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Abstract: Identification of neoplastic and dysplastic brain tissues is of paramount importance
for improving the outcomes of neurosurgical procedures. This study explores the combined
application of fluorescence, Raman and diffuse reflectance spectroscopies for the detection and
classification of brain tumor and cortical dysplasia with a label-free modality. Multivariate
analysis was performed to evaluate classification accuracies of these techniques–employed
both in individual and multimodal configuration–obtaining high sensitivity and specificity. In
particular, the proposed multimodal approach allowed discriminating tumor/dysplastic tissues
against control tissue with 91%/86% sensitivity and 100%/100% specificity, respectively, whereas
tumor from dysplastic tissues were discriminated with 89% sensitivity and 86% specificity.
Hence, multimodal optical spectroscopy allows reliably differentiating these pathologies using a
non-invasive, label-free approach that is faster than the gold standard technique and does not
require any tissue processing, offering the potential for the clinical translation of the technology.

© 2023 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Neurosurgery is the first choice treatment of brain focal cortical dysplasia (FCD) leading to
drug-resistant epilepsy [1], and both low and high grade gliomas [2]. The aim of surgery is
achieving a radical resection without damaging the healthy brain tissue, especially in case of
infiltrating high-grade gliomas, the boundaries of which are not always clearly detectable by
visual inspection. Besides pure neuro-oncological issues when dealing with gliomas, radical
resection of FCDs is associated with the best control of seizures. Neuronavigation may provide
useful information, but is limited by brain shifts [3], occurring during surgery after craniotomy,
since it relies upon static pre-operative MRIs. Real time intraoperative imaging techniques –
typically based on ultrasounds (iUS) and magnetic resonance (iMRI) – have been proposed to
cope with this limits with interesting applications [4]. On the other side, they carry important
drawbacks [5]: iUS is cheap but cannot provide functional information, and its accuracy can be
affected by artifacts and low image quality; iMRI offers real-time feedback and high resolution
but has very high costs, requires a dedicated operating room equipped with antimagnetic tools,
and to stop surgery in order to get MRI images. Moreover, FCD and tumor borders are often
blurred and cannot be always defined with precision by current techniques especially in case of

#477035 https://doi.org/10.1364/BOE.477035
Journal © 2023 Received 7 Oct 2022; revised 19 Dec 2022; accepted 19 Dec 2022; published 24 Feb 2023

Corrected 29 February 2024

https://orcid.org/0000-0002-2583-6694
https://orcid.org/0000-0002-0675-3981
https://doi.org/10.1364/OA_License_v2#VOR-OA
https://crossmark.crossref.org/dialog/?doi=10.1364/BOE.477035&amp;domain=pdf&amp;date_stamp=2024-02-29


Research Article Vol. 14, No. 3 / 1 Mar 2023 / Biomedical Optics Express 1257

diffuse cortical malformation and gliomas [6,7]. Another critical point is the frequent association
between low grade gliomas (the so-called Long-term Epilepsy Associated Tumors – LEATs)
with FCD, corresponding to FCD type IIIb, according to ILAE 2011 Classification [8]. Clinical
manifestations and standard imaging findings of these two pathologies may be similar [9],
preventing a timely recognition of neoplastic contents. A possible solution to these issues is
provided by standard histopathological, intraoperative analysis of resected biopsies to provide a
preliminary diagnosis; this is, however, a labor- and time-consuming process that significantly
lengthens the surgery. Hence, there are currently unmet needs for clinical diagnosis and in situ
demarcation of both brain tumor and FCD.

In this context, different optical methods have been developed and applied for brain tissue
diagnostics and, particularly, tumor detection. Among them, fluorescence (with [10] or without
[11] preoperatively administered contrast agents), Raman [12,13] and diffuse reflectance [14,15]
are well-known spectroscopic techniques, each offering unique sensitivity to specific biochemical
features of the examined tissues. In fact, endogenous fluorescence can be used to highlight intrinsic
biomarkers involved in metabolism, such as nicotinamide adenine dinucleotide (NADH) and
flavin adenine dinucleotide (FAD). Raman spectra allow analyzing tissue molecular composition
based on the specific vibration modes of body molecules, allowing to identify and quantify – for
example – proteins and lipids. Diffuse reflectance investigates absorption/reflection properties of
tissues and their intrinsic chromophores, e.g. water and hemoglobin content in human organs.
The advantage of retrieving multiple types of information in a fast and label-free approach
has favored multimodal solutions combining two or more optical methods [16–18]. Moreover,
increased application of machine learning algorithms for biological classification based on
spectroscopic data [19,20] is paving the way for automated, operator-independent diagnosis of
brain pathologies, both in vivo and ex vivo.

A sizable literature on the use of optical spectroscopy is already available for brain tumor
detection, while, to the best of our knowledge, only one study addressed FCD [18]. Therefore,
we used Raman, fluorescence and diffuse reflectance fiber-probe spectroscopies – organized in a
label-free and multimodal configuration – for examining fresh brain biopsies affected by either
neoplastic or dysplastic pathologies. We also developed spectral classifiers for discriminating
these diseases from control brain tissue and for differentiating the two pathologies. These findings
suggest that a diagnostic approach based on multimodal spectroscopy could provide an additional
tool to detect with higher precision the boundaries of FCDs and gliomas in order to get a radical
resection for neuro-oncological purposes and to achieve the best control of epilepsy.

2. Materials and methods

A multimodal optical device based on UV/visible-excited fluorescence, NIR-excited Raman and
diffuse reflectance spectroscopies was employed for examining freshly excised brain tissues.

2.1. Samples

This study was approved by the Medical Ethics Review Board of the Anna Meyer Children’s
Hospital (M-AZI015-00, 21/04/2021) in Florence, Italy, and conducted according to the tenets
of the Declaration of Helsinki. 51 pediatric patients (0÷18 years old) suffering from either
neoplastic (21 cases), dysplastic (25 cases) or other diseases (e.g. gliosis / reactive alterations; 5
cases) underwent brain surgery, and were included in the study after obtaining informed consent
from all participants and guardians.

Freshly excised tissue specimens of pathological brain tissue were put in saline solution and
immediately transported to the laboratory for spectroscopic measurements. In a few occasions,
cortex and subcortical white matter of deeper brain structures were collected when the surgical
procedure required it.
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2.2. Experimental setup

The experimental setup used in this study was previously described in [16,21] and consists of
four excitation sources, a custom-made fiber-probe, and a detection system (Fig. 1).

