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Abstract

The reconstruction of a (hyper)graph starting from its degree sequence is one of the most relevant
among the inverse problems investigated in the �eld of graph theory. In case of graphs, a feasible
solution can be quickly reached, while in case of hypergraphs Deza et al. (2018) proved that the
problem is NP-hard even in the simple case of 3-uniform ones. This result opened a new research line
consisting in the detection of instances for which a solution can be computed in polynomial time.
In this work we deal with 3-uniform hypergraphs, and we study them from a di�erent perspective,
exploiting a connection of these objects with partially ordered sets. More precisely, we introduce a
simple partially ordered set, whose ideals are in bijection with a subclass of 3-uniform hypergraphs.
We completely characterize their degree sequences in case of principal ideals (here a simple fast
reconstruction strategy follows), and we furthermore carry on a complete analysis of those degree
sequences related to the ideals with two generators. We also consider unique hypergraphs in Dext,
i.e., those hypergraphs that do not share their degree sequence with other non-isomorphic ones. We
show that uniqueness holds in case of hypergraphs associated to principal ideals, and we provide
some examples of hypergraphs in Dext where this property is lost.
Keywords: Hypergraph; Degree sequence; Reconstruction problem; Partially ordered set.
Math subject classi�cation: 05C65, 05C99, 06A06, 06A99.

1. Introduction

The retrieval of information about a combinatorial object from quantitative information about
its shape and topology is one of the main topics in the wide area of inverse problems. In case
the investigated objects are graphs, the problem becomes even more interesting due to their wide
range modelling capability. In particular, starting from a well known characterization by Erd®s and
Gallai [7] in 1960, subsequent research concentrated on exploiting the information about (simple)
graphs that can be retrieved from their degree sequences. Several other characterizations of graphs'
degree sequences appeared in literature: in [13], seven of them are listed and proved to be equivalent,
leading to a constructive proof of the Erd®s-Gallai's theorem. Moving from these results, various
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fast algorithms have been provided to reconstruct one of the graphs associated to a given degree
sequence. On the other hand, it remains a fascinating problem to determine the number of di�erent
graphs (up to isomorphism) sharing the same degree sequence. In particular, it is of primary
relevance to study those properties that guarantee uniqueness of the degree sequences, so detecting
subsets of degree sequences that fully characterize isomorphic graphs.
As one can easily realize, when we pass from graphs to hypergraphs the task of characterizing the
degree sequences and the related reconstruction problem becomes much harder. Surprisingly, while
many necessary conditions have been provided for an integer sequence to be the degree sequence of
a k-uniform hypergraph (k-uniform meaning that each hyperedge has cardinality k), most of them
generalizing the Erd®s and Gallai's theorem, few su�cient conditions have been determined. As
an example, relying on two well known theorems by Havel and Hakimi ([11, 12]), the authors of [4]
set a lower bound on the length of a sequence in order to be k-uniform, according to its maximum
value and to the maximum di�erence between its elements. This result has been later extended
using a di�erent perspective [5, 9, 10], providing a polynomial time strategy to determine one of
the hypergraphs of the related instances.
The problems of characterizing and reconstructing k-uniform sequences remained open until 2018,
when Deza et al. proved them to be NP-hard [6] even in the simplest case of 3-uniform hypergraphs.
As a consequence of this result, the research moved its focus on the investigation of relevant sub-
classes of k-uniform degree sequences that can be e�ciently detected and that gain back the unique-
ness property. These studies open broad perspectives not only to de�ne ad hoc P-time reconstruction
strategies for subclasses of k-uniform degree sequences, but also to generate and enumerate them.
In this work we frame the target by continuing the study of a speci�c class of unique 3-uniform
degree sequences, indicated as D, �rst de�ned in [2] and then extended in [3]. Speci�cally, we go
deeper in the investigation of the link between the elements of D and the ideals of the poset Tn
obtained by triplets of integers with the coordinate-wise ordering. This identi�cation also allows to
extend the class D and �nd new properties of the involved hypergraphs. So, we provide a complete
characterization of those sequences that correspond to the principal ideals of the poset and, as an
immediate consequence, we obtain a fast reconstruction algorithm for them. Then, we shift to the
study of the ideals with two generators: also in this case, we carry on a complete study and we
spot the �rst cases of ideals that do not correspond to any element of D. In these cases also the
uniqueness property is not guaranteed any more, and we provide some su�cient conditions leading
to such situations.
The paper is organized as follows: in Section 2, we brie�y recall some basic notions of graph theory
and order theory, and we introduce the degree sequences object of our study. In Section 3, we
consider the degree sequences of hypergraphs associated to the principal ideals of the poset Tn. We
show their uniqueness and provide a fast reconstruction strategy for the corresponding realization.
Section 4 is dedicated to the study of those hypergraphs that are in bijection with the ideals of the
poset Tn having two generators. We provide several combinatorial properties on these ideals and
we show that in this case we can �nd hypergraphs which are not in D, thus losing the uniqueness
property. Therefore, we investigate some necessary and/or su�cient conditions to ensure that
the hypergraphs associated with two generators ideals have the uniqueness property. Finally, we
conclude showing possible future developments of our research in Section 5.
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2. Basic notions and de�nitions

In this paper we consider a speci�c class of 3-uniform hypergraphs that can be read as the class
of ideals of a partially ordered set. For this reason, we start this section introducing some basic
concepts and de�nitions in both the �elds of graph and order theory, and we �x the notation we
are going to use.
A hypergraph H is de�ned as a pair of sets H = (V,E), with V = {v1, . . . , vn} the set of vertices
and E ⊂ P(V )\{∅} the multiset of hyperedges (from now on edges), where P(V ) denotes the power
set of V . A hypergraph is called k-uniform if every edge contains exactly k vertices, counted with
repetitions, and it is said to be simple if there are no repeated edges and if the vertices in each edge
are all distinct. In other words, no parallel edges and no loops occur in the set E. From now on we
only consider those hypergraphs that are simple and k-uniform, and with no isolated vertices. We
further �x the value k = 3.
For each vertex v ∈ V , we de�ne its degree as the number of edges that contain v. Consider-
ing the list of the degrees of all vertices, arranged in non increasing order, the degree sequence
of the hypergraph is de�ned. We denote such integer sequence as π = (π1, . . . , πn), and we say
that a hypergraph H realizes π if π is its degree sequence. We further adopt the standard expo-
nential notation π = (πα1

1 , πα2
2 , . . . , παm

m ) to denote the αi-times repetition of the value πi, with
i ∈ {1, . . . ,m}.
We now recall some basic notions of order theory. For a complete overview the reader is addressed
to [14]. Given a set of elements A and ⪯ a re�exive, antisymmetric, and transitive relation (i.e.,
an order relation), the couple P = (A,⪯) is de�ned as a partially ordered set, brie�y poset. We
underline that, in general, two elements in A can be non comparable w.r.t. ⪯. A subset of A
such that each couple of its elements is not comparable is called an antichain. An order ideal is a
down-set I de�ned as follows: whenever x ∈ I, if y ∈ A is such that y ⪯ x, then y ∈ I too. Given
an element x ∈ A, it generates the principal ideal ↓{x} = {y ∈ A s.t. y ⪯ x}, and x is de�ned
as its generator. If A is a �nite set, any union of ideals of A is still an ideal, and can always be
obtained as the �nite union of principal ideals, I =↓{x1, . . . , xm} =↓{x1} ∪ · · · ∪ ↓{xm} for some
x1, . . . , xm. An element m ∈ I is maximal if there is no a ∈ I such that m ≺ a. The maximal
elements of an ideal I constitute an antichain, and it is known that the antichain of its maximal
elements generates an ideal I.

