range of input variations, making it more challenging to pinpoint the exact reasons
for a particular decision. The transformations applied during augmentation can
distort or alter the original features, making it harder to understand how the model is
leveraging specific input characteristics to make predictions. In the second one, data
augmentation can also influence feature importance analysis, which aims to identify
the input features that have the most significant impact on the model’s predictions.
By augmenting the data, the distribution and relationships between the features can
change. This alteration can lead to changes in the perceived importance of certain
features, as the model may rely more heavily on augmented features or combinations
of features that were not present in the original dataset.

TRIPOD analysis brought out that most studies neither shared their source code
nor included enough information about the model architecture, hyperparameters
used, validation and evaluation methods followed to achieve such very good results.
This leads to raising questions about the obtained results. Isn’t it that such exciting
results were associated with some methodological bias that overestimates the per-
formance of the resulting model? Moreover, limited accessibility of datasets and
codes makes it difficult to assess the reproducibility of AI research. This approach is
not constructive and affects external validity and denies implementation by other
researchers that could improve themodel. We strongly recommendmore transparent
reporting, sharing code, data (if possible) and detailing the hardware used. Only in
this way can the replicability and robustness of the study be verified. Further, from
the TRIPOD survey it emerged that it would be desirable to improve the drafting of
the title and abstract by inserting more explanatory keywords.

Some limitations in our study can be highlighted. First, our search may have
missed some studies that could have been included although comprehensive and sys-
tematic. Second, the guideline we used to assess the quality of the studies (TRIPOD)
was not designed for AI studies, so some items and their adherence levels need some
degree of interpretation. Third, we focused on studies that used small databases
within clinical images; we believe it may not be appropriate to generalize our find-
ings to other databases employed in the field of AI. Taking into account the main
limitation emerged from this review, we feel compelled to underline the importance
of the external validation of the developed models. This verification process aims to
ensure the credibility, reliability, and accuracy of the results by subjecting them to
scrutiny and evaluation by involving external, unbiased and independent validators.
It helps mitigate biases and errors that might have been overlooked by the origi-
nal researchers or developers. The external independent validation enhances the
transparency and accountability of the research or development process and helps
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build trust among stakeholders, decision-makers, and the wider community. Overall,
external validation is an important process for ensuring that models are performing
as intended, and that the results are accurate and reliable against real-world data. In
addition, it provides confidence in the decisions made based on the output of the
model, essential in the clinical field.

As further suggestions for future directions, since data augmentation can impact
bias propagation in machine learning models, caution must be exercised to ensure
that biases are not amplified or introduced during the augmentation process. A
thoughtful approach that includes diverse and representative data, bias detection
and correction can help mitigate bias propagation. Furthermore, although data
augmentation can pose challenges to model explainability, the following strategies
can help mitigate these challenges: i) careful consideration of methods specifically
designed to improve the interpretability of models trained on augmented data, ii)
awareness of the impact of augmentation on feature importance, and iii) controlled
augmentation strategies to ensure that the augmented data samples preserve the
salient characteristics of the original data. In our opinion this topic is not explicitly
addressed in the literature and it should be developed in future works. Ultimately,
balancing the benefits of improvedmodel performancewith the need for interpretabil-
ity is essential, particularly in domains where transparency and accountability are
critical. For this purpose, post-hoc interpretability methods should be employed by
highlighting relevant features or generating saliency maps.

3.5 Conclusion
Though AI requires a sufficient amount of quality data for training, the results
obtained using small databases of medical images are promising but still not mature
enough to be implemented in the clinical setting and be widely used. Transfer
learning and data augmentation could represent the most reasonable choices to fight
overfitting. Despite the good performances obtained so far, often too promising,
there is still a lot of work to be done. First of all, to encourage the external validation
of the models, using databases that are independent from those of the training.
Consequently, it is necessary to sensitize researchers to be more transparent, sharing
codes and data as much as possible. This attitude will help the reproducibility, the
generalizability and the development of higher quality research.
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Supplementary Materials

Supplementary Figure 3.1: Quantity of available data with respect to the anatomical re-
gion (upper left), the imaging technique (upper right) and the
dataset origin (lower left).
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Supplementary Figure 3.2: Performances with respect to the available data by anatomical
region, imaging technique and dataset origin.
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Supplementary Figure 3.3: Performances with respect to the quality of the data (TRIPOD
index) by anatomical region, imaging technique and dataset
origin.
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Abstract

Background: Texture analysis can extract many quantitative image features, of-
fering a valuable, cost-effective and non-invasive approach for individual medicine.
Furthermore, multimodal machine-learning procedures could have a large impact
for precision medicine, as texture biomarkers can underlying tissue microstructure.
Proposed study aims to apply a radiomic and dosiomic analysis on Magnetic Res-
onance (MR) and dose images, to investigate imaging-based biomarkers of radio-
induced neurotoxicity in pediatric patients affected by medulloblastoma.

Methods: In this single-center analysis, 48 childrenwithmedulloblastoma treated
between 2011 and 2019 were retrospectively enrolled. There were 29 men and 19
women with a mean age of 12 ± 6 years (range: 2 − 23 years). For each patient, a
total of 332 radiomic and dosiomic features were extracted from the region of tumor
on the T1, T2, FLAIR MRI-maps and on radiotherapy dose distribution. Different
machine-learning feature selection and reduction approaches were performed to
build supervised and unsupervised hierarchical clustering. Moreover, external cluster
validation method was applied to get the prediction accuracy.

Results: A greater level of abstraction of input data by combining selection of
the most performing features and reduction of dimensionality returns the best per-
formance. The resulting 1-components radiomics signature for clustering, obtained
projecting the 4-best selected features, yielded an accuracy of 0.73 with sensitivity,
specificity and precision of 0.83, 0.64 and 0.68, respectively.

Conclusion: Machine-learning radiomic-dosiomic approach showed satisfactory
stratification performance for unsupervised clustering of pediatric medulloblastoma
patient who have experienced radio-induced neurotoxicity. The strategy needs further
validation in an external dataset for its potential clinical use in ab initio management
paradigms of medulloblastoma.

Keywords: small data, radiomics, dosiomics, pediatric medulloblastoma, clustering, neuro-
toxicity
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4.1 Introduction
Medulloblastoma (MB) is the most common brain malignancy in pediatric pa-
tients, which accounts for 20 − 25% of pediatric central nervous system neoplasms
(Von Bueren et al., 2016; Ramaswamy and Taylor, 2017). Despite the increase in
survival rates in recent years, prognosis of MB patients remains relatively poor, and
it strongly depends on clinical and molecular risk factors (Millard and De Braganca,
2016).

In the past the risk stratification was based on age at diagnosis, disease dissemi-
nation and extent of resection. Recently a new proposed classification identifies four
risk categories (low, standard, high and very high risk) taking into account metastatic
stage and genetic and cytogenetic aberrations characterized by very different clinical
outcomes and treatment resistance (Archer et al., 2017). MB is currently treated with
surgery, chemotherapy and Cranio-Spinal Irradiation (CSI). Cure intensification
is based on risk stratification and despite this multimodal approach, about 30% of
high-risk patients experience disease relapse (Bouffet, 2021).

Moreover, due to the aggressive therapies and the young age of MB patients,
early and late sequelae such as ototoxicity, cardiotoxicity, lung toxicity, neurotox-
icity, endocrine deficiency as well as neurocognitive deficits could often develop
(Parsons et al., 2011; Tamayo et al., 2011; Packer et al., 2013). In particular neurotox-
icity could compromise quality of life in pediatric patients, for example long term
neurological sequelae imply that children treated with high dose chemotherapy
and/or Radiotherapy (RT) for central nervous system tumors had lower educational
outcomes (Lorenzi et al., 2009). The factors that concur to develop neurotoxicity
in pediatric patients are argument of scientific discussion; in a recent retrospective
review of 113 patients treated with CSI for medulloblastoma, the authors showed a
dose response relationship between radiotherapy and neurocognitive impairment
(Moxon-Emre et al., 2014). New RT technique, smaller RT field and lower dose are
investigated to reduce the impact of radiotherapy on neurotoxicity in central nervous
system tumors in children (Seidel et al., 2021). Furthermore, the improvement of
diagnostic imaging led to Magnetic Resonance Imaging (MRI) becoming the gold
standard in central nervous system tumors (Perreault et al., 2014). Due to the high
resolution of morphologic images, MRI guides the clinician with the differential
diagnosis and consequently the first approach to the therapeutic path, moreover
multiparametric MRI is useful to define treatment response not only detecting tumor
shrinkage but also to distinguish pseudo progression and early signs of neurotoxicity
(Nichelli and Casagranda, 2021).

A revolutionary approach to medical imaging has been done with radiomics.
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The imaging analysis allows the extraction of quantitative features that could be
used for clinical purposes. Radiomics derived data when used in combination with
clinical data could offer information not only about cancer genotype but also clinical
outcome and toxicity treatment correlated (Lambin, 2017; Zhang et al., 2018; Sun
et al., 2018; Kickingereder et al., 2016). We hypothesize that non-invasive biomarkers
offer great potential for improving stratification in pediatric medulloblastoma. The
aim of this study is to analyze MRI features of MB patients treated with surgery,
chemotherapy and CSI and look for quantitative features that correlate with clinical
outcome. Moreover, the correlation between MRI radiomics features and dosimetric
distribution on planning Computed Tomography (CT) are investigated to predict
radio-induced neurotoxicity. This toxicity has been identified with radio-necrosis,
a condition characterized by the death of tissue due to exposure to high doses of
radiation and frequently occurs in the brain. The combination of radiomics and
dosiomics (i.e. to extract texture features from dose distribution (Buizza et al., 2021))
analysis is likely to provide non-invasive imaging biomarker.

4.2 Materials and Methods

Dataset

All procedures performed in this study involving human participants were in accor-
dance with the ethical standards of the institution and the Declaration of Helsinki
(as revised in 2013). The study was approved by the Institutional Pediatric Ethics
Committee. Since this study is a retrospective analysis and the patients have been
anonymously processed, the need for informed consent was waived.

In this single-center analysis, data of patients referred for adjuvant radiotherapy
for pathologically confirmed primaryMB patients from September 2011 to November
2019 were initially analyzed for further inclusion. The inclusion criteria were (i) avail-
ability of postoperative MRI with diagnostic-quality performed after adjuvant RT
throughout the follow-up period, (ii) availability of multi-parametric MRI, including
axial T1, T2, and FLAIR maps, (iii) availability of radiotherapy CT, structures set,
plan and 3D dose volume. Patients with incomplete clinical data, poor tumor tissue
quality, and incomplete or poor-quality MR images were excluded from the research.
Baseline demographic clinical information including age, gender, metastasis, his-
tologic subtype, and adjuvant therapies (radiation alone, chemotherapy alone or
both of them) were collected from the medical record system. Follow-up data were
acquired by medical records. The study population included 48 patients with a mean
age of 12 ± 6 years, range 2 − 23 years, 29 men and 19 women.
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Regarding the follow up data, the protocol requires MRIs to be repeated every 3
months for the first 3 years after surgery and then every 6 months. This has allowed
clinicians to identify whether or not the radio-induced neurotoxicity has occurred
and to obtain the ground truth label, hereinafter referred to as ’relapse’. While for
RT-treatment, patients treated with Medulloblastoma received either standard-dose
(i.e. 30.6 to 39.4 Gy) or reduced-dose (i.e. 18 to 23.4 Gy) radiation to the entire brain
and spine. In some cases, patients received a boost to the entire posterior fossa or
a focal conformal boost to tumor bed if a residual disease is present; in both cases,
total boost volume dose was 45 to 55.4 Gy. Moreover, the radiation was delivered
with helical TomoTherapy (Mackie et al., 1993).

Radiomic features extraction

Prior to feature extraction, two fundamental data pre-processing steps was car-
ried out across all the patients: resolution adjustment and images co-registration.
Three-dimensional tumor contours were obtained free from radiotherapy process
by co-registration of MR images on the centering CTs. Pixels included by the de-
fined tumor contour were applied for feature extraction using PyRadiomics (v2.2.0)
(Van Griethuysen et al., 2017), an open-source Python tool. A detailed description of
the implementation of these steps and radiomic features extracted by the software is
available in the official documentation (https://pyradiomics.readthedocs.io/en/
latest/features.html). A diagram illustrating images processing and the overall
workflow is displayed in Figure 4.1.

Features quantifying tumor phenotypic characteristics on MR and dose images
could be grouped as tumor intensity and texture features. In the first category, tumor
intensity information are quantified using first-order statistics, obtained from the
histogram of entire tumor voxel intensity values. While the second category consists
of three-dimensional texture features that are able to quantify the intra-tumoral
heterogeneity within a full tumor volume. Textural features were computed based on
Gray Level CooccurrenceMatrix (GLCM), Gray Level Run LengthMatrix (GLRLM),
Gray Level Size Zone Matrix (GLSZM), Gray Level Dependence Matrix (GLDM)
and Neighbouring Gray Tone Difference Matrix (NGTDM).