Fig. 1. Drawing of the experimental setup: a box 45× 30× 25 cm3 in size contains 3 CW
lasers and a halogen lamp, which are connected to the Raman, fluorescence and diffuse
reflectance excitation fibers of a quadrifurcated fiber-probe. The collection fibers at the tip
of the probe collect Raman, fluorescence and diffuse reflectance signals, delivering them to
a detection system based on a spectrograph and a CCD camera.

Two CW lasers (TEC 042, Sacher Lasertechnik, Marburg, Germany) emitting at 378 nm and
445 nm are used to perform, respectively, UV- and visible-excited fluorescence spectroscopy. An
additional CW laser at 785 nm (FC-785-350-MM2-PC-1-0-RM, RGBLase, Fremont, California)
is employed for generating Raman signals in the NIR region of the spectrum. A halogen
lamp (HL-2000-LL, Ocean Optics, Dunedin, Florida) provides broadband excitation light for
reflectance measurements.

These sources are connected to a quadri-furcated, custom-made fiber-probe (EMVision LCC,
Loxahatchee, Florida) consisting of 11 optical fibers: a central fiber (300 µm core diameter) for
delivering 785 nm laser light; 7 surrounding fibers (300 µm each) for Raman collection; 2 fibers
(200 µm each) for delivering 378/445 nm and white-light from the halogen lamp, respectively,
and 1 fiber (200 µm) for collecting both fluorescence and diffuse reflectance signals, all of them
placed near to the central fiber. A narrow bandpass filter centered at 785 nm is placed in front of
the Raman delivering fiber to clean the laser line, blocking unwanted fluorescence and Raman
signals generated inside the optical fiber itself. A ring-shaped long-pass optical filter is placed
at the distal end of the probe, preventing 785-nm laser light from entering the seven Raman
collection fibers.

These collection fibers are aligned inside a ferrule and connected to a spectrograph (MicroHR,
HORIBA Scientific, Edison, New Jersey) equipped with a 600 lines/mm grating and with an open-
electrode CCD camera (Syncerity, HORIBA Scientific, Edison, New Jersey) cooled at −60°C. A
motorized filter wheel – placed at the entrance of the spectrograph – allows changing emission
filter according to the spectral technique used: a long pass filter at 400 nm (Longpass 400 nm,
Melles Griot, Albuquerque, New Mexico) for fluorescence spectroscopy excited at 378 nm; a
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long pass filter at 458 nm (LP02-458RS-25, Semrock, Rochester, New York) for fluorescence
spectroscopy excited at 445 nm; a long pass filter at 785 nm (LP02-785RE-25, Semrock) for
Raman spectroscopy; and a neutral density filter with OD= 0.3 for diffuse reflectance. These
filters prevent laser light from entering the spectrograph and lamp light from saturating the
detector.

The setup has been compacted to make it transportable on a medical trolley. The last 10 cm of
the fiber-probe are protected by a metal jacket, allowing it to be easily handled (as a pen) for in
vivo examination of suspicious tissue areas. However, since this experiment was conducted ex
vivo, the probe was kept steady upon each sample by a custom-made holder.

2.3. Measurement protocol

Prior to each session of measurements, a spectral calibration of the spectrograph was performed
by using emission lines from a Neon-Argon lamp as references. Then, collected biopsies (usually
1÷3 cm in size) were placed upon a microscope slide covered with black tape to avoid any
spectral contribution from the sample holder. The fiber-probe was put in gentle contact with the
tissue at 2÷5 locations per biopsy, the number of examined sites depending on its size. A single
acquisition typically required 0.01÷0.5 s for fluorescence, 1÷5 s for Raman and 0.001÷0.05 s
for diffuse reflectance; 10 acquisitions were recorded and averaged from each site to improve
the signal-to-noise ratio. The optical inspection required less than 2 minutes for each site, and
the distal end of the probe was cleaned with ethanol solution thereafter. In total, 163 sites were
examined: 94 from dysplastic tissues, 54 from tumor tissues, and 15 from non-dysplastic and
non-neoplastic (“control”) brain tissues. All fluorescence, Raman and diffuse reflectance spectra
were co-registered from the same tissue volumes and recorded within 30 minutes from surgical
resection. Finally, each biopsy was put in formalin solution and submitted to pathologists for
common routine histology; the histopathology results for all patients included in the study are
reported in Table 1.

2.4. Data analysis

Fluorescence, Raman and diffuse reflectance spectra were pre-processed before being analyzed
by two alternative classification methods. The following paragraphs thoroughly describe these
steps, and Fig. 2 shows a schematic representation of the analysis.

2.4.1. Spectral pre-processing

The emission spectrum of a radiometrically calibrated halogen lamp (HL-3P-CAL, Ocean Optics,
Dunedin, Florida) was recorded by illuminating a reflectance standard (WS1, Ocean Optics,
Dunedin, Florida) for all the spectral ranges and optical filters used during fluorescence and Raman
measurements. The transmission spectrum of the fiber-probe setup was obtained by calculating
the ratio between the “real” emission spectrum (provided by the vendor of the calibrated light
source) and the recorded spectrum. Then, the transmission spectrum was used for correcting all
recorded fluorescence and Raman spectra to remove spectral artifacts generated by the setup. In
addition, 5-points boxcar smoothing and a 5th-order polynomial fitting was implemented through
an automated routine, Vancouver Raman algorithm (VRA [22]), for removing NIR fluorescence
and background signals from the Raman spectra. Finally, fluorescence and Raman spectra were
normalized according to their maximum and total intensity, respectively. Diffuse reflectance
spectra were corrected for lamp emission spectrum and normalized to the intensity recorded at
570 nm, which is one of the oxy/deoxy-hemoglobin isosbestic points.

