
Citation: Marino, R.; Kirkpatrick, S.

Large Independent Sets on Random

d-Regular Graphs with Fixed Degree

d. Computation 2023, 11, 206. https://

doi.org/10.3390/computation11100206

Academic Editors: Franco Bagnoli

and Anna T. Lawniczak

Received: 2 September 2023

Revised: 2 October 2023

Accepted: 9 October 2023

Published: 17 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

computation

Article

Large Independent Sets on Random d-Regular Graphs with
Fixed Degree d
Raffaele Marino 1,* and Scott Kirkpatrick 2

1 Dipartimento di Fisica e Astronomia, Università degli Studi di Firenze, Via Giovanni Sansone 1,
Sesto Fiorentino, 50019 Firenze, Italy

2 School of Computer Science and Engineering, The Hebrew University of Jerusalem, Edmond Safra Campus,
Givat Ram, Jerusalem 91904, Israel; kirk@cs.huji.ac.il

* Correspondence: raffaele.marino@unifi.it

Abstract: The maximum independent set problem is a classic and fundamental combinatorial chal-
lenge, where the objective is to find the largest subset of vertices in a graph such that no two vertices
are adjacent. In this paper, we introduce a novel linear prioritized local algorithm tailored to address
this problem on random d-regular graphs with a small and fixed degree d. Through exhaustive
numerical simulations, we empirically investigated the independence ratio, i.e., the ratio between
the cardinality of the independent set found and the order of the graph, which was achieved by our
algorithm across random d-regular graphs with degree d ranging from 5 to 100. Remarkably, for
every d within this range, our results surpassed the existing lower bounds determined by theoretical
methods. Consequently, our findings suggest new conjectured lower bounds for the MIS problem
on such graph structures. This finding has been obtained using a prioritized local algorithm. This
algorithm is termed ‘prioritized’ because it strategically assigns priority in vertex selection, thereby
iteratively adding them to the independent set.

Keywords: independent set; optimization; lower bounds

1. Introduction

Given a graph G(Ñ , E), where Ñ is the set of vertices of cardinality |Ñ | = N, and E
is the set of edges of cardinality |E| = M, finding the maximum set of vertices wherein no
two of which are adjacent is a very difficult task. This problem is known as the maximum
independent set problem (MIS). The maximum independent set problem can be visualized
as a quest to find the largest group of non-neighboring vertices within a graph. Imagine a
party where guests represent vertices and the friendships between them represent edges.
The MIS is akin to inviting the maximum number of guests such that no two of them are
friends, thus ensuring no prior friendships exist within this subset of guests. In graph
theoretic terms, it seeks to identify the largest subset of vertices in which no two vertices
share an edge. This problem has broad implications and applications, ranging from network
design, scheduling, and even in areas such as biology, where one may wish to determine
the maximum set of species in a habitat without competition. It was shown to be NP-
hard, and no known polynomial algorithm can be guaranteed to solve it [1]. In other
words, finding a set I of vertices, with the maximum cardinality, such that for every two
vertices i, j ∈ I , there is no edge connecting the two, i.e., (i, j) /∈ E, needs a time that is
super-polynomial if P 6= NP.

For example, the first nontrivial exact algorithm for the MIS was due to Tarjan and
Trojanowski’s O(2N/3) ∼ O(1.2599N) algorithm in 1977 [2]. Since then, many improve-
ments have been obtained. Today, the best algorithm that can solve the MIS exactly needs a
time O(1.1996N) [3]. Those results are bound obtained in the worst-case scenario [4]. We
direct the interested reader to [3], and the references therein, for a complete discussion on
exact algorithms.

Computation 2023, 11, 206. https://doi.org/10.3390/computation11100206 https://www.mdpi.com/journal/computation

https://doi.org/10.3390/computation11100206
https://doi.org/10.3390/computation11100206
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/computation
https://www.mdpi.com
https://orcid.org/0000-0002-2311-4380
https://doi.org/10.3390/computation11100206
https://www.mdpi.com/journal/computation
https://www.mdpi.com/article/10.3390/computation11100206?type=check_update&version=1

Computation 2023, 11, 206 2 of 17

The MIS is important for applications in computer science, operations research, and en-
gineering via such uses as graph coloring, assigning channels to the radio stations, register
allocation in a compiler, artificial intelligence etc. [5–8].

In addition to having several direct applications [9], the MIS is closely related to
another well-known optimization problem, the maximum clique problem [10,11]. In order
to find the maximum clique (the largest complete subgraph) of a graph G(Ñ , E), it suffices
to search for the maximum independent set of the complement of G(Ñ , E).

The MIS has been studied on many different random structures, in particular on
Erdős-Rényi graphs (ER) and random d-regular graphs (RRG). An Erdős-Rényi graph
GER(N, p) is a graph that is selected from the distribution of all graphs of order N, where
two different vertices are connected to each other via a probability p. A random d-regular
graph is a graph that is selected from the distribution of all d-regular graphs on N vertices,
with Nd being even. A d-regular graph is defined as a graph where each vertex has the
same number of neighbors, i.e., d.

For the Erdős-Rényi class, with p = 0.5, known local search algorithms can find
solutions at a rate of only up to half the maximum independent set present, which is
∼ 2 log1/(1−p) N [12] in the limit N → ∞.

This behavior also appears for random d-regular graphs Gd(N).

1.1. Related Works

For example, Gamarnik and Sudan [13] showed that, for a sufficiently large value of d,
local algorithms cannot find the size of the largest independent set in a d-regular graph of a
large girth with an arbitrarily small multiplicative error.

The result of Gamarnik and Sudan [13] was improved by Rahman and Virág [14], who
analyzed the intersection densities of many independent sets in random d-regular graphs.
They proved that for any ε > 0, local algorithms cannot find independent sets in random
d-regular graphs with an independence ratio larger than (1 + ε) ln d

d if d is sufficiently large.
The independence ratio is defined as the density of the independent set; thus, α = |I|/|Ñ |.
Recently, the exact value of the independence ratio for all sufficiently large d values was
given by Ding et al. [15].

However, these results appear to say nothing about small and fixed d values. When d
is small and fixed, e.g., d = 3 or d = 30, indeed, only lower and upper limits, expressed in
terms of the independence ratio, are known.

Lower bounds on the independent sets’ size identify sets that an efficient algorithm
can find, while upper bounds are on the actual maximum independent set, not just on the
size an algorithm can find.

The first upper bound for such a problem was given in 1981 by Bollobás [16]. He
showed that the supremum of the independence ratio of 3-regular graphs with large girths
was less than 6/13 ∼ 0.461538 in the limit of N → ∞.

McKay, in 1987, improved and generalized this result to d-regular graphs with large
girths, for different values of d [17], by using the same technique and a much more careful
calculation. For example, for the cubic graph (the 3-regular graph), he was able to push
Bollobás upper bound down to 0.455370. However, since then, only for cubic graphs,
the upper bound has been improved by Balogh et al. [18], namely, to 0.454. Cavity methods
suggest a slightly lower upper bound and, thus, a smaller gap at small values of d [19].
For example, the upper bound given in [19] for d = 3 was 0.4509, while for d = 4, it was
0.4112. In [15], it was shown that this approach can be rigorously proven, but again, only
for large d values. Recently, however, this approach has been proven for d ≤ 19 in [20].