We now introduce a particular poset that allows us to de�ne a bijection between its elements and
the hyperedges of a 3-uniform hypergraph. Then, starting from its ideals, we de�ne a subclass of
hypergraphs with appealing properties and structure, already introduced in [3].
Given an integer n ≥ 3, we de�ne Ωn as the set of triplets (a1, a2, a3) with ai ∈ {1, . . . , n} and
1 ≤ a1 < a2 < a3 ≤ n. If we consider a set of vertices V = {v1, . . . , vn}, it is clear that there exists
a bijection between the elements of the set Ωn and the edges of a 3-uniform hypergraph de�ned
on the vertices in V : the triplet (a1, a2, a3) can be interpreted as the hyperedge composed by the
vertices (va1

, va2
, va3

), and vice versa. Then, any subset of Ωn is a simple 3-hypergraph. We de�ne
an order relation on Ωn as follows:

(a1, a2, a3) ⪯ (b1, b2, b3) if and only if ai ≤ bi with i ∈ {1, 2, 3},
and call Tn = (Ωn,⪯) the poset of triplets thus de�ned. Borrowing the notation from [3], we call
In the set of the ideals of Tn, and Dext

n the set of degree sequences realized by the hypergraphs in
In, that turns out to be the set of degree sequences that is the object of our study. Next section is
devoted to the study of the peculiarities of this class.
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Remark 1. From the point of view of the poset Tn, if the hypergraph H is represented by the ideal
IH , then the entries of its degree sequence π = (π1, . . . , πn) are exactly the number of occurrences
of the elements 1, . . . , n in the triplets of IH .

2.1. Representing ideals of Tn as 3-uniform hypergraphs

The de�nition of the class Dext
n actually starts from the NP-completeness proof in [6], where the

reduction of the NP-complete 3-partition problem to the problem of deciding if an integer sequence
is realized by a hypergraph, leads to the de�nition of a binary matrix with a very nice structure,
that is interpreted as the incidence matrix of a hypergraph. In 2021, a generalization of this class of
hypergraphs led to the de�nition of the class Dn [2], here recalled. Starting from a non-increasing
integer sequence s = (s1, . . . , sn), with n ≥ 3 and composed both of positive and negative numbers,
it is possible to de�ne a 3-uniform and simple hypergraph H as follows: the edge (vi, vj , vk) is in
H if and only if si + sj + sk > 0. We call π(s) the degree sequence realized by H, and Dn the set
of all the hypergraphs that are obtained through this construction.

Example 1. The degree sequence π(s) = (50, 44, 37, 31, 31, 26, 26, 20, 20, 15, 15, 9) can be obtained
starting from the integer sequence s = (4, 3, 2, 1, 1, 0, 0,−1,−1,−2,−2,−3).

The class D =
⋃

n≥3 Dn has been studied in depth in [1, 2, 3, 8], and the following properties have
been detected:

Theorem 1 ([2]). Given a degree sequence π(s) = (π
(s)
1 , . . . , π

(s)
n ) obtained from an integer sequence

s, if there exists an index i < n s.t. πi = πi+1, then there exists an integer sequence s′ s.t. s′i = s′i+1

and π(s′) = π(s).

Theorem 2 ([2]). If π(s) is a degree sequence obtained from an integer sequence s, then there exists
one only 3-uniform hypergraph (up to isomorphism) realizing π(s).

As a consequence, we use the notation D to indicate both the set of the degree sequences and the
set of the related hypergraphs.

Property 1 ([2, 3]). Given a degree sequence π(s) and H the (unique) hypergraph realizing it, if
the edge (vi, vj , vk) ∈ H, then (vi, vj , vk′) ∈ H for all j + 1 ≤ k′ ≤ k.

Proposition 1 ([3]). Let H be a hypergraph in Dn and E its edge set. Then, E is an ideal in Tn.

The previous results can be summarized as follows: the degree sequences of the class D are unique
(Theorem 2), and the edges of the unique hypergraph realizing them, seen as triplets of the poset
Tn, are a downward closed set with respect to the chosen order, namely, they are ideals of Tn
(Property 1 and Proposition 1). In particular, Dn ⊊ Dext

n [3]. We underline that the inclusion is
strict, as well as the uniqueness property can be lost when moving from D to Dext (see Examples 2
and 3).

Example 2. The degree sequence π = (49, 49, 34, 34, 30, 30, 24, 24, 18, 18, 13, 13) is realized by the
ideal I =↓{(4, 6, 10), (2, 8, 12)}. However, no integer sequence s exists such that π = π(s) (see the
proof given in Example 9).

Example 3. The degree sequence π = (30, 24, 18, 18, 15, 13, 10, 9, 8, 5) is realized by both the ideals
I1 =↓{(1, 6, 10), (2, 5, 9), (2, 6, 7), (3, 4, 8)} and I2 =↓{(1, 7, 9), (2, 4, 10), (2, 5, 8), (4, 5, 6)}, but the
corresponding 3-hypergraphs are not isomorphic. Therefore, the uniqueness property is lost for π.
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From now on, we focus our attention on the wider class Dext
n , whose elements are the degree

sequences of the ideals of Tn. Our �nal goal is to study combinatorial properties of degree sequences
realized by ideals, when the number of generators of the ideal is �xed, and to determine a possible
characterization of those sequences that preserve or lose the uniqueness property when moving from
D to Dext.

3. Principal ideals of Tn and their combinatorial properties

As a starting point, we consider the easiest case of principal ideals, i.e. those ideals generated by a
single element of Tn, and we study the degree sequences of the related hypergraphs. The structure
of these down-sets is very simple, and a complete analysis can be carried on. From now on, the
number of vertices of the hypergraph, n, will be �xed. We denote by g = (a, b, c) ∈ Ωn the unique
generator of the ideal Ig =↓{(a, b, c)}, and πg the degree sequence of the associated hypergraph.

Property 2. If g = (a, b, c) is the generator of a hypergraph H ∈ In on n vertices, then c = n.

This is trivial from the de�nition of ideals as down-sets and the condition of having exactly n no
isolated vertices in H.

Proposition 2. Let g = (a, b, n) ∈ Ωn. The cardinality of the related principal ideal Ig is

|Ig| =
a

6
(a2 + 3a− 3an− 3b2 + 6bn− 3b− 3n+ 2).

It easily follows from the de�nition of principal ideal and the computation of | ↓{g}| =
a∑

i=1

b∑
j=i+1

n∑
k=j+1

1.

Given the generator g, we can now compute all the elements of the ideal Ig =↓{g}, as well as the
occurrences of the numbers 1, . . . , n in its triplets. In other words, we can immediately retrieve the
degree sequence of the hypergraph Hg associated to Ig (see Remark 1).
For each number i ∈ {1, . . . , n}, we count the number of occurrences of i in the triplets of Ig in
�rst, second and third position, respectively. Summing up, we get the value πi for each vertex of
the hypergraph.

Lemma 1. Let g = (a, b, n) ∈ Ωn. The number of occurrences of i, with i ∈ {1, . . . , n}, as �rst
element of a triplet in Ig is

Oi
1 =

{
(i−b)(i+b−2n+1)

2 if 1 ≤ i ≤ a,

0 if a+ 1 ≤ i ≤ n.

