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To date, the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) COVID-

19 pandemic continues to be a potentially lethal disease. Although both vaccines and

specific antiviral drugs have been approved, the search for more specific therapeutic

approaches is still ongoing. The infection mechanism of SARS-CoV-2 consists of

several stages, and each one can be selectively blocked to disrupt viral infection.

Peptides are a promising class of antiviral compounds, which may be suitably modi-

fied to be more stable, more effective, and more selective towards a specific viral

replication step. The latter two goals might be obtained by increasing the specificity

and/or the affinity of the interaction with a specific target and often imply the stabili-

zation of the secondary structure of the active peptide. This review is focused on

modified antiviral peptides against SARS-CoV-2 acting at different stages of virus

replication, including ACE2-RBD interaction, membrane fusion mechanism, and the

proteolytic cleavage by different viral proteases. Therefore, the landscape presented

herein provides a useful springboard for the design of new and powerful antiviral

therapeutics.
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1 | INTRODUCTION

The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2),

isolated in the city of Wuhan, China, in early 2020, continues to be

a health threat. The infection, termed Coronavirus Disease 19

(COVID-19), can occur through a wide range of symptoms, from a

simple cold to severe respiratory crises that can be even fatal. Since

the pandemic started there 761 million cases and 6.8 million deaths

globally have been confirmed.1

Immunization through vaccines has drastically reduced severe

cases of COVID-19 and remains the most effective way of prevention

nowadays. On the other hand, this defense is linked to the activity of

the vaccinated immune system, which in some cases may be ham-

pered, as in immunocompromised individuals.2,3 Therefore, it is neces-

sary to develop antiviral compounds as therapeutics, in case the

vaccine does not work in predisposed individuals. Two antiviral drugs

are currently available to prevent the development of severe forms of

the disease: Molnupiravir (Lagevrio®) that is a prodrug of the synthetic

nucleoside derivative N4-hydroxycytidine and exerts its antiviral

action by introducing copying errors during viral RNA replication4–6

and Nirmatrelvir (Paxlovid®) that is a peptidomimetic, which acts as an

orally active SARS-CoV-2 protease inhibitor.7–9 Although these com-

pounds are widely used, the research for new, more selective, and

effective antivirals is ongoing.

The mechanism of infection of SARS-CoV-2 is complex and con-

sists of several steps: entry into the host cell, replication, and tran-

scription and finally assembly and release (Figure 1). The first event

regards the viral entry in which a key role is played by the Spike glyco-

protein of SARS-CoV-2, a trimeric protein composed of the subunits

S1 and S2.11 The viral replication cycle is triggered through the inter-

action between a specific fragment contained in the S1 subunit of

Spike, called Receptor Binding Domain (RBD), and the transmembrane
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receptor Angiotensin Converting Enzyme 2 (ACE2), present on the host