Remarkable results for lower bounds were first obtained by Wormald in 1995 [21].
He considered processes in which random graphs are labeled as they are generated and
derived the conditions under which the parameters of the process concentrate around
the values that come from the solution of an associated system of differential equations,
which are equations for the populations of various configurations in the graph as it is
grown. By solving the differential equations, he computed the lower bounds for any fixed

Computation 2023, 11, 206 3 of 17

d returned by a prioritized algorithm, thereby improving the values of the bounds given by
Shearer [22].

This algorithm is called prioritized, because there is a priority in choosing vertices
added to the independent set [23]. It follows the procedure of choosing vertices in the
independent set I one by one, with the condition that the next vertex is chosen randomly
from those with the maximum number of neighbors adjacent to the vertices already in I .
After each new vertex in I is chosen (or labeled with an I), we must complete all of its
remaining connections and label the neighbors, which are identified as members of the
set V (for vertex cover). Although each vertex in I can be chosen according to its priority,
the covering vertices that complete its unfilled connections must then be chosen at random
among the remaining connections to satisfy Bolobas’ configuration model [21].

This priority is a simple way to minimize the size of the set of covered vertices and
maximize the number of sites remaining as candidates for the set I . More precisely, we
are given a random d-regular graph Gd(N), and we randomly choose a site i from the set
of vertices Ñ . We set i into I , and we set all of the vertices neighboring i into a set V . We
label the elements of I with the letter I, while the elements of V are labeled with the letter
V. Then, from the subset of vertices in Ñ that are neighbors of vertices in V , but are not
yet labeled I or V, we randomly choose the element k that has the maximum number of
connections with sites in V . We set it into I . The vertices neighboring k, which are not
in V , are added to the set V . This rule is repeated until |I|+ |V| = N. Along with this
algorithm, one can consider an associated algorithm that simultaneously generates the
random d-regular graph Gd(N) and labels vertices with the letter I or V. This associated
algorithm, which will be described in detail in the next sections, allowed Wormald to build
up the system of differential equations used for computing lower bounds for the MIS.

Improvements on this algorithm were achieved by Duckworth et al. [24]. These
improvements were obtained by observing, broadly speaking, that the size of the structure
produced by the algorithm is almost the same for d-regular graphs of very large girths
as it is for a random d-regular graph. However, since then, new lower bounds have been
achieved only at small values of d, e.g., d = 3 and d = 4. Interesting results at d = 3 have
been achieved by Csóka, Gerencsér, Harangi, and Virág [25]. They were able to find an
independent set of cardinality of up to 0.436194 N using invariant Gaussian processes on
the infinite d-regular tree. This result was once again improved by Csóka [26] alone, who
was able to increase the cardinality of the independent set on large-girth 3-regular graph by
up to 0.445327N and on a large-girth 4-regular graph by up to 0.404070N, by numerically
solving the associated system of differential equations.

These improvements were obtained by deferring the decision as to whether a site
i ∈ Ñ must be labeled with the letter I or V. More precisely, this requires that the sites
for which a decision is deferred need additional (temporary) labels. This means that
counting the evolution of their populations, either through a differential equation or with
an experiment, becomes more complicated.

Csóka [26] was able to improve the lower bounds for d = 3 and d = 4, but his method
was not applicable to values of d > 4. These bounds cannot be considered fully rigorous,
as they require some kind of computer simulation or estimation [20].

1.2. Main Results

This paper aims to compute independent set density for any d ≥ 5 using an experimen-
tal approach, i.e., algorithms that are linear in N. Table 1 presents the best upper and lower
bounds for d ∈ [5, 100] in the first and second columns, respectively. Recently, the authors
in [27] presented a Monte Carlo method that can experimentally outperform any algorithm
in finding a large independent set in random d-regular graphs, in a (using the words of
the authors) “running time growing more than linearly in N” [27]. These authors conjectured
lower bound improvements only for d = 20 and d = 100, but with experimental results
obtained on random d-regular graphs of the order N = 5 · 104. However, in this work, we
are interested in comparing our results with the ones given by the family of prioritized

Computation 2023, 11, 206 4 of 17

algorithms, because we believe that a rigorous analysis of the computational complexity
should be performed on these types of algorithms.

In this paper, as stated above, we present the experimental results of a greedy algo-
rithm, i.e., a deferred decision algorithm built upon existing heuristic strategies, which
leads to improvements on the known lower bounds of a large independent set in random
d-regular graphs ∀d ∈ [5, 100] [21,24,28]. These bounds cannot be considered fully rigorous,
as they require computer simulations and estimations. However, the main contribution of
this manuscript is to present a new method that is able to return, on average, independent
sets for random d-regular graphs that before were not possible. This new algorithm runs
in linear time O(N) and melds Wormald’s, Duckworth’s and Zito’s, and Csoka’s ideas of
prioritized algorithms [21,24,26,28]. The results obtained here are conjectured new lower
bounds for a large independent set in random d-regular graphs. They were obtained
by inferring the asymptotic values that our algorithm can reach when N → ∞ and by
averaging sufficient simulations to achieve confidence intervals at 99%. These results led
to improvements on the known lower bounds ∀d ∈ [5, 100] that, as far as we know, have
not been reached by any other greedy algorithm (see fourth column Table 1). Although the
gap regarding upper bounds is still present, these improvements may imply new rigorous
results for finding a large independent set in random d-regular graphs.

Table 1. The table shows the values of upper and lower bounds for the independence ratio for
random d-regular graphs with small and fixed values of d. d is the degree of the random d-regular
graph. The αUB column describes the upper bound computed by Harangi [20] for 5 ≤ d ≤ 10 and by
Barbier et al. in [19] for 20 ≤ d ≤ 100. Upper bounds identify the actual maximum values of the
independent set fraction. The αLB column identifies the best independent set density values obtained
in [21,24,26,28]. Lower bounds identify the size of independent sets that an efficient algorithm can
find. The last column, i.e., α∞ ± z99%σα∞ , instead identifies the 99% confidence intervals of the
conjectured new bounds.

d αUB αLB α∞ ± z99%σα∞

5 0.37917 0.35930 0.36476(2)
6 0.35289 0.33296 0.33600(2)
7 0.33081 0.31068 0.31241(2)
8 0.31192 0.28800 0.29255(1)
9 0.29552 0.27160 0.27555(2)
10 0.28110 0.25730 0.26079(2)
20 0.19480 0.17380 0.17550(4)
50 0.10980 0.09510 0.09574(2)

100 0.06740 0.05720 0.05754(1)

1.3. Paper Structure

The paper is structured as follows: in Section 2, we define our deferred decision
algorithm, and we introduce a site labeling, which will identify those sites for which we
defer the I/V labeling decisions. In Section 3, we present the deferred decision algorithm
for d = 3, and we introduce the experimental results obtained on random 3-regular graphs
of sizes up to 109 as a sanity check of our experimental results. We recall that the order of a
graph G(Ñ , E) is the cardinality of its vertex set Ñ , while the size of a graph G(Ñ , E) is
the cardinality of its edge set E. In Section 4, we present our deferred decision algorithm
for d ≥ 5, and the experimental results associated with it, using extrapolation on random
d-regular graphs with sizes of up to 109.