Proof. By de�nition of ↓{(a, b, n)}, it is clear that any number greater than a cannot be the �rst
element of any triplet in Ig. If i ≤ a, the number of occurrences as �rst element is given by the
number of triplets of kind (i, s, t) with i+ 1 ≤ s ≤ b and s+ 1 ≤ t ≤ n, i.e.,

Oi
1 =

b∑
s=i+1

n∑
t=s+1

1,

from which the thesis follows.
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Lemma 2. Let g = (a, b, n) ∈ Ωn. The number of occurrences of i, with i ∈ {1, . . . , n}, as second
element of a triplet in Ig is

Oi
2 =


(i− 1)(n− i) if 1 ≤ i ≤ a,

a(n− i) if a+ 1 ≤ i ≤ b,

0 if b+ 1 ≤ i ≤ n.

Proof. By de�nition of ↓{(a, b, n)}, it is clear that any number grater than b cannot be the second
element of any triplet in Ig. Given i ∈ {1, . . . , n}, the number of occurrences as second element is
given by the number of triplets (s, i, t), with 1 ≤ s ≤ min{i− 1, a} and i+ 1 ≤ t ≤ n, i.e.,

Oi
2 =

min{i−1,a}∑
s=1

n∑
t=i+1

1.

We have to distinguish two cases in the �rst sum, when i ≤ a or not. Replacing and solving the
calculations lead to the thesis.

Lemma 3. Let g = (a, b, n) ∈ Ωn. The number of occurrences of i, with i ∈ {1, . . . , n}, as third
element of a triplet in Ig is

Oi
3 =



1
2 i

2 − 3
2 i+ 1 if 1 ≤ i ≤ a,

a(2i−a−3)
2 if a+ 1 ≤ i ≤ b,

a(2b−a−1)
2 if b+ 1 ≤ i ≤ n.

Proof. Given i ∈ {1, . . . , n}, the number of occurrences of i as third element is given by the number
of triplets of kind (s, t, i), with 1 ≤ s ≤ min{i− 2, a} and s+ 1 ≤ t ≤ min{i− 1, b}, i.e.,

O3 =

min{i−2,a}∑
s=1

min{i−1,b}∑
t=s+1

1.

We have to distinguish more cases to correctly choose the indices of the two sums: if i ≤ a + 1,
then it follows i− 1 < b, since a < b by de�nition. Then the sums stop with indices s = i− 2 and
t = i − 1, respectively. If a + 1 < i < b + 1, then a ≤ i − 2 and the sums stop with indices s = a
and t = i − 1, respectively. Finally, if i ≥ b + 1 we reach s = a and t = b. Replacing and solving
the calculations lead to the thesis.
Notice that the limiting cases i = a+1 (or i = a+2, equivalently) and i = b+1 can be arbitrarily
included in the intervals we analyzed, since they describe the cases in which we get min{a, a} and
min{b, b}.
We are now able to compute the degree sequence of the hypergraph Ig, simply summing up the
values Oi

1, O
i
2 and Oi

3 given in Lemmas 1, 2 and 3, with i ∈ {1, . . . , n}.

Theorem 3. Let g = (a, b, n) ∈ Ωn. The i-th entry πi of the degree sequence πg = (π1, . . . , πn) of
the hypergraph de�ned by Ig is
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πi =


(b−1)(2n−b−2)

2 if 1 ≤ i ≤ a,
a(2n−a−3)

2 if a+ 1 ≤ i ≤ b,
a(2b−a−1)

2 if b+ 1 ≤ i ≤ n.

(1)

Proof. The proof easily follows from Lemmas 1, 2 and 3, since to get each value πi it is su�cient
to sum the occurrences of the number i in the triplets of Ig, that is πi = Oi

1 + Oi
2 + Oi

3, for all
i ∈ {1, . . . , n}. We have to distinguish three cases according to the di�erent values of i:

i) If 1 ≤ i ≤ a, then πi =
(i−b)(i+b−2n+1)

2 + (i− 1)(n− i) + 1
2 i

2 − 3
2 i+ 1 = (b−1)(2n−b−2)

2 .

ii) If a+ 1 ≤ i ≤ b, then πi = 0 + a(n− i) + a(2i−a−3)
2 = a(2n−a−3)

2 .

iii) If b+ 1 ≤ i ≤ n, then πi = 0 + 0 + a(2b−a−1)
2 = a(2b−a−1)

2 .

We point out the non-trivial fact that, in all the three cases above, the value πi does not depend
on i.

Corollary 1. The degrees of the vertices associated to a principal ideal can assume at most three
distinct values.

This is a straightforward consequence of Theorem 3. In particular, if we denote these values as
p1 = (b−1)(2n−b−2)

2 , p2 = a(2n−a−3)
2 and p3 = a(2b−a−1)

2 , four di�erent cases can be distinguished:

i) p1 = p2 = p3, that realizes if and only if a = n − 2 and b = n − 1. In this case, the degree
sequence is constant and equal to π = (pn1 );

ii) p1 ̸= p2 = p3, that realizes if and only if b = n − 1 and a < n − 2. In this case, the degree
sequence has two distinct entries and is equal to π = (pa1 , p

n−a
2 );

iii) p1 = p2 ̸= p3, that realizes if and only if b = a + 1 and b < n − 1. In this case, the degree
sequence has two distinct entries and is equal to π = (pb1, p

n−b
3 );

iv) p1 ̸= p2 ̸= p3, that realizes in all the other cases, i.e., when no consecutive elements are present
in the triplet of the generator. In this case, the degree sequence has three distinct entries and
is equal to π = (pa1 , p

b−a
2 , pn−b

3 ).

We also highlight that, given a degree sequence π with (at most) three distinct entries, we can
immediately check if there exists a principal ideal realizing it. It is su�cient to solve the following
system of equations to get the values a and b of a possible generator:

p1 = (b−1)(2n−b−2)
2 ,

p2 = a(2n−a−3)
2 ,

1 ≤ a < b < n integer numbers.
(2)

Theorem 4. If it exists, the solution of (2) is unique.
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Proof. First of all, we notice that the two equations in (2) can be solved independently as quadratic
equations in b and a, respectively. We show the uniqueness of the solution for the value b, obtained
by solving the quadratic equation

b2 + (1− 2n)b+ 2n+ 2p1 − 2 = 0,

whose solutions are b1,2 = 2n−1±
√
∆

2 . By imposing the condition b ≤ n− 1, we reach the inequality
±
√
∆ ≤ −1, that is satis�ed for −

√
∆ only. It follows that the unique admissible solution, if it is

an integer, is the value b = 2n−1−
√
∆

2 .
The case for the value a can be treated similarly.

Remark 2. Theorem 4 shows that there is only one principal ideal realizing π, but does not
guarantee the uniqueness of the solution for the reconstruction problem. As a matter of fact, the
same degree sequence could also be realized by a di�erent ideal with a higher number of generators,
or by a hypergraph that is not in the class In.

To spread light on the doubt raised in the previous remark, we can actually show the uniqueness
of the degree sequences realized by principal ideals. To this aim, we go back to the de�nition of
the class Dn, and we show that principal ideals can be always realized starting from an integer
sequence s. Then, uniqueness follows from Theorem 2.

Theorem 5. Given an integer sequence π = (π1, . . . , πn), if there exists a principal ideal Ig ∈ In
realizing π, then π is unique.

Proof. We simply show that the degree sequences realized by principal ideals are in the class Dn,
providing an integer sequence s = (s1, . . . , sn) from which it is possible to compute them. To this
aim, we study three di�erent cases, according to the number of di�erent values in each degree
sequence, and then we de�ne the related sequences s.