cell surface.12 This interaction induces a conformational change in the

Spike glycoprotein that enables the proteolytic cleavage of its S1 sub-

unit by the Transmembrane protease serine 2 (TMPRSS2) of the host

cell.13 Then, the N-terminal fragment of S2, called the Fusion Peptide

(FP), interacts with the host cell membrane triggering the interaction

between Heptad repeat region 1 and 2 (HR2 and HR1). This intrapro-

tein interaction leads to the formation of a six-helix bundle (6-HB),

bringing the viral membrane closer to the cell membrane and allowing

the virus to transfer the genetic material (RNA) inside the host cell

(Figure 2).15,16

The second step involves the translation of the viral genome

(ssRNA+), in particular the open reading frames (ORF1a/b) into two

polyproteins pp1a and pp1ab. These are then cleaved by two

cysteine proteases, such as papain-like protease (PLpro) and

3-chymotrypsin-like protease (3CLpro) also called major protease

(Mpro), and transformed into nonstructural proteins (nsps). Subse-

quently, the viral replication and transcription complex (RTC) is

formed, which includes several nsps, including the RNA-dependent

RNA polymerase (RdRp), essential for viral RNA replication. In the

cytosol, the new viral RNA is packed into a helical structure by the

interaction with multiple copies of the Nucleocapsid Protein. Then,

the viral envelope is formed, and finally, the virions are secreted by

exocytosis.17–19

The complexity of the SARS-CoV-2 replication cycle requires the

development of specific antiviral compounds. On the other hand, this

complexity can be exploited to design therapeutics, which targets one

or more phases in this cycle, thus blocking the infection. Among all

the many compounds developed in this context, we focussed our

attention on peptides suitably modified to increase specificity and

antiviral activity against SARS-CoV-2. In fact, bioactive peptides are

versatile drug candidates, since it is possible to combine the many

desirable features of a native amino-acid sequence with the possibility

to install a large variety of chemical modifications (thanks to the reac-

tive functional groups) to improve its drug-like properties. Accord-

ingly, we reviewed the large number of modified peptides endowed

F IGURE 1 Scheme of the SARS-CoV-2 lifecycle. The three steps in which modified peptides may act as inhibitors are highlighted. Modified
from Brady et al.10
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with anti-SARS-CoV-2 activity and described in the last 3 years. To

emphasize the importance of chemical modifications of native

amino-acid sequences, we excluded from this analysis those

peptides that have been pharmacologically tested in their native,

unmodified form.

Currently, almost 100 peptides are in active clinical development,

with many more in preclinical studies.20–22 The use of peptides as

therapeutics has multiple advantages. For example, these molecules

have high specificity, high efficacy, and are generally low in toxicity.23

In addition, solid-phase peptide synthesis (SPPS) reduced the time and

cost of production of peptides in the drug development phase, while

robust hybrid methods were developed for their large-scale GMP-

compliant production, as required for active pharmaceutical ingredi-

ents (APIs). On the other hand, native peptides have a low capacity to

cross the cell membrane and are not very stable to hydrolytic enzymes

in the biological system.24 In addition, activity and selectivity of pep-

tides also depend on the secondary structure, which generally differs

from the isolated sequence and the same sequence inserted within

the protein.25 This is a relevant issue when the peptide is designed as

an inhibitor of a particular protein–protein interaction (PPI). In light of

these considerations, it is therefore necessary to modify native pep-

tides to turn drawbacks into advantages.