2. Notation and the General Operations of the Deferred Decision Algorithm

In this section, we define the notation used throughout this manuscript, and we define
all of the operations that will be used to understand the deferred decision algorithm. As
a starting point, and also for the following section, we define the set N = Ñ as the set of
unlabeled nodes. We start by recalling that we deal with random d-regular graphs Gd(N),

Computation 2023, 11, 206 5 of 17

where d is the degree of each vertex i ∈ N , where N is the set of vertices, and N = |N |.
All vertices i ∈ N are unlabeled.

In order to build a random d-regular graph, we used the method described in [21]
and introduced in [16].

Definition 1 (Generator of Random d-Regular Graphs Algorithm). We take dN points,
with dN being even, and distribute them in N urns that are labeled 1, 2, . . . , N, with d points in
each urn. We choose a random pairing P = p1, . . . , pdN/2 of the points such that |pi| = 2∀i. Each
urn identifies a site in N . Each point is in only one pair pi, and no pair contains two points in the
same urn. No two pairs contain four points from just two urns. In order to build a d-regular graph
Gd(N), we then connect two distinct vertices i and j if some pair has a point in urn i and one in
urn j. The conditions on the pairing prevent the formation of loops and multiple edges.

The referred pairing must be chosen uniformly at random and subjected to the con-
straints given. This can be done by repeatedly choosing an unpaired point and then
choosing a partner for this point to create a new pair. As long as the partner is chosen
uniformly at random from the remaining unpaired points, and as long as the process is
restarted if a loop or multiple edge is/are created, the result is a random pairing of the
required type [21].

In this paper, we use the method described above so that while we generate the random
d-regular graph Gd(N), concurrently with our labeling process, we identify new links as
labeling sites.

The graphs built using the Generator of Random d-Regular Graphs Algorithm pre-
vent the formation of loops and multiple edges without introducing bias in the distribution
where we sample the graphs [21,23].

We define two separate sets I and V for independent and vertex cover sites, respec-
tively. I identifies the set of graph nodes that satisfies the property wherein no two nodes
are adjacent, and V is its complement. A site i ∈ I is labeled with the letter I, while a site
j ∈ V is labeled with the letter V.

We define ∆i to be the degree of a vertex i, i.e., the number of links that a site is
connected with, while ∆i is the antidegree of a vertex i, i.e., the number of free connections
that i needs to complete during the graph-building process. Of course, the constraint
∆i + ∆i = d is always preserved ∀i ∈ N . At the beginning of the graph-building process,
all i ∈ N have ∆i = 0, ∆i = d. At the end of the graph-building process, all graph nodes
will have ∆i = d, ∆i = 0. We define ∂i to be the set that contains all of the neighbors of i.

For the sake of clarity, we define a simple subroutine on a single site i ∈ N of the
Generator of Random d-Regular Graphs Algorithm (Subroutine GA(i, ∆i)) that will be
useful for describing the algorithm presented in the next sections. The Subroutine GA(i, ∆i)
generates the remaining ∆i connections of site i. It keeps the supporting data to reflect the
evolution of the network growth.

Algorithm 1: Subroutine GA(i, ∆i)

Input: i ∈ N , ∆i;
Output: i connected with d sites;

1 Using the rules in Definition 1, i is connected randomly with ∆i-sites;
2 ∆i = 0;
3 ∆i = d;
4 return i connected with d sites;

The sites that we choose following some priority, either the one we describe or any
other scheme, will be called P sites. The sites that are found by following links from the
P sites (or by randomly generating connections from the P sites) are called C sites. More
precisely, each site j ∈ N that we choose that is not labeled yet with any letter (C or P),
s.t. ∆j ≤ 2 and the random connection(s) present on j is(are) on site(s) in V , is a P site.

Computation 2023, 11, 206 6 of 17

The set P defines the set of P sites. The set P is kept in ascending order with respect to the
antidegree ∆i of each site i ∈ P .

In general, a site i that is labeled as P will be surrounded by two sites that are labeled
as C. Because the labeling of those sites is deferred, we call those C − P− C structures
virtual sites. A single virtual site, ṽ, has an antidegree ∆ṽ equal to the sum of all of the
antidegrees of sites l that compose site ṽ, i.e., ∆ṽ = ∑l∈ṽ ∆l . The number of sites l ∈ ṽ is
equal to the cardinality of |ṽ|. The degree of ṽ is ∆ṽ = d |ṽ| − ∆ṽ. As an example, we show
in Figure 1 the operation of how a virtual site is created from a site s ∈ P with ∆s = 2
and ∆s = 1, as well as two sites j, k ∈ N with ∆j = 3, ∆k = 3, ∆j = 0, and ∆k = 0. Let us
assume that a site s ∈ N s.t. ∆s = 2 exists. This is possible because a site l ∈ V is connected
with it. This means that s must be labeled as P and put into P . Let us run Subroutine GA(s,
∆s) on s and assume that the s connects with two neighbors j, k ∈ N . Given that j, k ∈ N
are connected to a P site, they are labeled as C values. We then define ṽ = {s, j, k}. This set
is a virtual node ṽ with ∆ṽ = 4.

V

ṽ

P

C

V

C

s

j k

i i

P

V

s

i

j k

Figure 1. The figure shows the equivalence of a C− P−C structure with a ṽ site of antidegree ∆ṽ = 4.
The site s, labeled P, is connected to site i ∈ V with two random sites, j and k, labeled C values.
The resulting structure is a virtual site ṽ ∈ A.

We define A to be the set of virtual sites. The set A is kept in ascending order
with respect to the antidegree ∆ of each virtual site ṽ ∈ A. Virtual sites can be created—
as described above—expanded, or merged together (creating a new virtual site θ̃ = ∪i ṽi).
Two examples are shown in Figures 2 and 3.

V

P

C

V

C

s

j k

i
t

P

n

V

P

C

V

C

s

j k

i t

P

n
C

m

m

ṽ1

ṽ1

Figure 2. The figure shows how the virtual site ṽ1 ∈ A is expanded.

Computation 2023, 11, 206 7 of 17

P

V

l
P

C

V

C

ṽ1
i

j k

P

C

V

C

ṽ2 r
m n

P

V

l
P

C

V

C

i
j k

P

C

V

C

r
m n

θ̃

Figure 3. The figure shows how a virtual site θ̃ ∈ A with ∆θ̃ = 6 is created.

Figure 2 shows how to expand a virtual site ṽ1. Let us imagine that a site m ∈ P ,
with antidegree ∆m = 2, is chosen. Let us run Subroutine GA(m, ∆m) on m. Assume that
m connects with n ∈ N (∆n = 3) and with ṽ1 ∈ A (∆ṽ1 = 4). In this case, ṽ1 ∈ A expands
itself, thereby swallowing sites m and n and having a ∆ṽ1 = 5.