1. All vertices have the same degree, π = (pn). In this case, π is realized by a principal ideal if
and only if p = (n−1)(n−2)

2 (see Theorem 3 and Corollary 1), that is, π is the degree sequence
of the complete 3-uniform hypergraph on n vertices, H =↓{(n − 2, n − 1, n)}. The same
hypergraph can be obtained starting from the integer sequence s = (1n).

2. The vertices take two distinct values, π = (px, qn−x). Two further cases occur:

i) q = x(2n−x−3)
2 and so x = a and p = (n−1)(n−2)

2 , see Corollary 1. We also remind that
such a solution is unique, since we are assuming that there exists a principal ideal realizing
the sequence (Theorem 4). We show that the integer sequence s = (1a, 0n−a) realizes
π, i.e., π = π(s) = (π

(s)
1 , . . . , π

(s)
n ). It is su�cient to show that π

(s)
1 = p and π

(s)
n = q.

The vertex v1 always appears in the �rst position of an edge, and the only edges of the
hypergraph containing it are those ones satisfying the inequality 1 + sj + sk > 0. The
couple (sj , sk) can be equal to (1, 1), (1, 0) or (0, 0). There are

(
a−1
2

)
+(a−1)(n−a)+

(
n−a
2

)
possible choices in total, that is, π(s)

1 = (n−1)(n−2)
2 = p.

Similarly, the vertex vn only appears as third element of an edge, in those ones satisfying
the inequality si + sj + 0 > 0. In this case, we have

(
a
2

)
+ a(n− a− 1) possible choices

for the couple (si, sj), corresponding to (1, 1) and (1, 0), that is, π(s)
n = q.

8



ii) p = (x−1)(2n−x−2)
2 , and so x = b and q = b(b−1)

2 (see Corollary 1). Also in this case such
a solution is unique, since we are assuming that there exists a principal ideal realizing
the sequence (Theorem 4). Using the same argument of the previous point, it is possible
to show that π = π(s) choosing s = (2b,−1n−b).

3. The vertices take three distinct values, π = (px, qy, rn−x−y). Again from Theorem 2 and
Corollary 1, we immediately argue x = a, y = b − a, p = (b−1)(2n−b−2)

2 , q = a(2n−a−3)
2 and

r = a(2b−a−1)
2 . In this case, the candidate sequence s is s = (2a, 0b−a,−1n−b). As shown

before, we can immediately verify that π(s)
1 = p and π

(s)
n = r. The last value to be computed

is then the degree of the vertex va+1, that can appear in the second or third position of an
edge of the hypergraph we obtain from s. It appears in the second position if and only if
the inequality si + 0 + sk > 0 holds, i.e., when (si, sk)=(2, 0) or (2,−1). The possibilities
are a(b − a − 1) + a(n − b). Regarding the third position, being va+1 the �rst vertex that
corresponds to a value 0 in s, we only have to consider the couples (si, sj) = (2, 2), that are
exactly

(
a
2

)
. Summing up, we get π(s)

a+1 = a(n− a− 1) +
(
a
2

)
= q, that concludes the proof.

Since π ∈ Dn in all cases, we conclude from Theorem 2 that such sequences have a unique realization.

A straightforward consequence of this uniqueness result is the de�nition of a fast strategy for the
reconstruction of the degree sequences associated to principal ideals: given an integer sequence with
(at most) three distinct entries, π = (px, qy, rz), from the values x, y and z we are able, if possible,
to �nd the candidate generator, g = (x, x+ y, x+ y+ z), and then compare the degree sequence of
Ig =↓{g} with the input sequence π, see Example 4.

Example 4. Let us consider the integer sequence π = (492, 196, 134) of length n = 12. Looking
at its repetitions, namely the values x = 2, y = 6 and z = 4, we argue that, if π is associated to
a principal ideal, its generator must be g = (2, 8, 12). Indeed, the value x = 2 coincides with the
number of the �rst equal degrees, while y = 6 = b − a allows to deduce b = 8. Finally, the length
n = 12 of the sequence trivially gives information about the last entry of the candidate generator.
Since the hypergraph associated to Ig =↓{(2, 8, 12)} has degree sequence equal to π, the (unique)
solution to the reconstruction problem is given.

4. Ideals generated by two (uncomparable) elements of Ωn

In this section, we consider those hypergraphs associated to ideals obtained from two generators,
g1 = (a, b, c) and g2 = (d, e, f), where we assume that:

i) 1 ≤ a < b < c ≤ n and 1 ≤ d < e < f ≤ n,

ii) at least one between c and f , or both, is equal to n. We assume w.l.g. f = n,

iii) g1 and g2 are uncomparable in Tn.
Proposition 3. Let g1 = (a, b, c) and g2 = (d, e, f) be two uncomparable elements of Ωn, Ig1,g2 =↓
{g1, g2} and πg1,g2 the associated degree sequence. It holds

πg1,g2 = πg1 + πg2 − πmin{g1,g2},

where min{g1, g2} = (min{a, d},min{b, e},min{c, f}).
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Proof. By de�nition, the principal ideal generated by the triplet min{g1, g2} corresponds to the
intersection Ig1 ∩ Ig2 . Then, by the inclusion-exclusion principle, we immediately get Ig1,g2 =
Ig1 ∪ (Ig2 \ Imin{g1,g2}), and so the thesis.
Then, degree sequences associated to ideals with two generators can be studied using the results
we obtained for principal ideals, in particular Eq. (1), as well as the inclusion-exclusion principle.
Di�erently from the case of principal ideals, we now have to consider the mutual order of the
elements of g1 and g2 to compute their minimum, gmin = min{g1, g2}. We provide a complete
analysis of all the possible cases, as well as the corresponding degree sequence πg1,g2 , through a
graphic representation of the triplets of generators. Referring to Eq. (1), we denote with p1, p2, p3
the entries of πg1 , with q1, q2, q3 the entries of πg2 , and with r1, r2, r3 the entries of πgmin

. Finally,
for the sake of simplicity, we �rst assume a, b, c, d, e, n to be all distinct; the case in which repetitions
are present will be detailed later.

Theorem 6. Given g1, g2 ∈ Ωn, we can explicitly compute the degree sequence πg1,g2 realized by
Ig1,g2 =↓{g1, g2}.

Proof. Let be g1 = (a, b, c) and g2 = (d, e, n). We have to consider the mutual order of the elements
a, b, c, d, e ∈ {1, . . . , n}, that has to be chosen such that g1 and g2 are uncomparable as elements of
the poset Tn. Altogether, �ve cases may occur, and for each of them we provide the related degree
sequence πg1,g2 = (π1, . . . , πn). The proof directly follows from Proposition 3 and Theorem 3. The
latter allows to compute the degree sequences π1, π2 and πmin{g1,g2} starting from g1 and g2. In
particular, when applying Theorem 3, the �rst generator is considered as an element of Tc, as well
as the triplet min{g1, g2}. It is su�cient to compute the value pi+ qj −rk in each interval, properly
choosing the indices i, j, k, for each case. A visual representation of such computation is shown in
Figures 1, 2, 3, 4 and 5, one for each possible case.

1. Case d < a < b < e < c < n. The degree sequence is

πi =



(e−1)(2n−e−2)
2 if 1 ≤ i ≤ d,

(b−1)(2c−b−2)+2d(n−c)
2 if d+ 1 ≤ i ≤ a,

a(2c−a−3)+2d(n−c)
2 if a+ 1 ≤ i ≤ b,

a(2b−a−1)+2d(n−b−1)
2 if b+ 1 ≤ i ≤ e,

a(2b−a−1)+2d(e−b)
2 if e+ 1 ≤ i ≤ c,

d(2e−d−1)
2 if c+ 1 ≤ i ≤ n.

