
25 November 2024

Wireless IoT sensors data collection reward maximization by leveraging multiple energy- and storage-
constrained UAVs / Sorbelli, FB; Navarra, A; Palazzetti, L; Pinotti, CM; Prencipe, G. - In: JOURNAL OF
COMPUTER AND SYSTEM SCIENCES. - ISSN 0022-0000. - ELETTRONICO. - 139:(2024), pp. 0-0.
[10.1016/j.jcss.2023.103475]

Original Citation:

Wireless IoT sensors data collection reward maximization by
leveraging multiple energy- and storage-constrained UAVs

Conformità alle politiche dell'editore / Compliance to publisher's policies

Published version:
10.1016/j.jcss.2023.103475

Terms of use:

Publisher copyright claim:

Questa versione della pubblicazione è conforme a quanto richiesto dalle politiche dell'editore in materia di
copyright.
This version of the publication conforms to the publisher's copyright policies.

(Article begins on next page)

La pubblicazione è resa disponibile sotto le norme e i termini della licenza di deposito, secondo quanto
stabilito dalla Policy per l'accesso aperto dell'Università degli Studi di Firenze
(https://www.sba.unifi.it/upload/policy-oa-2016-1.pdf)

Availability:
This version is available at: 2158/1347487 since: 2023-12-30T16:11:44Z

Questa è la versione Preprint (Submitted version) della seguente pubblicazione:

FLORE
Repository istituzionale dell'Università degli Studi

di Firenze

Open Access

DOI:

Wireless IoT Sensors Data Collection Reward Maximization by Leveraging
Multiple Energy- and Storage-Constrained UAVs ⋆

Francesco Betti Sorbellia, Alfredo Navarraa, Lorenzo Palazzettib,a, Cristina M. Pinottia, Giuseppe
Prencipec

aDepartment of Computer Science and Mathematics, University of Perugia, Italy
bDepartment of Computer Science and Mathematics, University of Florence, Italy

cDepartment of Computer Science, University of Pisa, Italy

Abstract

We consider Internet of Things (IoT) sensors deployed inside an area to be monitored. Drones
can be used to collect the data from the sensors, but they are constrained in energy and storage.
Therefore, all drones need to select a subset of sensors whose data are the most relevant to be
acquired, modeled by assigning a reward. We present an optimization problem called Multiple-
drone Data-collection Maximization Problem (MDMP) whose objective is to plan a set of drones’
missions aimed at maximizing the overall reward from the collected data, and such that each
individual drone’s mission energy cost and total collected data are within the energy and storage
limits, respectively. We optimally solve MDMP by proposing an Integer Linear Programming
based algorithm. Since MDMP is NP -hard, we devise suboptimal algorithms for single- and
multiple-drone scenarios. Finally, we thoroughly evaluate our algorithms on the basis of random
generated synthetic data.

Keywords: Drones, Sensor networks, Data collection, Integer Linear Programming,
Approximation algorithms

1. Introduction

With the recent advent of the Unmanned Aerial Vehicles (UAVs), such as drones, we have
seen a rapid growth of civilian applications that make use of them. Just to mention a few, drones
can be efficiently employed for localizing missing people in search and rescue operations [2, 3], for
delivering goods in the last-mile scenario [4, 5, 6], for scouting insects in a precision agriculture
context [7, 8]. In this last smart agriculture application, drones can plan missions inside an orchard
to take pictures of trees at different heights (to photograph as many bugs as possible, if present)
so that subsequent machine learning algorithms can recognize the abundance of the pest [9]. The

⋆This work was supported in part by the “GNCS – INdAM”, by “HALY.ID” project funded by the European
Union’s Horizon 2020 under grant agreement ICT-AGRI-FOOD no. 862665, no. 862671, by MIPAAF, by RESID-
UAL, and by RB DMI 2019. Part of this work has been accepted [1] to the 2022 International Symposium on
Algorithmics of Wireless Networks (ALGOSENSORS 2022).