Figure 3 shows how two virtual sites merge together. Let us imagine that a site p ∈ P ,
with antidegree ∆p = 2, is chosen during the graph-building process. Let us run Subroutine
GA(p, ∆p) on m. Assume that p connects with two virtual sites ṽ1 ∈ A and ṽ2 ∈ A, with
∆ṽ1 = 4 and ∆ṽ2 = 4. The new structure is a virtual site θ̃ ∈ A with ∆θ̃ = 6.

We define in the following a list of operations that will be useful for understanding
the algorithm presented in the next sections.

Definition 2 (OPi
move(i,X ,Y)). Let X and Y be two sets. Let i ∈ X and i /∈ Y . We define

OPi
move(i,X ,Y) to be the operation that moves the site i ∈ X from the set X to Y , i.e., i ∈ Y and

i /∈ X .

For example, OPi
move(i,N ,V) moves i ∈ N from the set N to V , i.e., i ∈ V and i /∈ N .

Instead, the operation OPi
move(i,N , I) moves i ∈ N from the set N to I , i.e., i ∈ I and

i /∈ N . We recall that when a site is set into I , it is labeled with I, while when a site is set
into V , it is labeled with V.

Definition 3 (OPṽ
del(ṽ,A)). Let A be the set that contains the virtual nodes ṽ. We define

OPṽ
del(ṽ,A) to be the operation that deletes the site ṽ ∈ A from the set A, i.e., the element

ṽ /∈ A anymore, and it applies the operation OPi
move(i,X ,Y) on each site i ∈ ṽ through the

following rule:

• if i ∈ ṽ is labeled with the letter P, then X = N and Y = I ;
• if i ∈ ṽ is labeled with the letter C, then X = N and Y = V .

Definition 4 (SWAP−OP(ṽ)). Let ṽ ∈ A. We define SWAP−OP(ṽ) to be the operation such
that ∀i ∈ ṽ:

• if i is labeled as P, then the label P swaps to C;
• if i is labeled as C, then the label C swaps to P.

Figure 4 shows how SWAP−OP(ṽ) acts on a virtual site ṽ.

Computation 2023, 11, 206 8 of 17

SWAP-OP()ṽ

P

C

V

C

V V V V

ṽ C

P

V

P

V V V V

ṽ

Figure 4. The figure shows how SWAP − OP(ṽ) works on a virtual site ṽ, which has ∆ṽ = 0.
SWAP−OP(ṽ) swaps all P sites in ṽ into C sites and all C sites in ṽ into P sites.

3. The Deferred Decision Algorithm for d = 3

In this section, we present our algorithm, which is simpler and slightly different from
the one in [26], but it is based on the same idea for determining a large independent set
in random d-regular graphs with d = 3, i.e., G3(N). The algorithm in [26] works only for
d = 3 and d = 4. This exercise is performed as a sanity check for the algorithm. This
algorithm will also be at the core of the algorithm developed in Section 4.

As mentioned above, the algorithm discussed in this paper is basically a prioritized
algorithm, i.e., an algorithm that makes local choices in which there is a priority in selecting
a certain site. Our algorithm belongs to this class.

We start the discussion on the local algorithm for d = 3 by giving the pseudocode of
the algorithm in Algorithm 2.

The algorithm starts by building up a set of sites N of cardinality |N | = N, and from
the set it randomly picks a site i. Then, the algorithm completes the connections of site i in
a random way by following the method described in Algorithm 1. Once all its connections
are completed, site i has ∆i = 3 and ∆i = 0. It is labeled with the letter V, erased from N ,
and set into V . In other words, operation OPi

move(i,N ,V) is applied on it. Each neighbor of
i, i.e., j ∈ ∂i, has degree ∆j = 1 and antidegree ∆j = 2. Therefore, they are set into P and
thus labeled P values.

The algorithm picks a site k from P with the minimum remaining connections. In
general, if k has ∆k 6= 0, the algorithm completes all its connections, and it removes it from
P . Each site connected with a P value is automatically labeled with the letter C. If a site
k ∈ P connects to another site j ∈ P , with j 6= k, j is removed from P , and it is labeled as a
C value.

If k ∈ P has ∆k = 0, the site k is set into I , and it is removed from N and P , i.e., the
algorithm applies the operation OPk

move(k,N , I).
As defined in Section 2, a C− P− C structure is equivalent to a single virtual site, ṽ,

which has an antidegree ∆ṽ. Each virtual site ṽ is created with ∆ṽ > 2, and it is inserted
into the set A.

Once the set P is empty, and if and only if in A the virtual sites with antidegrees
less than or equal to 2 are not present, the algorithm selects a site ṽ ∈ A with the largest
antidegree ∆ṽ, and it applies the operation OPṽ

del(ṽ,A) after having completed all the
connections ∀i ∈ ṽ with ∆i 6= 0 by using Algorithm 1 on each i ∈ ṽ with ∆i 6= 0.

We apply operation OPṽ
del(ṽ,A) on virtual sites ṽ ∈ A with the largest antidegree,

because we hope the random connections outgoing from those sites will reduce the antide-
grees of the existing virtual sites in A in such a way that the probability of having virtual
nodes with antidegrees of ∆ṽ ≤ 2 increases. In other words, we want to create islands of
virtual sites that are surrounded by a sea of V sites in order to apply the SWAP−OP(ṽ)

Computation 2023, 11, 206 9 of 17

on those nodes. This protocol, indeed, makes it possible to increase the independent set
cardinality and decrease the vertex cover set cardinality.

Algorithm 2: local algorithm for d = 3
Input: N, d = 3;
Output: I ;

1 Build the set of sites N with |N | = N;
2 I = ∅;
3 V = ∅;
4 Pick a random site i ∈ N ;
5 Run Subroutine GA(i, ∆i);
6 Apply OPi

move(i,N ,V);
7 while N 6= ∅ do
8 while ∃i ∈ N s.t. ∆i ≤ 2 ∧ i /∈ P ∧ i is not labeled C do
9 Label i with letter P and insert it into P ;

10 if P 6= ∅ then
11 while P 6= ∅ do
12 Pick the first l ∈ P (we recall that elements in P are in ascending order);
13 if ∆l = 0 then
14 Apply OPl

move(l,N , I);
15 Remove l from P ;

16 else
17 Run Subroutine GA(l, ∆l);
18 If a neighbour j of l, i.e., j ∈ ∂l, is in P remove j from P ;
19 ∀j ∈ ∂l, label each j with the letter C;
20 Build or update the virtual node ṽ and, if it is not present, insert it

into A;
21 Remove l from P ;

22 else
23 while ∃ṽ ∈ A s.t. ∆ṽ = 0 do
24 Apply SWAP−OP(ṽ);
25 Apply OPṽ

del(ṽ,A);
26 while ∃ṽ ∈ A s.t. ∆ṽ = 1 do
27 Apply SWAP−OP(ṽ);
28 For i ∈ ṽ labeled P s.t. ∆i = 1 run Subroutine GA(i, ∆i);
29 Pick j ∈ ∂i,with j the last neighbour of i added;
30 Run Subroutine GA(j, ∆j);