Features selection & classifier

Datamining andmachine learning analysiswere performed in theColab environment
(https://colab.research.google.com).

To reduce the batch effects, in the feature analysis, the quantitative radiomics raw
data were normalized across all patients. Two different feature selection and ranking

https://pyradiomics.readthedocs.io/en/latest/features.html
https://pyradiomics.readthedocs.io/en/latest/features.html
https://colab.research.google.com
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Figure 4.1: Radiomics workflow pipeline.

methods were employed in the analysis based on multivariate filter approaches and
on recursive feature elimination. Filter methods are feature-ranking methods, which
rank the features using a scoring criterion, and multivariate methods investigate the
multivariate interaction within the features and the scoring criterion is a weighted
sum of feature relevancy and redundancy. Feature relevancy is a measure of feature’s
association with the target/outcome variable, whereas feature redundancy is the
amount of redundancy present in a particular feature with respect to the set of
already selected features (Kohavi and John, 1997). The second approach concerns
Recursive Feature Elimination (RFE). It aims to identify the most relevant features
from a given dataset by iteratively eliminating less important features based on their
contribution to a model’s performance. Given an external estimator that assigns
weights to features, the algorithm recursively eliminates least important features
considering smaller and smaller sets of features. The number of features to eliminate
at each iteration is a parameter that needs to be specified. After removing the
least important features, the model is retrained on the reduced feature set. That
procedure is recursively repeated on the pruned set until a predetermined number
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of features remain or until a specific stopping criterion is met. We exploited Mutual
Information (MI) and RFE in a 5-fold cross-validation fashion for feature selection
and ranking, and Principal Component Analysis (PCA) as dimensionality reduction.

We implemented three different classification methods, Random Forest (RF)
- Extreme Gradient Boosting (XGB) - Hierarchical Clustering (HC) and external
cluster validation method was applied to get the prediction accuracy. We want to
spend a few words about the last two less common classifiers and deepen these
concepts of data mining.

XGB is designed to solve supervised learning problems and it is an enhanced
version of the traditional gradient boosting algorithm. An ensemble model combines
the outputs ofmultipleweak predictionmodels to create a stronger andmore accurate
model. The RF is a popular ensemble that takes the average of many decision trees
via bagging. Bagging is short for "bootstrap aggregation", meaning that samples are
chosen with replacement (bootstrapping), and combined (aggregated) by taking
their average. Boosting is a strong alternative to bagging. Instead of aggregating
predictions, boosters turn weak learners into strong learners by focusing on where
the individual models went wrong. In Gradient Boosting, individual models train
upon the residuals which are the difference between the prediction and the actual
results. Instead of aggregating trees, gradient boosted trees learn from errors during
each boosting round. The key idea behind XGB is to optimize a specific loss function
by iteratively adding weak models and updating the model’s predictions based
on the residuals. The "eXtreme" refers to speed enhancements since it supports
parallel computing. In addition, XGB includes a unique split-finding algorithm to
optimize trees, along with built-in regularization to prevent overfitting and improve
generalization and which controls the complexity of the model.

Hierarchical cluster analysis is an unsupervised clustering algorithm. The algo-
rithm groups similar objects into groups called clusters. The endpoint is a set of
clusters or groups, where each cluster is distinct from each other cluster, and the
objects within each cluster are broadly similar to each other. Clustering technique is
based on measures of similarity between pair of items in the data set. This similarity
is conceived in terms of distance in a multidimensional space, such as the Euclidean
distance. Clustering algorithm then group the elements on the basis of their mutual
distance, specifically it works out which observations to group based on reducing
the sum of squared distances of each observation from the average observation in a
cluster. Therefore, whether or not the elements belong to a set depends on how far
the element under consideration is from the set itself. The main advantage of hierar-
chical clustering is that the number of clusters does not have to be defined a priori.
Moreover, this technique can be displayed in an attractive, tree-based representation
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of the observations, called a dendrogram. The tree is not a single set of clusters, but
rather a multilevel hierarchy, where clusters at one level are joined as clusters at the
next level. The distance between data points represents dissimilarities, while height
of the blocks represents the distance between clusters.

Concerning cluster validation, external clustering validity approach uses prior
knowledge and consists in comparing the results of a cluster analysis to an externally
known result, such as externally provided class labels. It measures the extent towhich
cluster labels match pre-existing clustering structure (reference labels). We preferred
this method since we know the "true" cluster number and reference labels in advance
(Rendón et al., 2011). Measures of the machine learning classifier performance
included: accuracy, sensibility, sensitivity (recall), precision, F-score and MCC.1.

4.3 Results
A total of 332 radiomic and dosiomic features were extracted from each patient, 83
for each of the four available images series (three MRI sequences and dose distribu-
tion). Their pairwise correlation cluster map can be found in Supplementary File 4.1.
Among these, feature selection worked by selecting the k best most informative
features based on MI statistical test. In our case, the 20 best features derived from
dose, T1 and T2 weighted images are made explicit in Table 4.1. Their univariate and
bivariate distribution in our population based on relapse occurrence can be found in
Supplementary File 4.2.

The first step of our strategy for features selection was to consider the best 20
features (correlation matrix can be find in Supplementary File 4.3) based on the
explained variance; in fact in Figure 4.2 it can be seen how already with only 20
components (intended as the number of features) it is possible to maintain as much
as 95% of the variability present in the data. A higher explained variance indicates
a better fit and suggests that the model is capturing a significant portion of the
underlying relationships between the variables. Taking into account the second
selection and ranking method, in RFE we set the achievement of 20 features as a
stopping criterion following what we learned a little while ago. The process was
repeated with four common external estimators (Logistic Regression (LG), Decision
Tree (DT), Random Forest (RF), Gradient Boosting (GB)) and the selected features
were compared with those identified by MI statistical test. From the histogram in
Figure 4.3 it is possible to notice how certain variables are more frequently present
in the subsets of 20 features and are also the same ones that are found in the first

1MCC is a measure of the quality of binary classifications in machine learning, ranging from +1
(perfect prediction) to 0 (average random prediction) and −1 (inverse prediction).
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Table 4.1: Characteristics of each selected feature and relative class according to PyRa-
diomics official documentation (https://pyradiomics.readthedocs.io/en/
latest/features.html).

places of the ranking proposed by the mutual information analysis. As second step,
features reduction was conducted exploiting the PCA technique, which permits a
dimensionality reduction. It combines input data by projecting them into a lower
number of components, four and one in our case, following the rule of thumb to
select one feature every 10/15 variables. Thereby we increase the informative power
of the remaining features, but we cannot have a direct definition of what each single
feature describes.

The evaluation metrics according to the various strategies for features selection
and features reduction are shown in the Table 4.2. Considering the best performing
strategy, its accuracy is 0.73 with 35/48 correctly classified patients. In particular,

https://pyradiomics.readthedocs.io/en/latest/features.html
https://pyradiomics.readthedocs.io/en/latest/features.html
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Figure 4.2: Cumulative explained variance as function of the number of features. Already
with 20 features it is possible to account for 95% of the total variance.

analyzing Sensitivity and Specificity the model demonstrates good prediction power
at identifying patients who have suffered radio-induced toxicity.

4.4 Discussion
In recent years, an increasing number of reports demonstrated the added value of
machine learning-based radiomics analysis to clinical and conventional MRI char-
acteristics in pediatric MB, pointing out the potential to predict molecular markers
and molecular subtype, to improve survival prediction, to evaluate the intratumoral
heterogeneity and to boost prognostic models (Liu et al., 2022; Yan et al., 2020; Zheng
et al., 2021; Zhou et al., 2021). However, to our knowledge, the relationships between
the combination of radiomic-dosiomc features and radio-induced neurotoxicity of
MB patients has not been investigated. The main finding of this study is that our
machine learning approach showed satisfactory stratification performance for clus-
tering of pediatric medulloblastoma patient who have experienced radio-induced
neurotoxicity based on radiomic and dosiomic features extracted from MR and dose
images. The accurate stratification of pediatric medulloblastoma patient is highly
desired to select the most appropriate treatment (Liu et al., 2022), especially in view
of a dose de-escalation with the same disease control. Indeed, patients treated with
higher doses are prone to experienced intellectual declines and presence of radio-
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Figure 4.3: Histogram of the frequency of the top features identified with the different
selection methods.

induced neurotoxicity are associated with worse intellectual outcome (Moxon-Emre
et al., 2014).

The machine learning protocol followed in this study foresees to examine the
dose distribution calculated for the RT treatment and the MR images of the first
follow-up after radiotherapy. From the quantitative data extracted from these images
it was possible to establish a radiomic signature that has the potential to highlight
patients in whom radio-induced damage will develop. This could have a great
clinical response, because it gives the physician the possibility to intervene promptly
with adequate therapies and reduce complications, since the detriments caused by
ionizing radiations have a medium-to-long latency.

Considering the features extraction and reduction strategies, it was possible to ap-
preciate that a greater level of abstraction of input data by combining the selection of
the most performing features and the reduction of dimensionality with PCA returns
a better prediction performance. Combining the 20-best features by projecting them
into a lower number of components (four or just one dimension) have increased the
informative power of the input data, compared to directly considering the 20-best
features. The best result was obtained by taking into consideration the 4-best features
according to the ranking given by the mutual information test and projecting these
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Table 4.2: Classifier evaluation metrics; MCC, Matthews Correlation Coefficient.

four variables into a single component. In this scenario, satisfactory results of the
various metrics were obtained for all three classifiers; in particular the podium was
awarded by the RF algorithm with an accuracy of 0.73 and an MCC of 0.47. This
outcome is remarkable given the small number of the database and indicates a good
agreement between the predicted and actual classifications; probably also due to the
simplicity of the trained model which made it possible to contain overfitting. The
resulting drawback of this approach is that we no longer have a direct definition of
what each single feature describes. Taking a step back and examining the description
of the 4-best identified features, it can be seen how they take into account small
size zones with high gray-level values for the dose distribution indicating the dose
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hot-spots, disparity in intensity values among neighboring voxels and measures of
heterogeneity on differing intensity levels pairs that deviate more from the mean for
T2-weighted and complexity of the texture for T1-weighted maps. All of them can
be seen as describing two fundamental properties: homogeneity and heterogeneity
of the underlying tissue and dose microstructure (Zheng et al., 2022; Chang et al.,
2021). Further, it must be highlighted that features extracted from dose images also
contribute to the construction of the radiomic signature. In addition, following the
scores presented in Figure 4.3, it is confirmed that certain features are robust with
respect to the various feature selection methods. In particular, by comparing the
ranking given by the statistical test of the MI with the RFE for the various external
estimator, it is clearly seen that in addition to the 4-best features previously indi-
cated, the various subsets also include features that concern heterogeneity in texture
patterns, spatial rate of change, local homogeneity in the image and similarity of
gray-level intensity values, emphasizing our previous assumption.

Taking into account the classification methods, all three techniques showed good
results, comparable to each other and without running into overfitting. Between
the two supervised algorithms, RF shows on average slightly better performance
than XGB, probably due to for its simplicity, scalability, robustness to noise and
therefore it is possible to train better even with small data size available. In fact,
RF has fewer hyperparameters to tune compared to XGB, which has a wide range
of hyperparameters that control the behavior of the boosting process and a proper
tuning of hyperparameters is crucial for achieving optimal performance with XGB.
On the other hand, from the results in Table 4.2 we can say that unsupervised
clustering has intermediate performances respect to the two systems just described.
It is necessary to point out that hierarchical clustering does not require any prior
assumptions and the classification we found, arose spontaneously from the data
without forcing. The hierarchical cluster tree may naturally divide the data into
distinct, well-separated clusters. This can be particularly evident in the attractive
dendrogram representation created from data where groups of objects are densely
packed in certain areas and not in others (Supplementary File 4.4). At the bottom
of the tree, each leaf represents one of 48 observations in the data set. As we move
up the tree, the leaves which are similar to each other are grouped into branches.
The branches then define combinations of observations until the top, where there
is only one root. The height of the dendrogram indicates the similarity between
observations or clusters of observations. Two observations meeting at a lower branch
will be more similar to each other than another pair of observations meeting at a
higher branch.

To sum up, we obtained comparable performance applying two intrinsically dif-
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ferent methods; on one hand supervised learning algorithms learn patterns and
relationships between features and target variable, on the other unsupervised learn-
ing algorithm groups similar data points into clusters based on their distances or
similarities discovering inherent patterns without any predefined target variable.
This indicates the goodness of the data available and the care taken in creating the
database, albeit of modest dimensions.