Email addresses: francesco.bettisorbelli@unipg.it (Francesco Betti Sorbelli), alfredo.navarra@unipg.it
(Alfredo Navarra), lorenzo.palazzetti@unifi.it, lorenzo.palazzetti@collaboratori.unipg.it (Lorenzo
Palazzetti), cristina.pinotti@unipg.it (Cristina M. Pinotti), giuseppe.prencipe@unipi.it (Giuseppe Prencipe)

Preprint submitted to Journal of Computer and System Sciences December 30, 2023

main reason why drones are used in such types of applications is their ability to perform very
challenging tasks in an easy way. In fact, autonomous ground vehicles, such as robots, can still
execute tasks on their own, but they are particularly constrained by mobility. For instance, it is
really hard for a robot, if not impossible, to overtake a creek or travel inside a plough land, whereas
for drones, this task can be quickly done. Even inside an orchard (or vineyard), a robot has to go
either at the beginning or at the end of a row to swap the monitored row [10], while for a drone,
this task would be significantly easier because it can overfly the row.

With the current state of technology, multiple applications can be done in smart agriculture
with the help of drones. In addition to the aforementioned bug detection application, also the
spread of pesticides and insecticides on crops, the monitoring of the health of the field, and also the
collection of sensed data from ground Internet of Things (IoT) sensors, can be done by leveraging
drones. Taking into account the latter application, farmers are starting to rely on these IoT
sensors to implement smart agriculture. In particular, IoT sensors [11] can simply sense the current
temperature or air humidity, can determine the current wind speed and direction, or can even take
pictures or record videos by using RGB or infrared chips. Since these sensors have a limited radio
communication range [12] and available storage [13], detected data must be periodically transferred
to an external device for further analysis [14]. Furthermore, the deployment area can be very large
and therefore the sensors cannot directly transfer their perceived data to the main base station [15]
(briefly, the depot). Even with a multi-hop paradigm, there is still the issue that sensors closer to
the depot use more energy while relaying data [16], and the network can be easily disconnected.

Sensor

Drone

Waypoint

Route

Depot

Figure 1: The sketched representation of our application. The surface is not flat, and therefore the sensors have
different heights with respect to the depot.

In this work, we consider that a set of multiple homogeneous drones is responsible for collecting
data from ground IoT sensors. An example of a data collection scenario using two drones is
depicted in Figure 1. We assume that a set of heterogeneous ground sensors is randomly deployed
on an area for sensing particular phenomena. Due to the fact that the deployment area can be
very large, the sensors cannot directly transfer their perceived data to the depot. In our proposed
architecture, drones flying over the area are responsible for performing a mission (a route) to/from
the depot, with the objective of selectively collecting the data from the sensors. However, the
drones themselves are limited in terms of energy battery (when flying and hovering) and available
memory storage (when collecting data). In principle, due to the two limitations mentioned above,

2

drones cannot collect all the data from all deployed sensors, but they have to plan a proper route
and use parsimoniously both their available energy and storage. Moreover, in harsh environments,
the drones could not immediately transmit the collected data to the cloud/depot because the
Internet connectivity can be absent, and hence they need to keep the data to their storage, which
is limited in capacity, until they finally reach the main depot.

In our proposed context, certain sensors’ data are more critical and should be collected with
higher priority than others. This implies that some data are more relevant and important than
others. Moreover, since some older data can be lost if not offloaded in a timely manner, it is crucial
to consider data more relevant if stored in a sensor that has less space left. Therefore, the farmer
of the field to be monitored must prioritize these sensors over others, based on the criticality of
the data and the likelihood of data loss. To model the relevance and consequent prioritization of
data to be collected by drones, a specific reward is assigned to each sensor data based on the data
relevance. Urgent data requiring immediate analysis is given a higher reward than regular data,
and data that may be lost due to the shortage of available local storage is also prioritized.

The primary goal pursued in this paper is maximizing the total reward obtained by collecting
the most relevant data using a fleet of drones. However, this must be achieved while ensuring that
the energy cost of each drone’s mission does not exceed the battery budget, and that the total
collected data do not exceed the storage limit on each drone. To the best of our knowledge, this
is the first time that a fleet of homogeneous drones is in charge of collecting data from a set of
heterogeneous ground sensors while simultaneously taking into account both the available energy
and storage for the drones.

