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ABSTRACT
Graphical models are pivotal in studying the conditional indepen-
dence structure of a set of random variables. Circular variables,
arising in several contexts and fields, are characterized by period-
icity. Models for studying the dependence/independence structure
of circular variables are under-explored but of increasing interest.
This paper delves into two multivariate circular distributions, the
Wrapped Normal and the Inverse Stereographic Normal distribution
as undirected graphical models. For each of these distributions, we
study their key properties with respect to conditional independence
and introduce specific classes of graphical models. The usefulness of
the proposal is shown by modelling the conditional independence
among dihedral angles that play a critical role in defining the three-
dimensional structure and functionality of proteins. This can provide
valuable insights, for instance, into the multiform protein folding
understanding.
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1. Introduction

A circular observation can be regarded as a point on the circumference of the unit circle,
as a unit vector on the plane or as a unit complex number. Once both an origin and a sense
of rotation have been chosen, a circular observation can bemeasured by an angle which, in
radians, ranges from 0 to 2π or, equivalently, from −π to π . Typical examples of circular
data include bird migration directions from the point of release, directions of the winds
and marine currents, angles in the polypeptide chains forming proteins, but also the time
of the day when a given event occurs. As an example, see Figure 1 where circular data are
the times of the day on a 24-h clock, with the origin at 24 (0 o’clock). The time 8 o’clock
can be represented as the angle 2π/3 in radians ranging from 0 to 2π . This can be simply
achieved by multiplying the time by 2π/24.

The special nature of circular data lies in their periodicity, i.e. a circular observation
measured by an angle of θ radians corresponds, on the unit circle, henceforth defined as
T = [−π ,π), to a circular observation measured by an angle of θ + 2πk radians, where k
is a whatever integer number.

CONTACT Anna Gottard anna.gottard@unifi.it Department of Statistics, Computer Science, Applications,
University of Florence, V.le Morgagni, 59, Florence 50134, Italy

© 2024 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/02331888.2024.2400179&domain=pdf&date_stamp=2024-10-17
mailto:anna.gottard@unifi.it


STATISTICS 1225

Figure 1. Example of the time of day depicted on a 24-h clock, where 8 o’clock corresponds to θ = 2π
3 .

The periodicity sets apart circular statistics from standard methods designed for
Euclidean data. For instance, consider finding the average of two anglesmeasuring 0.1 radi-
ans and 2π − 0.1 radians (close to zero on the unit circle). One would expect the average
of these two angles to be zero. However, their arithmetic mean is π radians, which is on the
opposite side of the unit circle from 0. The right way to average angles is to compute instead
the circular mean, which is the arctangent of the ratio between the mean of the sines and
the mean of the cosines of the angles. Circular statistics collects statistical methods suit-
able for dealing with circular data. Probability distributions of circular random variables
can be defined according to various approaches. In both the wrapping and the embedding
approaches, the circular distribution is linked, albeit in a different way, to a distribution
on the real line. Specifically, the wrapping approach constructs circular random variables
as the modulo 2π version of the real ones, with distributions obtained by wrapping their
real counterparts around the circle. Conversely, the embedding approach obtains circular
distributions as radial projections onto the unit circle of distributions on the real plane. A
comprehensive account on circular statistics and distributions is provided, among others,
by Jammalamadaka and Sengupta [1] and Mardia and Jupp [2]. Some recent advances are
collected by Ley and Verdebout [3,4].

In some applications, the focus is on p angles, which can be regarded as points on the
surface of a p-dimensional torus, Tp, obtained by the p-fold Cartesian product of unit cir-
cles. A typical example of toroidal data arises in the three-dimensional protein structure,
summarized by a sequence of angles. Despite the advances in circular statistics, both the
distributions on T

p and the models involving p circular variables seem to be not deeply
explored in the literature whenever p>2.

In some fields of application, it might be of interest to study the relationship among
random angles. Graphical models [see, for instance, 5] are a powerful probabilistic tool
for analyzing conditional independences between random variables. This class of multi-
variate models expresses the conditional independence structure of p variables by a graph
G = (V ,E), where V = {1, . . . , p} is a set of nodes and E ⊂ V × V is a set of edges. The
nodes in V represent the random variables, and the missing edges in E represent con-
ditional independence statements. The associated joint probability distribution factorizes
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according to the graph structure. A graphical model is called undirected graph model or
Markov network whenever G is undirected, that is, when E ⊆ {{i, j} : i, j ∈ V , i �= j} is a set
of unordered pairs. This model treats all variables on equal footing. The most commonly
used undirected graphical model is the concentration graph model or Gaussian graphical
model that assumes a joint Gaussian distribution for the p variables. In thesemodels, learn-
ing the missing edges is equivalent to identifying the zero elements in the inverse of the
covariance matrix.

Graphical models have been applied in a wide variety of research fields, such as sys-
tems engineering, pattern recognition, machine learning and artificial intelligence, health-
care, biology and computational biology, omics sciences, psychology, social sciences, and
finance. Some interesting recent applications of graphical models can be found inMencar-
ini et al. [6], Giudici and Spelta [7], Warnick et al. [8], Ahelegbey et al. [9], Kotiang and
Eslami [10], McNally [11], and Ren et al. [12], among many others.

Graphical models tailored for circular variables seem to be a topic of growing interest.
The first proposal, up to our knowledge, is provided by Boomsma et al. [13]. They studied
the sequence and the structure of a protein, by using two classes ofmodels, combiningHid-
denMarkovModels, viewed as Bayesian networks, with distributions defined on the sphere
and on the bidimensional torus. In the framework of undirected graphical models, Raza-
vian et al. [14] firstly studied conditional independence among angles having a p-variate
von Mises distribution and represented it via a factor graph. Klein et al. [15] introduced a
class of graphical models for data lying on T

p, called torus graphs, to tackle the problem
of identifying phase coupling among oscillatory signals recorded frommultiple electrodes
in the brain. These models are defined not on a specific distribution but as members of a
full exponential family with pairwise interactions. In particular, Klein et al. [15] focused
on some subfamilies of torus graphs, with specific types of associations, that are useful for
their motivating application.