Nonetheless, some limitations of this study need to be addressed. First, pediatric
MB is a rare tumor and although our research extends over 8 years, the patients’
cohort is quite limited. In addition, the datawere all from a single institution although
this peculiarity has allowed us to build a homogeneous, complete and balanced
database. Second, an external patient population for assessing of the radiomics
signature generalizability is not available. Future investigations will require data
exchange between different institutions to obtain higher volume database thanks to
which it could be possible obtain performance more reflective of the real predictive
power of current method.

4.5 Conclusion
We believe the current imaging techniques may potentially be further equipped to
better classify and safely diagnose possible complications and the current study
demonstrated proof-of-concept results for integrating radiomics protocol. In this
regard, radiomics and dosiomics may prove a valuable and cost-effective aid by
providing non-invasive quantitative data that integrate qualitative image information
already available.
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Supplementary Files

Supplementary Figure 4.1: Pairwise correlation cluster map concerning all extracted fea-
tures.
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Supplementary Figure 4.2: Univariate and bivariate distribution with regression lines for
the 20-best selected features in relation to the relapse occur-
rence.
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Supplementary Figure 4.3: Correlation matrix of the 20-best extracted features.
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Supplementary Figure 4.4: Heat map of the reduced 4-best radiomics features signature.
Hierarchical clustering with dendrogram of relapse occurrence
is on the top. The red/blue bar indicates the true labels.
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Abstract

Lung Computed Tomography (CT) is an imaging technique useful to assess the
severity of COVID− 19 infection in symptomatic patients and tomonitor its evolution
over time. Lung CT can be analysed with the support of deep learning methods for
both aforementioned tasks. We have developed a U − net based algorithm to segment
the COVID − 19 lesions. Unfortunately, public datasets populated with a huge
amount of labelled CT scans of patients affected by COVID − 19 are not available. In
this work, we first review all the currently available public datasets of COVID− 19 CT
scans, presenting an extensive description of their characteristics. Then, we describe
the design of the U − net we developed for the automated identification of COVID −
19 lung lesions. Finally, we discuss the results obtained by using the different publicly
available datasets. In particular, we trained the U − net on the dataset made available
within the COVID-19 Lung CT Lesion Segmentation Challenge 2020, and we tested it
on data from the MosMed and the COVID − 19 − CT − Seg datasets to explore the
transferability of the model and to assess whether the image annotation process
affects the detection performances. We evaluated the performance of the system in
lesion segmentation in terms of the Dice index, which measures the overlap between
the ground truth and the predicted masks. The proposed U − net segmentation
model reaches a Dice index equal to 0.67, 0.42 and 0.58 on the independent validation
sets of the COVID-19 Lung CT Lesion Segmentation Challenge 2020, on the MosMed
and on the COVID − 19 − CT − Seg datasets, respectively. This work focusing on
lesion segmentation constitutes a preliminary work for a more accurate analysis of
COVID − 19 lesions, based for example on the extraction and analysis of radiomic
features.

Keywords: COVID − 19, Lung CT, U − net, Data Aggregation, Image Segmentation
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5.1 Introduction
Lung Computed Tomography (CT) is a very sensitive medical imaging technique to
detect lung lesions due to COVID − 19. It can be used for the diagnosis, prognosis
and for monitoring the disease evolution over time. Despite the use of CT for diag-
nosis is not recommended by the World Health Organization (Organization, 2020),
lung CT analysis can be very informative regarding the severity of the disease and its
time evolution (Fang et al., 2021). The use of CT in clinical practice for COVID − 19
diagnosis in symptomatic patients has been explored. Since the unexpected out-
break of the pandemic, physicians tried to use CT imaging of the chest to diagnose
COVID − 19 disease. The first publication describing in details radiological findings
of CT was published in January, the 24 of 2020 (Huang et al., 2020) and it describes
the radiological findings of the majority of COVID − 19 hospitalized patients of this
study, such as bilateral multiple lobular and sub-segmental areas of consolidation
and bilateral ground-glass opacity. Afterwards, several studies have been published
to describe the radiological findings of COVID − 19 chest CT (Carotti et al., 2020).
A summary of all possible findings and their incidence is reported in Table 5.1.

We underline that the dataset used by (Huang et al., 2020) contains a very limited
number of CT scans (41 patients) and it is private. Most of the chest CT findings
cannot be related exclusively to COVID − 19 because they are nonspecific signs of
disease and they are strongly related to the stage of the disease. This means that there
are other forms of pneumonia that may have the same signs such as SARS −CoV − 1
and MERS − CoV. For this reason, the World Health Organization (WHO) defined

Table 5.1: Summary of COVID− 19 chest CT findings and their incidence on the population.
The normal chest CT findings are also associated to symptomaticity (Huang et al.,
2020).
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as "confirmed case" the patient that have been tested positive for COVID − 19 RT −
PCR, irrespective of clinical signs and symptoms (Organization, 2020). Furthermore,
it is necessary to differentiate the COVID − 19 infections not only from other viral
pneumonia but also from bacterial pneumonia, such as mycoplasma pneumonia
(Ishiguro et al., 2019). The use of chest CT to diagnose COVID − 19 is, hence, under
discussion since it implies the use of ionizing radiation (Adams et al., 2020b) while
its ability to monitor the progression of the disease seems to be a promising way
to use lung CTs (Adams et al., 2020a). Artificial Intelligence (AI) is a powerful
instrument that allows to analyse a huge quantity of data, such as CT scans and,
hence, it can be used to monitor and study COVID − 19 CT signs (Gülbay et al.,
2021). Unfortunately, AI implementations require a great amount of data, which
may be not easily available. This is especially true when deep-learning methods are
used. Since the beginning of the pandemic, some lung CT scans of COVID − 19
patients have been released by different institutions following different guidelines for
both image acquisition and annotation (ground truth). In this work, all the public
lung COVID − 19 CT datasets, to the best of our knowledge, suitable for training
AI-based systems are reviewed. In this work, we present an extensive description of
the currently publicly available datasets, which present different characteristics, and
discuss the segmentation results obtained by using them. In particular, we trained a
U − net on the dataset released within the COVID-19 Lung CT Lesion Segmentation
Challenge 2020 (An et al., 2020) and tested it on data from MosMed (Morozov et al.,
2020a) and COVID − 19 − CT − Seg datasets (Ma et al., 2020). Finally, the limits
and the advantages of aggregating this kind of data are discussed.

5.2 AI and Medical Image Dataset Issues
AI has been used to analyse and process CT to diagnose COVID − 19, to segment
lesions inside the lungs and, also, in longitudinal studies to track the evolution of
the disease (Ma et al., 2020). AI based methods, especially deep-learning ones, need
a huge amount of labelled data that are not easy to collect and share. As already
described in the introduction, some studies use private datasets which do not allow a
fair comparison with other AI based systems. Furthermore, the characteristics of CT
images depend on the scanner, on the acquisition and the reconstruction protocols
and on other information which may not be available. This can be due also to the
anonymization process needed to preserve subjects’ privacy or to the use of image
format different from DICOM, such as the NIfTI format. DICOM is the most used
image format for medical images and it contains several metadata in its header.
The DICOM header stores many information, some of which is Protected Health
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Information (PHI) or private keys that are inserted and encoded by the manufacturer
and may contain PHI as well. On the other hand, some metadata, such as anode
characteristics or X-ray parameters, do not contain PHI and they can be useful in
analysing images. For all these reasons, anonymizing a DICOM file is not a trivial
problem and dataset may include images in a different format such as NIfTI (Moore
et al., 2015). Deep learning based methods often require the association with a label
depending on the task we want to solve. Many approaches are based on supervised
learning and, hence, image annotation plays a crucial role. Usually, medical image
labels are given by one or more radiologists with experience in the specific field, and
image annotation is a very time-consuming task. This is the reason why there is a
general lack of public labelled datasets of medical images. In order to save time, it
may happen that the labelling is made with the support of an automatic tool and
then labels are adjusted manually by one or more physicians.

5.3 Lung CT Datasets
In this section, the currently available datasets of lungCT and their annotation process
are reported. The dataset are: COVID-19 Lung CT Lesion Segmentation Challenge 2020
dataset, MosMed dataset, COVID − 19 − CT − Seg dataset and TCIA − COVID −
19 − AR.

COVID-19 Lung CT Lesion Segmentation Challenge 2020 Dataset

TheCOVID-19 Lung CT Lesion Segmentation Challenge 2020 (Challenge dataset) dataset
is a public dataset made by 199 unenhanced chest CT with positive RT − PCR for
SARS−CoV − 2 patients (An et al., 2020), published as training set in the occasion of
the COVID GrandChallenge (https://covidsegmentation.grand-challenge.org).
Each CT is annotated voxel-wise and indicates all the COVID − 19 lesions in a
unique mask. Data has been provided by TheMulti-national NIH Consortium for CT
AI in COVID − 19 via the NCI TCIA public website in Neuroimaging Informatics
Technology Initiative (NIfTI) format. Annotations have beenmade using a COVID−
19 segmentation model provided by NVIDIA that takes a full CT chest volume and
produces pixelwise segmentationmasks ofCOVID− 19 lesions. These segmentation
masks have been adjusted manually by a board of certified radiologists in order to
give 3D consistency to the lesion masks. The annotations of the training set have
been published in the context of the challenge while the system performance has
been evaluated by challenge organizers on an independent validation set of 50 CT
scans, for which the lesion annotations were not publicly released. A third set, an

https://covidsegmentation. grand-challenge.org
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independent test set consisting of 46CT scans, was used to the define the final ranking
among the participants, and, also in this case, the lesion segmentation annotations
were not publicly released.

MosMed Dataset

MosMed (Morozov et al., 2020a) is a dataset of COVID− 19 Chest CT scans collected
by the Research and Practical Clinical Center for Diagnostics and Telemedicine
Technologies of the Moscow Health Care Department. It includes 1110 CT studies
taken from 1110 patients and it is provided with a labelling that consists of 5 classes,
based on the percentage of involved lung parenchyma. A small subset of class CT − 1
cases (50 patients) has been annotated by expert radiologists with the support of
MedSeg software (2020 Artificial Intelligence AS). The image annotations consist
of binary masks in which white voxels represent both Ground-Glass opacities and
consolidation. Both CT scans and annotationswere provided inNIfTI format. During
the DICOM − to − NI f TI conversion only one every 10th image was preserved
(MosMed, site).

COVID-19-CT-Seg Dataset

The COVID − 19 − CT − Seg dataset is a collection of CT scans made available by
the Coronacases Initiative and Radiopaedia (Ma et al., 2020) and contains 20 CT
scans of patients resulted positive for RT − PCR COVID − 19 infection. It is a public
dataset which contains annotations related to both lung and infection localization.
The ground truth has been made in three steps: first, junior radiologists (1 − 5
years of experience) delineated the annotations of lungs and infections, then two
radiologists (5− 10 years of experience) refined the labels and finally the annotations
were verified and optimized by a senior radiologist (more than 10 years of experience
in chest radiology). The annotations have been produced with ITK-SNAP software.
Ten cases of this dataset were provided in 8-bit depth which are not commonly used
in clinical practice.

TCIA-COVID-19-AR

The TCIA−COVID − 19− AR (Desai et al., 2020) is a dataset of COVID − 19 cases
taken from a rural population, which is often underrepresented in public datasets.
It contains 24 CT scans of patients with both lung lesions due to COVID − 19 and
control cases. Each patient is described by a set of clinical data correlates that includes
key radiology findings. Moreover, for each patient the information about Intensive
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Care Unit (ICU) admission is included while annotations on images are not included
in this dataset.

5.4 COVID-19 Lesion Segmentation
We developed an automatic system which can segment COVID − 19 lesions based
on a U − net (Ronneberger et al., 2015) in the framework of the COVID − 19 Lung
CT Lesion Segmentation Challenge 2020 (GrandChallenge, site). First, a bounding box
which contains the lungs has been built for eachCT scan to reduce asmuch as possible
the background from the images. An in-house lung segmentation algorithm based
on active contours was developed for this purpose and implemented in Matlab (The
MathWorks, Inc.). This algorithm, which accurately segments the lung parenchyma
in absence of lesions, has very limited performance on CT scans of subjects with
COVID − 19 lesions. The CT images have been cropped to the bounding boxes,
resized to a matrix of 200 × 150 × 100 voxels and a CT windowing in [−1000, 300]
range of Hounsfield Units has been applied on them to enhance the COVID − 19
lesions. A schematic representation of the used U − net is reported in Figure 5.1.