This work extends our previous conference paper [1] in which only a single drone was involved
in data collection. The contributions of this paper are summarized below.

• We define a novel optimization problem, called Multiple-drone Data-collection Maximization
Problem (MDMP), whose goal is to collect the most relevant data by leveraging drones, i.e.,
maximizing the total obtained reward, while ensuring that each drone’s mission energy cost
does not exceed the battery budget, and the total collected data do not exceed the storage
limit on each drone;

• We formally prove that MDMP is NP -hard (even for the single-drone scenario) because the
Team Orienteering Problem (TOP) can be seen as a particular instance of MDMP;

• We devise an Integer Linear Programming (ILP) formulation for optimally solving MDMP,
only suitable for small-sized inputs;

• We propose approximation and heuristic algorithms for obtaining suboptimal solutions for
the single- and multiple-drone scenarios for inputs of any size;

• We thoroughly evaluate the performance in terms of collected reward of our algorithms on
randomly generated synthetic data.

The rest of the paper is organized as follows. Section 2 reviews the related work. Section 3
formally defines MDMP showing its NP -hardness, and proposes the ILP-based optimal algorithm
for it. Section 4 and Section 5 present suboptimal approximation and heuristic algorithms for
solving MDMP for the scenario of a single and multiple drones, respectively. Section 6 evaluates
the effectiveness of our algorithms on randomly generated synthetic data, and Section 7 offers
conclusions and future research directions.

3

2. Related Work

Many papers have been proposed in the realm of data collection in sensor networks with the
help of drones.

In [17, 18], the authors consider the problem of scheduling the flight of a drone in charge to
maximize the utility due to the data collected in a sensor network composed by homogeneous
sensors deployed on a flat surface. The drone has the ability to simultaneously collect data from
multiple sensors and its hovering time depends on the size of data to be collected. The authors
discretize the possible hovering points for the drone in order to limit the number of them. A
similar scenario is also considered in [19], in which the objective is to find the tour that maximizes
the utility of the collected data considering the data transfer divided into time slots of equal
width. Furthermore, the paper in [20] considers the problem of determining the minimum number
of UAVs to be deployed to collect all the data from sensors on a flat area without exceeding
a given budget time. Two algorithms are proposed to solve the problem. In contrast to the
three previously mentioned works, our paper considers several crucial factors that have been not
accounted for, namely the presence of heterogeneous sensors at different elevations, the energy
consumption required for flight, the drone’s storage capacity limitation, as well as the presence of a
fleet of multiple drones. Furthermore, to prevent potential bandwidth saturation, we do not permit
the simultaneous collection of data from multiple sensors. These considerations are of significant
importance when designing a drone-based data collection system, and our work addresses these
challenges in a comprehensive manner.

The problem of scheduling the UAV’s tour which minimizes the maximum energy consumption
for all the sensors is studied in [21]. The authors jointly consider the sensors’ wake-up and the UAV’s
path by formulating a mixed-integer non-convex optimization program, and a suboptimal algorithm
which iteratively applies a successive convex optimization technique. The authors in [22] propose
a clustering algorithm and meta-heuristics to address a similar problem where the sensors are
deployed in a hilly terrain, and the single UAV is not energy-constrained. In contrast to the above
papers, which consider homogeneous sensors relying on continuous communications or even not
energy-constrained drones, our paper proposes approximation and time-efficient heuristic solutions
for a system with multiple drones and heterogeneous sensors. Additionally, all the previous works
only offer computationally expensive exact solutions or meta-heuristic solutions, whereas we also
propose more time-efficient deterministic methods.

The problem of maximizing the freshness of the data collected by a UAV has been studied
in [23]. In particular, two problems of Age-of-Information (AoI) data collection are formulated to
minimize both the sensors’ maximal and average AoI. In [24], the authors propose a framework for
controlling the flight speed of the UAV to improve the fairness of data collection. They formalize
fairness as a metric that depends on the energy level of the sensor nodes and on the amount of
data to be sent to the UAV. Specifically, since only cluster heads have to transfer data collected
via multi-hop from the other nodes to the UAV, their fairness is the least. Therefore, the authors
develop a method which controls and adjusts the UAV’s speed according to the intra-cluster density
of sensors, and the distance from the UAV and each sensor. However, unlike our work which deals
with multiple drones each with energy and storage constraints, the authors do not consider the
energy consumption and the storage availability of the single drone in their approach.