Its computation is shown in Fig. 1.
2. Case d < a < b < c < e < n. The degree sequence is

πi =



(e−1)(2n−e−2)
2 if 1 ≤ i ≤ d,

(b−1)(2c−b−2)+2d(n−c)
2 if d+ 1 ≤ i ≤ a,

a(2c−a−3)+2d(n−c)
2 if a+ 1 ≤ i ≤ b,

a(2b−a−1)+2d(n−b−1)
2 if b+ 1 ≤ i ≤ c,

d(2n−d−3)
2 if c+ 1 ≤ i ≤ e,

d(2e−d−1)
2 if e+ 1 ≤ i ≤ n.

Its computation is shown in Fig. 2.
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p1 =
(b−1)(2c−b−2)

2 p2 =
a(2c−a−3)

2 p3 =
a(2b−a−1)

2

q1 =
(e−1)(2n−e−2)

2
q2 =

d(2n−d−3)
2 q3 =

d(2e−d−1)
2

r1 =
(b−1)(2c−b−2)

2
r2 =

d(2c−d−3)
2

r3 =
d(2b−d−1)

2

ba c

d e n

d b c

Figure 1: The �gure schematically shows the positions of the elements of g1, g2 and gmin in case d < a < b < e <
c < n, as well as the computation of the values of π in the distinct intervals.

p1 =
(b−1)(2c−b−2)

2
p2 =

a(2c−a−3)
2 p3 =

a(2b−a−1)
2

q1 =
(e−1)(2n−e−2)

2 q2 =
d(2n−d−3)

2

r1 =
(b−1)(2c−b−2)

2 r2 =
d(2c−d−3)

2 r3 =
d(2b−d−1)

2

ba c

d e n

d b c

q3 =
d(2e−d−1)

2

Figure 2: The �gure schematically shows the positions of the elements of g1, g2 and gmin in case d < a < b < c <
e < n, as well as the computation of the values of π in the distinct intervals.

3. Case d < a < e < b < c < n. The degree sequence is

πi =



(b−1)(2c−b−2)+2(e−1)(n−c)
2 if 1 ≤ i ≤ d,

(b−1)(2c−b−2)+2d(n−c)
2 if d+ 1 ≤ i ≤ a,

a(2c−a−3)+2d(n−c)
2 if a+ 1 ≤ i ≤ e,

a(2c−a−3)
2 if e+ 1 ≤ i ≤ b,

a(2b−a−1)
2 if b+ 1 ≤ i ≤ c,

d(2e−d−1)
2 if c+ 1 ≤ i ≤ n.

Its computation is shown in Fig. 3.
4. Case d < e < a < b < c < n. The degree sequence is

πi =



(b−1)(2c−b−2)+2(e−1)(n−c)
2 if 1 ≤ i ≤ d,

(b−1)(2c−b−2)+2d(n−c)
2 if d+ 1 ≤ i ≤ e,

(b−1)(2c−b−2)
2 if e+ 1 ≤ i ≤ a,

a(2c−a−3)
2 if a+ 1 ≤ i ≤ b,

a(2b−a−1)
2 if b+ 1 ≤ i ≤ c,

d(2e−d−1)
2 if c+ 1 ≤ i ≤ n.

Its computation is shown in Fig. 4.
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ba c

d e n

d e c

p1 =
(b−1)(2c−b−2)

2 p2 =
a(2c−a−3)

2
p3 =

a(2b−a−1)
2

q1 =
(e−1)(2n−e−2)

2 q2 =
d(2n−d−3)

2 q3 =
d(2e−d−1)

2

r1 =
(e−1)(2c−e−2)

2
r2 =

d(2c−d−3)
2 r3 =

d(2e−d−1)
2

Figure 3: The �gure schematically shows the positions of the elements of g1, g2 and gmin in case d < a < e < b <
c < n, as well as the computation of the values of π in the distinct intervals.

ba c

d e n

d e c

p1 =
(b−1)(2c−b−2)

2
p2 =

a(2c−a−3)
2 p3 =

a(2b−a−1)
2

q1 =
(e−1)(2n−e−2)

2

q2 =
d(2n−d−3)

2

q3 =
d(2e−d−1)

2

r1 =
(e−1)(2c−e−2)

2

r2 =
d(2c−d−3)

2

r3 =
d(2e−d−1)

2

Figure 4: The �gure schematically shows the positions of the elements of g1, g2 and gmin in case d < e < a < b <
c < n, as well as the computation of the values of π in the distinct intervals.

5. Case a < d < e < b < c < n. The degree sequence is

πi =



(b−1)(2c−b−2)+2(e−1)(n−c)
2 if 1 ≤ i ≤ a,

(e−1)(2n−e−2)
2 if a+ 1 ≤ i ≤ d,

d(2n−d−3)
2 if d+ 1 ≤ i ≤ e,

2a(c−e−1)+d(2e−d−1)
2 if e+ 1 ≤ i ≤ b,

2a(b−e)+d(2e−d−1)
2 if b+ 1 ≤ i ≤ c,

d(2e−d−1)
2 if c+ 1 ≤ i ≤ n.

Its computation is shown in Fig. 5.

Corollary 2. The degrees of the vertices associated with an ideal with two generators can assume
at most six distinct values.

The result is clear since we explicitly computed πg1,g2 for all possible cases in Theorem 6. Actually,
the number of distinct values can decrease to �ve, four or three, depending on the values of a, b, c, d
and e, particularly if there are repetitions or consecutive elements. This can be clearly seen in the
equation that de�nes πi, where the number of cases may decrease.

Remark 3. A result similar to Corollary 2 also holds in case of principal ideals, where the number
of distinct degrees can decrease to two, if two entries of the generator are consecutive numbers, or
to one, if the triplet is composed by three consecutive numbers.
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ba c

d e n

a e c

p1 =
(b−1)(2c−b−2)

2
p2 =

a(2c−a−3)
2 p3 =

a(2b−a−1)
2

q1 =
(e−1)(2n−e−2)

2 q2 =
d(2n−d−3)

2 q3 =
d(2e−d−1)

2

r1 =
(e−1)(2c−e−2)

2
r2 =

a(2c−a−3)
2

r3 =
a(2e−a−1)

2

Figure 5: The �gure schematically shows the positions of the elements of g1, g2 and gmin in case a < d < e < b <
c < n, as well as the computation of the values of π in the distinct intervals.

Example 5. Let I be the ideal generated by the two triplets g1 = (1, 7, 9) and g2 = (2, 6, 10) (case
a < d < e < b < c). The associated degree sequence is πg1,g2 = (32, 30, 15, 15, 15, 15, 11, 10, 10, 9),
with six distinct entries. If we slightly modify the triplets of generators, by allowing consecutive
elements, for example choosing g′1 = (1, 7, 8) and g′2 = (2, 3, 10), we get an ideal I ′ whose degree
sequence turns out to be (25, 15, 15, 7, 7, 7, 7, 7, 3, 3), where the number of distinct entries is lowered
to four.

Remark 4. In case of two generators, the number of distinct elements in π cannot be less than
three. This directly follows from the uncomparability of g1 and g2 in Tn.
We now proceed in the study of the sequences given by two generators, and, in particular, we
determine the cases where the related degree sequences preserve uniqueness.