Low proteolytic stability remains one of the most relevant disad-

vantages of native peptide sequences. However, there are modifica-

tions that enable to increase the half-life in biological systems. For

example, the introduction of nonnatural amino acids that are not rec-

ognized by proteases can increase the stability.26 Among these, the

D-amino acids are widely used. In fact, it has been demonstrated that

only a few enzymes can hydrolyze the amide bond involving D-amino

acids.27 In addition, D-residues can stabilize a particular conformation

and thus influence selectivity for a specific target.28,29 Other widely

used nonnatural residues are β-amino acids and fluorinated amino

acids, both inducing increased enzymatic stability.30,31

Another drawback to consider is the poor cell permeability of

peptides, which does not allow the application of these molecules to

intracellular targets. A methodology that is frequently used to facili-

tate the cell-entry is the addition of a particular amino acid sequences

called cell penetrating peptides (CPPs).32,33 Among these, the most

widely used sequence is a nonamer of the transactivator of transcrip-

tion (TAT) from the human immunodeficiency virus (HIV), termed TAT

peptide.34 The use of the TAT sequence is exploited not only to

improve cell permeability of peptides but also for the internalization

of nanocarriers, including gold nanoparticles.35–37 Another widely

used modification is the addition of a lipidic moiety.38 In fact, lipid

moieties increase the affinity to the cell membrane favoring insertion

into the membrane, which then promotes cellular uptake.39,40 Gener-

ally, long-chain fatty acid moieties, such as the palmitoyl one, are used

as lipid tags because increasing the number of methylenes increases

cellular uptake.41–43

Frequently, stabilization of secondary structures can strongly

affect both activity and selectivity of bioactive peptides. However,

under physiological conditions, the interactions that stabilize the

secondary structure are weakened and the peptide tends to assume a

random-coil conformation, reducing or losing its activity. Formation of

intramolecular covalent bonds can reduce the degrees of freedom,

rigidifying the peptide structure. This result can be achieved by

F IGURE 2 Site of action of peptide inhibitors. (1) ACE2 analogs (in red) bind to spike RBD and inhibit the interaction with ACE2 on the cell
surface, thus blocking viral entry. (2) HR2 analogs (in green), possibly modified with a lipophilic tail (in yellow), interact with HR1 blocking the six-
helix bundle formation. Modified from Shekhar et al.14
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cyclization and can be performed exploiting the side chains or the

peptide backbone. The head-to-tail cyclopeptides are widespread in

nature and exhibit a variety of biological activities.44,45 In addition, it

was demonstrated that cyclopeptides have both higher proteolytic

stability and enhanced cellular uptake than linear analogs.46,47 On the

other hand, side chain cyclization, also known as “stapling”, can be

formed in several ways.48 In general, this strategy consists of replacing

residues that are not important for activity with modified amino acids

suitable for the bridge formation.49

In light of these considerations, modified peptides with antiviral

activity against SARS-CoV-2 will be analyzed and classified according

to the different viral target (highlighted in Figure 1), with the aim of

providing a rational useful tool for the development of new and more

potent compounds.

2 | MODIFIED PEPTIDES AS INHIBITORS
OF ACE2-RBD INTERACTION

As mentioned above, the interaction between the Spike fragment

RBD and the receptor ACE2 is the first event occurring between the

virus and the host cell. In this scenario, a molecule capable of interfer-

ing with this interaction blocks the activation of the cell entry, as

shown in Figure 2. According to the cryo-EM structure of the

ACE2-Spike S1 complex (PDB: 6M0J), the ACE2 key residues involved

in this interaction are S19, N24, T27, D30, K31, H34, E35, E37, D38,

Y41, and Q42, located in the α1 helix and K353, G354, D355, and

R357 that are located in the β sheets β3 and β4.50,51 Thus, research

efforts have been focused on the α1 fragment of ACE2, which

contains most of the residues involved in the interaction. Neverthe-

less, native peptides based on the α1 sequence do not maintain a heli-

cal structure in solution and thereby display limited ability to

efficiently bind to RBD.52,53 Therefore, these peptides were modified

to stabilize their secondary structure and thus increasing efficacy

(Table 1).

There are several ways to stabilize the secondary structure, but

the use of “stapled” to obtain conformationally constrained peptides

is the most widespread. The simplest way to achieve this result is the

formation of a lactam bridge via the side chains of Lys and Asp resi-

dues.62 Mass et al. exploited this type of reaction to synthesize differ-

ent ACE2(21–55) stapled analogs changing the lactam-bridges

position.54 It was demonstrated that shifting the lactam to the

N-terminal increases the α-helix propensity. In particular, the stapled

analog at position 36–40 was reported to have the most stable

secondary structure and higher inhibitory activity in RBD-ACE inter-

action, with an IC50 = 3.6 μM assessed by ELISA (Entry 1, Table 1).

Interestingly, the lactam bridge in positions 28–32 and 32–36 destabi-

lizes the structure of the α-helix.

Regarding the α1 fragment of ACE2, other types of stapled have

been studied, including Ring-Closing Metathesis (RCM), which allows to

obtain highly hydrophobic alkenyl-bridges.63 This reaction is versatile

and is used to obtain longer bridges such as i, i + 7 by increasing the

number of methylene groups in the alkenyl-terminal side chains.64

Curreli et al. synthesized and measured the antiviral activity of di-

stapled peptides derived from the ACE2 fragment (20–49) using RCM

to stabilize the secondary structure.55 The analog termed NYBSP-4

(Entry 2, Table 1), which contains 2 alkenyl bridges in positions 25–32

and 43–47, has 80% of α-helical propensity in PBS and inhibits the

TABLE 1 Modified peptides inhibitor of ACE2-RBD interaction.