In this paper, we propose two novel classes of undirected graphical models for variables
on T

p, which are related, albeit in different manners, to the classical Gaussian graphical
model. Specifically, the first class is based on the Wrapped Normal distribution, while
the second is based on the Inverse Stereographic projected Normal distribution [16].
The Wrapped Normal distribution, despite the complexity of its distributional form, has
received increasing interest in the current literature, mainly due to computational devel-
opments that make feasible the inference on its parameters. We show that this distribution
does not admit conditional independence. Consequently, we propose a class of graphi-
cal models for its unwrapped counterpart, where conditional independence can occur.
The idea of using unwrapped circular data has been exploited also by Greco et al. [17]
for parameter estimation in clustering based on a mixture model of multivariate Wrapped
Normal distributions and by Marques et al. [18] in regression models for spatially depen-
dent circular response data based onwrappedGaussian processes. Themultivariate Inverse
Stereographic projected Normal distribution is a relatively new multivariate distribution
for toroidal data. This distribution assumes that the stereographic projection of a toroidal
variable has a multivariate Gaussian distribution. Then, the probability density function of
the inverse map differs from multivariate Gaussian density only for a factor which does
not include any parameter. Consequently, this distribution shares the properties of the
Gaussian graphical models. In addition, for this distribution, we invoke classical theory
also to propose a class of related semi-parametric graphical models.
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The flexibility to select from a broader class of distributions within the framework of
graphical models is especially useful in practical applications. A key application of graph-
ical models for circular variables that will be used in this paper as an illustrative example,
concerns the protein folding problem. Traditionally, proteinswere thought of as rigid struc-
tures, with conformation determining their function. This gave rise to the protein folding
problem, a central issue in molecular biology that seeks to understand how a protein’s
amino acid sequence dictates its three-dimensional structure. While machine learning has
made major advances in this topic, as indicated by reviews such as Wei and Zou [19] and
Noé et al. [20], recent discoveries highlight that some proteins dynamically change their
shape to perform their functions. The existence of such proteins suggests that the rela-
tionship between amino-acid sequence and structure is more complex than previously
believed. Graphical models can provide useful insights into understanding this complex
relationship.

The proposed class of models finds applications in many fields, in addition to the
structural analysis of proteins presented here. In computer vision and robotics, these
models can analyze the relationships among the directions of multiple moving robots
or drones together with to other moving agents. Hence, graphical models for angles
might assist in the development of systems for autonomous navigation, where discerning
the directions of surrounding objects, that cannot be assumed in independent move-
ment, is essential. Other promising fields of application derives from the use of wireless
tracking devices, for monitoring human or animal movement. Here graphical models
can help to study birds genetic migration patterns, but also to understand the human
kinematics and kinetics. Graphical models might also provide valuable insights into the
analysis of human posture to understand how to prevent back pain, neck pain, or postural
instability.

The paper is organized as follows. Section 2 presents some properties of the Wrapped
Normal related distributions and a subsequent class of graphical models. Section 3 intro-
duces a class of graphical models for the Inverse Stereographic Normal distribution and a
related semi-parametric version. Section 4 contains an illustrative examplewhere the intro-
ducedmodels are employed to describe the relationships among angles in the structure of a
shape-shifting protein. Section 5 concludeswith some final considerations. The appendices
collect the proofs of some results (Appendix 1), some further insights and some simula-
tions for the Wrapped Normal model (Appendix 2), and a summary of the key properties
of the considered distributions (Appendix 3).

2. Wrapped normal related graphical models

The wrapping approach is one of the main approaches for defining probability distribu-
tions on the circle and the torus. Circular random variables are obtained as the modulo 2π
version of the real ones, with distributions obtained by wrapping their real counterparts
around the circle. Therefore, any linear random variable X can be transformed into a cir-
cular variable � by reducing it by modulo 2π , i.e. � = X(mod2π). A vector of random
angles � = (�1, . . . ,�p)

′ has a Wrapped Normal (WN) distribution, � ∼ WNp(μ,�),
with parameters μ ∈ R

p and � ∈ Symp×p
+ , the set of symmetric positive definite matrices

of order p, if X = � + 2πK is such that X ∼ Np(μ,�) and K is a latent random vector
taking values on the p-dimensional integer lattice Z

p. Hence, X determines both � and



1228 A. GOTTARD AND A. PANZERA

Figure 2. Visual representation of data from a WN distribution: purple points represent real-line data
from aNormal distribution and teal points represent the corresponding points on the circle aftermod2π
operation.

K via modulo operation. For further details on this approach to define the WN distribu-
tion, see [21]. Examples of data generated by a univariate WN distribution are depicted in
Figure 2.

Denoting by fX the density function of X, the joint density of (�,K) is again fX , while
the density of�, at θ ∈ T

p, is obtained bymarginalization as f�(θ) = ∑
k∈Zp fX(θ + 2πk).

To the best of our knowledge, the properties of marginal and conditional independence of
this distribution have not been deeply investigated. To initiate this exploration, we provide
the interpretation of the parameters in the matrix� of aWN distribution via the following
result which uses the complex form representation of �.

Result 2.1: Let � ∼ WNp(μ,�), and Z = ei�, with i2 = −1. Then

e−(�)ij = E[ZiZj]
E[Zi]E[Zj]

.

Proof: See Appendix 1. �

From Result 2.1, we can deduce that if Zi ⊥⊥ Zj, then (�)ij = 0 and therefore Xi ⊥⊥ Xj.
Conversely, this suggests that, if Xi ⊥⊥ Xj, then Zi and Zj are mean independent. To fur-
ther delve into independence and conditional independence forWrappedNormal random
angles, consider the partition of � ∼ WNp(μ,�) into the components �A and �B tak-
ing values respectively on T

q and T
p−q, for integer q<p, and let μ and � be partitioned

accordingly, i.e. ,

� =
(

�A
�B

)
, μ =

(
μA
μB

)
, � =

(
�AA �AB
�BA �BB

)
. (1)
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Then, the following results hold.

Result 2.2: Given the vector of random angles � ∼ WNp(μ,�), for any non-empty subset
A of {1, . . . , p} of cardinality q<p,

�A ∼ WNq(μA,�AA).

Proof: See Appendix 1. �

Result 2.2 assesses that the Wrapped Normal distribution is closed under marginal-
ization. The next result deals with the conditional distribution of �A given the pair
(�B,KB) which univocally determines the unwrapped variable XB, also providing insight
on marginal independence of Wrapped Normal random angles.