We trained the network on the Challenge training dataset of 199 CT scans, using a
weighted crossentropy as loss function, and we tested it on the Challenge validation
set (independent from the training set). In order to have a sufficient number of
samples, we applied data augmentation with rotations, zooming and elastic transfor-
mation to the training set. We tested the network also on the 50 annotated cases of
MosMed and on the 10 annotated cases of the COVID − 19 − CT − Seg dataset. The
MosMed dataset contains images and labels taken in a very different waywith respect
to those of the Challenge dataset. The COVID − 19 − CT − Seg dataset has been
built in a more similar way to the Challenge one for both data characteristics, such as
slice thickness, and labelling process. We evaluated the segmentation performance
of the trained network model in terms of Dice index (Equation ) defined as:

Dicemetric =
2 · |Mtrue ∩ Mpredict|
|Mtrue|+ |Mpredict|

(1)

where Mtrue is the ground truth mask and Mpredict is the predicted one. We
participated in the challenge, obtaining a Dice index equal to 0.67 on the challenge
validation set (GrandChallenge, site). Then, we computed the segmentation perfor-
mance of the trained model on the MosMed dataset obtaining a Dice of 0.42, and on
the COVID − 19 − CT − Seg dataset, obtaining a Dice of 0.58.

We show in Figure 5.2 a visual comparison between the reference COVID − 19
lesion masks and the ones predicted by the trained U − net for a representative CT
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Figure 5.1: U − net summary: the U-shaped neural network is made of 5 levels of depth.
In the left path (compression), the input is processed through convolutions,
activation layers (ReLu) and instance normalization layers, while in the right
one (decompression), in addition to those already mentioned, 3D Transpose
Convolution (de-convolution) layers are also introduced. Each block (green) is
made of 3 convolutional layers.

scan of the MosMed and of the COVID − 19 − CT − Seg dataset.

5.5 Discussion and Conclusions
We obtained good results in terms of the Dice index as regards the segmentation of
the lung lesions related to COVID − 19 infection on the Challenge dataset compared
to literature (Ma et al., 2020). The results obtained on the other two datasets are not
good as the first one. We underline that on the dataset more similar to the Challenge
one, the COVID − 19 − CT − Seg dataset, we obtained better results compared to
MosMed. As expected, we conclude that aggregating data from different sources can
be difficult if labelling has been performed using different guidelines. In fact, medical
images have many parameters to be considered, such as the resolution of pixels and
the size of the Field Of View (FOV). These parameters can be studied in order to
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Figure 5.2: Visual comparison between the reference COVID − 19 lesion masks (green)
and the ones predicted (red) by the trained U − net for a representative CT scan
of the MosMed (first row, study − 0255.nii) and of the COVID − 19− CT − Seg
(second row, coronacases − 001.nii) datasets. The original CT scans are shown
on the left as a reference.

attempt a standardization of images from different datasets, by contrast, different
annotation styles can not be easily standardized. Since CT image characteristics can
be variable, deep learning is a useful method to analyse them and their aggregation.
Moreover, U − nets allows a quantification of the volumes of both COVID − 19
lesions and lungs. On the other hand, the use of deep learning based methods
requires a huge amount of homogeneous or harmonized data both to carry out an
optimal training process and to implement a fair representation of the population to
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be studied.
This preliminary study has been useful to understand which parameters should

be considered as the most critical ones in training a neural network model. Lesion
labeling and data selection criteria are crucial for this kind of segmentation problems
because of the lack of largely populated public datasets, impacting in a relevant way
on the performances.

In conclusion, we reviewed all the public available datasets (at the best of our
knowledge in April 2021), i.e. COVID-19 Lung CT Lesion Segmentation Challenge
2020, MosMed, COVID − 19 − CT − Seg dataset and TCIA − COVID − 19 − AR.
We used the Challenge data to train and evaluate a U − net for COVID − 19 lung
lesion segmentation, and we carried out an independent test of the MosMed and the
COVID − 19 − CT − Seg datasets, obtaining good performances, as compared to
other results available in literature (Ma et al., 2020). We are going to improve our
system by adding a module for lung segmentation which could help in quantifying
the percentage of lung tissue affected by COVID − 19 lesions. We also plan to let
radiologists evaluate the application of this algorithm on a part of public CT datasets
without labelling. Furthermore, segmentation of COVID − 19 lesions is a starting
point for an accurate radiomic analysis for the prediction, based on radiological signs,
of the clinical outcome of patients affected by COVID − 19 pneumonia.
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Abstract

Purpose: This study aims at exploiting Artificial Intelligence (AI) for the identi-
fication, segmentation and quantification of COVID − 19 pulmonary lesions. The
limited data availability and the annotation quality are relevant factors in training
AI-methods. We investigated the effects of using multiple datasets, heterogeneously
populated and annotated according to different criteria.

Methods: We developed an automated analysis pipeline, the LungQuant system,
based on a cascade of two U − nets. The first one (U − net1) is devoted to the
identification of the lung parenchyma; the second one (U − net2) acts on a bounding
box enclosing the segmented lungs to identify the areas affected by COVID − 19
lesions. Different public datasets were used to train the U − nets and to evaluate
their segmentation performances, which have been quantified in terms of the Dice
Similarity Coefficient. The accuracy in predicting the CT-SS of the LungQuant system
has been also evaluated.

Results: Both the volumetric DSC (vDSC) and the accuracy showed a depen-
dency on the annotation quality of the released data samples. On an independent
dataset (COVID − 19−CT − Seg), both the vDSC and the surface DSC (sDSC)were
measured between the masks predicted by LungQuant system and the reference ones.
The vDSC (sDSC) values of 0.95 ± 0.01 and 0.66 ± 0.13 (0.95 ± 0.02 and 0.76 ± 0.18,
with 5mm tolerance) were obtained for the segmentation of lungs and COVID − 19
lesions, respectively. The system achieved an accuracy of 90% in CT-SS identification
on this benchmark dataset.

Conclusion: We analysed the impact of using data samples with different annota-
tion criteria in training an AI-based quantification system for pulmonary involvement
in COVID − 19 pneumonia. In terms of vDSC measures, the U − net segmentation
strongly depends on the quality of the lesion annotations. Nevertheless, the CT-SS
can be accurately predicted on independent test sets, demonstrating the satisfactory
generalization ability of the LungQuant.

Keywords: COVID − 19, Chest Computed Tomography, Ground-glass opacities, Segmen-
tation, Machine Learning, U − net
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6.1 Introduction
The task of segmenting the abnormalities of the lungparenchyma related toCOVID−
19 infection is a typical segmentation problem that can be addressed with methods
based on Deep Learning (DL). CT findings of patients with COVID − 19 infection
may include bilateral distribution of GGO, consolidations, crazy paving patterns, re-
versed halo sign and vascular enlargement (Carotti et al., 2020). Due to the extremely
heterogeneous appearance of COVID − 19 lesions in density, textural pattern, global
shape and location in the lung, an analytical approach is definitely hard to code.
The potential of DL-based segmentation approaches is particularly suited in this
case, provided that a sufficient number of annotated examples are available for
training the models. Few fully automated software tools devoted to this task have
been recently proposed (Fang et al., 2021; Lessmann et al., 2021; Ma et al., 2021a).
Lessmann et al. (2021) developed a U − net model for lesion segmentation trained
on semi-automatically annotated COVID − 19 cases. The output of this system was
then combined with the lung lobe segmentation algorithm reported in Xie et al.
(2020). The approach proposed in Fang et al. (2021) implements the automated lung
segmentation method provided in the work of Hofmanninger et al. (2020), together
with a lesion segmentation strategy based on multiscale feature extraction (Fortin
et al., 2018). The specific problem related to the development of fully automated
DL-based segmentation strategies with limited annotated data samples has been ex-
plicitly tackled by Ma et al. (2021a). The authors studied how to train and evaluate a
DL-based system for lung and COVID− 19 lesion segmentation on poorly populated
samples of CT scans. They also made the data publicly available, allowing for a fair
comparison with their system. In this work, we present a DL-based fully automated
system to segment both lungs and lesions associated with COVID − 19 pneumonia,
the LungQuant system, which provides the part of lung volume compromised by
the infection. We extended the study proposed by Ma et al. (2021a) focusing our
efforts in investigating and discussing the impact of using different datasets and
different labelling styles. Data can be highly variable in terms of acquisition protocols
and machines when they are gathered from different sources.This poses a serious
problem of dependence of the segmentation performances on the training sample
characteristics. Despite that advanced data harmonization strategies could mitigate
this problem (Fortin et al., 2018), this approach is not applicable in absence of data
acquisition information, as it is in this study for the available CT data. Nevertheless,
DL methods, when trained with sufficiently large samples of heterogeneous data,
can acquire the desired generalization ability by themselves. In our analysis, we
implemented an inter-sample cross-validation method to train, test and evaluate
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the generalization ability of the LungQuant DL-based segmentation pipeline across
different available datasets. Finally, we also quantified the effect of using larger
datasets to train, validate and test this kind of algorithm.

6.2 Materials and Methods

Datasets

We used only publicly available datasets in order to make our results easily verifiable
and reproducible. Five different datasets have been used to train and evaluate our
segmentation pipeline. Most of them include image annotations, but each annotation
has been associated with patients using different criteria. In Table 6.1, a summary of
available labels for each dataset is reported.

The lung segmentation problem has been tackled using a wide representation of
the population and three different datasets: the Plethora, the Lung CT Segmentation
Challenge and a subset of the MosMed dataset. On the other hand, the number of
samples that are publicly available for COVID − 19 infection segmentation may not
be sufficient to obtain good performances on this task. The currently available data,
provided along with infection annotations, have been labelled following different
guidelines and released in NIfTI format. They do not contain complete acquisition
and population information, and they have been stored according to different criteria
(see the Supplementary Materials 6.4 for further details). Some of the choices made
during the DICOM to NIfTI conversion may strongly affect the quality of data. For
example, the MosMed dataset as described by Morozov et al. (2020b) preserves only
one slice out of ten during this conversion. This operation results in a significantly loss
of resolution with respect to the COVID − 19 Challenge dataset. Questioning how
much such conversion influences the quantitative analysis is important to improve
not only the performance but also the possibility of comparing DL algorithm in a
fair modality.

LungQuant: a DL based quantification analysis pipeline

The analysis pipeline, which is hereafter referred to as the LungQuant system, pro-
vides in output the lung and COVID − 19 infection segmentation masks, the per-
centage P of lung volume affected by COVID − 19 lesions and the corresponding
CT-SS (CT-SS = 1 for P < 5%, CT-SS = 2 for 5% ≤ P < 25%, CT-SS = 3 for
25% ≤ P < 50%, CT-SS = 4 for 50% ≤ P < 75%, CT-SS = 5 for P ≥ 75%).
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Table 6.1: A summary of the datasets used in this study. The CT-Severity Score (CT-SS)
information is not available for all datasets, but it can be computed for data which
has both lung masks and Ground-Glass Opacifications (GGO) masks.

Dataset name Lung mask GGO mask CT-SS N. of cases
Plethora Yes No No 402Kiser et al. (2020)
Lung CT Segmentation Challenge Yes No No 60Yang et al. (2017)
COVID-19 Challenge No Yes No 199An et al. (2020)
MosMed No No No 1110Morozov et al. (2020b)
MosMed (annotated subsample) No Yes Inferable 50

MosMed (in-house annotated subsample) Yes No No 91

COVID-19-CT-Seg Yes Yes Inferable 10Ma et al. (2021a)

A summary of our image analysis pipeline is reported in Figure 6.1. The central
analysis module is a U − net for image segmentation (Ronneberger et al., 2015) (see
Section 6.2), which is implemented in a cascade of two different U − nets: the first
network, U − net1, is trained to segment the lung and the second one, U − net2, is
trained to segment the COVID lesions in the CT scans.

U-net

For both lung and COVID − 19 lesion segmentation, we implemented a U − net
using Keras (2015), a Python DL API that uses Tensorflow as backend. In Figure 6.2,
a simplified scheme of our U − net is reported. Each block of layers in the compres-
sion path (left) is made by 3 convolutional layers, ReLu activation functions and
instance normalization layers. The input of each block is added to the block output
in order to implement a residual connection. In the decompression path (right), one
convolutional layer has been replaced by a de-convolutional layer to upsample the
images to the input size. In the last layer of the U − nets, a softmax is applied to the
final feature map, and then, the loss is computed.
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Figure 6.1: A summary of the whole analysis pipeline: the input CT scans are used to
train U − net1, which is devoted to lung segmentation; its output is refined by a
morphology-based method. A bounding box containing the segmented lungs
is made and applied to all CT scans for training U − net2, which is devoted to
COVID− 19 lesion segmentation. Finally, the output of U − net2 is the definitive
COVID − 19 lesion mask, whereas the definitive lung mask is obtained as the
union between the outputs of U − net1 and U − net2. The ratio between the
COVID − 19 lesionmask and the lungmask provides the CT-SS for each patient.