Entry Target Name Sequence Ref.

1 RBD hACE221-55A36K-F40E Maas et al.54

2 RBD NYBSP-4 Curreli et al.55

3 RBD Peptide 6 Calugi et al.56

4 RBD P3 Quagliata et al.57

5 RBD P-2-2 Ac-βHAsp-PPEQAKTFLDKFNHEAEDLFYQK-NH2 Engelhardt et al.58

6 RBD P10 SALEEQYKTFLDKFMHELEDLLYQLAL-NH2 Karoyan et al.59

7 RBD P6cyc Sarto et al.60

8 RBD CSNP2 Shah et al.61
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infection in human fibrosarcoma HT1080/ACE2 cells and in

the human lung carcinoma A549/ACE2 cells with IC50 = 1.97 ± 0.14

and 2.86 ± 0.08 μM, respectively. In the same direction, Calugi et al.

synthesized a shorter analog derived from the fragment ACE2(34–42)

containing an alkenyl bridge at position 36–40 (Entry 3, Table 1).56

This modified peptide is able to inhibit the RBD-ACE2 interaction

with an IC50 = 21 ± 7 μM assessed by ELISA. Interestingly, this sta-

pled analog, in addition to having a more stable secondary structure

than the native peptide, exhibits greater proteolytic stability in human

plasma over 48 h.

Another more recent method used for the development of sta-

pled peptides is the formation of a triazolyl bridge exploiting the

copper(I)-catalyzed azide–alkyne cycloaddition (CuAAC).65–68 We

used this approach to perform a structure–activity relationship with

mono- and ditriazolyl bridged peptides derived from the minimal

sequence ACE2(24–42).57 In particular, the analog clicked at position

36–40 features a more stable secondary structure and increased anti-

viral activity as compared to the native fragment (Entry 4, Table 1).

Interestingly, the analog containing a double triazolyl-bridge results in

the highest propensity of α-helix (96.2% in 1:1 TFE:H2O), but this

higher rigidity reduces the antiviral activity, demonstrating that the

flexibility of the C-terminal part is also important.

Recently, it has been shown that N-capping of a peptide using the

rigidified diproline-derived module termed βHAsp-ProM-5 increases

the α helical content.69 With this in mind, Engelhardt et al. synthesized

some ACE2(24–42) minimal sequence analogs by adding this building

block in N-terminal position (Entry 5, Table 1). The propensity of the

α-helix increases dramatically compared with the analogs without the

modification, but they show a modest affinity for the RBD fragment

of Spike (Kd = 1.21 ± 0.36 μM) in microscale thermophoresis (MST).58

Interestingly, the N-capping with the nonnatural motif βHAsp-Pro-Pro

enhances the affinity (Kd = 0.062 ± 0.017 μM) without increasing the

helical content. The use of nonnatural amino acids was then exploited

by Karoyan et al. for the synthesis of an ACE2(19–45) fragment deriv-

ative in which several leucine residues were inserted to increase

a-helix propensity and an L-homotyrosine (hTyr) (Entry 6, Table 1).59

In particular, a key role in the interaction seems to be played by this

nonnatural residue, as the peptide named P10 has a much higher affin-

ity for RBD (Kd = 0.03 ± 0.01 nM) than the native fragment contain-

ing Ala, as assessed by biolayer interferometry.

The examples reported above involved the α1 portion of ACE2.