The normalized dataset of each technique – fluorescence excited at 378 nm (“Fluo-378”),
fluorescence excited at 445 nm (“Fluo-445”), Raman, diffuse reflectance – was analyzed through
Principal Component Analysis (PCA), a well-known methodology [23] for reducing noise and
redundant information. The first 15 principal components (PCs) were initially selected; we later
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Table 1. Summary of patients’ histopathology reportsa

Histopathological report Assigned class
1 Reactive gliosis Control
2 Perilesional tissue (from a case of reactive gliosis) Control
3 Perilesional tissue (from a case of meningioangiomatosis) Control
4 Astrogliosis, microglial activation Control
5 Reactive gliosis Control
6 FCD IIB Dysplasia
7 FCD Ic Dysplasia
8 FCD IIA Dysplasia
9 FCD IIA Dysplasia
10 Dysplastic lesion Dysplasia
11 FCD IIb Dysplasia
12 Disrupted cortical lamination, without balloon cells and dysmorphic neurons Dysplasia
13 Hemimegalencephaly Dysplasia
14 FCD Ib Dysplasia
15 FCD IIb Dysplasia
16 Disrupted cortical lamination in presence of reactive gliosis Dysplasia
17 Disrupted cortical lamination Dysplasia
18 Disrupted cortical lamination Dysplasia
19 Disrupted cortical lamination Dysplasia
20 FCD IIb Dysplasia
21 FCD Ib Dysplasia
22 FCD Ib Dysplasia
23 Disrupted cortical lamination with dysmorphic neurons Dysplasia
24 FCD IIB Dysplasia
25 FCD IIIA Dysplasia
26 Disrupted cortical lamination with dysmorphic neurons Dysplasia
27 Malformation of cortical development Dysplasia
28 Disrupted cortical lamination Dysplasia
29 Disrupted cortical lamination Dysplasia
30 Disrupted cortical lamination Dysplasia
31 LGG Tumor
32 Glioneuronal LGG Tumor
33 Ganglioma Tumor
34 Low-grade glioneuronal tumor Tumor
35 Ependymoma II Tumor
36 LGA Tumor
37 Pilocytic astrocytoma Tumor
38 LGA Tumor
39 High-grade glioma Tumor
40 Glial neoplasm Tumor
41 LGG Tumor
42 Astrocytoma Tumor
43 Low-grade glioneuronal tumor Tumor
44 Pilocytic astrocytoma Tumor
45 Ganglioglioma Tumor
46 Low-grade glioneuronal neoplasm Tumor
47 Low-grade glioneuronal neoplasm Tumor
48 LGA Tumor
49 Glioneuronal tumor Tumor
50 Ganglioglioma Tumor
51 Low-grade glioneuronal tumor Tumor

aAcronyms: LGG= low-grade ganglioma; FCD= focal cortical dysplasia; LGA= low-grade astrocytoma.
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Fig. 2. Flowchart of the data analysis performed for the discrimination of two tissue types.
Firstly, raw spectra from all techniques are corrected for the transmission spectrum of the
setup and normalized in intensity; before normalization, Raman spectra are also processed
through the Vancouver Raman Algorithm (VRA) routine. Secondly, the spectra are analyzed
by two alternative methods based, respectively, on ratiometric scoring and PCA. For each
spectral modality, the latter uses a linear combination of PCs for maximizing the separation
between the two tissues; a 5-fold cross-validation routine selects the proper number of PCs
and generates 5 classifiers, that can be averaged together. Finally, the average classifiers
obtained from all 4 techniques can be linearly combined into a multimodal scoring algorithm
through another cross-validation routine.

discarded the 13th, 14th and 15th PCs from both diffuse reflectance and Fluo-445 datasets, due to
their lack of relevant spectral information.

2.4.2. Spectral classification algorithms

The goal of this study is to discriminate three brain tissue types – tumor, dysplasia, and control –
based on their Raman, diffuse reflectance and fluorescence spectral properties. To this end, we
adopted two alternative classification methods.

The first method is based on ratiometric scoring, i.e. calculating the ratio between photon
counts recorded at two different spectral bands (10-nm-wide for fluorescence and reflectance
analysis, 30-cm−1-wide for Raman) of each spectrum. Specifically, we can select the bands
providing the best differentiation between each pairwise comparison (e.g. control vs dysplasia,
control vs tumor, and dysplasia vs tumor); the bands used in this study are reported in the
Results section. Hence, the ratiometric classifiers resulting from this approach can be used to
differentiate Raman/fluorescence/reflectance spectra belonging to different tissue types. The
Receiver Operating Characteristic (ROC) curve of each classifier and its area under the curve
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(auROCc) are then calculated, with the latter estimating the discriminatory power [23] of the
corresponding spectral ratio. This method is simple and easily implementable, and can provide
useful insights on tissue properties, although it exploits only a small part of the recorded spectral
data.

The second method consists of building a binary classifier per spectral technique and per pair
of tissue types, following a methodology similar to the one described in [16]. Each classifier
is a linear combination of PCs that maximizes the auROCc between control and dysplastic /
control and neoplastic / dysplastic and neoplastic spectra. Specifically, the PC loadings of each
spectrum are multiplied by coefficients randomly generated through an automated, custom-made
algorithm implemented in LabVIEW (National Instruments, Austin, Texas) and then summed
together into a single score. The corresponding ROC curve and auROCc value are then calculated
and recorded. The LabVIEW algorithm iterates such routine, each time comparing the new
auROCc value with the maximum value among those ones already calculated, and stops after N
consecutive iterations (e.g., N = 1000) when convergence is reached, and no further maximum is
found. Finally, the linear combination providing the best auROCc is saved, and the threshold
corresponding to maximum balanced accuracy (i.e. the mean value between sensitivity and
specificity values) can be used to classify a group of unknown spectra.

2.4.3. Cross-validation and PCs selection

During the PCs-based analysis described above, each spectral dataset is organized between
training and testing groups through a 5-fold cross-validation (5fCV) procedure. The data of each
tissue class (control/dysplasia/tumor) are divided in 5 batches of similar sizes, and all the spectra
recorded from the same patient are included in a single batch only; the same partition has been
applied equally for all spectral techniques. For each round of the cross-validation, two batches
(one from each tissue class) are used as testing group, while all remaining batches constitute
the training group. Then, the balanced accuracy in classifying testing spectra is evaluated and
recorded; the 5-rounds-average value of this parameter estimates the goodness of the classification
method.