Result 2.3: Given the vector of random angles � ∼ WNp(μ,�), for disjoint non-empty
subsets A and B of {1, . . . , p} with respective cardinalities q<p and p−q

�A | �B,KB ∼ WNq(μA|B,�A|B),

where KB is such that XB = �B + 2πKB, with XB ∼ Np−q(μB,�B), and

μA|B = μA − �AB�
−1
BB (xB − μB), and �A|B = �AA − �AB�

−1
BB�BA.

Moreover, �A ⊥⊥ �B iff �AB is the null matrix 0q×(p−q).

Proof: See Appendix 1. �

The next result deals with toroidal conditional distributions for jointlyWrappedNormal
random angles.

Result 2.4: Given the vector of random angles � ∼ WNp(μ,�), the conditional density of
�A | �S, with A, S being disjoint subsets of {1, . . . , p}, with cardinality q and s respectively,
s ≤ p − q, is

f�A|�S(θA | θS) =
∑
kA∈Zq

∑
kS∈Zs

fXA|XS(θA + 2πkA | θS + 2πkS)wS(θS, kS)

where

wS(θS, kS) = fXS(θS + 2πkS)∑
kS∈Zs fXS(θS + 2πkS)

.

Proof: See Appendix 1. �

Result 2.4 shows that the conditional toroidal density is obtained by wrapping amixture
of the corresponding real distributions. Consequently, the resulting conditional distribu-
tion is not a Wrapped Normal. This issue has been pointed out, in the different settings of
toroidal diffusion processes, also by Garcýa-Portugués et al. [22].
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Now, letting A, C and S be non-empty disjoint subsets of {1, . . . , p}, with respective
cardinalities q, c and s such that q + c + s ≤ p, then

f�A�C|�S(θA, θC | θS)

=
∑
kA∈Zq

∑
kC∈Zc

∑
kS∈Zs

fXAXC|XS(θA + 2πkA, θC + 2πkC | θS + 2πkS) · wS(θS, kS).

If �A ⊥⊥ �C | �S, then we should have f�A�C|�S(θA, θC | θS) = f�A|�S(θA | θS)f�C|�S

(θC | θS). Unfortunately, because of the sum over kS, there is no value or combination of
values of the parameters ensuring conditional independence.

2.1. Unwrapped normal graphical model

In terms of graphical models, the main issue for the WN distribution is not the lack
of closedness under conditioning but rather the lack of conditional independence rela-
tionships. The lack of value or combination of values of the parameters ensuring condi-
tional independence can also be explained as the confounding due to the marginalization
over the vector of winding numbers. See, among many, Wermuth [23] for the effect of
marginalization on undirected graph models. This behaviour prevents this distribution
from being a graphical model, apart from the case of complete or null graphs. However, it
is straightforward to define a graphical model for the unwrapped variablesX = � + 2πK .

Definition 2.1 (Unwrapped Normal graphical model): Let G = (V ,E) be an undirected
graph with set of vertices V = {1, . . . , p} and set of undirected edges E ⊂ V × V . The p-
variate random variable X = � + 2πK is an Unwrapped Normal graphical model with
respect to G if � ∼ WNp(μ,�), and(

�−1)
ij = 0 for all {i, j} /∈ E.

The unwrapped variablesX have amultivariateGaussian distributionwhose conditional
independence structure can be described by a concentration graph [5].

Notice that, while the distribution of X factorizes with respect to G, the distribution
of � can be written as a wrapped factorization. This is the sum over k of the factorized
distribution of X. For instance, let A, C and S be sets forming a partition of the vertex set
V, with respective cardinalities q, c and s. Assume that S separates A from C, that is, every
path in G between a node in A and a node in C passes through elements in S, which is
called the separator set. According to the global Markov property, XA is independent of
XC given XS, with the wrapped factorization resulting in

f�(θ) =
∑
kA∈Zq

∑
kC∈Zc

∑
kS∈Zs

fX(θA + 2πkA, θC + 2πkC, θS + 2πkS)

=
∑
kS∈Zs

∑
kA∈Zq

∑
kC∈Zc

fXA|XS(θA + 2πkA | θS + 2πkS)

· fXC|XS(θC + 2πkC | θS + 2πkS) · fXS(θS + 2πkS).

Consequently, in virtue of Results 2.3 and 2.4, if XA ⊥⊥ XC | XS, then �A ⊥⊥ �C | XS, or
equivalently �A ⊥⊥ �C | �S,KS, while it is not implied that �A ⊥⊥ �C | �S.
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When (�)ii is small enough for any i ∈ {1, . . . , p}, then the distribution of � can be
safely approximated by a Np(μ,�) distribution [see, for instance, 21]. Moreover, if (�S)ii
is small enough for any i ∈ {1, . . . , s}, then

‖f�A|�S(θA | θS) − f�A|XS(θA | xS)‖∞ → 0, (2)

that is the distribution of �A | �S can be approximated by the Wrapped Normal distri-
bution of �A | XS. In such a situation, it holds that wS(θS, ks) goes to 0 for any ks �= 0s.
An example of the effect of the magnitude of variability of the separators on conditional
independence is presented in Appendix 2.1.

Finally, whenever in addition also (�AC|S)ii is small enough for any i ∈ {1, . . . , q + c},
then

‖f�A�C|�S(θA, θC | θS) − fXAXC|XS(θA, θC | θS)‖∞ → 0. (3)

The condition for (2) is less stringent than the condition for (3), as it admits nodes that
are not separators, such as, for instance, singletons, to have larger variance. However, the
graph of the unwrapped variables approximately describes the conditional independence
structure of the angles whenever the variances of the separators inG are small enough, that
is (2) or (3) hold.

2.1.1. Some issues on structural learning
Regarding the estimation task for the Unwrapped Normal graphical model, we need to
consider that the unwrapped variables are actually unobserved, as the vector K is unob-
servable. The concentration matrix driving the conditional independence structure of the
Unwrapped Normal graphical model depends on the parameters shared by the distribu-
tions of X and �. It then can be estimated using the observed angles. As well known, the
maximization of the complete likelihood is infeasible for theWrappedNormal distribution
because of the infinite sums. A simple possible strategy can be based on an approximate
maximum likelihood approach by replacing the infinite sums with finite sums. In addition,
a profile version can be obtained by plugging in the circular sample mean for μ, which is
not a parameter of interest in this framework. For p = 1,Mardia and Jupp [2] suggests that
the likelihood function can be adequately approximated simply by setting k = 0, but this
approximation appears inadequate for p>1. As discussed inAppendix 2.2, the approxima-
tion using the sum over k ∈ {−1, 0, 1}p works quite well also formoderately large variances
(2π). Conversely, the approximation using k = 0p provides good estimates only for very
small variances (for example, 0.0001 when p = 5). As a possible initial check, the sam-
ple circular variances [2], computed component-wise, can provide indicative values of the
magnitude of the variances.