31 Apply OPj
move(j,N ,V);

32 Apply OPṽ
del(ṽ,A);

33 while ∃ṽ ∈ A s.t. ∆ṽ = 2 do
34 Apply SWAP−OP(ṽ);
35 ∀i ∈ ṽ labeled P s.t. ∆i ≤ 2 run Subroutine GA(i, ∆i) and label the

neighbour(s) of i with the letter C;
36 Update the virtual node ṽ;

37 Pick ṽ s.t. maxṽ∈A ∆ṽ;
38 ∀i ∈ ṽ s.t. ∆i 6= 0 and labeled C, run Subroutine GA(i, ∆i);
39 Apply OPṽ

del(ṽ,A);

40 return I ;

Computation 2023, 11, 206 10 of 17

For this reason, if virtual nodes with antidegrees of ∆ṽ ≤ 2 exist in A, those sites have
the highest priority in being selected. More precisely, the algorithm follows the priority rule:

1. ∀ṽ ∈ A s.t. ∆ṽ = 0, the algorithm sequentially applies the operation SWAP−OP(ṽ)
and then the operation OPṽ

del(ṽ,A).
2. If no virtual sites ṽ ∈ Awith ∆ṽ = 0 are present, then the algorithm looks for those that

have ∆ṽ = 1. ∀ṽ ∈ A s.t. ∆ṽ = 1, it applies the operation SWAP−OP(ṽ), completes
the last connection of the site i ∈ ṽ with ∆i = 1, applies on the last neighbour of i
added to OPj

move(j,N ,V), and then applies OPṽ
del(ṽ,A).

3. If no virtual sites ṽ ∈ A with ∆ṽ = 0 and ∆ṽ = 1 are present, then the algorithm
looks for those that have ∆ṽ = 2. ∀ṽ ∈ A s.t. ∆ṽ = 2, it applies the operation
SWAP−OP(ṽ), completes the last connections of the sites i ∈ ṽ with ∆i 6= 0, labels
the new added sites with the letter C, and updates the degree and the antidegree of
the virtual node ṽ.

The algorithm proceeds by selecting virtual nodes and creating sites labeled as P
values until N = ∅. Once N = ∅, it returns the set I , which is the set of independent sites.
The code of the algorithm can be released upon request.

We are comparing numerical results for independence ratios that agree with theoretical
ones, at least up to the fifth digit. For this reason, we performed an accurate analysis on
random 3-regular graphs, starting from those that had an order of 106 and pushing the
number up to 5 · 108.

This analysis aimed to compute the sample mean of the independence ratio size
α(N) that was outputted by our algorithm. Each average was obtained in the following
manner: for graphs of the order N = 106, we averaged over a sample of 104 graphs;
for the order N = 2.5 · 106, we made an average over a sample of 7.5 · 103 graphs; for
the order N = 5 · 106, we made an average over a sample of 5 · 103 graphs; for the
order N = 107, the average was performed over a sample of 103 graphs; we performed
this average for the N = 2.5 · 107 over 7.5 · 102 graphs, for the N = 5 · 107 over 5 · 102

graphs, for the N = 108 over 102 graphs, for the N = 2.5 · 108 over 50 graphs, and for
the N = 5 · 108 over 10 graphs. The mean and the standard deviation for each analyzed
sample are reported in Table 2. Upon observing that the values of each independent set
ratio sample mean reached an asymptotic value, we performed a linear regression on the
model f (N) = (a/ ln N) + α∞ in order to estimate the parameter α∞ (blue line in Figure 5).
When N → ∞, the first term of the regression, i.e., (a/ ln N), went to 0, thereby leaving
out the value of α∞ that describes the asymptotic value of the independence ratio that our
algorithm can reach. After adopting the model f (N) = (a/ ln N) + α∞, one might naturally
question the rationale behind the specific choice of 1

ln N as a regressor. This decision is
grounded in the intrinsic nature of large graphs. In numerous instances, as seen in small-
world networks, the properties of these networks scale logarithmically with their size.
The logarithmic factor effectively translates the expansive range of data values into a scale
that is more analytically tractable. By employing 1

ln N as our regressor, we are capturing
the progressively diminishing influence of augmenting N on our parameter, α∞. With each
incremental increase in N, the relative change it induces becomes less significant. This
logarithmic term encapsulates this tapering sensitivity, thereby making it a fitting choice
for our regression model. Using the numerical standard errors obtained from each sample,
we applied a general least square (GLS) method [29] in order to infer the values of the
parameters α∞, thereby averaging sufficient simulations to achieve a confidence interval of
99% on them. The value of α∞ is the most important, because it is the asymptotic value that
our algorithm can reach when N → ∞. From the theory of GLS, we know that the estimator
of the parameter α∞ is unbiased, consistent, and efficient, and a confidence interval on this
parameter is justified. The analysis, performed on data reported in Table 2, shows that the
independent set ratio reached the asymptotic value α∞ = 0.445330(3). This value agrees
with the theoretical value proposed in [26].

Computation 2023, 11, 206 11 of 17

 0.445

 0.4451

 0.4452

 0.4453

 0.4454

 0.4455

 100000 1x10
6

 1x10
7

 1x10
8

 1x10
9

α=0.44533
α

(N
)

N

f(N)

d=3

Figure 5. The figure shows the extrapolation of the independent set ratio as a function of the graph
order, i.e., |N | = N and d = 3. The error bars identify the standard errors multiplied by the quantile
of the t distribution z99% = 3.35. The asymptotic value α∞ = 0.445330(3), extrapolated by fitting
the data using a function f (N) = (a/ ln N) + α∞ (blue line), where a = −0.00033(6), identifies the
values that our algorithm can reach when N → ∞. The confidence interval of 99% of α∞ (in Table 1)
agrees with the theoretical value of αLB = 0.44533.

Table 2. The table shows the sample average and standard deviation values of the independent set
ratio α(N) the for random regular graphs of order N and d = 3.

N d α(N)± σα(N)

106 3 0.445303 (48)
2.5 · 106 3 0.445307 (30)
5 · 106 3 0.445309 (21)

107 3 0.445310 (15)
2.5 · 107 3 0.445311 (9)
5 · 107 3 0.445311 (7)

108 3 0.445311 (4)
2.5 · 108 3 0.445311 (4)
5 · 108 3 0.445312 (2)

4. The Deferred Decision Algorithm for d ≥ 5

In this section, we present how to generalize the prioritized algorithm for all d ≥ 5.
It, as with the one previously described in Section 3, builds the random regular graph
and, at the same time, tries to maximize the independent set cardinality |I|. The main
idea that we propose is to melt down two existing algorithms, namely, the one in [21] and
the one described above, into a new prioritized algorithm, which is able to maximize the
independent set cardinality, thereby providing improved estimates of the lower bounds.
The new conjectured lower bounds come from extrapolation on random d-regular graphs
of sizes up to 109.

Before introducing the algorithm, we present a new operation that will allow us to
simplify the discussion.

Definition 5 (OPi
build−del(i,N , I ,V)). Let i ∈ N . We define OPi

build−del(i,N , I ,V) as the
operation that connects i to ∆i sites following the Algorithm 1 rules, applies OPi

move(i,N , I),
and, ∀j ∈ ∂i, sequentially runs Algorithm 1 and applies the operation OPj

move(j,N ,V).