As previously mentioned, there are other residues located on the β

sheets β3 and β4 also important for the interaction with RBD. More-

over, these residues are located spatially close to the helix α1. Sarto

et al. synthesized a conformational stapled chimera composed of

the two key fragments in ACE2 to improve binding affinity.60

The hydrocarbonyl-bridged compound called p6cyc (Entry 7, Table 1)

exhibits an interesting dissociation constant (Kd = 270 ± 140 nM)

assessed by MST using RBD. In the same direction, Shah et al. pro-

posed a similar di-stapled chimera, characterized by a lactam bridge in

N-terminal and a disulfide bridge in C-terminal.61 This peptide, called

CSNP2 (Entry 8, Table 1), showed a high antiviral activity in vitro

(IC50 = 0.37 μM) and a modest binding affinity for the subunit S1

(Kd = 32.8 μM) in the SPR assay.

3 | MODIFIED ANTI-FUSION PEPTIDES

Once binding between the RBD fragment of the viral Spike and the

ACE2 receptor occurred, subsequent proteolytic cleavage of the sub-

unit S1 leads to a series of conformational changes in the S2.70 In par-

ticular, three HR1 domains form an internal trimer and interact with

three HR2 to produce a six-helix bundle (6-HB), thereby bringing viral

and cellular membranes in close proximity for fusion. In this scenario,

peptides capable of interfering with the formation of 6-HB are termed

antifusion peptides and are able to block SARS-CoV-2 cell entry, as

shown in Figure 2. Generally, these potential therapeutics derive from

sequences contained inside HR1 or HR2 which interact with the other

domain (Table 2).

The formation of 6-HB requires the interaction of multiple

domains characterized by an α-helix structure. As mentioned above,

one of the most widespread ways of stabilizing the secondary struc-

ture is the use of staples that block the peptide conformation. An

example of antifusion stapled peptide was reported by Zheng et al.,

TABLE 2 Modified antifusion peptides.

Entry Target Name Sequence Ref.

1 HR1 SCH2-1-20 Zheng et al.71

2 HR1 EK1C16 SLDQINVTFLDLEYEMKKLEEAIKKLEESYIDLKELGSGSG-

PEG4-Pal

Xia et al.72

3 HR1 EK1C4 SLDQINVTFLDLEYEMKKLEEAIKKLEESYIDLKELGSGSG-

PEG4-Chol

Xia et al.73

4 HR1 P40-LP VDLGDISGINASVVNIQKEIDRLNEVAKNLNESLIDLQEL-

PEG8-K-Chol

Hu et al.74

5 HR1 IPB02 ISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELK-Chol Zhu et al.75

6 HR1 [SARSHR2-PEG4]2-chol (DISGINASVVNIQKEIDRLNEVAKNLNESLIDLQELGSGSGC-

PEG4)2-Chol

Schmitz et al.76
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who described a peptide derived from Spike(1168–1203) entirely

located in HR2.71 The all-hydrocarbon stapled analog, bridged in posi-

tion 1187–1191 and called SCH2-1-20 (Entry 1, Table 2), has a higher

α-helix propensity than the native sequence and a stronger antiviral

activity in vitro (55% of inhibition rate at 12.5 μM).

An important aspect to consider is that once proteolytic cleavage

of the S1 subunit has occurred, the Fusion protein (FP) fragment of the

S2 subunit interacts with the cell membrane bringing the HR1 frag-

ment close to the host cell. This fact can be exploited to design more

potent peptides by targeting the cell compartment where fusion

occurs, through introduction of a membrane anchor in the form of a

lipophilic group.77–80 In this way, several HR2 analogs with different

lipophilic linker were synthesized and tested. One of the most widely

used is palmitic acid. In fact, palmitoylation of proteins is an important

posttranslational modification (PTM), which is generated biologically

by enzymes known as palmitoyl acyltransferases (PATs).81 Moreover,

several palmitic acid-based lipopeptide drugs were submitted to clini-

cal trials.82,83 In this scenario, Lan et al. synthesized a palmitoylated

derivative of peptide EK1, a pan-CoV fusion inhibitor, called EK1C16

(Entry 2, Table 2).72 In particular, the EK1 peptide was modified in

C-terminal by adding a peptide spacer (GSGSG), a polyethylene glycol

spacer (PEG4), and finally, the palmitoyl group.84 The results show that

the lipopeptide EK1-C16 has a higher antiviral activity than EK1 in all

the Variants of Concern (VOC) of SARS-CoV-2. For example, regard-

ing the alpha variant, the inhibition is more than 10-fold stronger

(IC50 = 0.11 vs. 1.21 μM).