The authors in [25] present an optimization problem where a drone is in charge to collect data
from a set of ground sensors. Here, the locations where the drone has to stop are not known
in advance, and they are computed according to a clustering scheme. The goal is to determine

4

the single drone’s path such that the drone’s energy is minimized. When computing the path, a
trade-off between the flight duration and the communication reliability is required. The problem
is solved relying on ILP formulations. A similar approach is proposed in [26], in which the goal is
only to minimize the flight time of the single drone. The problem is optimally solved by performing
a brute-force algorithm plus two heuristic algorithms. The above papers differ from our approach
in that they only utilize a single drone, and they do not take into account data relevance in their
modeling. Consequently, their objective is to maximize the quantity of collected data, whereas our
approach is a more generalized version in which are involved multiple drones, and incorporated
data relevance as a factor in our optimization.

In [27], the data collection problem is investigated under a “security” point of view. In fact,
a fleet of drones is responsible for selectively collect data from a set of ground sensors, with the
main goal to guarantee the security of the stored data. Different metrics are optimized in [27],
such as computational cost, energy consumption, and communication overhead. The optimization
function used in their approach did not take into consideration any kind of relevance of the data,
as well as the storage of the drones.

The authors of [28] investigate data collection in a wireless sensor network by using multiple
drones. Two main issues are addressed: (1) how to ensure seamless synchronization among sensors
and drones at each transit, and (2) how to compute energy-efficient schedules for the sensors and
feasible trajectories for the drones. To solve the problem, a joint wake-up scheduling and drone path
planning optimization problem is formulated; eventually, simulations are also proposed. Similarly,
in [29] drones are used to gather data from a set of ground sensors that rely on a Long Range Wide
Area Network (LoRaWAN) protocol. The proposed problem takes into account three objectives,
such as: (1) minimize the total drone’s flying time, (2) collect all data packets from all nodes, and
(3) minimize the nodes’ energy consumption. Differently from our approach, the authors focus on
prolonging the lifetime of the sensor network by only considering the limited battery capacity of
the drones, without accounting for the storage constraint or the relevance of the collected data.

Finally, a recent work in [30] proposes an optimization problem to find a sequence of locations
that the drone should follow inside the monitored area, so that the overall time to collect data is
minimized. Unlike us, the authors only use a single drone and collect data from all sensors, without
considering the relevance of their data or selecting a subset of sensors based on their relevance.

3. Problem Definition

In this section, we introduce the system model, define our novel problem for data collection
in an IoT sensor network by leveraging drones, prove its NP -hardness, and devise the optimal
solution for it by formulating an ILP.

3.1. System Model

Let F be the field, whose center O = (0, 0, 0) is the depot, to be monitored by a set V =
{v1, . . . , vn} of n heterogeneous IoT ground sensors. Each sensor vi ∈ V is randomly deployed
in F , and its position is (xi, yi, zi) with respect to O. The field F can be seen as a complete
graph G = (V,E) where the set V is the set of vertices/sensors, and the set E represents the
edges/connections among each pair of sensors. The sensors collect data like the temperature,
pressure, or even pictures or videos to be saved on their local storage of size Wi, assumed to be
different for each sensor. In fact, tiny sensors that record text data have a small storage, but camera
sensors that have to store large videos, need a much larger storage. Since Wi is limited, sensors

5

have to periodically transfer the recorded data to external devices. Let 0 < wi ≤Wi be the size of
the data that each vi needs to transfer. As mentioned above, the data are modeled by a relevance,
and the relevant data should be prioritized when ground sensors have to start data transfer. This
is modeled by associating a reward ri > 0 to each sensor vi. Data that need immediate analysis
are prioritized with a higher reward than standard data, and data that may be lost (overwritten)
due to limited storage capacity are also associated with high priority. So, the more is the reward,
the more relevant is to off-load the data to an external device. Importantly, given an instance of
the problem, the relevance does not change, and remains the same until the mission is completed.