4.1. Three distinct values degree sequences

In order to have a reduced number of distinct values in the degree sequence πg1,g2 , we need to reduce
the number of di�erent intervals in [1, n] where the value πi changes. To this aim, it is su�cient
to choose uncomparable triplets g1 and g2 where some entries are repeated and/or consecutive.
Considering all the cases listed in Theorem 6, we obtain the following:

Theorem 7. The degree sequence πg1,g2 has exactly three distinct entries if and only if g1 and g2
are chosen as follows:

i) g1 = (a, n− 1, n) and g2 = (d, d+ 1, n), with a < d, or

ii) g1 = (a, a+ 1, a+ 2) and g2 = (d, n− 1, n), with d < a, or

iii) g1 = (a, a+ 1, a+ 2) and g2 = (d, d+ 1, n), with d < a.

Proof. According to the computations in the proof of Theorem 6, to reduce the number of distinct
degrees in πg1,g2 it is su�cient to add consecutive or equal elements in the triplets of generators.
An exhaustive search of all possible choices of uncomparable generators leads to the thesis.

Theorem 8. Let π be an integer sequence with exactly three distinct entries. If π is realized by an
ideal of Tn with two generators, then π is unique.

Proof. The proof follows the same argument used in Theorem 5. We provide the sequence s for all
the possible cases listed in Theorem 7:
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i) The sequence s = (3a, 2d+1−a,−1n−d−1) realizes the degree sequence in case

H =↓{(a, n− 1, n), (d, d+ 1, n)}.

ii) The sequence s = (5d, 1a+2−d,−2n−a−2) realizes the degree sequence in case

H =↓{(a, a+ 1, a+ 2), (d, n− 1, n)}.

iii) The sequence s = (2d+1, 1a−d+1,−3n−a−2) realizes the degree sequence in case

H =↓{(a, a+ 1, a+ 2), (d, d+ 1, n)}.

The computation of the degree sequences from the sequences s determined above concludes the
proof.

4.2. Four distinct values degree sequences

When increasing the number of distinct degrees from three to four, similar results can be achieved.

Theorem 9. The degree sequence πg1,g2 has exactly four distinct entries if and only if g1 and g2
are chosen as follows:

i) g1 = (a, n− 1, n) and g2 = (d, e, n), with a < d < e− 1, or

ii) g1 = (a, b, n) and g2 = (d, d+ 1, n), with a < d < b, or

iii) g1 = (a, a+ 1, a+ 2) and g2 = (d, e, n), with d < a < e, or

iv) g1 = (a, b, b+ 1) and g2 = (d, n− 1, n), with d < a < b, or

v) g1 = (a, b, b+ 1) and g2 = (d, d+ 1, n), with d < a, or

vi) g1 = (a, b, b+ 1) and g2 = (d, d+ 1, n), with a < d, or

vii) g1 = (a, a+ 1, c) and g2 = (d, d+ 1, n), with d < a, or

viii) g1 = (a, a+ 1, c) and g2 = (d, d+ 1, n), with d < a, or

ix) g1 = (a, b, b+ 1) and g2 = (a, a+ 1, n), with a+ 1 < b.

Proof. Also in this case, an exhaustive search on the di�erent cases presented in the proof of
Theorem 6 leads to the thesis.

Remark 5. Di�erently from the case in which the distinct degrees are only three, now the triplets
of generators can share some elements. In particular, a = d can hold under certain assumptions on
the order of the elements, as shown in case ix).

Theorem 10. Let πg1,g2 be an integer sequence with exactly four distinct entries. If π is realized
by an ideal of Tn with two generators, then π is unique.

Proof. Also in this case, the thesis is achieved by showing that there exists a sequence s for each
possible case from i) to ix):

i) s = (3a, 2d−a, 0e−d,−1n−e).
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ii) s = (4a, 2d+1−a,−1b−d−1,−2n−b).

iii) s = (6d, 1a+2−d,−2e−a−2,−3n−e).

iv) s = (7d, 1a−d, 0b+1−a,−3n−b−1).

v) s = (3d+1, 1a−d−1, 0b+1−a,−4n−b−1).

vi) s = (3a, 2d+1−a,−1b−d,−2n−b−1).

vii) s = (5d, 1a+1−d,−1c−a−1,−2n−c).

viii) s = (4d+1, 2a−d,−2c−a−1,−6n−c).

ix) s = (4a, 0,−1b−a,−3n−b−1).

The computation of the degree sequences from the provided s shows that πg1,g2 = π(s) for each
case, leading to the thesis.

4.3. Five distinct values degree sequences

The analysis of the hypergraphs related to degree sequences πg1,g2 with �ve distinct values reveals
some interesting aspects. In particular, we spot some cases for which it is not possible to �nd an
integer sequence s yielding a hypergraph realizing πg1,g2 , and this provides the �rst cases of elements
in Dext \ D. Furthermore, also establishing the uniqueness of πg1,g2 becomes an issue, even if this
property is not always lost, but only in some cases.

Theorem 11. The degree sequence πg1,g2 has exactly �ve distinct entries if and only if g1 and g2
are chosen as follows:

i) g1 = (a, b, n) and g2 = (d, e, n), with a < d < e < b, or

ii) g1 = (a, b, b+ 1) and g2 = (d, e, n), with d < a < b+ 1 < e, or

iii) g1 = (a, b, b+ 1) and g2 = (d, e, n), with d < a < e < b+ 1, or

iv) g1 = (a, b, b+ 1) and g2 = (d, e, n), with d < e < a, or

v) g1 = (a, b, b+ 1) and g2 = (d, e, n), with a < d < e < b, or

vi) g1 = (a, a+ 1, c) and g2 = (d, e, n), with d < e < a, or

vii) g1 = (a, a+ 1, c) and g2 = (d, e, n), with d < a < e < c, or

viii) g1 = (a, a+ 1, c) and g2 = (d, e, n), with d < a < c < e, or

ix) g1 = (a, b, c) and g2 = (d, n− 1, n), with d < a, or

x) g1 = (a, b, c) and g2 = (d, d+ 1, n), with d < a < b, or

xi) g1 = (a, b, c) and g2 = (d, d+ 1, n), with a < d < b− 1, or

xii) g1 = (a, b, c) and g2 = (d, b, n), with d < a and at most two consecutive elements in g1, or
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xiii) g1 = (a, b, n) and g2 = (d, e, n), with d < a < b < e and no consecutive elements in g1 and g2,
or

xiv) g1 = (a, b, c) and g2 = (a, e, n), with e < b and no consecutive elements in g1 and g2.

Proof. Again, an exhaustive search on the di�erent cases presented in the proof of Theorem 6 leads
to the thesis.

Remark 6. Also in this case, we notice that the two generators can contain repeated entries. In
particular, we can have a = d or b = e, under certain assumptions on the order of the elements, as
it is shown in cases xii) and xiv).

Theorem 12. Let πg1,g2 be an integer sequence with exactly �ve distinct entries. If the generators
g1 = (a, b, c) and g2 = (d, e, n) are such that b ̸= e, then πg1,g2 is unique.

Proof. The proof follows the same argument used in Theorem 5. We provide the sequence s for all
the possible cases i)− xi) and xiii)− xiv):

i) s = (6a, 4d−a, 0e−d,−2b−e,−3n−b).

ii) s = (6d, 1a−d, 0b+1−a,−2e−b−1,−3n−e).

iii) s = (7d, 3a−d, 0e−a,−1b+1−e,−6n−b−1).

iv) s = (5d, 3e−d, 1a−e, 0b+1−a,−6n−b−1).

v) s = (7a, 6d−a,−1e−d,−3b+1−e,−4n−b−1).

vi) s = (4d, 3e−d, 2a+1−e,−2c−a−1,−6n−c).

vii) s = (5d, 3e−d, 2a+1−e,−3c−a−1,−7n−c).

viii) s = (6d, 1a+1−d,−1c−a−1,−2e−c,−3n−e).

ix) s = (9d, 2a−d, 0b−a,−1c−b,−4n−c).

x) s = (4d+1, 3a−d−1, 0b−a,−2c−b,−7n−c).

xi) s = (4a, 2d+1−a,−1b−d−1,−2c−b,−3n−c).

xiii) s = (6d, 4a−d, 0b−a,−2e−b,−3n−e).

xiv) s = (4a, 0e−a,−1b−e,−2c−b,−3n−c).