Further estimation techniques for the multivariate Wrapped Normal distribution has
been proposed byNodehi et al. [24], who introduce two new algorithms, respectively based
on Expectation-Maximization and Classification Expectation–Maximization methods. A
robust alternative of these procedures is provided by Saraceno et al. [25]. In their simulation
study, Nodehi et al. [24] noted that for moderate p and variances smaller than π2/4, the
EM based algorithms perform similarly to the direct maximization of the approximate
log-likelihood function.

Unfortunately, this estimation procedure does not scale efficiently to high-dimensional
settings, as it requires evaluating each of the n data points across |K|p configurations, where
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|K| is the cardinality of the subset of Z used in the approximated likelihood function.
For instance, for the data analyzed in Section 4, with n = 80, p = 8 and K = {−1, 0, 1},
the computation involves a matrix of dimension 524,880 × 8. The procedure proposed by
Nodehi et al. [24] is computationally more efficient and provides acceptable solutions in
moderately higher dimensional settings.

Once estimated the parameters of the joint distribution, a typical inferential task in
graphical models is learning the structure of the graph. For Unwrapped Normal graphical
models, edge selection can be achieved by testing the off-diagonal elements of the inverse
of the variance-covariance matrix via, for instance, Wald-type tests using the asymptotic
standard errors from theHessianmatrix. The overall error rate for incorrect edge inclusion
can be controlled by using, for example, the Holm correction.

An evaluation of this procedure through Monte Carlo simulations is reported in
Appendix 2.3.

3. Inverse Stereographic Gaussian graphmodels

The primary drawback ofUnwrappedGaussian graphicalmodels lies in their limited scala-
bility in handling high-dimensional data. This section introduces a novel class of graphical
models tailored for high-dimensional contexts. These models can utilize all the inferential
procedures specific to concentration graph models, thereby enhancing their applicability
in high-dimensional settings.

A vector of random angles � = (�1, . . . ,�p)
′ has an Inverse Stereographic Normal

(ISN) distribution, � ∼ ISNp(μ,�), with μ ∈ R
p and � ∈ Symp×p

+ , if the probability
density function of � at θ = (θ1, . . . , θp)′ ∈ T

p is

f�(θ) = (2π)−p/2|�|−1/2 exp
(

−1
2
(u − μ)′�−1(u − μ)

) p∏
j=1

1
1 + cos(θj)

, (4)

where u = (u1, . . . , up)′ with uj = tan(θj/2) being the stereographic projection of the vector
(cos(θj), sin(θj))

′. For further details, see Selvitella [16]. Examples of data generated by an
ISN distribution when p = 1 are provided by Figure 3.

Given the stereographic projection U = tan(�/2), if � ∼ ISNp(μ,�), then U ∼
Np(μ,�) and the parameters of the ISN distribution are the location and scale parameters
of the distribution of U . For � ∼ ISNp(μ,�), using partitions as in (1), it holds that

�A ∼ ISNq(μA,�AA), and �A | �B ∼ ISNq(μA|B,�A|B),

where

μA|B = μA − �AB�
−1
BB (uB − μB) and �A|B = �AA − �AB�

−1
BB�BA,

with uB having as its jth element the tangent of the halved jth entry of θB. Conse-
quently, if�AB = 0q×(p−q), then�A ⊥⊥ �B.Moreover, the following result on conditional
independence holds.

Result 3.1: Let � ∼ ISNp(μ,�). Consider �A, �C,�S where A, C and S are non-empty
disjoint subsets of {1, . . . , p} with respective cardinalities q, c and s such that q + c + s ≤ p.
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Figure 3. Visual representationof the stereographic projection: teal points represent points on the circle
from an ISN distribution and purple points are the corresponding points projected on the real-line.

Then �A ⊥⊥ �C | �S iff

(�ACS)
−1
AC = 0q×c.

Proof: See Appendix 1. �

When θj = −π for at least one j, f�(θ) has removable singularities. A possible way to
remove these singularities, suggested by Selvitell [16], is to put at 0 the values of the den-
sity at these points. For our purpose, it is convenient to replace the value of the density at
singularity points with the value of the density when θj = −π + εj with a non-zero, small
enough εj. Using this latter convention, the resulting density is positive on T

p, and the
Hammersley–Clifford Theorem [5] can be invoked to get the following definition.

Definition 3.1 (Inverse Stereographic Gaussian graphicalmodel): LetG = (V ,E) be an
undirected graph with set of vertices V = {1, . . . , p} and set of undirected edges E ⊂ V ×
V . The vector of random angles � = (�1, . . . ,�p)

′ is an Inverse Stereographic Gaussian
graphical model with respect to G if � ∼ ISNp(μ,�) and(

�−1)
ij = 0 for all {i, j} /∈ E.

The assumption of strict positivity of f� implies in addition that�A ⊥⊥ �C | �S when-
ever S separates A and C in G for all disjoint subsets A, C and S of V (global Markov
property). Since the stereographic projection is a diffeomorphism, the factorization prop-
erty for decomposable graphs directly follows by the respective property of the Gaussian
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graphical model [see for details, 5]. Here, both the estimation and the edge selection can be
carried out by using classical approaches for Gaussian graphical models as those described,
among others, in Córdoba et al. [26]. A drawback of the ISN distribution is the lack of
invariance under rotation. Thus, the definition of the model is conditional on the choice
of the origin. Typically, this issue is avoided by assuming μ = 0. For further solutions, see
[16], Section 7.

In many practical situations, the joint Gaussianity assumption could not be plausible.
In the Euclidean setting, a possible way to overcome this issue is to resort to more flexi-
ble distributions, such as the Nonparanormal distribution [see 27]. We define a toroidal
counterpart of the Nonparanormal distribution as follows.

Definition 3.2 (Inverse Stereographic Nonparanormal distribution): We say that the
vector of random angles � = (�1, . . . ,�p)

′ has an Inverse Stereographic Nonparanor-
mal distribution if there exists a set of functions h = {h1, . . . , hp} such that h(U) =
(h1(U1), . . . , hp(Up))

′, with Uj = tan(�j/2), satisfies h(U) ∼ Np(μ,�).