The U-net cascade for lesion quantification and severity score
assignment

The input CT scans, whose number of slices is highly variable, have been resam-
pled to matrices of 200 × 150 × 100 voxels and then used to train U − net1, which
is devoted to lung segmentation, using the three datasets containing original CT
scans and lung masks (see Table 6.1). The output of U − net1 was refined using a
connected component labelling strategy to remove small regions of the segmented
mask not connected with the main objects identified as the lungs. We identified the
connected components in the lung masks generated by U − net1, and we excluded
those components whose number of voxels was below an empirically fixed threshold
(see Supplementary Materials 6.4 for further details). We then built for each CT a
bounding box enclosing the refined segmented lungs, adding a conservative padding
of 2.5cm. The bounding boxes were used to crop the training images for U − net2,
which has the same architecture as U − net1. Training U − net2 to recognize the
COVID − 19 lesions on a conservative bounding box has two main advantages: it
allows to restrict the action volume of the U − net to the region where the lung
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Figure 6.2: U − net scheme: the neural network is made of 6 levels of depth. In the com-
pression path (left), the input is processed through convolutions, activation
layers (ReLu) and instance normalization layers, while in the decompression
one (right), in addition to those already mentioned, 3D Transpose Convolution
(de-convolution) layers are also introduced.

parenchyma is supposed to be, thus avoiding false-positive findings outside the chest;
it facilitates the U − net training phase, as the dimensions of the lungs of different pa-
tients are standardized to focus the U − net learning process on the textural patterns
characterizing the COVID − 19 lesions. The cropped images were resized to a matrix
of 200 × 150 × 100 voxels. We applied a windowing on the grey-level values of the
CT scans to optimize the image contrast for the two segmentation problems: the
[−1000, 1000] HU window range for the U − net1 and the [−1000, 300] HU range for
U − net2. The first window highlights the contrast between the lung parenchyma and
the surrounding tissues, whereas the second one enhances the heterogeneous struc-
ture of the lung abnormalities related to the COVID − 19 infection. We implemented
a data augmentation strategy, relying on themost commonly used data augmentation
techniques for DL (see Supplementary Materials 6.4 for further details) to overcome
the problem of having a limited amount of labelled data. We transformed the images
with rotations, zooming, elastic transformations and adding Gaussian noise.

The LungQuant system returns the infection mask as the output of U − net2 and
the lung mask as the union between the output of U − net1 and U − net2. This choice
has been made a priori by design, as U − net1 has been trained to segment the lungs
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relying on the available annotated data, which are almost totally of patients not
affected by COVID − 19 pneumonia. Thus, U − net1 is expected to be unable to
accurately segment the areas affected by GGO or consolidations; as also these areas
are part of the lungs, they should be instead included in the mask.

Lastly, once lung and lesion masks have been identified, the LungQuant system
computes the percentage of lung volume affected by COVID − 19 lesions as the ratio
between the volume of the infection mask and the volume of the lung mask and
converts it into the corresponding CT severity score.

Training details and evaluation strategy for the U-nets

Both U − net1 and U − net2 have been evaluated using the volumetric Dice Similarity
Coefficient (vDSC). U − net1 has been trained with the vDSC as loss function, while
U − net2 has been trained using the sum of the vDSC and a weighted crossentropy
as error function in order to balance the number of voxels representing lesions
and the background (see Supplementary Materials 6.4 for further details). The
performances of the whole system have been evaluated also with the surface Dice
Similarity Coefficient (sDSC) for different values of tolerance (Kiser et al., 2021).

Cross-validation strategy

To train, validate and test the performances of the two U − nets, we partitioned
the datasets into training, validation and test sets. We then evaluated the network
performance separately and globally. U − net2 has been trained twice, i.e. on the
60% and 90% of the CT scans of COVID − 19 Challenge and Mosmed datasets to
investigate the effect of maximizing the training set size on the lesion segmentation.
The amount of CT scan used for train, validation and test sets for each U − net is
reported in Table 6.2. To evaluate the ability of the trained networks to predict the
percentage of the affected lung parenchyma and thus the CT-SS classification, we
used a completely independent set consisting of 10 CT scans from the COVID-19-CT-
Seg dataset, which is the only publicly available dataset containing both lung and
infection mask annotations.

6.3 Results
In this section, we report, first, the performance achieved by U − net1 and U − net2,
then, the quantification performance of the integrated LungQuant system, evaluated
on a completely independent test set. We trained both the U − nets for 300 epochs



6.3 Results 76

Table 6.2: Number of CT scans assigned to the train, validation (val) and test sets used
during the training and performance assessment of the U − net1 and the U − net2
networks.

on a NVIDIA V100 GPU using ADAM as optimizer and we kept the models trained
at the epoch where the best evaluation metric on the validation set was obtained.

U-net1: Lung segmentation performance

U − net1 for lung segmentation was trained and validated using three different
datasets, as specified in Table 6.2. Then, we tested U − net1 on each of the three
independent test sets and we reported in Table 6.3 the performance achieved in terms
of vDSC, computed between the segmented masks and the reference ones, both
separately for each dataset and globally.

The evaluation of the lung segmentation performances was made in three cases:
(1) on CT scans and masks resized to the 200 × 150 × 100 voxel array size; (2) on CT
scans andmasks in the original size before undergoing themorphological refinement;
(3) onCT scans andmasks in the original size and after themorphological refinement.
Even if segmentation refinement has a small effect on vDSC, since it is a volume-
based metric, as shown in Table 6.3, it is a fundamental step to allow the definition
of precise bounding boxes enclosing the lungs and thus to facilitate the U − net2



6.3 Results 77

Table 6.3: Performances achieved by U − net1 in lung segmentation on different test sets,
evaluated in terms of the vDSC at three successive stages of the segmentation
procedure.

learning process.

U-net2: COVID-19 lesion segmentation performance

U − net2 for COVID − 19 lesion segmentation has been trained and evaluated sep-
arately on the COVID-19-Challenge dataset and on the annotated subset of the
MosMed dataset, following the train/validation/test partitioning reported in Ta-
ble 6.2. The segmentation performances achieved on the test sets are reported in
terms of the vDSC in Table 6.4, according to the cross-sample validation scheme.

Table 6.4: Performances achieved by U − net2 in COVID − 19 lesion segmentation, evalu-
ated in terms of the vDSC.

The composition of the train and test sets is reported in Table 6.2.

As expected, the U − net2 performances are higher when both the training set
and independent test sets belong to the same data cohort. By contrast, when a
U − net2 is trained on COVID-19-Challenge data and tested on MosMed (and the
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other way around), performances significantly decrease. This effect is related to
different criteria used to both collect and annotate the data. We obtained a better
result with the U − net2 trained on the COVID-19 Challenge dataset and tested on
the MosMed test set, since the network has been trained on a larger data sample and
hence it has a higher generalization capability. The best segmentation performances
have been obtained by the U − net2 trained using the 90% of the available data,
U − net90%

2 , which reaches a vDSC of 0.65 ± 0.23 on the test set. This result suggests
the need to train U − net models on the largest possible data samples in order to
achieve higher segmentation performance.

Evaluation of the quantification performance of the LungQuant
system on a completely independent set

Evaluation of lung and COVID-19 lesion segmentations

Once the two U − nets have been trained and the whole analysis pipeline has been
integrated into the LungQuant system, we tested it on a completely independent set
(COVID-19-CT-Seg dataset) of CT scans. The performances of thewhole processwere
quantified both in terms of vDSC and sDSC with tolerance values of 1, 5 and 10mm
(Table 6.5). A very good overlap between the predicted and reference lung masks
is observable in terms of vDSC, whereas the sDSC values are highly dependent
on tolerance values, ranging from moderate to very good agreement measures.
Regarding the lesion masks, a moderate overlap is measured between the predicted
and reference lesion masks in terms of vDSC, whereas the sDSC returns measures
extremely dependent on tolerance values that span from limited to moderately good
and ultimately satisfactory performances for tolerance values of 1mm, 5mm and
10mm, respectively. Figure 6.3 allows for a visual comparison between the lung and
lesion masks provided by the LungQuant system integrating U − net90%

2 and the
reference ones.

Percentage of affected lung volume and CT-SS estimation

The lung and lesion masks provided by the LungQuant system can be further pro-
cessed to derive the physical volumes of each mask and the ratios between the lesion
and lung volumes. We show in Figure 6.4 the relationship between the percentage
of lung involvement as predicted by the LungQuant system vs. the corresponding
values for the reference masks of the fully independent test set COVID-19-CT-Seg, for
both the LungQuant systemswith theU − net60%

2 and theU − net90%
2 . Despite the lim-

ited range of samples to carry out this test, an agreement between the LungQuant sys-
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Table 6.5: Performances of the LungQuant system on the independent COVID-19-CT-Seg
test dataset. The vDSC and sDSC computed between the lung and lesion reference
masks and those predicted by the LunQuant system are reported.

tem output and the reference values is observed for both U − net60%
2 and U − net90%

2 .
In terms of the Mean Absolute Error (MAE) among the estimated and the reference
percentages of affected lung volume (P), we obtained a Mean Absolute Error equal
to MAE = 4.6% for the LungQuant system with U − net60%

2 and MAE = 4.2% for
the system with U − net90%

2 .
The accuracy in assigning the correct CT-SS class is reported in Table 6.6, together

with the number of misclassified cases, for the 10 cases of the COVID-19-CT-Seg
dataset. The best accuracy achieved by LungQuant is of 90% with U − net90%

2 . In all
cases, the system misclassifies the examples by 1 class at most.

Table 6.6: Classification performances of the whole system in predicting CT-Severity Score
on MosMed and COVID-19-CT-Seg datasets. The number of misclassified cases
is reported.

6.4 Discussion and Conclusion
We developed a fully automated quantification pipeline, the LungQuant system,
for the identification and segmentation of lungs and pulmonary lesions related to
COVID − 19 pneumonia in CT scans. The system returns the COVID − 19 related
lesions, the lung mask and the ratio between their volumes, which is converted into
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Figure 6.3: On the rows: three axial slices of the first CT scan on the COVID-19-CT-Seg test
dataset (4coronacases001.nii) are shown. On the columns: original images (left);
overlays between the predicted and the reference lung (centre) and COVID − 19
lesion (right) masks. The reference masks are in green, while the predicted ones,
obtained by the LungQuant system integrating U − net90%

2 , are in blue.

a CT Severity Score. The performance obtained against a voxel-wise segmentation
ground truth was evaluated in terms of the vDSC, which provides a measure of the
overlap between the predicted and the reference masks. The LungQuant system
achieved a vDSC of 0.95 ± 0.01 in the lung segmentation task and of 0.66 ± 0.13 in
segmenting the COVID − 19 related lesions on the fully annotated publicly available
benchmark COVID-19-CT-Seg dataset of 10 CT scans. The LungQuant has been
evaluated also in terms of sDSC for different values of tolerance. The results obtained
at a tolerance of 5mm equal to 0.76 ± 0.18 are satisfactory for our purpose, given the
heterogeneity of the labelling process. Regarding the correct assignment of the CT-SS,
the LungQuant system showed an accuracy of 90% on the completely independent
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Figure 6.4: Estimated percentages P of affected lung volume versus the ground truth per-
centages, as obtained by the LungQuant system integrating U − net60%

2 (left)
and U − net90%

2 (right). The grey areas in the plot backgrounds guide the eye to
recognize the CT-SS values assigned to each value of P (from left to right: CT-SS
= 1, CT-SS = 2, CT-SS = 3)

test set COVID-19-CT-Seg.
Despite that this result is encouraging, it was obtained on a rather small in-

dependent test set; thus, a broader validation on larger data sample with more
heterogeneous composition in terms of disease severity is required. Training DL
algorithms requires a huge amount of labelled data. The lung segmentation task has
been made feasible in this work thanks to the use of lung CT datasets collected for
purposes different from the study of COVID − 19 pneumonia. Training a segmenta-
tion system on these samples had the effect that when we use the trained network to
process the CT scan of a patient with COVID − 19 lesions, especially in case ground
glass opacities and consolidation are very severe, the lung segmentation is not accu-
rate anymore. In order to overcome this problem, the proposed LungQuant system
returns a lung mask which is the logical union between the output mask of the
U − net1 and the infection mask generated by the U − net2. The LungQuant system
can actually be improved whether lung masks annotation are available on subjects
with COVID − 19 lesions. A similar problem occurs for the segmentation of ground
glass opacities and consolidations. The available data, in fact, are very unbalanced
with respect to the severity of COVID − 19 disease, and hence, the accuracy in seg-
menting themost severe case is worse. The current lack of a large dataset, collected by
paying attention to adequately represent all categories of disease severity, limits the
possibility to carry out accurate training of AI-based models. Finally, we found that
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the difference in the annotation and collection guidelines among datasets is an issue.
Processing aggregated data from different sources can be difficult if labelling has
been performed using different guidelines. CT scans should contain the acquisition
parameters, usually stored in the DICOM header, when they are published. The
lack of this information is a drawback of our study. If we had that data, we could
study more in detail the dependence of the LungQuant performances on specific
acquisition protocols or scanners. On the contrary, even with this information, it
would not be possible to standardize the different annotation styles. The results of
LungQuant (last 2 rows of Table 6.4) demonstrate its robustness across different
datasets even without a dedicated preprocessing step to account for this information.
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Supplementary Materials - Additional descriptions of
Materials and Methods

Characteristics of the public datasets used in the study

The Plethora dataset

The PleThora dataset (Kiser et al., 2020) is a chest CT scan collection with thoracic
volume and pleural effusion segmentations, delineated on 402 CT studies of the
Non-Small Cell Lung Cancer (NSCLC) radiomics dataset, available through the The
Cancer Imaging Archive (TCIA) repository Clark et al. (2013). This dataset has been
made publicly available to facilitate improvement of the automatic segmentation of
lung cavities, which is typically the initial step in the development of automated or
semi-automated algorithms for chest CT analysis. In fact, automatic lung identifica-
tion struggles to perform consistently in subjects with lung diseases. The PleThora
lung annotations have been produced with a U − net based algorithm trained on
chest CT of subjects without cancer, manually corrected by a medical student and
revised by a radiation oncologist or a radiologist.