The computation of the degree sequences from the provided s concludes the proof.
The case xii) in Theorem 11, i.e. when b = e, is harder to analyze. Indeed, in such situation the
sequence πg1,g2 may or may not belong to D. We present in the following example that both cases
are feasible:

Example 6. The following degree sequences are realized by ideals whose generators are as in case
xii) of Theorem 11, and one only belongs to the class D:

π1 = (34, 28, 28, 23, 23, 9, 9, 9, 9, 9, 4, 4) is realized by the ideal I1 =↓{(3, 5, 10), (1, 5, 12)} and can
be obtained starting from s1 = (5, 3, 3, 2, 2,−4,−4,−4,−4,−4,−6,−6).
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π2 = (30, 22, 22, 17, 17, 17, 12, 12, 5, 5) is realized by I2 =↓{(3, 6, 8), (1, 6, 10)} and does not admit
any generating sequence s.

To prove that π2 belongs to Dext \ D we proceed by contradiction, assuming the existence of a
generating sequence s such that π2 = π(s). By Theorem 1, we can �nd a sequence s with the form
s = (s1, s

2
3, s

3
6, s

2
8, s

2
10). Since the triplets (1, 7, 8), (2, 3, 10) and (4, 5, 6) do not belong to I2, the

following inequalities hold: s1 + 2s8 ≤ 0, 2s3 + s10 ≤ 0 and 3s6 ≤ 0. Summing up, we �nd that
0 ≥ (s1 + s6 + s10) + 2(s3 + s6 + s8), in contradiction with the fact that the generators of I2 are
edges of the hypergraph.

In Example 6 we show that π2 /∈ D by contradiction, making considerations about feasible in-
equalities in case a sequence s exists. Such inequalities can be generalized obtaining the following
su�cient condition:

Lemma 4. Let πg1,g2 be the degree sequence associated to I =↓{g1, g2}, with g1 = (a, b, c), g2 =
(d, b, n) and d < a. If b ≥ a+ 3 and a ≥ d+ 2, then πg1,g2 ∈ Dext \ D.

Proof. By contradiction, if a sequence s realizing πg1,g2 exists, by Theorem 1 and Theorem 6 it is
of kind s = (sdd, s

a−d
a , sb−a

b , sc−b
c , sn−c

n ), and the following inequalities hold:

sd + 2sc ≤ 0. We remind that b < c− 1, otherwise only four distinct values are present in πg1,g2 ,
because of the presence of consecutive numbers in g1 (Theorem 9). As a consequence, the
triplet (d, c− 1, c) corresponds in s to the elements sd + sc + sc, whose sum is negative since
the edge is not part of the hypergraph (the triplet is not comparable both with g1 and g2 in
Tn).

2sa + sn ≤ 0. Again, the elements in s corresponding to the triplet (a− 1, a, n) are sa + sa + sn,
being a ≥ d + 2 by hypothesis, and the sum is negative since the triplet is not comparable
with the generators in Tn.

3sb ≤ 0. In this case, we refer to the triplet (b − 2, b − 1, b), corresponding to sb + sb + sb since
b ≥ a+3 by hypothesis. Again, the corresponding edge is not part of the hypergraph since it
is not comparable with the two generators of the ideal.

Summing the members of the three inequalities we reach a contradiction with the hypothesis that
sa + sb + sc > 0 and sd + sb + sn > 0.

Remark 7. Actually, it is possible to show that πg1,g2 is in the class D in the following cases:

b < a+ 3: it is realized by the sequence s = (5d, 3a−d, 2b−a,−4c−b,−6n−c).

b ≥ a+ 3 and d = a− 1: it is realized by the sequence s = (9d, 6, 0b−a,−5c−b,−7n−c).

Thus, we reach the complete characterization of the sequences with �ve distinct values in D:

Theorem 13. Let πg1,g2 be a �ve distinct values degree sequence realized by an ideal with two
generators. Then, πg1,g2 ∈ Dext \ D if and only if g1 = (a, b, c) and g2 = (d, b, n), with b ≥ a + 3
and a ≥ d+ 2.
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4.4. Six distinct values degree sequences

Let us now consider the general case of two generators that provide a six di�erent values degree
sequence. We start by showing two examples of degree sequences having six di�erent values and
associated with two generators: the �rst one which admits a sequence s and the second one which
does not. Moving from the examples, we characterize the degree sequences πg1,g2 which do not
admit a sequence s. For the remaining cases, we provide a general form for one of the related
sequence s, so obtaining their uniqueness.

Example 7. Let us consider the six distinct values sequence πg1,g2 = (14, 10, 8, 8, 7, 6, 4), whose
generators are g1 = (2, 4, 6) and g2 = (1, 5, 7). To guess a possible sequence s such that πg1,g2 =
π(s), we explicitly write the inequalities derived from the presence in the hypergraph Ig1,g2 of the
edges (1, 5, 7) and (2, 4, 6), and of their intersection (1, 4, 6). Thus we deduce s1 + s5 + s7 > 0,
s2 + s4 + s6 > 0 and s1 + s4 + s6 > 0. On the other side, (2, 4, 7), (2, 5, 7), (3, 4, 6), (2, 5, 6) and
(1, 6, 7) are not in Ig1,g2 . Thus, we compute the inequalities s2 + s4 + s7 ≤ 0, s2 + s5 + s7 ≤ 0,
s3 + s4 + s6 ≤ 0, s2 + s5 + s6 ≤ 0 and s1 + s6 + s7 ≤ 0. By testing the previous inequalities, we are
able to guess a generating sequence s satisfying them, i.e., s = (5, 3, 0, 0,−1,−2,−3).

Example 8. Now, let πg1,g2 = (41, 35, 35, 23, 23, 21, 21, 15, 15, 15, 4, 4) be the sequence whose gen-
erators are g1 = (3, 7, 10) and g2 = (1, 5, 12). Assuming there exists an integer sequence s such
that πg1,g2 = π(s), we compute the two inequalities s1 + s5 + s12 > 0 and s3 + s7 + s10 > 0. In
the opposite, the triplets (1, 9, 10), (1, 7, 12), (2, 3, 12) and (4, 5, 7) are not in the ideal ↓{g1, g2}.
Thus, we compute the inequalities s1 + s9 + s10 ≤ 0, s1 + s7 + s12 ≤ 0, s2 + s3 + s12 ≤ 0 and
s4 + s5 + s7 ≤ 0. By construction of s, we have s1 > s3 > s5 > s7 > s9 > s10 > s12. This ordering
implies s1 + s10 + s10 ≤ 0, s1 + s7 + s12 ≤ 0, s3 + s3 + s12 ≤ 0 and s5 + s5 + s7 ≤ 0. By summing,
we get 0 ≥ 2s1 +2s3 +2s5 +2s7 +2s10 +2s12 = 2(s1 + s5 + s12)+ 2(s3 + s7 + s10), in contradiction
with the fact that s1 + s5 + s12 > 0 and s3 + s7 + s10 > 0. In conclusion, there is no sequence s
from which it is possible to compute πg1,g2 .