The pseudocode of the last operation is described in Algorithm 3.

Computation 2023, 11, 206 12 of 17

Algorithm 3: OPi
build−del(i,N , I ,V)

Input: i ∈ N , N , I , V ;
Output: N , I , V ;

1 Run Subroutine GA(i, ∆i);
2 Apply OPi

move(i,N , I);
3 while ∂i 6= ∅ do
4 Pick j ∈ ∂i;
5 Run Subroutine GA(j, ∆j);

6 Apply OPj
move(j,N ,V);

7 return N , I , V ;

We start the discussion on the local algorithm for d ≥ 5 by giving the pseudocode of
the algorithm in Algorithm 4.

The algorithm starts randomly selecting a site z from the set of all nodesN , i.e., z ∈ N .
It then applies OPz

build−del(z,N , I ,V) on the site z (see Figure 6). This operation creates
nodes with different degrees and antidegrees. The algorithm proceeds in choosing the
node m from those values with minimum ∆m values. If the node m has ∆m > 2 values,
the algorithm applies the operation OPm

build−del(m,N , I ,V) on site m. In other words, we
are using the algorithm developed in [21] until a site m ∈ N with ∆m ≤ 2 pops up. When
such a case appears, we label it as a P site and we move it into the set P .

As described in Section 3, once the set P is not empty, the sites in the set P have the
highest priority in being processed for creating virtual nodes.

I

V

V

V

V

V

i
j

k

l

r
q

P

e

f

b

Figure 6. The figure shows how a P site appears, i.e., a site b with ∆b ≤ 2, in a random d-regular
graph Gd(N , E) with degree d = 5. In the event that a P site has not been created, the algorithm picks
a site m ∈ N with minimum ∆m and applies operation OPm

build−del(m,N , I ,V) on it.

Computation 2023, 11, 206 13 of 17

Algorithm 4: local algorithm for d ≥ 5
Input: N, d;
Output: I ;

1 Build the set of sites N with |N | = N;
2 I = ∅;
3 V = ∅;
4 Pick a random site i ∈ N and apply OPi

build−del(i,N , I ,V);
5 while N 6= ∅ do
6 while ∃i ∈ N s.t. ∆i ≤ 2 ∧ i /∈ P ∧ i is not labeled C do
7 Label i with letter P and insert it into P ;

8 if P 6= ∅ then
9 while P 6= ∅ do

10 Pick the first l ∈ P ;
11 if ∆l = 0 then
12 Apply OPl

move(l,N , I) and Remove l from P ;

13 else
14 Run Subroutine GA(l, ∆l);
15 If a neighbour j of l, i.e., j ∈ ∂l, is in P remove j from P ;
16 ∀j ∈ ∂l, label each j with the letter C;
17 Build or update the virtual node ṽ and, if it is not present, insert it

into A;
18 Remove l from P ;

19 else if A 6= ∅ then
20 while ∃ṽ ∈ A s.t. ∆ṽ = 0 do
21 Apply SWAP−OP(ṽ);
22 Apply OPṽ

move(ṽ,A);
23 while ∃ṽ ∈ A s.t. ∆ṽ = 1 do
24 Apply SWAP−OP(ṽ);
25 For i ∈ ṽ labeled P s.t. ∆i = 1 run Subroutine GA(i, ∆i);
26 Pick j ∈ ∂i,with j the last neighbour of i added;
27 Run Subroutine GA(j, ∆j);

28 Apply OPj
move(j,N ,V);

29 Apply OPṽ
del(ṽ,A);

30 while ∃ṽ ∈ A s.t. ∆ṽ = 2 do
31 Apply SWAP−OP(ṽ);
32 ∀i ∈ ṽ labeled P s.t. ∆i ≤ 2 run Subroutine GA(i, ∆i) and label the

neighbour(s) of i with the letter C;
33 Update the virtual node ṽ;

34 Pick ṽ s.t. maxṽ∈A ∆ṽ;
35 ∀i ∈ ṽ s.t. ∆i 6= 0 and labeled C, run Subroutine GA(i, ∆i);
36 Apply OPṽ

del(ṽ,A);
37 else
38 Pick randomly m ∈ N s.t. minm∈N ∆m (not labeled P,or C);
39 Apply OPm

build−del(m,N , I ,V);

40 return I ;

Until the set P is empty, the algorithm builds virtual sites, which are set into A.
Once the set P is empty, the highest priority in being processed is placed on the virtual

sites contained in A. Again, we want the random connections outgoing from the virtual
sites to reduce the antidegrees of the other existing virtual sites in A in such a way that the

Computation 2023, 11, 206 14 of 17

probability of having virtual sites with antidegrees of ∆ṽ ≤ 2 becomes bigger. In order to
have that, we list below the priority order that the algorithm follows for processing the
virtual sites contained in A:

1. ∀ṽ ∈ A s.t. ∆ṽ = 0∨∆ṽ = 1, the algorithm sequentially applies operation SWAP−OP(ṽ)
and the operation OPṽ

del(ṽ,A). (in the case that ∆ṽ = 1, the algorithm applies on the

last added site j ∈ ∂i the operation OPj
move(j,N ,V) before it completes the absent

connection for the site i ∈ ṽ with ∆i = 1. Then on the virtual site ṽ, it sequentially
applies operations SWAP−OP(ṽ) and OPṽ

del(ṽ,A)).
2. If ∃ṽ ∈ A s.t. ∆ṽ = 2 ∧ @q̃ ∈ A s.t ∆q̃ = 0 ∨ ∆q̃ = 1, the algorithm chooses with the

highest priority the site with ∆ṽ = 2. Then, it applies operation SWAP−OP(ṽ) on ṽ,
it runs the Subroutine GA(i, ∆i) ∀i ∈ ṽ with ∆i 6= 0, and it labels each neighbor(s) of i
with letter C.

3. If ∃ṽ ∈ A s.t. ∆ṽ > 2 ∧ @p̃ ∈ A s.t. ∆ p̃ ≤ 2, the algorithm chooses a site ṽ ∈ A with
the maximum ∆ṽ, and it applies the OPṽ

del(ṽ,A) with the maximum ∆ṽ after having
run the Subroutine GA(i, ∆i) on each i ∈ ṽ such that ∆i 6= 0.

4. In the case that P = ∅ ∧ A = ∅ ∧N 6= ∅, the algorithm takes a site t ∈ N with a
minimum ∆t, and it applies the operation OPt

build−del(t,N , I ,V).
The algorithm works until the following condition is true: N = ∅ ∧ P = ∅ ∧A = ∅.

Then, it checks that all sites in I are covered only by sites in V , and it checks that no site in
I connects to any other site in I .

The results obtained by the algorithm for different values of d, and different orders
N, are presented in Tables 3–5 . The confidence intervals of the asymptotic independent
set ratio values, obtained using the extrapolation described in the previous section, are
presented in Table 1. In other words, we performed simulations for each value of d by
computing the sample mean and the standard error of the independence ratio for some
values of N. Then, we used GLS methods in order to extrapolate the values of α∞ and build
up its confidence interval.