Notice that, if h(U) ∼ Np(μ,�), then U has a Nonparanormal distribution, U ∼
NPNp(μ,�, h), and�has an Inverse StereographicNonparanormal (ISNPN) distribution,
� ∼ ISNPNp(μ,�, h), with density function, at θ ∈ T

p,

f�(θ) = (2π)−p/2|�|−1/2 exp
(

−1
2
(h(u) − μ)′�−1(h(u) − μ)

) p∏
j=1

|h′
j(uj)|

1 + cos(θj)
. (5)

As in the Euclidean case, to assure the identifiability of the above density function, we
require that the transformation hj preserve means and variances for all j, i.e. ,

E[hj(Uj)] = E[Uj] = μj, V[hj(Uj)] = V[Uj] = (�)jj.

From (5), it can be seen that when � ∼ ISNPNp(μ,�, h), then �i ⊥⊥ �j | �V/{i,j} iff
(�−1)ij = 0. This enables us to define the following class of models.

Definition 3.3 (Inverse Stereographic Nonparanormal graphical model): Let G =
(V ,E) be an undirected graph with set of vertices V = {1, . . . , p} and set of undirected
edges E ⊂ V × V . The vector of random angles � = (�1, . . . ,�p)

′ is an Inverse Stereo-
graphic Nonparanormal graphical model with respect to G if � ∼ ISNPNp(μ,�) and(

�−1)
ij = 0 for all {i, j} /∈ E.

For the above class of models, the global Markov property is implied by using the same
convention on the singularity points as for the Inverse Stereographic Gaussian graphical
models. The estimation of h and (μ,�) does not require ad hoc procedures as it can be car-
ried out by using the approach proposed for the classical Nonparanormal graphical model
in Liu et al. [27] over the realizations of Uj and ĥ(Uj), respectively.

The estimation and graph learning methods for both the Inverse Stereographic Normal
models and their semi-parametric counterparts adhere to those used in classical Gaussian
graphical models, thus we omit their discussion here. For instance, we suggest referring to
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the graph learning techniques outlined in Mazumder and Hastie [28], Meinshausen and
Bühlmann [29], Li and Maathuis [30] and the references therein, for efficient and scalable
algorithms for graph learning.

4. An illustrative example for structural bioinformatics

This section presents the application of the proposed graphical models in structural bioin-
formatics, a field where accurately predicting the three-dimensional structure of a protein
is crucial. In this context, understanding the conditional independence structure of a pro-
tein’s dihedral angles can be a valid aid, especially for proteins which exhibit more than
one conformation, like the Methionine–enkephalin (Menk).

Menk, a pentapeptide endogenous opioid, is predominantly found in the human cen-
tral nervous system and gastrointestinal tract. Besides having an analgesic activity, Menk
is involved in the control of respiratory, cardiovascular, gastrointestinal functions, and
neuroendocrine regulation. Marcotte et al. [31] carried out twoNMR experiments to mea-
sure Menk’s three-dimensional structure in different model membrane systems, focusing
on the impact of membrane composition on peptide conformation. They investigated
zwitterionic (PC) bicelles and negatively charged bicelles (Bic/PG). The corresponding
data sets, named 1PLW and 1PLX, respectively, are available at the RCSB Protein Data
Bank (https://www.rcsb.org). In each of the two experiments, they collected
n = 80 models of the Menk measured in fast-tumbling bicelles using multidimensional
1H NMR.

Here, we apply the proposed classes of models to the dihedral angles of the shape-
changing Menk protein, primarily to illustrate the methodology rather than for detailed
analysis. In the graphical models, each node represents a specific dihedral angle of an
amino acid in the protein. As a motivation for this choice, consider the Ramachandran
plot, a traditional visualization method for backbone dihedral angles φ and � , typically
without distinguishing the different amino acids. Figure 4 illustrates the Ramachandran
plots of the dihedral angles φ and � for Glycine residues in Menk, measured by Mar-
cotte et al. [31]. Menk comprises two Glycine residues, named Gly1 and Gly2. Figure 4(b)
presents the Ramachandran plot, distinguishing betweenGly1 andGly2 in both 1PLWand
1PLX experiments. In contrast, Figure 4(a) collectively shows all Glycine angles from the
two residues and experiments. The comparison of the two plots indicates a varying depen-
dence between the dihedral angles across amino acids and experimental conditions. This
variation suggests that investigating the dependence structure among each dihedral angle
of each amino acid could yield valuable insights.

4.1. Unwrapped Gaussian graphmodel forMenk

In this section, we separately study the data sets corresponding to the two experiments,
assuming a p-variate Wrapped Normal distribution for the p = 8 dihedral angles forming
the protein structure. For the estimation task, we employ the approach of direct maximiza-
tion of the approximate likelihood outlined in Section 2.1.1.

Preliminary variance estimates, using sample circular variances, are relatively small,
ranging from 0.001 to 0.036 for 1PLX and from 0.003 to 1.856 for 1PLW angles. As dis-
cussed in Section 2.1.1, these estimates indicate that the data are far from converging to
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Figure 4. Ramachandran plots of (a) the dihedral angles of Glycine in Menk and (b) distinguishing the
two amino acids (Gly1 and Gly2), and the two experiments (Menk1 = 1PLX, Menk2 = 1PLW).
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Figure 5. Selected Unwrapped graphs of the Menk angles for 1PLX (a) and for 1PLW (b).

the Multivariate Normal distribution, but it is reasonable to truncate the winding num-
bers at ±1. Edge selection is accomplished by individually testing each edge and applying
the Holm correction to control the overall significance level, set at 0.05. The resulting
unwrapped graphs are displayed in Figure 5. Nodes with the same colour belong to the
same amino acid. These graphs seem to confirm the influence of membrane composition
on peptide conformation. Only a few independences are detected for the 1PLX version of
the Menk. In particular, it is interesting to note that �GLY2 is an important hub in 1PLX
as all the other angles depend on it. On the contrary, in 1PLW, �GLY2 is independent of all
the other angles given φPHE.

Under the assumed model, these graphs may be suggestive that Menk could adopt sev-
eral conformations according to the membrane environments, not only in terms of means
and variances of the dihedral angles, as noted by Marcotte et al. [31], but also in the inde-
pendence structure among the angles. In particular, the conformation of 1PLW seems
substantially less rigid than that of 1PLX.