The external devices that collect sensor data are a set of l homogeneous drones denoted as
D = {d1, . . . , dl}. The flight mission of each drone starts and finishes at O. The drones fly at
a fixed altitude h above the ground and have a communication range with a radius R. So, a
drone dk ∈ D can collect data from a sensor vi if ∥dk − vi∥2 ≤ R, i.e., if their relative Euclidean
distance is within the communication range. In this work, we neglect communication issues such
as shadowing, fading, or multipath propagation. Moreover, we assume that the drones and the
sensors are always in line of sight and hence no obstacles are present. We also assume that the
drones cannot collide among them or with any sensor. In fact, by opportunely tuning the heights
at which drones fly, we can assume that drones cannot collide. However, for the sake of clarity, we
simply consider the same height for all the drones even though collisions are still not addressed.

sideC1

v1p1

C2

v2p2

C3

v3p3

C4

v4p4

Cd

d

p21,2

p11,2

top

v1

v2

v3

h
z1

z3

d

R
v4

Figure 2: Top and side representations of the field F .

The drones are allowed to hover only at specific locations over F , called waypoints, represented
by a set P of possible positions. Firstly, P contains all the positions of the projected sensors at
height h, i.e., ∀vi = (xi, yi, zi) ∈ V we have pi = (xi, yi, h) ∈ P . P also contains other points
as follows. For each sensor vi, we define an admissible region in which the drones can actually
communicate with it. Such a region is delimited by a circumference Ci of radius ≤

√
R2 − (h− zi)2.

To be more precise, a drone flying at a height h has a communication sphere of radius R which
intersects the ground level (h = 0) forming a circumference Cd of radius ≤

√
R2 − h2. A sensor can

communicate with a drone if the center of Ci is inside the circumference Cd. E.g., in Figure 2 the
sensor v4 and the drone d can communicate. In general, the number of possible drone waypoints
can be unbounded. Therefore, in order to bound the number of waypoints for the drone [19], for
each pair of sensors vi and vj , we add in P all the possible intersections p1i,j and p

2
i,j between Ci and

Cj (see Figure 2). Also the depot O = p0 ∈ P . So, given the n sensors, the number of waypoints
is m = |P | ≤ n+ n(n− 1) + 1, because two sensors can generate no more than two intersections.

6

Each individual drone is constrained by the limited energy of its battery that consumes when
moves between locations and when hovers at waypoints. Sensors can start the data transfer
procedure only when the drone hovers at waypoints. Hence, the sensors cannot transfer the data if
a drone is currently moving even if their relative distance is within the communication range. We
also assume that a drone cannot concurrently collect data from multiple sensors, but separately
one at a time. So, if two sensors v1 and v2 are in range with a drone (say da), only one (say v1) can
transfer the data, while the other (say v2) has to wait until v1 finishes the procedure. However,
if there is another drone (say db) in range with v1 and v2, and v1 is transmitting towards da, db
could collect the data from v2 at the same time because there is not any conflict nor any queue
among them. Moreover, we do not allow for a partial transferring, so when a sensor v1 starts to
transfer data to a drone da, da necessarily must hover at the waypoint until the data is completely
collected. This also means that a sensor v1 cannot transfer a portion of data to a drone da, and
the remaining portion to another drone db.

Given a waypoint pi ∈ P , let Qi be the set of ground sensors possibly in range with any drone,
i.e., covered by a drone if it flies in pi. So, each sensor vk ∈ Qi can communicate with a drone in
pi because ∥pi − vk∥2 ≤ R.

Let EF (pi, pj) be the drone required flying energy for moving from pi to pj , which depends on
the Euclidean distance between waypoints, i.e., ∥pi − pj∥2, and on the energy per unit distance
parameter α > 0, so that:

EF (pi, pj) = α · ∥pi − pj∥2. (1)

Let EH(pi, t) be the required drone’s hovering energy for statically staying at the waypoint pi
for t time slots, which depends on the number of time slots, i.e., t, and on the energy per time
slot parameter β > 0, so that EH(pi, t) = β · t. However, for a given pi, the number of the needed
time slots t depends on the size of the data to be collected from the sensors in Qi. Recall that
there are multiple drones, and a sensor can transfer its data to at most one drone. So, we have
Qi ⊇

⋃l
j=1Q

j
i , where Q

j
i is the subset of sensors that the drone dj needs to collect the data from.