From our analysis, we observed that, ∀d > 4, our results, as far as we know, exceed
the best theoretical lower bounds given by greedy algorithms. Those improvements were
obtained because we allowed the virtual nodes to increase and decrease their antidegrees.
In other words, this process transforms the random d-regular graph into a sparse random
graph, wherein it is much easier making local rearrangements (our SWAP−OP(·) move)
to enlarge the independent set. More precisely, the creation of virtual nodes that increase or
decrease their antidegrees allows us to deal with a graph that is no longer d-regular but has
average connectivity 〈d〉.

Table 3. The table shows the sample average and standard deviation values of the independent set
ratio α(N) for random regular graphs of order N and degree d = 5, 6, 7.

N d α(N)± σα(N) d α(N)± σα(N) d α(N)± σα(N)

106 5 0.364723 (78) 6 0.335964 (84) 7 0.312367 (89)
2.5 · 106 5 0.364731 (48) 6 0.335969 (53) 7 0.312373 (56)
5 · 106 5 0.364732 (35) 6 0.335972 (38) 7 0.312378 (37)

107 5 0.364733 (24) 6 0.335975 (26) 7 0.312378 (27)
2.5 · 107 5 0.364734 (15) 6 0.335976 (18) 7 0.312380 (18)
5 · 107 5 0.364735 (11) 6 0.335975 (12) 7 0.312381 (13)

108 5 0.364734 (7) 6 0.335975 (8) 7 0.312381 (9)
2.5 · 108 5 0.364735 (5) 6 0.335975 (6) 7 0.312381 (5)
5 · 108 5 0.364734 (3) 6 0.335977 (2) 7 0.312381 (4)

Computation 2023, 11, 206 15 of 17

Table 4. The table shows the sample average and standard deviation values of the independent set
ratio α(N) for random regular graphs of order N and degree d = 8, 9, 10.

N d α(N)± σα(N) d α(N)± σα(N) d α(N)± σα(N)

106 8 0.292522 (83) 9 0.275511 (85) 10 0.260747 (84)
2.5 · 106 8 0.292523 (53) 9 0.275517 (53) 10 0.260753 (54)
5 · 106 8 0.292526 (37) 9 0.275519 (38) 10 0.260755 (38)

107 8 0.292527 (26) 9 0.275521 (27) 10 0.260757 (28)
2.5 · 107 8 0.292529 (17) 9 0.275522 (17) 10 0.260759 (17)
5 · 107 8 0.292530 (11) 9 0.275521 (12) 10 0.260758 (11)

108 8 0.292530 (8) 9 0.275523 (8) 10 0.260759 (8)
2.5 · 108 8 0.292530 (4) 9 0.275523 (5) 10 0.260759 (5)

Table 5. The table shows the sample average and standard deviation values of the independent set
ratio α(N) for random regular graphs of order N and degree d = 20, 50, 100.

N d α(N)± σα(N) d α(N)± σα(N) d α(N)± σα(N)

2.5 · 105 20 0.175389 (151) 50 0.095673 (114) 100 0.057523 (88)
5 · 105 20 0.175403 (107) 50 0.095682 (81) 100 0.057522 (62)

106 20 0.175407 (75) 50 0.095684 (57) 100 0.057524 (43)
2.5 · 106 20 0.175412 (48) 50 0.095688 (36) 100 0.057525 (27)
5 · 106 20 0.175414 (33) 50 0.095689 (24) 100 0.057527 (20)

107 20 0.175415 (24) 50 0.095690 (18) 100 0.057528 (14)
2.5 · 107 20 0.175416 (17) 50 0.095691 (12) 100 0.057527 (9)
5 · 107 20 0.175418 (11) 50 0.095690 (9) 100 0.057527 (7)

However, this improvement decreases as d becomes large, ∼ 1/d, and disappears
when d→ ∞ (see Figure 7, bottom panel). Indeed, the number of P labeled sites decreased
during the graph-building process (see Figure 7, top panel), thus invalidating the creation
of the virtual nodes that are at the core of our algorithm. This means that our algorithm for
values of d, such that d→ ∞, will reach the same asymptotic independent set ratio values
obtained by the algorithm in [21].

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.2 0.4 0.6 0.8 1

ρ
P

ρlinks

d=5 N=10
7

d=6 N=10
7

d=8 N=10
7

d=10 N=10
7

d=20 N=10
7

d=50 N=10
7

Figure 7. Cont.

Computation 2023, 11, 206 16 of 17

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 10 20 30 40 50 60 70 80 90 100

ρ
P

d

Figure 7. The figure shows how the dynamics of the fraction of P sites in the graph-building process
appear as a function of links inserted in (top panel), and the total fraction of P sites appears as a
function of d (lower panel). The fraction of P sites decreases from ∼ 1/d to when d becomes large.
As stated in the main text, this behavior shows that, for d→ ∞, our algorithm matches the one in [21].

In conclusion, for any fixed and small d, we have that the two algorithms are distinct,
and our algorithm produces better results without increasing the computational complexity.

5. Conclusions

This manuscript presents a new local prioritized algorithm for finding a large inde-
pendent set in a random d-regular graph at fixed connectivity. This algorithm makes a
deferred decision in choosing which site must be set into the independent set or into the
vertex cover set. This deferred strategy can be seen as a depth-first search delayed in time,
without backtracking. It works, and it shows very interesting results.

For all d ∈ [5, 100], we conjecture new lower bounds for this problem. All the new
bounds improve upon the best previous bounds. All of them have been obtained using
extrapolation on the samples of random d-regular graphs of sizes up to 109. For random
3-regular graphs, our algorithm is able to reach, when N → ∞, the asymptotic value
presented in [26]. We recall that the algorithm in [26] cannot be used for any d > 4. However,
we think that this approach can also provide conjectured lower bound for d > 100. Indeed,
as shown in Figure 7, there is still space to use our algorithm for computing independent
sets. Moreover, new strategies could be implemented for improving our conjectured
bounds.

The improvements upon the best bounds are due to reducing the density of the graph,
thereby introducing regions in which virtual sites replace multiple original nodes, and
optimal labelings can be identified. The creation of virtual sites makes it possible to group
together nodes of the graph to label each at a different instant with respect to their creation.
Those blobs of nodes transform the random d-regular graphs into a sparse graph, where
the searching of a large independent set is simpler.

Undoubtedly, more complex virtual nodes can be defined, and additional optimiza-
tions can be identified. This will be addressed in a future manuscript.

Author Contributions: Conceptualization, R.M. and S.K.; methodology, R.M. and S.K.; software,
R.M.; validation, R.M. and S.K.; formal analysis, R.M. and S.K.; investigation, R.M. and S.K.; resources,
R.M. and S.K.; data curation, R.M. and S.K.; writing—original draft preparation, R.M. and S.K.;
writing—review and editing, R.M. and S.K.; visualization, R.M. and S.K.; supervision, R.M. and S.K.;
project administration, R.M. and S.K.; All authors have read and agreed to the published version of
the manuscript.

Computation 2023, 11, 206 17 of 17

Funding: S.K. is supported by the Federman Cyber Security Center at the Hebrew University of
Jerusalem. R.M. is supported by #NEXTGENERATIONEU (NGEU) and funded by the Ministry of
University and Research (MUR), the National Recovery and Resilience Plan (NRRP), and the project
MNESYS (PE0000006)—A multiscale integrated approach to the study of the nervous system in
health and disease (DN. 1553 11.10.2022).