Another approach exploits a specific feature of some regions of

the cell membrane, called lipid rafts, characterized by accumulations of

particular proteins and lipids. These tightly packed membrane micro-

domains are essential for the organization and assembly of signaling

molecules, influencing membrane fluidity, and regulating the traffick-

ing of membrane proteins, neurotransmitters, and receptors.85–87 The

abundant presence of cholesterol in lipid rafts suggests its use as an

effective lipidic anchor.88 To verify the key role of this sterol, Xia et al.

synthesized the cholesteryl derivative of peptide EK1C16, termed

EK1C4 (Entry 3, Table 2).73 The presence of cholesterol instead of pal-

mitic acid dramatically increases antiviral activity in vitro with an

IC50 = 15.8 nm. Interestingly, intranasally applied EK1C4 showed

strong protection of mice against HCoV-OC43 infection.

The key role of cholesterol in antifusion peptides is also reported

in other studies. Hu et al. compared the activity of the native peptide

Spike(1164–1203), entirely included in the HR2 region, with a

C-terminal analog modified with a PEG8 spacer and a cholesterol moi-

ety, termed P40 and P40-LP, respectively (Entry 4, Table 2).74 The

antiviral activity of the cholesteryl-derivative is more than 1000-fold

higher than the native sequence shifting from a mean IC50 = 2.32 μM

to 1.99 nM, calculated against different SARS-CoV-2 variants. In the

same direction, Zhu et al. designed the cholesteryl-derivative (without

spacer) of the shorter fragment Spike(1169–1203), called IPB02

(Entry 5, Table 2). Here, again, the presence of the sterol in C-terminal

dramatically increases antiviral activity in vitro, as compared with the

native sequence (IC50 = 33.7 vs 0.08 μM).75 Finally, Outlaw et al.

demonstrated that the cholesteryl derivative of the fragment

Spike(1168–1203) containing a C-terminal PEG4 spacer is able to

inhibits infectious SARS-CoV-2 viral spread in a human airway epithe-

lial (HAE) in ex vivo model.89

As reported above, the formation of 6-HB involves the three heli-

ces of the HR1 and HR2 fragments. Therefore, increasing the number

of copies of the antifusion peptides on the same molecule can

increase its inhibitory ability. This fact was exploited by Schmitz et al.,

who synthesized a chimera, termed [SARSHR2-PEG4]2-chol (Entry 6,

Table 2), containing two HR2 peptides attached via a PEG4 spacer to

a cholesterol molecule.76 The dimer was compared with the monomer,

showing greater antiviral activity in vitro (IC50 = 8 vs. 2 nm), as

assessed using the D614G variant of SARS-CoV-2. In the same paper,

the authors also compared the activity of monomeric analogs with dif-

ferent lengths of the PEG spacer, finding no difference in the use of

PEG4 or PEG24. Interestingly, the intranasal dimer-peptide chimera

prevents SARS-CoV-2 transmission in ferrets, providing protection

during a 24-h period of direct contact.90

4 | PROTEASE INHIBITOR PEPTIDES

Membrane fusion leads to virus entry into the cell. Infection then pro-

ceeds with translation and transcription of the viral genome leading to

the formation of the polyproteins pp1a and pp1ab. These polyproteins

are then cleaved by two types of proteases obtaining different non-

structural proteins, which are essential for virion formation. Accord-

ingly, molecules which can block the activity of these proteases have

potent antiviral activity (Table 3).