Remark 8. We point out a subtle di�erence between the entries of the two generators in Example 7
and those in Example 8: in the �rst case, the values of the union of the entries of the two generators
are fairly close (they almost form an interval since the element 3 is missing), whereas in Example 8
the entries are at least at distance two apart.

As witnessed in Example 8, also in case of six distinct values in the degree sequence πg1,g2 , �nding
a generating sequence s is not always possible. Even worst, we have no explicit clue about the
uniqueness property of the sequence. In the sequel, we will carry on the analysis of the six valued
degree sequences obtained from two generators according to the mutual positions of the entries of the
generators. By Theorem 6, we know that �ve cases only are possible, when the non comparability
of the generators is required. In particular, we will show that for three of them the degree sequences
belong to the class D, thus obtaining their uniqueness as a direct consequence. In the remaining
two cases nothing can be said, in general (see Example 9).

Theorem 14. Let πg1,g2 be a six distinct values degree sequence with generators g1 = (a, b, c)
and g2 = (d, e, n). The uniqueness of πg1,g2 is guaranteed only if either d < a < b < c < e, or
d < e < a < b < c or, �nally, a < d < e < b < c.

Proof. Let g1 = (a, b, c) and g2 = (d, e, n) be two non comparable elements in Tn that generate a
six valued degree sequence πg1,g2 . By Theorem 6, it holds that there are no consecutive numbers
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in each generator. Five di�erent cases arise according to the mutual positions of the entries of g1
and g2, that we group in two situations. On one hand, the proof follows the same argument used
in Theorem 5, and we provide the sequence s realizing πg1,g2 (this holds for three out of �ve cases).

i) Case d < a < b < c < e. We have πg1,g2 = π(s), with s = (10d, 2a−d, 0b−a,−1c−b,−4e−c,−5n−e).

ii) Case d < e < a < b < c. We have πg1,g2 = π(s), with s = (6d, 5e−d, 4a−e, 0b−a,−3c−b,−10n−c).

iii) Case a < d < e < b < c. We have πg1,g2 = π(s), with s = (8a, 6d−a, 0e−d,−3b−e,−4c−b,−5n−c).

Note that these are three out of the �ve cases presented in the proof of Theorem 6. For the remaining
two cases, d < a < e < b < c and d < a < b < e < c, it is not possible to establish if they are in the
class D or Dext \ D, see Example 9.

Remark 9. We notice that the two cases d < a < e < b < c and d < a < b < e < c are similar to
case xii) in Theorem 11, where d < a < b = e < c, that is exactly the case in which the associated
degree sequences can both belong to the class D or Dext \ D.

Example 9. We provide an example of non-unique, and so without a generating sequence s, degree
sequence associated to an ideal with two generators. We are in the third case presented in Theorem 6,
namely d < a < e < b < c, and we consider π1 = (41, 35, 35, 23, 23, 21, 21, 15, 15, 15, 4, 4) the degree
sequence of the hypergraph I1 =↓{(3, 7, 10), (1, 5, 12)}. We can construct a second 3-hypergraph
H, realizing π, removing from I1 the edges (1, 4, 12), (1, 5, 12), (2, 7, 9), (3, 7, 10) and then adding
(1, 7, 12), (2, 3, 12), (1, 9, 10), (4, 5, 7). The degree sequence does not change, since we remove and
add the same number of elements in the triplets, and the two hypergraphs are not isomorphic.
Indeed, H loses the structure of ideal in T12.
On the other hand, the degree sequence π2 = (11, 10, 8, 7, 5, 5, 2) realized by I2 =↓{(2, 4, 6), (1, 3, 7)}
is in the class D, and can be obtained starting from the integer sequence s = (4, 3, 1, 0,−2,−2,−4).

Similarly, if we move to the case d < a < b < e < c, the degree sequence π3 = (20, 15, 10, 10, 10, 9, 8, 5)
associated to I3 =↓{(2, 5, 7), (1, 6, 8)} is equal to π(s), choosing s = (7, 4, 0, 0, 0,−2,−3,−4), while
the sequence π4 = (30, 20, 20, 17, 17, 13, 10, 10, 5, 5) realized by I4 =↓{(3, 5, 8), (1, 6, 10)} is in Dext \
D. The proof is analogous to that one presented in Example 6: if such a sequence s exists, then
s1 + 2s8 ≤ 0, 2s3 + s10 ≤ 0 and 2s5 + s6 ≤ 0, since (1, 7, 8), (2, 3, 9) and (4, 5, 6) are not edges of
the hypergraph. It follows (s1 + s6 + s10) + 2(s3 + s5 + s8) ≤ 0, in contradiction with the values in
the triplets of generators.

Similarly to case xii) in Theorem 11, if there is enough distance between the values in the triplets
of generators we can ensure that no integer sequence s realizing the degree sequence πg1,g2 exists.
The following result is a simple generalization of Lemma 4:

Theorem 15. Let πg1,g2 be the degree sequence associated to I =↓{g1, g2}, with g1 = (a, b, c) and
g2 = (d, e, n). Then, πg1,g2 ∈ Dext \ D if one of the following cases occur:

i) d < a < b < e < c and c ≥ e+ 2, a ≥ d+ 2, b ≥ a+ 2, or

ii) d < a < e < b < c and c ≥ b+ 2, a ≥ d+ 2, b ≥ e+ 2.

Proof. The proof is analogous to the proof presented in Lemma 4. If a sequence s realizing πg1,g2

exists, we have:
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i) sd+2sc ≤ 0, 2sa+sn ≤ 0 and 2sb+se ≤ 0, whose sum contradicts the fact that sa+sb+sc > 0
and sd + se + sn > 0.

ii) sd+2sc ≤ 0, 2sa+sn ≤ 0 and 2sb+se ≤ 0, whose sum contradicts the fact that sa+sb+sc > 0
and sd + se + sn > 0.

This reasoning holds each time we have enough equal elements in the sequence s.

5. Conclusions and open problems

In this study, we consider an algebraic approach to the reconstruction of 3-uniform hypergraphs
from their degree sequences. The problem is known to be NP-hard, so we consider a relevant
subclass of degree sequences D that has been de�ned in [2] and then extended to Dext in [3], with
the perspective of de�ning on them a fast reconstruction strategy. Remarkably, the class D has the
uniqueness property, i.e., each of its elements is associated to one single 3-uniform hypergraph (up
to isomorphism).
In this paper, we show how to associate to each element of Dext

n an ideal of the poset Tn of triplets
on n integer numbers, and then we study the reconstruction problem according to the number of
generators of the ideals. We provide a complete characterization of the degree sequences related to
ideals having one or two generators. In the last case, we spot the �rst cases where the uniqueness
property is lost.
Several open problems arise concerning both computational and combinatorial aspects of this re-
search. A �rst step ahead will be the characterization of the six distinct values degree sequences
that are not unique, and that belong to Dext \ D. Moving from these �rst cases, we aim at charac-
terizing the unique degree sequences related to generic ideals. The �nal goal would be to use the
detected algebraic properties to de�ne a fast reconstruction strategy for the elements of Dext.
On the other side, from a more combinatorial perspective, we can formulate some interesting enu-
meration problems concerning our investigation. For instance, given the number n, we would like to
count the number of di�erent degree sequences in Dn determined by the ideals of Tn. This number
is clearly less than the total number of ideals, but results are known only for small values of n or
for a �xed (small) number of generators.
Furthermore, it is still unknown the range of distinct values that a degree sequence of Dext can
have when varying the number of generators of the associated ideal. So, one can think of de�ning
a hierarchy on Dext according to the distinct values in the degree sequences and then enumerate
them according to such parameter.
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