The 5fCV procedure can be used to avoid the risk of overfitting the training dataset by selecting
a proper number of PCs for the analysis. The 5fCV-average accuracy is calculated by including
an incremental number of PCs, sorted according to their discriminatory power (i.e. by their
individual auROCc value). The maximum value indicates how many PCs must be included, while
the remaining ones have to be discarded. No more than 10 PCs were included in each analysis.

Finally, the average classifier derived from the 5 rounds is used for classifying the whole dataset
and evaluating its specificity, sensitivity and auROCc values. The spectra recorded from the
same patient can be classified either individually (providing a single-point, or SP, classification)
or averaged between them (patient-level, or PL, classification). SP classification estimates the
accuracy in detecting diseased areas (e.g. for potential applications in guiding the surgical
removal of brain tissues), while PL classification estimates the accuracy in diagnosing the disease
itself on each patient.

2.4.4. Multimodal scoring

Each spectral technique (Raman, diffuse reflectance, Fluo-378, Fluo-445) typically provides
complementary information to the others. More in detail, Raman spectroscopy allows identifying
proteins and lipids based on their vibrational fingerprints, diffuse reflectance spectroscopy
investigates tissue intrinsic chromophores, e.g. water and hemoglobin, autofluorescence targets
endogenous nucleotides involved in metabolism, such as NADH and FAD. Therefore, after
obtaining 5fCV-average classifiers from individual techniques, we built a linear combination of
them into a single, multimodal scoring algorithm. For this analysis, we used Raman, fluorescence
and diffuse reflectance scores as inputs to the algorithm and cross-validation procedure described
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in previous paragraphs. To weight equally all 4 spectroscopies, the scores of each technique and
pairwise comparison were normalized to their absolute maximum value before the multimodal
analysis.

3. Results

3.1. Single-modality analyses

3.1.1. Diffuse reflectance spectroscopy

Figure 3 and Table 2 report the results obtained from the analysis of diffuse reflectance spectra.
All tissue spectra have been normalized to an isosbestic point of oxy- and deoxy-hemoglobin
(570 nm) to take advantage of their different molar extinction coefficients and to qualitatively
compare their relative abundance. Such an approach rests on the assumption that hemoglobin is
the major absorber in the observed spectral region (450-710 nm). In fact, Fig. 3(A) shows the
characteristic oxy-hemoglobin absorption peaks at 540 and 575 nm in all three tissues. Moreover,
tumor and dysplasia are characterized by increased relative absorption with respect to control
brain areas in both the 450-520 nm and in the 600-710 nm ranges, where the latter possibly
suggests a higher concentration of deoxy-hemoglobin with respect to oxy-hemoglobin. Although
retrieved from ex vivo tissues, these findings are consistent with previous results observed in vivo
from an animal model [16], where brain tumors showed decreased levels of tissue oxygenation
(hence, a lower oxy-to-deoxy hemoglobin content ratio), and from human pediatric patients [15],
where neoplastic sites showed significantly lower diffuse reflectance intensities both below 520 nm
and above 600 nm with respect to normal cerebral cortex. We tried exploiting the differences
observed in the diffuse reflectance spectra through ratiometric classification, i.e. by measuring
the intensity ratio between two, 10-nm-wide, spectral bands for each spectrum belonging to one
tissue type or the other. Table 2 reports the bands used for each pairwise tissue comparison. The
best discrimination between neoplastic/dysplastic and control spectra was obtained by using one
band @540 nm and another one in the 515-520 nm region; such approach provided relatively high
specificity (>90%), but low sensitivity (≤60%). On the other hand, the best separation between
tumor and dysplasia was achieved @555 nm, which corresponds to a major deoxy-hemoglobin
peak.

Table 2. Summary from the analysis of diffuse reflectance spectraa

DIFFUSE
REFLECT.

I1 / I2
(nm)

auROCc
(%)

SP Spec. /
Sens. (%)

Selected
PCs

auROCc
(%)

SP Spec. /
Sens. (%)

PL Spec. /
Sens. (%)

CTRL vs
TUM

551 / 519 76.0 90.7 / 53.3 PC1–PC4,
PC6–PC8,

PC10, PC11

79.4 80.0 / 70.4 80 / 67

CTRL vs
DYS

540 / 514 84.7 96.8 / 60.0 PC1, PC2,
PC5, PC7

89.8 73.3 / 92.6 60 / 92

DYS vs
TUM

556 / 571 74.7 68.1 / 77.8 PC2–PC8,
PC10, PC11

80.0 87.2 / 66.7 80 / 62

aFirst four columns from the left: results obtained from ratiometric scoring, i.e. by measuring the intensity
ratio between two, 10-nm-wide, spectral bands. Last four columns: results obtained from linearly combining
the PCs selected through 5fCV procedure. For both classification methods, reported specificity and sensitivity
values correspond to maximum balanced accuracy; results from the PC-based methodology are divided
between single-point and patient-level classification.

A method based on linear combination of PC loadings slightly improved classification
accuracies. Firstly, a 5fCV procedure determined the proper number of PCs to be included for
each pairwise comparison. Secondly, the average classifier obtained from the 5 rounds of the
cross-validation routine was used to derive ROC, auROCc, and the highest balanced accuracy
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Fig. 3. A) Mean diffuse reflectance spectra± standard errors (SEs) recorded from brain
tumor, dysplasia and control tissue biopsies – red, blue and black lines, respectively. B)
ROC curves obtained through ratiometric scoring: red line for “control vs tumor”, blue for
“control vs dysplasia”, and magenta for “dysplasia vs tumor”. Each auROCc is reported
with the corresponding color. C) Average balanced accuracy of each pairwise comparison,
obtained from a linear combination of PC loadings with 5fCV. This procedure was iterated
by including an incremental number of PCs. D) Average ROC curves obtained from the
5fCV procedure and by selecting the best number of PC loadings.

value. This approach led to higher sensitivity towards tumor and dysplastic tissues (70.4% and
92.6%, respectively), but also reduced specificity to 80.0% and 73.3%. The major improvements
were made in separating brain tumor from dysplasia, reaching 80.0% auROCc. More in general,
discriminating dysplasia from control areas represents the best application for diffuse reflectance
(89.8% auROCc); when classification scores are averaged into a single, “global” value for each
patient (PL classification), 60% specificity and 92% sensitivity are achieved.