4.2. Inverse stereographic nonparanormal graphmodel forMenk

In this section, we consider the Inverse Stereographic model. In particular, by applying
the inverse stereographic projection to the collected data, the Shapiro–Wilks test rejects
Normality both on the univariate and the joint distributions. Consequently, we assume
here that the Menk dihedral angles have the ISNPN distribution defined in (5), whose
transformation function h is estimated by using the same approach as in Liu et al. [27].

Among the possible ways to learn the ISNPN graphical model, we use maximum like-
lihood estimation with a SINful approach for edge selection [see, 32], with α = 0.1. As
an alternative, one could use, for instance, the graphical lasso [33] or its extensions [see,
for instance, 28, and the references therein] to perform estimation and edge selection in a
single step whenever the dimension of the protein is large.
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Figure 6. Selected Inverse Stereographic Nonparanormal graphs for 1PLX (a) and for 1PLW (b).

The resulting graphs are depicted in Figure 6. It is interesting to note that, under this
model assumption, �GLY2 remains the most important hub in 1PLX, as it has the largest
number of connections. Conversely, in 1PLW, �GLY2 is a singleton and is therefore inde-
pendent of all the other angles both conditionally and marginally. The 1PLW structure is
extremely sparse, with dependencies seemingly following the primary structure of the pro-
tein. Here (�TYR,φGLY1,�GLY1,φGLY2) ⊥⊥ (φPHE,�PHE,φMET), marginally. According to
the Global Markov property, it is also true, for instance, that �TYR ⊥⊥ �GLY1 | φGLY1.

Despite the obvious disparities between the graphs selected under the semi-parametric
ISNPN and those under the WN assumption, the conditional independence structure in
the two experiments clearly likewise differs in terms of sparsity levels, as foreseen by Mar-
cotte et al. [31], who noted that structural differences between the conformers of Menk are
not surprising. They proved that Enkephalins are flexible pentapeptides and their confor-
mation is dependent on their environment.Our analysis corroborates their results by show-
ing that these conformations are distinct not only in their three-dimensional structures
but also in the relationships among the angles formed by the conformations themselves.
This result underscores the complexity of protein dynamics and highlights the importance
of studying the conditional independence structure of the dihedral angles when analyz-
ing the functional implications of conformational variability. Taking into consideration
that existing algorithms for protein predictions, such as AlphaFold by DeepMind, can pre-
dict only static protein structures, our insight can help researchers to understand, predict
and manipulate flexible protein structures. This understanding might be relevant for drug
design and understanding disease mechanisms where protein interactions play a pivotal
role.

5. Conclusions

The interest in the conditional independence structure of circular variables is shared by
many scientific fields and has been strongly growing over the last years. For instance, in
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biochemistry, the structure ofmolecules such as proteins, DNA, and RNA can be described
in terms of angles. Graphical models whose nodes represent these angles may lead to cru-
cial contributions in this field as well as in the understanding of protein structure. Despite
their potential, graphicalmodels for angular variables seem to be under-studied. This work
introduces some classes of graphical models for angular multivariate data in some ways
related to the Gaussian distribution. The proposed models enrich the classes of graphi-
cal models involving distribution in the families of wrapped and projected distributions.
The previously definedmodels rely on distribution directly defined on the torus, according
to the so-called intrinsic approach. The fact that both the distributions considered in this
work are related to the Gaussian one links these new classes of models to the most popular
and well-studied graphical models in the Euclidean setting. A summary of key properties
related to graphical models of the distributions considered in this article is provided in
Table A1 of Appendix 3.

The UnwrappedNormal graphical model represents the first class of undirected graphi-
cal models defined using the wrapping approach. While studying the conditional densities
for theWrappedNormal distribution, we show that the winding number in the conditional
set prevents any proper factorization, making it impossible to specify conditional indepen-
dence starting from the circular joint distribution. This issue rules out the definition of a
related graphicalmodel. To circumvent this limitation, we propose theUnwrappedNormal
graphical model, which uses the distribution of the unwrapped variables. Although these
unwrapped variables are unobserved, their conditional independence parameters can be
estimated from the observed angles withWrappedNormal distribution.However, the pres-
ence of doubly infinite summations in the density formulation makes the estimation task
computational challenging and not scalable. Despite this well-known inferential problem,
theWrapped Normal remains an important member of the class of wrapped distributions,
deserving consideration in this context.

The Inverse Stereographic Normal graphical model represents a further class of models
related to the Gaussian distribution. To relax the normality assumption, we also propose
a more flexible semi-parametric model called the Inverse Stereographic Nonparanormal
graphical model. The most relevant aspect of both these classes of models is that they
inherit the properties of the concentration graph models. Consequently, these models
can benefit from all the broad and well-established literature on the Gaussian graphi-
cal models. This also includes all the classical procedures for parameter estimation and
edge selection, even for high-dimensional settings. As a drawback, the Inverse Stereo-
graphic Normal distribution is not invariant with respect to the choice of origin. This
problem stems directly from the projection, as the circle is homeomorphic to the real
projective line but not to the real line. Consequently, the specification of the probabilis-
tic model is conditional on the choice of the origin. One can set the origin according
to subject matter considerations, or, as suggested by Selvitella [16], one can consider a
richer family of distributions by including a translation parameter so that the origin can be
data-driven.

The choice between the two proposed graphical models might be guided by practical
and computational considerations or, preferably, via statistical tests on the underlying dis-
tributional assumptions. Specifically, classical tests onmultivariate Gaussianity apply to the
Inverse Stereographic case and its Nonparanormal version. However, for the Unwrapped
Normal model, ad hoc goodness-of-fit tests are a topic of future research. This research
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could build on the idea of SenGupta and Roy [34], adapting their approach to the
multivariate Wrapped Normal distribution.
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Appendices

Appendix 1 Proofs

Proof of Result 2.1

Since the mth moment of the complex variable Zj corresponds to the characteristic function of the
unwrapped variable Xj ∼ N(μj, (�)jj) evaluated at the integerm, it holds that

E[Zj] = E
[
eiXj

] = eiμj−(�)jj/2 = eiμj e−(�)jj/2. (A1)
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Incidentally, notice that because of eiμj = cos(μj) + i sin(μj), it holds that ‖E[Zj]‖ = e−(�)jj/2.
Consequently, ‖E[Zj]‖ plays the role of the concentration parameter for �j and it depends on
the concentration of Xj. Furthermore, the first mixed moment between Zi and Zj amounts to the
characteristic function of (Xi + Xj) ∼ N(μi + μj, (�)ii + (�)jj + 2(�)ij), that is

E[ZiZj] = E

[
ei(Xi+Xj)

]
= ei(μi+μj)− 1

2 ((�)ii+(�)jj+2(�)ij) = ei(μi+μj)e−(�)ii/2e−(�)jj/2e−(�)ij . (A2)

Then, combining (A1) with (A2) leads to the result.