Moreover, Qi is a partition and hence we also have Qai ∩ Qbi = ∅ for any a ̸= b. Thus, if there

are sensors vk ∈ Qji ⊆ Qi, the cumulative data to transfer to the drone dj from the sensors in Qji
at the waypoint pi is

∑
vk∈Qj

i
wk. So, the required time depends on the total quantity of data to

be transferred, and on the data-transfer rate parameter γk > 0 for the sensor vk, so that we can
finally redefine the hovering energy function as:

EH(Qji) =
∑
vk∈Qj

i

β

γk
wk. (2)

Let M = {M1, . . . ,Ml} be the set of the l drones’ missions. Each individual mission Mj ,
accomplished by the drone dj , is formed by a sequence of distinct waypoints to be visited to/from
the depot O = p0; i.e., M is a sequence p0, . . . , pi, . . . , p0. For each waypoint pi, the drone dj
actually obtains the data from a subset Qji ⊆ Qi of sensors due to its storage limitation. Finally,

CMj = CFMj
+ CHMj

(3)

is the total mission cost (in terms of energy) of the mission Mj , where CFMj
is the flying cost, and

CHMj
is the hovering cost. Therefore, given the sequence of consecutive waypoints (pi, pk) ∈Mj , the

7

flying and hovering energy costs are, respectively,

CFMj
=

∑
(pi,pk)∈Mj

EF (pi, pk) (4)

CHMj
=

∑
pi∈Mj

EH(Qji) (5)

The other aspect to consider is the overall transferred data from the sensors to the drones.
Namely, let UMj be the total used storage by the drone dj when doing the mission Mj , i.e.,

UMj =
∑

pi∈Mj ,vk∈Qj
i

wk. (6)

Finally, let RMj be total obtained reward by the drone dj when doing the mission Mj , i.e.,

RMj =
∑

pi∈Mj ,vk∈Qj
i

rk. (7)

Note that, when l = 1, Eqs. (3) (6) (7) can be rewritten as CM , UM , and RM , respectively.
Concerning the drones’ constraints, let E > 0 be the available energy budget on the battery for

performing a mission, i.e., each drone has its own energy budget E because the drones are assumed
to be homogeneous. Moreover, let S > 0 be the available storage budget on the mass storage for
collecting the sensors’ data. Again, each drone has its own storage budget S. So, for each drone
dj , it is jointly required that:

CMj = CFMj
+ CHMj

≤ E (8)

UMj ≤ S. (9)

In this paper, we assume that any mission formed by only a single waypoint is feasible for both
energy and storage for a single drone. Specifically, all sensors in the vicinity of such a waypoint
can safely offload their data to a drone.

3.2. The Multiple-drone Data-collection Maximization Problem

In this paper, we present the Multiple-drone Data-collection Maximization Problem (MDMP)
whose goal is to find a set of routes for the drones to/from the depot, and a selection of sensors
to assign to each drone, such that the sum of the total collected reward is maximized, and both the
energy and storage budgets on each drone are not exceeded. Given the set V of n sensors, the set D
of l drones, and the energy and storage budgets of the drone E and S, respectively, the objective
is to determine the optimal set of missionsM∗ such that:

M∗ = argmax
∑
dj∈D

RMj : CMj ≤ E, UMj ≤ S. (10)

Now, we are in a position to show that:

Theorem 1. The MDMP is NP-hard.