3.1.2. Fluorescence spectroscopy

Figure 4 and 5 show the results obtained from the analysis of fluorescence spectra excited,
respectively, at 378 nm and 445 nm, while Tables 3 and 4 summarize classification accuracies
obtained through both ratiometric scoring and PCs combination.

Fluorescence control spectra are characterized by a single peak around 516 / 523 nm for UV
/ blue excitation, respectively, while tumor spectra show a 3-nm redshift for both excitation
wavelengths (Fig. 4(A) and 5(A)). An equal redshift can be observed for dysplasia, but only
for 445-nm-excitation. These observations may reflect different relative concentrations in the
main brain fluorophores: NADH [17,24] (with peak emission at 470 nm; excitable only with
the 378 nm laser), FAD (530 nm) and collagen (450 / 490 nm for 378 / 445 nm laser light, since
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Fig. 4. A) Mean, UV-excited fluorescence spectra±SEs recorded from brain tumor,
dysplasia and control tissue biopsies – red, blue and black lines, respectively. An inset
highlights the position of corresponding fluorescence emission peaks. B) ROC curves
obtained through ratiometric scoring: red line for “control vs tumor”, blue for “control
vs dysplasia”, and magenta for “dysplasia vs tumor”. Each auROCc is reported with the
corresponding color. C) Average balanced accuracy of each pairwise comparison, obtained
from a linear combination of PC loadings with 5fCV. This procedure was iterated by
including an incremental number of PCs. D) Average ROC curves obtained from the 5fCV
procedure and by selecting the best number of PC loadings.

Table 3. Summary from the analysis of fluorescence spectra excited at 378 nma

FLUO-378 I1 / I2
(nm)

auROCc
(%)

SP Spec. /
Sens. (%)

Selected
PCs

auROCc
(%)

SP Spec. /
Sens. (%)

PL Spec. /
Sens. (%)

CTRL vs
TUM

543 / 647 74.8 66.7 / 83.3 PC2, PC8,
PC10,
PC11

94.3 100.0 / 87.0 100 / 86

CTRL vs
DYS

583 / 647 83.6 93.3 / 62.8 PC2, PC8,
PC11

97.0 100.0 / 91.5 100 / 92

DYS vs
TUM

647 / 633 74.7 77.8 / 67.0 PC1, PC2,
PC5–PC10,

PC12

85.4 76.6 / 92.6 60 / 91

aFirst four columns from the left: results obtained from ratiometric scoring by using two, 10-nm-wide, spectral
bands. Last four columns: results obtained from linearly combining the PCs selected through 5fCV procedure.



Research Article Vol. 14, No. 3 / 1 Mar 2023 / Biomedical Optics Express 1266

Fig. 5. A) Mean, blue-excited fluorescence spectra±SEs recorded from brain tumor,
dysplasia and control tissue biopsies – red, blue and black lines, respectively. An inset
highlights the position of corresponding fluorescence emission peaks. B) ROC curves
obtained through ratiometric scoring: red line for “control vs tumor”, blue for “control
vs dysplasia”, and magenta for “dysplasia vs tumor”. Each auROCc is reported with the
corresponding color. C) Average balanced accuracy of each pairwise comparison, obtained
from a linear combination of PC loadings with 5fCV. This procedure was iterated by
including an incremental number of PCs. D) Average ROC curves obtained from the 5fCV
procedure by selecting the best number of PC loadings.

Table 4. Summary from the analysis of fluorescence spectra excited at 445 nma

FLUO-445 I1 / I2
(nm)

auROCc
(%)

SP Spec. /
Sens. (%)

Selected
PCs

auROCc
(%)

SP Spec. /
Sens. (%)

PL Spec. /
Sens. (%)

CTRL vs
TUM

589 / 644 70.8 60.0 / 83.3 PC10 80.6 80.0 / 79.6 80 / 76

CTRL vs
DYS

577 / 657 78.7 80.0 / 63.8 PC2, PC4,
PC6, PC11

87.2 93.3 / 73.4 100 / 64

DYS vs
TUM

659 / 641 65.7 72.2 / 59.6 PC9, PC10 82.2 79.8 / 81.5 72 / 81

aFirst four columns from the left: results obtained from ratiometric scoring by using two, 10-nm-wide,
spectral bands. Last four columns: results obtained from linearly combining the PCs selected through
5fCV procedure.
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its emission peak shifts together with excitation wavelength [25,26]). Hemoglobin, too, seems
to play an important role in brain fluorescence spectra. As discussed, both in Nazeer et al.
(2013 [27]) and Lin et al. (2001 [28]), higher/lower hemoglobin concentrations may cause the
fluorescence emission maximum to shift. A modulation in the region between 540 and 580 nm is
visible for both excitation wavelengths and corresponds to oxy-hemoglobin absorption peaks.

Finally, there are significant differences between the relative intensities recorded in the 600-
650 nm region, following the same trend observed through diffuse reflectance spectroscopy:
highest intensity in control tissues, lowest in dysplasia, and tumor spectra in between, possibly
suggesting different deoxyhemoglobin contents. Other known fluorophores [24,27] are lipids
(with broad emissions between 500 nm and 600 nm [29]) and porphyrins, although the latter
should be recognizable by two characteristic peaks (630 nm and 700 nm) that are not clearly
visible in our spectra.

All fluorescence-based ratiometric algorithms exploited the spectral differences observed at
longer wavelengths by centering one 10-nm band at ∼650 / ∼660 nm for UV / blue excitation,
respectively. Control tissues were discriminated by setting the other band on the hemoglobin
peaks, while the best separation between tumor and dysplasia was determined by their respective
slopes in the 630-660 nm region. In general, the two excitation wavelengths generated symmetric
results (e.g. high sensitivity and low specificity in detecting tumor against control tissues, and
vice versa for dysplasia), but UV-excitation provided better discrimination – although limited
between ∼75% and ∼84% auROCc – in all pairwise comparisons. Another relevant feature was
that, between the two diseases, dysplasia exhibits larger spectral differences when compared to
control brain (as already observed from diffuse reflectance spectral data and analysis).