Data Availability Statement: The code of the algorithm can be released upon request.

Acknowledgments: R.M. would like to thank Nicolas Macris for a first reading of the manuscript
and Endre Csóka for useful discussions.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Cook, S. The P versus NP problem. In The Millennium Prize Problems; American Mathematical Society: Providence, RI, USA, 2006;

pp. 87–104.
2. Tarjan, R.E.; Trojanowski, A.E. Finding a maximum independent set. SIAM J. Comput. 1977, 6, 537–546. [CrossRef]
3. Xiao, M.; Nagamochi, H. Exact algorithms for maximum independent set. Inf. Comput. 2017, 255, 126–146. [CrossRef]
4. Mezard, M.; Montanari, A. Information, Physics, and Computation; Oxford University Press: Oxford, UK, 2009.
5. Mohseni, M.; Eppens, D.; Strumpfer, J.; Marino, R.; Denchev, V.; Ho, A.K.; Isakov, S.V.; Boixo, S.; Ricci-Tersenghi, F.; Neven, H.

Nonequilibrium Monte Carlo for unfreezing variables in hard combinatorial optimization. arXiv 2021, arXiv:2111.13628.
6. Marino, R.; Parisi, G.; Ricci-Tersenghi, F. The backtracking survey propagation algorithm for solving random K-SAT problems.

Nat. Commun. 2016, 7, 12996. [CrossRef] [PubMed]
7. Marino, R.; Macris, N. Solving non-linear Kolmogorov equations in large dimensions by using deep learning: A numerical

comparison of discretization schemes. J. Sci. Comput. 2023, 94, 8. [CrossRef]
8. Marino, R. Learning from survey propagation: A neural network for MAX-E-3-SAT. Mach. Learn. Sci. Technol. 2021, 2, 035032.

[CrossRef]
9. Bomze, I.M.; Budinich, M.; Pardalos, P.M.; Pelillo, M. The maximum clique problem. In Handbook of Combinatorial Optimization;

Springer: Berlin/Heidelberg, Germany, 1999; pp. 1–74.
10. Karp, R.M. Reducibility among combinatorial problems. In Complexity of Computer Computations; Springer: Berlin/Heidelberg,

Germany, 1972; pp. 85–103.
11. Marino, R.; Kirkpatrick, S. Hard optimization problems have soft edges. Sci. Rep. 2023, 13, 3671. [CrossRef]
12. Wein, A.S. Optimal Low-Degree Hardness of Maximum Independent Set. arXiv 2020, arXiv:2010.06563.
13. Gamarnik, D.; Sudan, M. Limits of local algorithms over sparse random graphs. In Proceedings of the 5th Conference on

Innovations in Theoretical Computer Science, Princeton, NJ, USA, 12–14 January 2014; pp. 369–376.
14. Rahman, M.; Virag, B. Local algorithms for independent sets are half-optimal. Ann. Probab. 2017, 45, 1543–1577. [CrossRef]
15. Ding, J.; Sly, A.; Sun, N. Maximum independent sets on random regular graphs. Acta Math. 2016, 217, 263–340. [CrossRef]
16. Bollobás, B. The independence ratio of regular graphs. Proc. Am. Math. Soc. 1981, 83, 433–436. [CrossRef]
17. McKay, B. lndependent sets in regular graphs of high girth. Ars Comb. 1987, 23, 179–185.
18. Balogh, J.; Kostochka, A.; Liu, X. Cubic graphs with small independence ratio. arXiv 2017, arXiv:1708.03996.
19. Barbier, J.; Krzakala, F.; Zdeborová, L.; Zhang, P. The hard-core model on random graphs revisited. In Proceedings of the ELC

International Meeting on Inference, Computation, and Spin Glasses (ICSG2013), Sapporo, Japan, 28–30 July 2013; Journal of
Physics: Conference Series; IOP Publishing: Bristol, UK, 2013; Volume 473, p. 012021.

20. Harangi, V. Improved replica bounds for the independence ratio of random regular graphs. J. Stat. Phys. 2023, 190, 60. [CrossRef]
21. Wormald, N.C. Differential equations for random processes and random graphs. Ann. Appl. Probab. 1995, 5, 1217–1235. [CrossRef]
22. Shearer, J.B. A note on the independence number of triangle-free graphs. Discret. Math. 1983, 46, 83–87. [CrossRef]
23. Wormald, N.C. Analysis of greedy algorithms on graphs with bounded degrees. Discret. Math. 2003, 273, 235–260. [CrossRef]
24. Duckworth, W.; Zito, M. Large independent sets in random regular graphs. Theor. Comput. Sci. 2009, 410, 5236–5243. [CrossRef]
25. Csóka, E.; Gerencsér, B.; Harangi, V.; Virág, B. Invariant Gaussian processes and independent sets on regular graphs of large girth.

Random Struct. Algorithms 2015, 47, 284–303. [CrossRef]
26. Csóka, E. Independent sets and cuts in large-girth regular graphs. arXiv 2016, arXiv:1602.02747.
27. Angelini, M.C.; Ricci-Tersenghi, F. Monte Carlo algorithms are very effective in finding the largest independent set in sparse

random graphs. Phys. Rev. E 2019, 100, 013302. [CrossRef] [PubMed]
28. Hoppen, C.; Wormald, N. Local algorithms, regular graphs of large girth, and random regular graphs. Combinatorica 2018,

38, 619–664. [CrossRef]
29. Bishop, C.M. Pattern Recognition and Machine Learning; Springer: Berlin/Heidelberg, Germany, 2006.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1137/0206038
http://dx.doi.org/10.1016/j.ic.2017.06.001
http://dx.doi.org/10.1038/ncomms12996
http://www.ncbi.nlm.nih.gov/pubmed/27694952
http://dx.doi.org/10.1007/s10915-022-02044-x
http://dx.doi.org/10.1088/2632-2153/ac0496
http://dx.doi.org/10.1038/s41598-023-30391-8
http://dx.doi.org/10.1214/16-AOP1094
http://dx.doi.org/10.1007/s11511-017-0145-9
http://dx.doi.org/10.2307/2043545
http://dx.doi.org/10.1007/s10955-022-03062-7
http://dx.doi.org/10.1214/aoap/1177004612
http://dx.doi.org/10.1016/0012-365X(83)90273-X
http://dx.doi.org/10.1016/S0012-365X(03)00241-3
http://dx.doi.org/10.1016/j.tcs.2009.08.025
http://dx.doi.org/10.1002/rsa.20547
http://dx.doi.org/10.1103/PhysRevE.100.013302
http://www.ncbi.nlm.nih.gov/pubmed/31499906
http://dx.doi.org/10.1007/s00493-016-3236-x

	Introduction
	Related Works
	Main Results
	Paper Structure

	Notation and the General Operations of the Deferred Decision Algorithm
	The Deferred Decision Algorithm for d=3
	The Deferred Decision Algorithm for d 5
	Conclusions
	References