The 2017 Lung CT Segmentation Challenge dataset

The Lung CT Segmentation Challenge (LCTSC) dataset consists of CT scans of 60
patients, acquired from 3 different institutions and made publicly available in the
context of the 2017 Lung CT Segmentation Challenge (Yang et al., 2017). Since the
aim of this challenge was to foster the development of auto-segmentation methods
for organs at risk in radiotherapy, the lung annotations followed the RTOG 1106
contouring atlas.

The 2020 COVID-19 Lung CT Lesion Segmentation Challenge dataset

The 2020 COVID-19 Lung CT Lesion Segmentation Challenge dataset (COVID − 19
Challenge) is a public dataset consisting of unenhanced chest CT scans of 199 patients
with positive RT-PCR for SARS-CoV-2 (An et al., 2020). Each CT is accompanied
with the ground truth annotations for COVID − 19 lesions. Data has been provided
in NIfTI format by The Multi-national NIH Consortium for CT AI in COVID − 19
via the NCI TCIA public website (Clark et al., 2013). Annotations have been made
using a COVID − 19 lesion segmentation model provided by NVIDIA, which takes
a full CT chest volume and produces pixel-wise segmentations of COVID − 19
lesions. These segmentations have been adjusted manually by a certified radiologists
board, in order to give 3D consistency to lesion masks. The dataset annotation was
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made possible through the joint work of Children’s National Hospital, NVIDIA and
National Institutes of Health for the COVID-19-20 Lung CT Lesion Segmentation Grand
Challenge.

The dataset and the annotations have been made available in the context of a
MICCAI-endorsed international challenge (https://covid-segmentation.grand-
challenge.org/) which had the aim to compare AI-based approaches to automated
segmentation of COVID − 19 lung lesions.

The MosMed dataset

MosMed (Morozov et al., 2020b) is a COVID − 19 chest CT dataset collected by the
Research and Practical Clinical Center for Diagnostics and Telemedicine Technologies
of the Moscow Health Care Department. It includes CT studies taken from 1110
patients. Each study is represented by one series of images reconstructed into soft
tissue mediastinal window. MosMed provides 5 labeled categories, based on the
percentage of lung parenchyma affected by COVID − 19 lesions. The 5 categories
of lung involvement and their correspondence to the CT-SS scale are described in
Table 6.1. The first category (CT-0) contains cases with normal lung tissue and no
CT-signs of viral pneumonia, whereas the other categories contain GGO (CT-1 and
CT-2) and both GGO and regions of consolidation in the higher classes (CT-3 and
CT-4).

Supplementary Table 6.1: MosMed severity categories defined on the basis of the percent-
age P of lung volume affected by COVID − 19 lesions. The
correspondence to the CT-SS scale is reported.

MosMed N. of cases Percentage P of involved Corresponding
CT category lung parenchyma CT-SS

0 254 P = 0 0

1 684 0 < P ≤ 25 1, 2

2 125 25 < P ≤ 50 3

3 45 50 < P ≤ 75 4

4 2 75 < P ≤ 100 5

A small subset of class CT-1 cases (50 patients) had been annotated by expert
radiologists with the support of MedSeg software (2020 Artificial Intelligence AS).
The annotations consist of binarymasks inwhichwhite voxels represent both ground-
glass opacifications and consolidations. Both CT scans and annotations were pro-
vided in NIfTI format. During the DICOM − to − NI f TI conversion process, only

https://covid-segmentation.grand-
challenge.org/
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one slice out of ten was preserved and, as a result, MosMed CT scans have a reduced
total number of slices with respect to the other datasets.

The COVID-19-CT-Seg dataset

The COVID-19-CT-Seg dataset is a collection of CT scans taken from the Coronacases
Initiative and Radiopaedia (Ma et al., 2021a). It contains 20 CT scans tested positive
for COVID − 19 infection. This public dataset contains both lung and infection
annotations. The ground truth has been made in three steps: first, junior radiologists
(1 − 5 years of experience) delineated lungs and infections annotations, then two
radiologists (5− 10 years of experience) refined the labels and finally the annotations
have been verified and optimized by a senior radiologist (more than 10 years of
experience in chest radiology). The annotations have been produced with the ITK-
SNAP software. Ten CT images of this dataset were provided in 8-bit depth, therefore,
we decided to not use them.

Additional training details and evaluation strategy for the U-nets

Evaluation metrics

The segmentation performances for both U − nets have been evaluated with the
volumetric Dice Similarity Coefficient (vDSC), computed between the true mask
volume (Vtrue) and the predicted mask volume (Vpredict), and with the surface Dice
Similarity Coefficient (sDSC), computed between the true surface (Strue), and the
predicted one defined, (Spredict) (Kiser et al., 2021), as follows;

vDicemetric =
2 · |Vtrue ∩ Vpredict|
|Vtrue|+ |Vpredict|

(2)

sDicemetric =
2 · |Strue ∩ Spredict|
|Strue|+ |Spredict|

(3)

The loss function used to train the U − net1 for lung segmentation is the vDSC
loss, defined as follows

vDiceloss = 1 −
2 · |Mtrue ∩ Mpredict|
|Mtrue|+ |Mpredict|

(4)

and computed only on the foreground (white voxels). We used this strategy in
order to avoid giving excessive weight to the background (black voxels), since the
number of black and white voxels is quite unbalanced in favor of the former.
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For U − net2, we used a loss function (L) consisting of the sum of the vDSC loss
and a weighted cross-entropy (CE), defined as follows:

L = vDiceloss + CEweighted (5)

CEweighted = w(x) ∑
x∈Ω

log(Mtrue(x) · Mpredict(x)) (6)

where w(x) is the weight map which takes into account the frequency of white
voxels, x is the current sample and Ω is the training set.

Since the background class is larger than the foreground class on the order 103,
we computed the weight map w(x) for each ground-truth segmentation to increase
the relevance of the underrepresented class, following the approach described in
Phan and Yamamoto (2020). The weight map was defined as w(x) = w0/ f j where
f j is the average number of voxels of the jth class over the entire training data set
(j = 0, 1) and w0 is the the average between the frequencies f j.

Data augmentation

Data augmentation is a strategy to increase the size of the training set by synthetically
generating additional training images through geometric transformations. This
technique is particularly important to improve the generalization capability of the
model, especially in the case of a limited number of training samples. In our work,
we applied data augmentation during the data pre-processing phase (after defining
the bounding boxes enclosing the segmented lungs) in order to generate a fixed
number of augmented images for each original data. We chose an augmentation
factor equal to 2 which means that the number of artificially generated images is
twice the number of the original training set. For each image in the training set, two
of the following geometric transformations were randomly chosen:

• Zooming. The CT image and the ground truth masks were zoomed in the
axial plane, using a third-order spline interpolation and the k-nearest neighbor
method, respectively. The zooming factor was randomly chosen among the
following values: 1.05, 1.1, 1.15, 1.2.

• Rotation. The CT image and the ground truth mask were rotated in the axial
plane, using a third-order spline interpolation and the k-nearest neighbor
method, respectively. The rotation angle was randomly sampled among the
following values: −15◦, −10◦, −5◦, 5◦, 10◦, 15◦.
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• Gaussian noise. An array of noise terms randomly drawn from a normal
distribution was added to the original CT image. For each image, the mean of
the Gaussian distribution was randomly sampled in the [−400, 200] HU range
and the standard deviation randomly chosen among 3 values: 25, 50, 75 HU.

• Elastic deformation. An elastic distortion was applied to the original 3D CT and
mask arrays following the approach of Simard et al. (2003). This transformation
has two parameters: the elasticity coefficient which we fixed to 12 and the
scaling factor, fixed to 1000.

• Motion blurring. Slice by slice, we convolved the CT image with a linear kernel
(i.e. ones along the central row and zero elsewhere for a matrix of size k × k)
through the function f ilter2D, defined in the OpenCV Python library (Bradski,
2000), keeping the output image size the same as the input image. The filter is
applied with a kernel size of 4, 3, and 3, in the anterior-posterior, latero-lateral
and cranio-caudal direction, respectively.

An example of the application of these augmentation techniques to one CT scan
of the dataset is provided in Figure 6.1.

Supplementary Figure 6.1: Data augmentation to increase the diversity of dataset: a) Im-
age without data augmentation; b) Zooming; c) Rotation; d)
Gaussian noise; e) Elastic deformations; f) Motion blurring.
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Morphological refinement of U-net1 lung segmentation

In order to remove false-positive regions (i.e. voxels misclassified as lung parts),
at first, we identified the connected components in the lung masks generated by
U − net1, then, we excluded those components whose number of voxels was below
an empirically-fixed threshold. This threshold was set to the 40% of the foreground
mask, and it was reduced to 30% whether the resulting number of voxels was found
to be lower than the 65% of the initial mask provided by U − net1. Figure 6.2 shows
some examples of how this procedure works on real CT scans.

Supplementary Figure 6.2: Morphological refinement of the U − net1 output: a) and c)
lung masks as generated by U − net1; b) and d) refined masks
after the connected component selection.
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Generation of a set of reference lung segmentation for model
training

As reported in Table 6.1, the available datasets with lung mask annotations, which
were necessary to train the U − net for lung segmentation, are mainly of subjects
affected by lung cancer (Plethora and LCTSC datasets). To complement this sample
with subjects without lesions, and, at the same time, to expose the U − net to the
acquisition characteristics of the MosMed CT scans, we generated the lung mask
annotations for a subset of subjects of the CT-0 MosMed category, i.e. that of subjects
without COVID − 19 lesions.

An in-house lung segmentation algorithm was developed for this purpose and
implemented in Matlab (The MathWorks, Inc.). It is based on the following steps: 1)
CT windowing in the [−1000, 1000] HU range; 2) rough segmentation of the lungs
on a central coronal slice (Otsu binary thresholding and removal of components
connected with the image border) to define the minimum and maximum axial
coordinates of the lung region; 3) 2D rough segmentation of the lungs on each axial
slice (same procedure as the previous step) to generate a 3D seed mask for the
following step; 4) segmentation of the lung parenchyma by an active contour model
(activecontour Matlab function); 5) filling holes (e.g. vessels and airway walls) with
3D morphological operators (imclose Matlab function).

This algorithm, which accurately segments the lung parenchyma in absence of
lesions, has very limited performance on CT scans of subjects with COVID − 19
lesions.
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Abstract

Background: Soft-Tissue-Sarcomas (STSs) are uncommon, heterogeneous ma-
lignant tumors and their clinical management is particularly challenging. Accurate
and precise STS patients’ stratification play an important role in clinical diagnosis
and decision making for patient treatment. Recent development on deep learning
has shown great progress also in medical fields but the main limitation remains the
small labeled dataset for training. To overcome this drawback transfer learning and
fine-tuning have been investigated. The goal of this study is to predict STS patients’
outcome to radiotherapy, in terms of distant metastasis development.

Methods: In this single-center analysis, 61 STS patients between 2011 and 2020
were retrospectively enrolled. We designed a pipeline employing transfer learn-
ing and fine-tuning a pre-trained VGG − 19 network. The prediction model was
trained, validated and tested on ten different combination of the available multimodal
images (CT, dose distribution, T1-weighted, T2-weighted and contrast-enhanced
T1-weighted MRI) within ten-fold cross-validation. Accuracy, sensitivity specificity,
precision and F1-score for slice-based prediction were assessed.

Results: The best performance was achieved considering Dose – T2-weighted
– contrast-enhanced T1-weighted multimodal images combination. In this config-
uration, the averaged slice-based prediction accuracy was 0.93 ± 0.02, 0.92 ± 0.02,
and 0.90 ± 0.03 for training, validation, and test respectively, under ten-fold cross-
validation.

Conclusion: This study demonstrated the opportunity to use deep learning
coupled with transfer learning and fine-tuning to predict distant metastasis from
an eccentric combination of multimodal images. Despite the result is still being
preliminary, it demonstrated the feasibility and the efficacy of the proposed workflow
on predicting post-RT patient outcome. This could potentially improve the clinical
management of STS patients.