Significant improvements in tissue classification were achieved through PCs combination.
UV-excited control spectra were successfully recognized with 100.0% specificity against both
brain tumor and dysplasia, whose SP sensitivity reached 87.0% and 91.5%, respectively, and
similarly to PL classification. Moreover, tumor SP sensitivity against dysplastic tissues increased
from 67.0% to 92.6%, resulting in 85.4% auROCc. The classifiers for blue-excited spectra
produced an almost equivalent outcome in discriminating tumor and dysplasia, but performed
worse than UV-excitation in both healthy-vs-disease comparisons: specifically, providing lower
specificity and sensitivity in tumor detection, and lower sensitivity in recognizing dysplastic
areas.

3.1.3. Raman spectroscopy

Figure 6 and Table 5 report the results obtained from the analysis of Raman spectra obtained after
removing NIR fluorescence and background signals. These spectra are characterized by 5 main
Raman bands in the fingerprint region (900-1800cm−1) highlighted in Fig. 6(A): 940-960 cm−1,
1030-1110 cm−1, 1230-1350 cm−1, 1420-1460 cm−1, and 1610-1690 cm−1, all of them typically
generated by inelastic scattering from proteins and/or lipids [30–32]. In particular: Raman
emissions from collagen contribute to the first four bands; the 3rd band can also be associated with
amide III; the 4th band reflects the presence of lipids; the 5th band is associated with amide I; and,
finally, nucleic acids can generate Raman signals within the 2nd and 3rd bands. All tissue spectra
share similar relative intensities at 1300 cm−1 and 1650 cm−1. With respect to control specimens,
however, both diseases show higher signal around 1060 cm−1 and (to a lesser extent) 1650 cm−1,
while being characterized by lower signal at 950 cm−1. Tumors are characterized by the highest
and lowest intensities at, respectively, 1060 cm−1 and 1440 cm−1, while dysplasia exhibits the
highest Raman emission in the 4th band. Consequently, the best ratiometric discrimination
between control and tumor spectra was provided by the ratio between two, 30-cm−1-wide
bands near the 1440 cm−1 and 1650 cm−1 peaks, resulting in 93.3% SP specificity and 92.6%
SP sensitivity. The 4th band was used also to separate tumor from dysplastic spectra (77.7%
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specificity, 66.7% sensitivity), while the 2nd and the 3rd served for the healthy-vs-dysplasia
comparison (80.0% specificity, 76.6% sensitivity).

Fig. 6. A) Mean Raman spectra±SEs recorded from brain tumor, dysplasia and control
tissue biopsies – red, blue and black lines, respectively. The 5 major bands within the
fingerprint region (600-1800cm−1) are labelled. B) ROC curves obtained through ratiometric
scoring: red line for “control vs tumor”, blue for “control vs dysplasia”, and magenta for
“dysplasia vs tumor”. Each auROCc is reported with the corresponding color. C) Average
balanced accuracy of each pairwise comparison, obtained from a linear combination of PC
loadings with 5fCV. This procedure was iterated by including an incremental number of PCs.
D) Average ROC curves obtained from the 5fCV procedure by selecting the best number of
PC loadings.

Table 5. Summary from the analysis of Raman spectra excited at 785 nma

RAMAN I1 / I2
(cm−1)

auROCc
(%)

SP Spec. /
Sens. (%)

Selected
PCs

auROCc
(%)

SP Spec. /
Sens. (%)

PL Spec. /
Sens. (%)

CTRL vs
TUM

1664 /
1398

92.3 93.3 / 92.6 PC2, PC3,
PC6, PC8,

PC12, PC15

94.8 93.3 / 92.6 100 / 86

CTRL vs
DYS

1012 /
1216

81.8 80.0 / 76.6 PC2, PC4,
PC8, PC11

87.2 80.0 / 84.0 80 / 80

DYS vs
TUM

1216 /
1412

72.6 77.7 / 66.7 PC1–PC3,
PC11–PC14

82.5 90.4 / 70.4 84 / 76

aChange the table caption to: First four columns from the left: results obtained from ratiometric scoring by
using two, 30-cm−1-wide, spectral bands. Last four columns: results obtained from linearly combining the
PCs selected through 5fCV procedure.
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Classification based on PC loadings resulted in slightly higher auROCc values for the two
control-vs-disease comparisons: 94.8% and 87.2% for tumor and dysplasia detection, respectively.
This approach led to slightly higher SP sensitivity (84.0%) against dysplasia. On the other hand,
differentiating tumors from dysplastic tissues received a significant improvement, reaching an
average auROCc of 82.5% that is comparable to the results observed through the two fluorescence
spectroscopies, while PL classification is slightly better (80% balanced accuracy vs ∼76%).

3.2. Multimodal approach

The accuracies reported in Section 3.1 represent the ability of each spectroscopic technique in
discriminating control, tumor and dysplastic brain tissues based on different biological features.
Therefore, combining Raman, UV/blue-excited fluorescence and diffuse reflectance classifiers
may provide a more comprehensive evaluation of the examined tissues.

For each pairwise comparison, the PCs-based scores previously obtained from all 4 techniques
were linearly combined following the same procedure described in Sections 2.4.2 ad 2.4.3. A

Fig. 7. A) Average ROC curves obtained from 5fCV procedures where Raman, fluorescence
and diffuse reflectance scores were linearly combined into one multimodal classifier for
each pairwise comparison; red line for “control vs tumor” comparison, blue for “control
vs dysplasia”, and magenta for “dysplasia vs tumor”. Each auROCc is reported with the
corresponding color. B) Multimodal scores obtained from the comparison between brain
tumor (red points) and control (black points) tissue sites. C) Multimodal scores obtained
from the comparison between brain dysplasia (blue points) and control (black points) tissue
sites. D) Multimodal scores obtained from the comparison between brain tumor (red points)
and dysplasia (blue points) tissue sites. The horizontal thresholds in B), C), D) correspond
to the maximum balanced accuracies in discriminating tissues and to the reported SP and PL
specificity and sensitivity values.
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5fCV-average classifier assigned multimodal scores to the corresponding tissue sites; then, we
derived ROC curve and auROCc, SP/PL specificity and sensitivity values. The results are
reported in Fig. 7. The multimodal approach allowed discriminating both pathological conditions
from control tissue sites with 97÷98% auROCc, 100% specificity and high sensitivity for both
SP (∼91% and ∼86% for brain tumors and dysplasia, respectively) and PL (91% and 76%)
classification methods. Regarding dysplasia detection, the multimodal balanced accuracy was
lower than the corresponding Fluo-378 value both in the SP (93.1% vs 95.8%) and especially
in the PL (88% vs 96%) approaches. Such outcomes were due to the fact that the presented
methodology a) favors auROCc maximization over accuracy maximization, and b) is optimized
for SP classification. The multimodal approach was also successful in differentiating tumor and
dysplastic tissues, achieving 87.5% auROCc and 85.7% SP balanced accuracy (84% PL).