8

Proof. The classical Team Orienteering Problem (TOP), which has been proven to be NP -hard [31],
can be seen as a particular instance of MDMP. Recall that in TOP the goal is to find a set of
suitable closed routes for a given fleet of vehicles inside a weighted graph such that the sum of the
total collected reward on visited vertices is maximized, and the traveling route cost of each vehicle
along edges is within the given budget in input. However, in TOP, there is no storage constraint.
So, we can reduce any instance of TOP to MDMP as follows: The total available storage constraint
for a single drone can be relaxed by setting S = +∞. Concerning the reward, in TOP there is
no choice to perform in each waypoint. This corresponds to assume that Qji = Qi in MDMP,
i.e., we select for the drone dj all the reachable sensors at pi ∈ P . After these modifications,
any instance of TOP is exactly an instance of MDMP. So MDMP is NP -hard. When only one
drone is considered, TOP becomes the Orienteering Problem (OP) which has been shown to be
NP -Hard [31]. Hence, even for the single-drone scenario, MDMP is NP -Hard.

In the next section, we will present the optimal algorithm capable of optimally solving MDMP.

3.3. ILP Formulation

The MDMP can be optimally solved using an ILP formulation. We enumerate the sensors as
V = {1, . . . , n}, the waypoints as P = {0, . . . ,m} (0 is the depot), and the drones as D = {1, . . . , l}.
Let xkij ∈ {0, 1} be a decision variable that is 1 if the sensor i ∈ V transfers its data to the drone

k ∈ D at the waypoint j ∈ P; otherwise, it is 0. Let ykηj ∈ {0, 1} be a decision variable that is 1
if the drone k ∈ D travels from the waypoint η ∈ P to the waypoint j ∈ P; otherwise it is 0. Let
1 ≤ uki ≤ m be a dummy variable that indicates the temporal order of the waypoints visited by
the drone k ∈ D, i.e., ukη < ukj waypoint η is visited by the drone k before the waypoint j [32]. So,
the ILP formulation is:

max

l∑
k=1

n∑
i=1

m∑
j=0

rix
k
ij (11)

subject to:

l∑
k=1

m∑
j=0

xkij ≤ 1, ∀i ∈ V (12)

m∑
j=1

yk0j =
m∑
η=1

ykη0 = |D|, ∀η, j ∈ P \ {0}, ∀k ∈ D (13)

ykjj = 0, ∀j ∈ P \ {0}, ∀k ∈ D (14)
m∑
η=1

ykην =
m∑
j=1

ykνj = max
i∈V

xkiν , ∀ν ∈ P, ∀k ∈ D (15)

ukη − ukj + 1 ≤ m(1− ykηj), ∀η, j ∈ P \ {0}, ∀k ∈ D (16)

1 ≤ ukη ≤ m, ∀η ∈ P \ {0}, k ∈ D (17)
n∑
i=1

m∑
j=0

wix
k
ij ≤ S, ∀k ∈ D (18)

9

Table 1: Table of Notation.
Symbol Description

F field to be monitored by the drone
V = {v1, . . . , vn} set of n ground sensors
(xi, yi, zi) position of sensor vi with respect to the center of the field O
G = (V,E) complete graph representing F
E set of edges/connections among sensors in V
Wi local storage of sensor vi
wi ≤Wi size of data that sensor vi needs to transfer
ri reward associated with sensor vi (relevance)
D = {d1, . . . , dl} set of l drones
h altitude of the drones above the ground with respect to O
R communication range radius
P set of possible drone waypoints
pi a waypoint representing the position of projected sensor vi
Ci communication circumference of sensor vi
p1i,j , p

2
i,j intersection points between Ci and Cj

m number of waypoints in P
Qi set of sensors possibly in range with a drone when flying in pi
EF (pi, pj) drone required flying energy for moving from pi to pj
α energy per unit distance
EH(pi, t) required drone’s hovering energy for staying at pi for t time slots
t number of time slots in which the drone hovers
β energy per time slot

Qji subset of sensors that drone dj in pi needs to collect the data from
γk data-transfer rate for sensor vk
EH(Qji) redefined hovering energy function
M = {M1, . . . ,Ml} set of the l drones’ missions
CMj total mission cost (in terms of energy) of the mission Mj

CFMj
flying cost of mission Mj

CHMj
hovering cost of mission Mj

UMj total used storage by drone dj when doing the mission Mj

RMj total obtained reward by drone dj when doing the mission Mj

E > 0 available energy budget on the battery for performing a mission
S > 0 available storage budget on the mass storage for collecting the sensors’ data
M∗ optimal set of missions