Proof of Result 2.2

Let B = {1, . . . , p} \ A, then the density of � ∼ WNp(μ,�) satisfies

f�(θ) =
∑
k∈Zp

fX(θ + 2πk)

=
∑
kA∈Zq

∑
kB∈Zp−q

(2π)−p/2|�|−1/2

exp
{
−1
2

(
θA − μA + 2πkA
θB − μB + 2πkB

)′
�−1

(
θA − μA + 2πkA
θB − μB + 2πkB

)}

=
∑
kA∈Zq

∑
kB∈Zp−q

fXAXB (θA + 2πkA, θB + 2πkB) .

Therefore, the partition of � into �A and �B corresponds to a similar partition of
X ∼ Np(μ,�) as (

XA
XB

)
∼ Np

((
μA
μB

)
,
(

�AA �AB
�BA �BB

))
.

Now, the marginal distribution of �A can be obtained, by interchanging the integral operator with
the sums, as

f�A(θA) =
∫

Tp−q

∑
kA∈Za

∑
kB∈Zb

fXAXB(θA + 2πkA, θB + 2πkB) dθB

=
∑
kA∈Zq

∑
kB∈Zp−q

∫
Tp−q

fXAXB(θA + 2πkA, θB + 2πkB) dθB.

Consequently, by concatenation of integrals

f�A(θA) =
∑
kA∈Zq

∫
Rp−q

fXAXB(θA + 2πkA, u) du

=
∑
kA∈Zq

fXA(θA + 2πkA).

Using the fact that XA ∼ Nq(μA,�AA), the result follows. �

Proof of Result 2.3

As XB = �B + 2πKB, the density of (�A,KA) | �B,KB is

f�A ,KA|�B ,KB(θA, kA | θB, kB) = fXA|XB(θA + 2πkA | θB + 2πkB).

Hence, as XA | XB ∼ Nq(μA|B,�A|B), it holds that

f�A|�B ,KB(θA | θB, kB) =
∑
kA∈Zq

fXA|XB(θA + 2πkA | θB + 2πkB).
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The above density is a (conditional) wrapped Normal density sharing its parameters with the
distribution of XA | XB, i.e. ,�A | XB ∼ WNq(μA|B,�A|B).

For the independence result, notice that as f�A|�B ,KB(θA | θB, kB) = f�A(θA) whenever

fXA|XB(θA + 2πkA | θB + 2πkB) = fXA(θA + 2πkA),

then �A ⊥⊥ �B iff XA ⊥⊥ XB, i.e. ,iff �AB = 0q×(p−q). �

Proof of Result 2.4

As a consequence of Result 2.2, if � ∼ WNp(μ,�), for disjoint subsets A and S of {1, . . . , p} with
respective cardinalities q and s, both (�A,�S) and�S haveWrappedNormal distribution, and then,
the density of �A | �S is the ratio

f�A|�S(θA | θS) =
∑

kA∈Zq
∑

kS∈Zs fXAXS(θA + 2πkA, θS + 2πkS)∑
kS∈Zs fXS(θS + 2πkS)

,

where (XA,XS) and XS have Normal distribution. The result comes writing the joint density of XA
and XS at the numerator as the product of the conditional density of XA | XS and the marginal
density of XS,

f�A|�S(θA | θS) =
∑

kA∈Zq
∑

kS∈Zs fXA|XS(θA + 2πkA | θS + 2πkS)fXS(θS + 2πkS)∑
kS∈Zs fXS(θS + 2πkS)

,

and setting

wS(θS, kS) = fXS(θS + 2πkS)∑
kS∈Zs fXS(θS + 2πkS)

.

�

Proof of Result 3.1

The proof directly follows by noting that the density function in Equation (4) differs from the
density of X ∼ Np(μ,�) by the multiplicative factor

∏p
j=1(1 + cos(θj))−1. Then, the conditional

independence parameter for� ∼ ISNp(μ,�) is the same asX ∼ Np(μ,�) and the twodistributions
factorize together. Therefore, the conditional independence property is the same as the Gaussian
distribution. �

Appendix 2 On the wrapped normal distribution

A.1 Remarks on conditional independence inWN distribution

For a random vector of angles withWrapped Normal distribution, if the unwrapped graph is able to
suggest the conditional independence structure of the random angles, then the conditional distri-
bution of an angle, given its neighbours, should be very close to the conditional distribution of the
same angle given all the other angles. For instance, let � = (�1,�2,�3)

′ ∼ WN3(μ,�) with

μ =
⎛
⎝0
0
0

⎞
⎠ and �−1 =

⎛
⎝j/2π −0.5 −0.5

−0.5 4/π 0
−0.5 0 4/π

⎞
⎠

where j varies from 1 to 1000. The corresponding unwrapped variables X1,X2,X3 follow a three-
variate Normal distribution satisfying X2 ⊥⊥ X3 | X1. Therefore, in the unwrapped graph, X1 sep-
arates X2 and X3. Different values of j imply different magnitudes of the variance, ranging from
2π/1000 to 2π .

Figure A1 represents the Kullback–Leibler divergence (KLD), when the variance σ 2
1 is varying,

between the distributions f�2|�1�3(θ2|θ1θ3), of �2 given all the other variables, and f�2|�1(θ2|θ1),
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Figure A1. Kullback–Leibler divergence of the conditional distribution of�2 | �1,�3 and of�2 | �1,
when X2 ⊥⊥ X3 | X1 for a set of randomly chosen values of the conditional variables. The bold solid line
corresponds to (θ1 = 0, θ3 = 0), the dashed line corresponds to (θ1 = π , θ3 = π).

conditional only on the neighbour as suggested by the unwrapped graph. The values of the condi-
tioning set are randomly chosen. This example confirms that, when the variance σ 2

1 is small enough,
the divergence from the two distributions is indistinguishable from zero. In the considered case, this
seems to occur for σ 2

1 < π/2. According to this type of investigation, when the variance of the sep-
arators is small enough, the joint distribution over the angles can be simplified according to the
unwrapped graph and the dependence induced by the winding numbers is negligible.