Keywords: soft-tissue-sarcoma, transfer learning, fine-tuning, distant metastasis, magnetic
resonance imaging, dose distribution
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7.1 Introduction
Soft-Tissue-Sarcomas (STSs) represent a rare and heterogeneous group of tumors,
with more than 100 histological subtypes and account for 1% of solid cancers in
adults (Igrec and Fuchsjäger, 2021; Coindre et al., 2001; Bray et al., 2018). Even their
occurrence is heterogeneous, but the limbs are the most common primary site for a
Soft-Tissue-Sarcoma (Gao et al., 2021).

Because of the diversity in presentation and outcome within the spectrum of STS,
several prognostic instruments have been developed to classify patients with these
tumors into risk groups to optimize their management. Traditional pathology ap-
proaches and molecular genetic assays have played a crucial role in the classification
of STS. An accurate histological diagnosis and an assessment of the risk of relapse
are critical for delineating treatment strategies. Pretreatment pathologic assessment
consists of percutaneous core needle biopsy and limits the classification of the entire
tumor with few tissue samples. A complete and in-depth histological analysis takes
place only after surgery which is an advanced step in the therapeutic process and
may differ from the preliminary grade provided on biopsy specimens (Crombé et al.,
2022; Corino et al., 2018; Schneider et al., 2017).

Interdisciplinary management of extremity and truncal soft tissue sarcoma in-
cludes a multimodal combination of treatments, such as margin-negative surgi-
cal resection, external beam-radiation therapy and systemic chemotherapy. Gener-
ally accepted guidelines suggest applying pre-operative external beam Radiother-
apy (RT), conventionally fractionated in 25 − 28 fractions of 1.8 − 2Gy to a total
dose of 50 − 50.4Gy in 5 − 6 weeks. Post-operative RT instead provides 60 − 66Gy
delivered in 1.8 − 2Gy fractions over 6 to 7 weeks (Haas, 2018; Haas et al., 2012).
These regimens aim to increase the local control probability as compared to surgery
alone. Classically, in STS, tumor size, location, depth, and the French Federation of
Cancer Centers Sarcoma Group histologic grading system (based on tumor differ-
entiation, tumor necrosis, and mitotic activity) are the most important prognostic
factors (Sbaraglia and Dei Tos, 2019). As well as stage, surgery, and preoperative
RT could be crucial in achieving personalized treatment (Soydemir et al., 2020; Gao
et al., 2021).

Recently, Artificial Intelligence (AI)-based solutions paved the way for the de-
velopment of automatic and weird classification solutions. Such progress has been
implemented in the field of imaging with the possibility of characterizing human tu-
mors through "radiomics" texture analyses, which are based on several image-derived,
quantitative measurements, including intensity histogram, spatial distribution re-
lationships, and textural heterogeneity. This approach can be used to understand
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the relationships between histological and imaging characteristics of STS, such as
heterogeneity and their biological characteristics or expected prognosis and treat-
ment outcomes. Radiomic features extracted fromMagnetic Resonance (MR) images
helped to distinguish low-grade from high-grade sarcomas and showed promise as
biomarkers for predicting overall survival in patients with STS (Vallières et al., 2015;
Crombé et al., 2019; Malinauskaite et al., 2020). The value of radiomics have also been
assessed for differentiating STS of different histopathologic grades to enhance the
precision of preoperative diagnosis (Xu et al., 2020). Furthermore, machine-learning
model based on radiomics turned out favorable for preoperative prediction of dis-
tant metastasis from soft-tissue sarcoma to guide treatment strategies (Tian et al.,
2021). More recently, Deep Learning (DL) techniques have also been employed in
the field of STS. The performance of a DL radiomic nomogram has been evaluated
as features extractor to predicting tumor relapse in patients with STS (Liu et al.,
2021). Otherwise, DL has been used to accurately diagnose frequent subtypes of
STS from conventional histopathological slides for diagnosis and prognosis survival
prediction (Foersch et al., 2021). DL-based imaging analysis has also been applied
as an alternative way to characterize and classify STS and to predict tumor grading
(Navarro et al., 2021).

The main power of DL lies in its deep architecture using a hierarchical learning
approach (Szegedy et al., 2015; Zeiler and Fergus, 2014), which allows for extracting
a set of discriminating features at multiple levels of abstraction. Feature maps in the
earlier layers extract low-level features (i.e. edges, shape, and textures), while feature
maps in higher layers extract high-level features (i.e. abstract domain representation).
However, training a Deep Neural Network (DNN) from scratch is a challenging task.
It can be laborious and time-consuming, demanding a great deal of expertise and
costly. In addition to the fact that it requires a large amount of labeled training data;
a requirement that may be difficult to meet in the medical domain (Swati et al., 2019).
Effectively, datasets in radiation oncology andmedical physics tend to be small in size.
They are generally in the hundreds and rarely in the thousands or millions of images.
Furthermore, the extremely large number of parameters and hyperparameters that
need to be tuned to train Neural Network (NN) raises the question of whether DL
algorithms are truly appropriate in the field ofmedical images. In fact, it is known that
data-driven approaches, especially DL, have difficulty achieving high performance
on limited data sets which consequently limits the stability and generalizability of
the model.

For the small dataset scenario, the use of pre-trained networks based on transfer
learning and fine-tuning strategy is ubiquitous (Shin et al., 2016, 2017; Tajbakhsh
et al., 2016). Transfer learning is a machine learning paradigm that aims at improving
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the prediction performance of a learning task by applying knowledge previously
gained in a related learning task (Zhu et al., 2022). Evidently, the extent of training
that can be performed in the target task depends on the size of the target dataset,
since the algorithms can easily overfit in small datasets (Yosinski et al., 2014). Gener-
ally speaking, exploring the way to build effective models based on small data by
transferring information from auxiliary data meaningfully is an urgent task.

In this work, we sought to develop a deep learning model for predicting patient
outcome in response to RT, in terms of distant metastasis development. Estimating
and predicting treatment effects, especially during the treatment, would be valu-
able in monitoring patients’ response to treatment, and hence provide a window
for personalized treatment adaptation which enables improved treatment efficacy
or reduced normal tissue complications. Several distinctive characteristics of our
technique include T1-weighted, T2-weighted, contrast-enhanced T1-weighted MRI,
Computed Tomography (CT) images and dose distributions and transfer learning ap-
proach. Themain novelty concerns the features extraction fromdifferent combination
of the imaging modalities which can lead to improved prediction performance.

7.2 Materials and Methods

Patient cohort

All patients enrolled in this retrospective study received pre-operative radiation
therapy for soft tissue sarcomas delivered with image-guided intensity-modulated
radiation therapy technique. In this single-center analysis, data of 72 patients from
January 2011 to August 2020 were initially analyzed for further inclusion. The inclu-
sion criteria were (i) availability of post-RTMRIs with diagnostic-quality throughout
the follow-up period, (ii) availability of multi-parametric MRI, including axial T1-
weighted, T2-weighted, Contrast-Enhanced (CE) T1-weightedmaps, (iii) availability
of radiotherapy CT, structures set, plan and 3D dose volume. Follow-up data were
acquired by medical records and allowed to identify the development of distant
metastasis as the surrogate of patient’s response to radiotherapy treatment. Patients
with incomplete clinical data, poor tumor tissue quality, and incomplete or poor-
quality multimodal images were excluded from the research. The study population
included 61 patients with a complete data set.
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Imaging preprocessing

The proposed patient classification is based on two-dimensional images (2D slices),
not three-dimensional (3D) volume, because in most clinical practice, the acquired
and available images are 2D slices with a large slice gape. Therefore, our classification
system based on 2D images for clinical application is practical. Moreover, obtaining
transversal 2D slices from 3D volume for each patient allowed us to increase the
number of training samples for the deep neural networks. This means that from every
patient in the training set we can generate as many training samples as transversal
slices are available from the patient tumor. When counting the overall number of
training samples, we can then go from several tens in the original dataset to thousands
after slicing the patient.

Two fundamental data pre-processing steps was carried out across all the patients:
images co-registration and resolution adjustment. 3D tumor contours propagation
was obtained free from radiotherapy process by co-registering MR images on the
centering CTs and applying deformable registration. In this way it was possible to
obtain tumor segmentation also on MR images.

Since the acquisition volume of clinical images is much larger than the tumor
region, we opted to extract only the tumor volume with a margin of 1 cm both
superiorly and inferiorly in the cranio-caudal direction (z-axis). Furthermore, for
MRI it is usual to have a reduced Field Of View (FOV) compared to CT to reduce
acquisition times, therefore the axial matrices (on the x − y plane) have a smaller
dimension than those of CT in terms of number of pixels. For this reason, we resized
all the multimodal images in 512 × 512 matrices, where pixel value outside the
perimeter of the smaller images was set to 0. Consequently, we dealt with resampling
along the z-axis, specifically at 3 mm slices, to obtain the same number of slices for the
volume of interest for each type of multimodal image (k slices in the CT, k slices in
the dose distribution and k slices in MRIs). The pre-trained network we considered
in our study, requires input images of 224 × 224 pixels with RGB 3-channel, so the
images were further scaled on the x − y plane to fit the required input size. This
double step was done to maintain the aspect ratio within the images.

Let’s shift attention to another fundamental aspect. Intensity values inmultimodal
imaging do not have a fixed meaning and they vary greatly across CT, dose and
MR images. Data mining and especially deep neural network approaches need to
normalize the inputs; otherwise, the network will be ill-conditioned. In principle,
normalization is performed to obtain the same range of values for each input into the
NN model, which can guarantee a stable convergence. The intensity normalization
brings the intensity values within a coherent range across all the multimodal images
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and facilitates learning in the training process. In this scenario, normalization was
performed employing min-max normalization to scale the image intensity values
between 0 and 1, which is computed as follows:

yi =
xi − min(x)

max(x)− min(x)
(7)

where yi is the normalized intensity value against position xi and min(x) and
max(x) is the minimum and maximum intensity values, respectively, across the
entire image.

A further step was necessary before obtaining the ideal database for training the
neural network. It pertains to the three-channel tensor input. Sincewe have 5different
types of images available (CT, dose distribution, T1w, T2w and CE T1w) and only 3
channels in the input, it was possible to create 10 different combinations (Figure 7.1),
specifically: 1) CT − Dose − T1w, 2) CT − Dose− CE T1w, 3) CT − Dose − T2w, 4)
CT − T1w− CE T1w, 5) CT − T1w − T2w, 6) CT − T2w− CE T1w, 7) Dose − T1w−
CE T1w, 8) Dose − T1w − T2w, 9) Dose − T2w− CE T1w, 10) T1w − T2w− CE T1w.
These combinations can be interpreted as 10 different sets (hereinafter referred to as
’combination sets’) on which it is possible to train the neural network and considering
the transversal 2D tumor slicing mentioned at the beginning of this section, each set
counts 2395 image samples, all resized to 224× 224× 3 according to the requirements
of the pre-trained architecture for the 2D model.

Transfer learning and fine-tuning

The treatment response prediction network was constructed based on the deep
convolutional network VGG − 19 (Simonyan and Zisserman, 2014). It consists of
sixteen convolutional layers and three fully connected layers (Figure 7.2). Our
strategy is to apply transfer learning and therefore, we initialized weights from the
ImageNet pre-trained VGG − 19 model (Russakovsky et al., 2015) and fine-tuned on
the ten combination sets one by one. Prior to this, the last fully connected layer was
adapted to our binary classification task, as illustrated in Figure 7.2. The DNN was
trained with fine-tuning the final block, made up of the last three fully connected
layers, and keeping the weights of all other layers frozen.

Training Deep Learning Model

For the VGG − 19 prediction network, the SGDM optimizer was used with mo-
mentum at 0.9, mini-batch size of 64, an initial learning rate of 0.01 for 50 epochs.
Training process was validated after every epoch and early stopping of the training
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Figure 7.1: Different combinations of the multimodal images used as 3-channel input of the
neural network. The figure shows only five of the ten possible combination sets.

was considered if the validation loss did not improve for 8 sequential epochs. No
data augmentation was applied. The training was implemented with MATLAB
(MATLAB 2020b, The MathWorks, Inc., Natick, Massachusetts, United States) and
Intel(R) Xeon(R) CPU E5-2690 v4 @ 2.6 GHz (28 CPUs) with 128GB RAM.

To test the performance of the proposed approach, for each combination set, we
randomly divided the 2395 image samples into ten subsets of equal size such that
each patient had been tested at least once during the independent testing stage. We
ensured the no overlap and balanced classes across the ten subgroups. We exploited
ten-fold cross-validation to evaluate the response prediction process. The final result
is the average classification performance of the ten-fold test dataset.