Individual techniques already provided high classification accuracy for detecting either tumor
(Raman being the best option) or dysplastic (UV-excited fluorescence being the best option) areas.
Their combination further improved cancer recognition against control and dysplastic tissues,
although resulting in no betterment for diagnosing dysplasia.

4. Discussion

The analysis of tumor and dysplastic brain biopsies collected from pediatric patients using
multimodal fiber-probe spectroscopy allowed characterizing tissue optical properties and dis-
criminating these two pathologies. Our analysis was conducted using both individual modalities
and a multimodal approach in order to highlight advantages and drawbacks of each spectroscopic
techniques as well as of their synergic use.

Regarding the individual use of spectroscopic techniques for diagnosing and classifying brain
tumor tissue, few studies have been published using diffuse reflectance spectroscopy [14,15].
By examining various brain tissue types, including white matter, gray matter, and glioma,
Gebhart and co-workers [14] found that the absorption spectra for the three tissue types are
dominated by hemoglobin absorption in the spectral band below 600 nm. In fact, high levels of
hemoglobin, possibly associated with tumor angiogenesis, and tissue hypoxia, which manifests
itself with a decreased oxy-to-deoxy-hemoglobin ratio, are characteristics associated to tumor
microenvironment [33] that has been discussed in previous studies based on in vivo application
of diffuse reflectance spectroscopy [16,34]. In a more recent study performed in vivo on pediatric
subjects [15], the authors found that diffuse reflectance spectral intensities between 600 nm and
800 nm are more effective in discriminating normal cortex from brain tumor than the spectral
window below 600 nm. The associated diagnostic accuracy (auROCc) was 77%. Differently
from previous studies carried out on adult brain tissues [14,35], the authors found cerebral
cortex reflectance signals with higher intensity than the corresponding tumor signal over the
whole examined spectral region. The authors stated that this discrepancy is probably due to the
structural differences between adult and pediatric brain tumors. Hence, it is difficult to compare
the results of our study obtained on pediatric subject with those obtained in adults. On the other
hand, the diagnostic accuracy we obtained using diffuse reflectance signal (∼79% auROCc) in
discriminating control tissue against brain tumor agrees with the value of 77% obtained in vivo
on pediatric subjects by Lin and co-workers [15]. Despite we obtained sensibly lower accuracy
(∼79% auROCc) in discriminating control and tumor tissues using diffuse reflectance than in a
previous experiment on animal model (93% auROCc [16]) performed in vivo and with similar
methodology, it is difficult to compare the data. In fact, the observed difference is due to both
the structural difference between pediatric and rodent brain, and the physiological alterations
occurring in the meantime between biopsy excision and spectral measurements. Anyway, being
diffuse reflectance spectroscopy a technique sensible to tissue oxygenation, we can hypothesize
that this technology would bring better results if implemented in vivo.
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On brain tissue diagnostic and classification, several studies employing tissue autofluorescence
have been published in literature using slightly different approaches. To the best of our knowledge,
the first study was performed by Lin and co-workers in 2000 [36], where the authors obtained
97% sensitivity and 96% specificity in discriminating normal against brain tumor tissues on
ex vivo samples using 337 nm excitation. The same authors obtained 89% sensitivity and 76%
specificity in a subsequent in vivo trial study [28] aimed at evaluating the applicability of optical
spectroscopy for intrasurgical brain tumor demarcation. Saraswathy and co-workers [37] used
a particular approach that employs multiple excitation wavelengths (from UV to blue spectral
range) for detecting and staging brain tumors. By analyzing spectral data with PCA, they obtained
100% sensitivity and 100% specificity, but the statistical relevance of the study was limited, as the
authors examined only 4/5 specimens. The use of a photosensitizer that causes the accumulation
of fluorescent protoporphyrin IX within tumor tissue can improve the diagnostic accuracy to 93%
sensitivity and 91% specificity, as demonstrated by Nazeer and co-workers [27]. Although the
spectral emission of protoporphyrin IX is located in the red region of the spectrum, far apart from
the autofluorescence peak, it is difficult to compare our results with the results obtained when a
photosensitizer is used [27,38]. In our study, fluorescence excitation @378 nm seems better than
@445 nm in differentiating all three tissue types, particularly tumors from control sites. In fact,
we obtained 87% sensitivity and 100% specificity in discriminating brain tumor against control
tissue when exciting @378 nm, 79,6% sensitivity and 80% specificity when exciting @445 nm.
This suggests that NADH may play a role in both pathological conditions, as already known for
brain tumors.

By using Raman spectroscopy, we observed lower lipids-to-proteins contribution in the spectra
of brain tumors with respect to both control and dysplastic tissues, in agreement with what has
been obtained in other ex vivo studies found in literature [39,40]. In the first study on pediatric
brain tumors performed by Raman spectroscopy [41], Rabah and co-workers could distinguish
between neuroblastoma and ganglioneuroma. In another study, the authors found a satisfying
classification of pediatric neuroblastoma and other brain tumors using Raman spectroscopy [42].
Leslie and co-workers were able to discriminate glioma from normal brain tissue with an accuracy
of 96.7% [43]. A similar level of accuracy, equal to 97%, was reached by Galli and co-workers
[44] using near-infrared Raman spectroscopy in tandem with fluorescence spectroscopy on a
statistically relevant number of patients. Zhou and co-workers employed both a ratiometric
and a PCA-based method for classifying brain tumor against normal brain tissue using Raman
spectroscopy [45]. In particular, in the discrimination of glioma against normal brain tissue, they
obtained 100% sensitivity and 71.4% specificity using the ratiometric approach, whereas the
sensitivity and specificity were 96.3% and 74.1% using the PCA-based analysis. In general, the
93.3% sensitivity and 92.6% specificity in discriminating brain tumor from control tissue obtained
in our study are consistent with the values of sensitivity found in the above-mentioned literature
and slightly higher in terms of diagnostic specificity. On the other hand, our sensitivity/specificity
values are comparable to what has been obtained in vivo in two different studies performed by the
same research group [11,46]. In a first study, performed using Raman spectroscopy alone, they
obtained 93% sensitivity and 91% specificity in discriminating brain tumor from control tissue
[46], whereas they reached 100% sensitivity and 93% specificity using combined Raman, diffuse
reflectance, and fluorescence spectroscopy [11], demonstrating that a multimodal approach is
advantageous for diagnosing brain tumor over individual spectroscopic techniques.