A.2 Remarks on the approximation of the likelihood function for theWN
distribution

Let � ∼ WNp(μ,�), and X = � + 2πK . The concentration matrix driving the conditional inde-
pendence structure of the Unwrapped Normal graphical model depends on the parameters shared
by the distributions of X and �, and it would be desirable to estimate it using the observed angles.
To make a feasible inference for the Wrapped Normal distribution, one can rely on an accurate
approximation that avoids the infinite sum by appropriately truncating the winding numbers.

Consider the vector of thresholds for the winding numbers k∗ = k∗1p, with k∗ ∈ Z and 1p being
the p-dimensional vector of ones. The approximation we are going to consider replaces the dou-
bly infinite summation in the WN distribution with the finite sum from −k∗ to k∗. The crucial
point for likelihood-based inference on the multivariate Wrapped Normal distribution is whether
this approximation affects the maximum of the likelihood function. In particular, when learning
a graphical model, the interest is on the estimate of the precision matrix � = �−1, encoding the
conditional independence structure of the variables. For this purpose, we conducted a small sim-
ulation study, generating data from a trivariate Wrapped Normal distribution with μ = (π ,π ,π)′,
covariancematrix� and subsequent precisionmatrix� andpartial correlationmatrixR respectively
given by

� =
⎛
⎝ 1.0 2.0 0.8

2.0 5.0 2.0
0.8 2.0 1.0

⎞
⎠ � =

⎛
⎝ 5.0 −2.0 0.0

−2.0 1.8 −2.0
0.0 −2.0 5.0

⎞
⎠ R =

⎛
⎝ 1.00 0.67 0.00

0.67 1.00 0.67
0.00 0.67 1.00

⎞
⎠ .



STATISTICS 1245

Figure A2. Scatter-plot matrix for �1 and �2 with kernel density estimate on the main diagonal and
kernel regression function estimate on the off-diagonal elements.

The reported scenario is then characterized by the independence X1 ⊥⊥ X3 | X2, with a larger vari-
ance of the separator X2 and moderate variances for the remaining nodes. As an example of data
generated from this distribution, Figure A2 depicts the portion of the scatter-plot matrix concern-
ing �1 and �2. The characteristics of the distribution of �3 are, as a matter of fact, similar to those
of �1.

We consider the profile likelihood approach described in Section 2, and report in Figure A3 the
estimates of the off-diagonal entries of R for some values of k∗. We generate 100 samples with two
sample sizes, n = 500 and n = 5000. TheMonte Carlo experiment suggests that the approximation
with the Gaussian distribution (k∗ = 0) is unsatisfactory. At the same time, themaximum likelihood
estimates remain constant for the values of κ∗ greater than zero. This result was also confirmed for
other scenarios, where the values of themain diagonal entries of� varied from 0.1 to 10. In addition,
comparing the results from the two different sample sizes, it seems that the maximum likelihood
consistency is not affected by the approximation.

A.3 Monte Carlo simulations for unwrapped graphical models

To investigate the ability of the procedure for parameter estimation and graph recovery in
UnwrappedGaussian graphical models, we are reporting here the results of a small simulation study.
We set two scenarios by generating data from two different four-dimensional WN distributions for
different sample sizes (n = 30, 50, 100, 150, 250). Both the data-generating distributions have mean
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Figure A3. Estimated partial correlation coefficients with k∗ varying from 0 to 4 over 100 simulations
for n = 500 (top panels) and n = 5000 (bottom panels).

vector μ = (π ,π ,π ,π)′, and covariance matrices

�1 =
⎛
⎜⎝
0.79 0.39 0.20 0.10
0.39 0.98 0.49 0.25
0.20 0.49 1.03 0.52
0.10 0.25 0.52 1.04

⎞
⎟⎠ �2 =

⎛
⎜⎝
0.79 0.20 0.05 0.01
0.20 0.83 0.21 0.05
0.05 0.21 0.84 0.21
0.01 0.05 0.21 0.84

⎞
⎟⎠

yielding to the respective partial correlation matrices

�1 =
⎛
⎜⎝

1 0.40 0 0
0.40 1 0.40 0
0 0.40 1 0.45
0 0 0.45 1

⎞
⎟⎠ �2 =

⎛
⎜⎝

1 0.24 0 0
0.24 1 0.24 0
0 0.24 1 0.24
0 0 0.24 1

⎞
⎟⎠ .

In the first scenario, there is a stronger dependence on the connected variables, while in the second
one, such dependence is weaker. Variances have similar amounts in both scenarios, varying between
π/4 and π/3. This results in larger partial correlation coefficients for the first scenario with respect
to the second one. To evaluate the effectiveness of the graph learning procedure, we use ROC curves
to show the true positive rate (TPR) versus the false positive rate (FPR) at various threshold settings.
Here

TPR = TP
TP + FN

and FPR = FP
TN + FP

where TP (TN, respectively) represents the number of correctly identified edges (missing edges,
resp.), while FP (FN, respectively) stands for the number of falsely identified edges (missing edges,
resp.). Monte Carlo ROC curves for the considered scenarios are depicted in Figure A4 for the con-
sidered sample sizes. In the first scenario, where the dependence is stronger, the procedure performs
reasonably well, even for moderate sample sizes. As expected, the performances worsen for weaker
dependence, requiring larger samples to provide satisfactory results, while when n is 30, the actual
performance is only slightly above the random guess.
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Figure A4. Monte Carlo ROC curves over 250 simulation runs for data simulated in different sample
sizes fromWrapped Normal distributionwith covariancematrix�1 (left panel) and�2 (right panel) with
n = 30, 50, 100, 150, 250.

Appendix 3 Summary table

Table A1. Key properties of Wrapped Normal and Inverse Stereographic Normal
distributions.

Distribution � ∼ WNp(μ,�) � ∼ ISNp(μ,�)

Type of distribution Wrapped Projected
Link to X ∼ Np(μ,�) � = X(mod2π) X = tan(�/2)
Marginalization �A ∼ WNq(μA ,�AA) �A ∼ ISNq(μA ,�AA)
Conditioning �A | �B �∼ WN �A | �B ∼ ISNq(μA|B ,�A|B)
Conditional indep. parameter None (�−1)ij
Related Graphical Models Unwrapped GM ISN GM & ISNPN GM
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