4.1 | Mpro inhibitors

The main proteases (Mpro), also termed 3-chymotrypsin-like proteases

(3CLpro), are a class of highly conserved cysteine hydrolases. Proteo-

lytic cleavage of Mpro generally occurs after a Gln residue, preceded

by a hydrophobic residue, such as Leu, and followed by a small amino

acid, such as Ala or Ser. Interestingly, there are no Mpro homolog pro-

teases in human; therefore, inhibitors of Mpro are extremely selective

and have reduced side effects due to inhibition of physiological prote-

ases.97 Generally, to block the activity of a protease, molecules which

can occupy the active site in order to inhibit hydrolytic activity are

used. This mechanism implies that such compounds have a relatively

rigid and ordered structure. Regarding peptides, one way to stabilize

the structure is to form macrocycles to reduce degrees of freedom.

It has been shown that the Mpro of SARS-CoV has a substrate

specificity for its C-terminal autoprocessing. In fact, inactive forms of

Mpro have a 10-amino acid C-terminal prosequence, which is cleaved

by another Mpro at Gln306.98 Therefore, based on previous studies

performed on SARS-CoV and given the extreme similarity in both

structure and sequence between Mpro of SARS-CoV and SARS-

CoV-2, the prosequence can be exploited to design inhibitors, as it is

recognized by the active site of the enzyme.99 In this way, Kreutzer

et al. synthesized a cyclopeptide derived from the sequence

6 of 11 QUAGLIATA ET AL.

 10991387, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/psc.3541 by U

niversita D
i Firenze Sistem

a, W
iley O

nline L
ibrary on [14/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



Mpro(305–309).91 In particular, their peptide, termed UCI-1 (Entry 1,

Table 3), presents the mutation G307S and contains a [4-(2-ami-

noethyl)phenyl]acetic acid (AEPA) as a head to tail bridge to enforce a

conformation that mimics a peptide substrate of Mpro. This modified

peptide is able to inhibit Mpro activity with IC50 = 160 μM.

Regarding cyclic peptides, Johansen-Leete et al. identified several

compounds using Random nonstandard Peptide Integrated Discovery

(RaPID) technology, a biological method which allows the screening of

>1012 cyclic peptides for affinity against a protein target of interest

immobilized on magnetic beads.100 One of the most active products is

the cyclopeptide 1, characterized by a head to tail thioether bridge

formed by the side chain of Cys with N-terminal chloroacetic acid.92

This modified sequence has a potent proteolytic activity inhibition

with IC50 = 0.070 ± 0.018 μM but has no antiviral activity due to its

poor cell permeability. To increase cellular uptake, peptide 1 was fur-

ther modified with penetrin, a CPP, resulting in compound pen-1

(Entry 2, Table 3), which showed promising antiviral activity in vitro

(EC50 = 15.9 ± 0.7 μM). In the same way, Yin et al. synthesized differ-

ent disulfide cyclic peptides, selected by virtual screening using Mpro

as a target.93 Among these, the one called MN-2 (Entry 3, Table 3)

has a strong affinity for Mpro (Kd = 18.2 ± 1.9 nm) and also a promis-

ing antiviral activity in vitro against the variant Omicron BA.2.75 with

about 80% inhibition rate at 2 μM. More recently, Miura et al. synthe-

sized a library of cyclic peptides containing cyclic γ2,4-amino acid

(cγAA).94 The analog termed GM4H3Q (Entry 4, Table 3), which has a

head to tail thioether bridge and a cis-3-aminocyclobutane carboxylic

acid residue, appears to be stable to human serum (t1/2 = 82 h) and

also has potent inhibitory activity of Mpro (IC50 = 10 ± 0 nm).