Regarding the classification of dysplastic tissue, the lack of sizable literature on the characteri-
zation of brain dysplasia through Raman, fluorescence or reflectance spectroscopies did not allow
a meaningful comparison with our results. In dysplastic tissues, we observed slightly higher
contributions in the nucleic acids/collagen/amide III Raman band (around 1300 cm−1) and in
the amide I band (around 1650 cm−1) with respect to control sites, as found also in Anand et al.
(2017 [18]).
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Although individual spectroscopic techniques – such as Raman and UV-excited fluorescence –
provided high discriminatory power in differentiating control brain from neoplastic and dysplastic
areas, our study shows that a multimodal approach can increase the accuracy in recognizing
tumors against both control brain and dysplasia. Frequently, fluorescence and diffuse reflectance
have been implemented in tandem within the same experimental setup [17,28,34,36]. In an ex vivo
study, Lin and co-workers obtained 96% sensitivity and 93% specificity in discriminating gray
matter from brain tumor by classifying the tissue with a ratiometric approach between fluorescence
and diffuse reflectance data [36]. The same algorithm was employed by the same authors in
a subsequent in vivo study [28] where they achieved 100% sensitivity and 76% specificity in
discriminating tumor margins from normal brain tissue. In another study, brain tumor was
delineated in vivo with 94% sensitivity and 94% specificity, using a photosensitizer in tandem
with a combined fluorescence/reflectance optical probe [34]. The authors used fluorescence for
analyzing both the endogenous fluorescence signal and those ones emitted by protoporphyrin IX
and its photoproducts, whereas diffuse reflectance and light-transport modeling were used to
extract hemoglobin concentration, tissue oxygenation and optical scattering parameters. High
levels of hemoglobin – associated with tumor angiogenesis – also play a role by reabsorbing the
excited fluorescence signal; this, in turn, contributes in shifting emission peaks and modulating
fluorescence spectral profiles around oxy-hemoglobin absorption bands [28]. For this reason,
the combined use of fluorescence and diffuse reflectance could help improving the diagnostic
accuracy, as recently demonstrated by Lu and colleagues in an ex vivo study, where they obtained
89.3% sensitivity and 92.5% specificity in differentiating gray matter from brain tumor on
specimens obtained from five patients. By combining Raman and fluorescence spectroscopies,
Jermyn et al. (2017 [11]) achieved 98% auROCc and Anand et al. (2017 [18]) 96% auROCc
for, respectively, tumor and dysplasia detection; the multimodal approach presented in this study
obtained ≥97% in both tasks. On the other hand, to our knowledge no previous study attempted
to discriminate between neoplastic and dysplastic tissues. Notably, even though the pathologies
addressed in this work can coexist, their comparison has never been tested before through optical
spectroscopy. In this regard, the combination of Raman, fluorescence and diffuse reflectance
spectroscopies resulted in 87.5% auROCc and thus proved to be a capable diagnostic tool.

In brain surgery, avoiding false positives while identifying all areas to be resected is imperative.
Our data, which subserve this purpose, constitute additional evidence in favor of translating
optical spectroscopy to the clinical practice. In fact, multimodal spectroscopy could provide
significant advantages for the intraoperative, label-free diagnosis of brain tissues with respect
to current state-of-the-art methods. First of all, the information can be derived from both
excised tissue biopsies and in vivo without the need of a biopsy or tissue processing and
labelling. Then, the diagnostic information can be provided in a shorter amount of time with
respect to the gold standard for tissue diagnostics, which is represented by histopathological
examination. Spectroscopic data, although not provided in real-time since Raman or multimodal
spectroscopy requires typically few seconds of integration time, are acquired and processed
within tens of seconds rather than within tens of minutes, as for the intrasurgical histopathology,
providing a significant advantage in terms of speed of the diagnostic workflow. Regarding the
spatial resolution achievable in determining tumor margins, this is not subcellular as for the
histopathological examination but it’s high enough for guiding resection. In fact, the spatial
resolution is determined by the sampling volume, which is in the hundreds of micron range. This
value is comparable to the resolution achievable by using a bisturi during resection. Hence, the
apparently low resolution of the multimodal spectroscopy approach won’t have a significant
impact in the precision of the resection. Moreover, the experimental setup implemented in this
study is compact and transportable, hence it offers the potential to be used directly on living brain
tissues, potentially guiding tissue resection with almost real-time feedback. Such developments
could represent an important step in improving the clinical treatment of neoplastic and dysplastic
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brain diseases, with relevant consequences on healthcare efficiency and patients’ well-being. The
recent in vivo implementation of both Raman spectroscopy [46] and multimodal spectroscopy
[11] for diagnosing and classifying brain tumor provides further support to the possibility of
translating the technology from research labs to a surgical scenario.

5. Conclusions

In conclusion, multimodal fiber-probe spectroscopy allowed discriminating dysplastic and
neoplastic brain tissue against control tissue with high values of sensitivity and specificity,
paving the way for a potential clinical translation of the proposed approach. In particular,
brain tumor/dysplasia were classified against control tissue with 91%/86% sensitivity and
100%/100% specificity, respectively. Brain tumor was discriminated from brain dysplasia using
optical spectroscopy for the first time, reaching 89% sensitivity and 86% specificity. The
multimodal spectroscopic approach was proved to be advantageous for diagnostic purposes over
the individual spectroscopic techniques. In the near future, our plan is to better evaluate the
translation potentiality of the technology by designing and developing an experimental setup
useful for surgeons or to integrate the multimodal spectroscopic modality within existing optical
instrumentation commonly found within the surgical scenario. Despite the promising results
obtained in our study, much work has still to be done before translating multimodal optical
spectroscopy from the optical research lab to the surgical bed.
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