Performance metrics

The prediction model was slice-based, where the three single-slice assembled by
combining multimodal images in different ways were fed into the VGG prediction
network as three channels. Accuracy, sensitivity (or recall), specificity, precision and
F1-score metrics were reported (Gao et al., 2020; Zhu et al., 2022).
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Figure 7.2: Architecture of the modified VGG − 19 network for treatment response predic-
tion; final layer adapted to our binary classification task. In green convolutional
layers, in red pooling layers, in orange fully connected layers. Deep learning
strategy: the network receives the 2D transversal slices and outputs the proba-
bility of the image for the two classes.

7.3 Results
The slice-based average prediction accuracy on training, validation, and test sets over
the ten combination sets are shown in Figure 7.3. The benefit of transfer learning
and fine-tuning is to reduce overfitting and speed the convergence. This benefit is
very clear from the accuracy and the loss history of our proposed model (Figure 7.4).
Validation and training losses were reduced over the epochs and converged with
small gap between them in the plateau region, and at the same time training and
validation accuracies reached consistently their maximum performance very fast.

Regarding the best performance among ten-fold cross-validation, the averaged
accuracy was 0.93± 0.02, 0.92± 0.02, and 0.90± 0.03 for training, validation, and test
respectively. These results confirmed the validity of the transfer learning with fine-
tuning strategy to classify medical images. The prediction accuracy on the unseen
test set was close to that on the validation set. A mild accuracy drop of 1% was
observed. Overall, the first combination set had the worst performance on the test
set while combination set 9 had the best prediction.

Table 7.1 depicts the classification metrics on the test sets over the ten-fold cross-
validation for the ten combination sets. Overall, there is no clear difference between
sensitivity and specificity, with an average value over the ten final models of 0.75 ±
0.06 and 0.78 ± 0.05, respectively. All models showed good precision of at least
0.68. Combination set 9 classified with the best accuracy of 0.90 ± 0.03. This is also
reflected by the best sensitivity value of 0.85 ± 0.06 and with a good specificity of
0.84 ± 0.04. Combination set 10 has the best specificity and precision of 0.86 ± 0.02
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Figure 7.3: Slice-based ten-fold average training, validation and test accuracy results over
the ten combination sets.

and 0.83± 0.03 but with the cost of a worse sensitivity value of 0.77± 0.02, leading to
a total accuracy of 0.89 ± 0.02. In terms of the less imbalance-biased metric, F1-score,
Dose − T2w− CE T1w set achieved the best result 0.81 ± 0.04.

7.4 Discussion
In this work, we sought to predict post-RT treatment effect, identified in the develop-
ment of distant metastasis, of patients affected by STS using different combination
of multimodal images. Empirical results have been shown that the generalization
power of the deep networks is more than the shallow networks (Zhang et al., 2021a).
To achieve effective training and consequently improved test performance of the
deep neural networks, large datasets is often required. However, it is challenging to
access and acquire a large size of data in the medical field. To resolve the small data
size issue, the learning procedure was carried out in a transfer learning fashion with
fine-tuning the last fully connected layers, adapted to our binary classification task,
of a pre-trained VGG − 19 network. Transversal 2D slices from 3D tumor volume
for each patient were employed to train and validate the prediction network, which
was then tested on unseen patient data. The whole process was repeated ten times to
evaluate the stability of the proposed workflow for each of the ten combination sets.

High accuracies were achieved on the training, validation, and test datasets. The
best average accuracy was 0.90 ± 0.03 on the independent test sets for slice-based
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Figure 7.4: Exemplary learning curves for the VGG − 19 classification network in an arbi-
trarily selected fold.

prediction considering Dose − T2w− CE T1w multimodal images combination. To
the best of our knowledge, this is the first work that combines different MRI maps,
CT and dose distribution with deep learning to predict treatment effect for sarcoma
patients. Despite the result is still being preliminary, it demonstrated the feasibility
and the efficacy of the proposed workflow on predicting post-RT patient outcome.

It must be emphasized that the dose distributions may provide additional infor-
mation for the correct stratification of soft tissue sarcoma patients. In this perspective,
we believe that it would be appropriate to develop more studies to better understand
the role of this imaging biomarker in the assessment of patient outcome in STS.
Analyzing the results shown in Table 7.1, it can be seen that the combinations in
which the CT and T1w images are present give the least performing results. While
for the combinations in which the other three types of multimodal images are present
(Dose − T2w− CE T1w) the results are better. A possible explanation could be based
on the greater information content present in these last images; it is no coincidence
that the use of CE T1w sequences serves precisely to make the heterogeneity of the
lesion more evident. In addition, the great power of the DNN to capture the different
heterogeneities and microstructures present within the lesson, as well as the ability
to obtain a high level of abstraction thanks to the depth of the network itself, have
allowed to obtain satisfactory results.
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Table 7.1: Average classification performances of the proposedmethod over ten independent
test sets for the ten combination sets. In bold, the best result for each metric is
marked.

Early patient outcome prediction holds the promise of achieving personalized
patient management. The capability of assessing and predicting their response to
RT provides the opportunity for personalized treatment adaptation: conservative
surgery or even avoidance of surgery may be adopted in patients with complete
response to RT, whereas radiation boosting to the non-responding region might
be beneficial for improving overall treatment efficacy in patients with insufficient
response to RT.

There are a few limitations of this work. The main limitation of this work is the
small patient cohort, and it has led to two consequences. First, the prediction model
is built to predict treatment response for each slice whereas only one single score is
available for each patient. We have implicitly assumed that all tumor imaging slices
had the same score, so the data size is sufficient to allow the use of deep learning-
based prediction. Second, repetitive cross-validation was applied to estimate the
robustness and the results are potentially biased because we lack an external inde-
pendent test set. We are enrolling more patients on an expansion cohort to improve
the model robustness and, hopefully, to have enough data to formulate patient-based
prediction. The second limitation relates to tumor heterogeneity. Although patients
enrolled in this study each received the same treatment scheme, their histology
subtypes are different. Sarcoma is known for its histologic and biologic diversity,
and these differences are often reflected in divergent imaging characteristics. Lastly,
the hardware at our disposal allowed us to perform a shallow fine-tuning in fact
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only the final VGG − 19 block was fine-tuned. We would also like to engage a deep
fine-tuning, as it has been demonstrated that deep fine-tuning CNNs (preferably
in a layer-wise manner) is useful for medical image analysis, performing as well as
fully trained CNNs and even outperforming the latter when limited training data
are available (Tajbakhsh et al., 2016).

In future studies, because in DL the trained model is hard to interpret, we plan
to exploit Gradient Weighted Class Activation Map (Grad-CAM) as visual inter-
pretation, which can shed light on the region of interest inside the original images
that have a significant contribution to the final classification score. Moreover, we
want to highlight how the combination of multimodal images is more statistically
informative than examining only one type of image at a time. We would therefore
like to repeat the experiment taking into account each type of images, one at a time,
and verify that the performances obtained in this way are lower than the results
presented in this study.

7.5 Conclusion
Pre-trained networks based on transfer learning and fine-tuning strategy possess
important characteristics that make them natural candidates when applying deep
learning to medical image tasks. Based on the results obtained in the present work,
we believe that pretrained networks can be a very useful and powerful tool.

Because distant metastasis carries a poor prognosis, preoperative understanding
of their likelihood in soft tissue sarcoma is clinically important. This preliminary
study showed the feasibility of combining transfer learning and multimodal images
to predict distant metastasis development after radiotherapy for soft tissue sarcoma
patients. MR and dose maps turned out to be the best for our purpose. The model
demonstrates good prognostic accuracy and provides a non-invasive opportunity for
personalized treatment adaptation for improved treatment efficacy.



Chapter 8

Conclusion

This chapter summarizes the contribution of this thesis and discusses directions
for future research. The thesis deals with the application of Artificial Intelligence
models to support the clinical decision-making process with special focus on small
medical imaging database. Thoughmedical imaging has seen a growing interest inAI
research, trainingmodels require a large amount of quality data. In this domain, there
are limited sets of data available as collecting newdata is either not feasible or requires
burdensome resources. Researchers are facing with the problem of small datasets
and have to apply ploys to fight overfitting otherwise they risk getting overconfident
estimates, undermining the reliability of AI models. In addition, there are other
challenges and pitfalls that undermine the success of a training and the achievement
of a reproducible and generalizable AI model. Adequate curation, analysis, labeling,
class imbalance, data leakage, external independent test, ethical issues and costs
are detrimental for AI performance and critical to achieving high-impact clinically
meaningful AI algorithms, if not properly accounted for. Executing AI pipelines on
medical imaging data requires considerable effort in data curation and preprocessing.
In effect, I was able to experience this difficulty at the forefront given that in the
research projects presented in this thesis I followed and took care the creation of
three medical images datasets for the AI algorithms development. In carrying out
this task I have adhered as much as possible to the eight concepts introduced in
chapter 2: ethical approval, data access, querying data, data de-identification, data
transfer, quality control, structured data and label data.

The literature review was performed to identify the challenges and pitfalls of
employing machine learning systems on small datasets of medical images. Transfer
learning and data augmentation, especially GAN, could represent the most reason-
able choices to fight overfitting. The results are promising and, in some studies, even
too much (probably due to some kind of methodological bias). They provided a
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proof-of-concept of the developed AI models, but they are not yet mature enough
for large-scale implemented in the clinical setting and widely used. For studies on
pediatric medulloblastoma and Soft-Tissue-Sarcoma, machine learning techniques
return reasonable results and may prove a valuable and cost-effective aid by pro-
viding non-invasive quantitative data that integrate qualitative image information
already available. Furthermore, it has been seen how the use of information extracted
from dose distributions improves the performance of the algorithms. AI techniques
offers efficient computational tools to disentangle the complexity of the information
extracted from medical images and to discover sub-visual features that cannot be
detected with traditional methods. Moreover, AI can provide a fully data-driven
approach that learns to extract high-level features, avoiding the need for predefined
instructions that might introduce cognitive biases. In particular, deep learning im-
proves the efficiency and accuracy of statistical methods to analyze high-throughput
imaging data. The results showed that a higher level of abstraction possibly can
reveal unknown relationships within the data by describing, understanding and
recognizing disease patterns. In this regard, pre-trained networks based on transfer
learning strategy with fine-tuning suggests an acceptable and plausible approach
to develop classification system. For the COVID − 19 segmentation challenge, the
lack of standardization is a major issue. Combining different public databases, each
of them not largely populated, various lesion labeling and data selection criteria
impacted in a relevant way on the performances. Processing aggregated data from
different sources can be difficult if labeling has been performed using different guide-
lines. Further, the metadata contained in the DICOM header of medical images
are very important in order to better manage the images acquired from different
scanners, especially for data homogenization. Their full or partial absence due to the
conversion to another format to allow publication of the database was an issue.

Despite the good performances obtained so far, there is still a lot of work to be
done. Some strategies can be useful to implement AI in small medical imaging
database such as transfer learning and data augmentation, but still remain the issue
of the external validation of the models, using data that are independent from those
of the training. It is an essential step to guarantee the reproducibility, the generaliz-
ability and the reliability of the developed AI algorithms. In this regard, due to the
difficulties encountered in the data sharing, it is better to change point of view and
taking the opposite path, that is to share the code or develop the distributed learning.
In addition, it has been seen that greater levels of abstraction by incorporating greater
information content lead to better performance, but it remains necessary to be able
to interpret the developed models. In this direction, systems to verify transparency,
interpretability and explainability must be designed and necessarily integrated into
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the AI workflow. This is particularly relevant in medical context where medical
professionals should be able to understand how and why a machine-based decision
has been made in order to trust the decision and augment their decision-making
process. For this reason, Gradient Weighted Class Activation Map (Grad-CAM) will
be exploited in the Soft-Tissue-Sarcoma project since it is still ongoing. They can
shed light on the region of interest inside the original images that have a significant
contribution to the final classification score.

Although there are limitations and drawbacks hidden around the corner, Artificial
Intelligence algorithms can be developed employing small and real hospital database
to fulfill specific clinical needs and to support clinical decision-making process,
provided that proper precautions and cares are taken into account.
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Journal papers

1. F. Lizzi, F. Brero, R. F. Cabini, M. E. Fantacci, S. Piffer, I. Postuma, L. Rinaldi, A.
Retico. "Making Data Big for a Deep-learning Analysis: Aggregation of Public
COVID-19 Datasets of Lung Computed Tomography Scans", Proceedings of the
10th International Conference on Data Science, Technology and Applications (DATA
2021), pages: 316–321, 2021.
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different annotation criteria", International Journal of Computer Assisted Radiology
and Surgery, Volume 17, pages: 229–237, 2022.
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1. S. Piffer, L. Ubaldi, S. Tangaro, A. Retico, C. Talamonti. "How to deal the
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systematic review", Computer Methods and Programs in Biomedicine
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learning soft-tissue-sarcoma distant metastasis prediction based on transfer
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siomic profiling of paediatric Medulloblastoma tumours treated with Intensity
Modulated Radiation Therapy", 3rd European Congress of Medical Physics, 2020
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