4.2 | PLpro inhibitors

The papain-like protease (PLpro) is another hydrolytic enzyme essential

for SARS-CoV-2 viral replication. Differently from Mpro, the cleavage

site of PLpro is composed of the tetrapeptide LXGG motif and occurs on

the carboxyl side of C-terminal glycine.101 Peptide inhibitors of PLpro

are generally modified to bind covalently the Cys111, which belongs to

the catalytic triad of the enzyme, together with His272 and Asp286.102

To date, there are two examples of covalent inhibitory peptides

which exploit the “thiol-ene” click reaction to form an irreversible

TABLE 3 Protease inhibitor peptides.

Entry Target Name Sequence Ref.

1 Mpro UCI-1 Kreutzer et al.91

2 Mpro Pen 1 Johansen-Leete et al.92

3 Mpro MN-2 Yin et al.93

4 Mpro GM4H3Q Miura et al.94

5 PLpro VIR251 Rut et al.95

6 PLpro Peptide 29 Di Sarno et al.96
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thioether with the side chain of Cys111.103 The first, proposed by Rut

et al., concerns a sequence which contains two nonnatural residues

such as hTyr and 2,4-aiaminobutyric acid (Dab), and a C-terminal vinyl-

methyl ester VME group (Entry 5, Table 3).95 The VME motif plays a

key role, as it is a powerful Michael acceptor and easily undergoes

nucleophilic attack by thiol groups. The covalent interaction with

Cys111 has been demonstrated by crystallography, and the modified

peptide can inhibit the enzyme activity almost completely at 100 μM.

In the same direction, Di Sarno et al. synthesized a dipeptide

composed of L-allylglycine and L-Trp, with the C-terminal aminoben-

zyl and the N-terminal capped with chloroacetic acid (Entry 6,

Table 3).96 This compound is able to inhibit the activity of PLpro

(IC50 = 0.67 ± 0.59 μM) and has good antiviral activity against SARS-

CoV-2 (EC50 = 0.32 μM).

5 | CONCLUSIONS

Despite the availability of vaccines, COVID-19 is still a life-threatening

disease, especially for the more vulnerable subjects. Currently, two

drugs against SARS-CoV-2 have been approved, but the complexity of

the infection cycle requires the development of new therapeutics,

more selective and effective. Peptides represent a category of com-

pounds that address these requirements, but they have some disad-

vantages such as low stability in physiological conditions, poor cell

permeability, and low conformational stability. These compounds,

however, can be easily modified to obtain new peptides with unique

characteristics, which can dramatically increase potency and selectiv-

ity. We reported in this review all the modified peptides active against

SARS-CoV-2 described in the literature, classified according to the dif-

ferent targets, that is, the ACE2-RBD interaction, the membrane

fusion process, and the two viral specific proteases, Mpro and PLpro.

Among the latter, Mpro appears to be a promising target since a

nonpeptide inhibitor has already been approved for the treatment of

COVID-19. In fact, this protease lacks a human homolog, and therefore,

its inhibition is potentially devoid of side effects due to inhibition of

physiological proteases, a crucially positive factor for a drug. However,

the intracellular localization of this target requires the development of

cell permeable peptide analogs, a goal that can be reached, even if add-

ing some complexity to the development of new drug candidates. On

the other hand, fusion inhibitory peptides have been approved in the

past for other viral diseases, such as AIDS, caused by human immuno-

deficiency viruses (HIV).104 In this case, the target is extracellular, but it

has been shown that interaction of the drug with the cell membrane

through a lipid moiety, such as cholesterol, dramatically increases anti-

viral activity. Accordingly, cholesteryl antifusion peptides appear to be

excellent candidates as potential drugs. Finally, from the synthetic

viewpoint, the availability of new, more versatile and biocompatible

cyclization methods, such as the formation of triazolyl bridges by click

chemistry, will play a key role in the development of second-generation

antiviral peptides. In conclusion, modified peptides appear to be useful

weapons against SARS-CoV-2, and therefore, although none of them

entered, up to now, the stage of clinical development, this review aims

to provide a tool which can help the development of new, more potent

and selective antiviral peptide analogs.
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