10

m∑
j=0

 n∑
i=1

hix
k
ij +

m∑
η=0

fηjy
k
ηj

 ≤ E, ∀k ∈ D (19)

The objective function is represented by Eq. (11) which maximizes the overall reward. About
the constraints, Eq. (12) states that each sensor can transfer its data no more than one time;
Eq. (13) forces that the each drone’s route begins and ends at the depot; Eq. (14) forbids self
loops; Eq. (15) guarantees that each generated path is a simple cycle which contains the selected
sensors; Eq. (16) ensures that no more than a single loop is allowed for each drone [32]; Eq. (17)
indicates the temporal order of the visited waypoints, i.e., ukη < ukj if pη is visited before pj by

the kth drone [32]; Eq. (18) guarantees the storage constraint of each drone; Eq. (19) guarantees
the energy constraint of each drone, where hi = EH(pi, wi) ≥ 0 is the drone’s hovering cost for
transferring the data from sensor i, and flj = EF (pl, pj) ≥ 0 is the drone’s flying cost for moving
from waypoints pl to pj .

We denote this formulation by OPT. Since OPT is only suitable for small inputs, in the
following, we propose faster suboptimal algorithms suitable for any input. Specifically, in Section 4
we first devise algorithms for the particular case of a single drone, while in Section 5 we propose
algorithms for the general case of multiple drones.

Table 1 summarizes the notation that has been adopted in this paper.

4. Solving MDMP with a Single Drone

In this section, we propose an approximation algorithm, called Reward-Storage-first Energy-then
Optimization (RSEO-s), and two greedy heuristic algorithms, called Max ratio Reward-Energy
(MRE-s), and Max ratio Reward-Storage (MRS-s), respectively, in order to solve MDMP with
a single drone, i.e., l = 1. Note that the suffix “-s” stands for “single-drone”. Moreover, in this
section we denote M as the single-drone mission, while in the next section we will denote M as
the set of missions of the fleet of drones.

4.1. The RSEO-s Algorithm

In this section, we devise an approximation algorithm that suboptimally solves MDMP with
a single drone, called Reward-Storage-first Energy-then Optimization (RSEO-s). It is split into
two phases. In the first phase, we select a subset of sensors such that the collected reward is
maximized while ensuring that the storage requirement is met. Once the selection of sensors is
done, we choose the minimum number of waypoints capable of covering all the selected sensors. At
these waypoints, we compute the minimum energy-cost traveling route to/from the depot. Notice
that the resulting route might be energy-unfeasible. If it is so, in the second phase we reduce the
main route into a smaller one by removing the waypoint that reduces the least the lost reward.
So, after the removal of the waypoint (along with two edges), we need to add an edge so that the
path remains closed. This strategy is repeatedly done until we reach an energy-feasible route. The
pseudocode of RSEO-s is given in Algorithm 1.

The objective is to maximize the reward by considering the drone’s storage, and initially ne-
glecting the drone’s energy. This is realized by approximating three classical NP -hard subproblems,
namely the knapsack, the min-set cover, and the traveling salesman.

The RSEO-s algorithm works as follows. Let us now focus on the first phase. We initially
determine a subset of sensors V ′ ⊆ V such that the obtained reward is maximized and the storage

11

Algorithm 1: The RSEO-s Algorithm

1 V ′ ← knapsack(V,S)
2 P ′ ← min-set-cover(V ′, P)
3 M ← traveling-salesman(P ′)
4 while CM > E do
5 p← argminpi∈M RM −RM\{pi}
6 M ←M \ {p}
7 return M

constraint S is satisfied by invoking the knapsack procedure [33] (Line 1). In the knapsack proce-
dure, we are given a collection of objects (sensors), each one associated with a size (data) and a
reward (relevance), and we are asked to select a subset such that the total reward is maximized,
while the total size occupied does not exceed that of the knapsack (drone’s storage capacity). Let
V ′ be the set of selected sensors and P be the family of subsets derived from the waypoints. Then,
recalling that a sensor can be reached from multiple waypoints, we minimize the number of way-
points to visit to cover the entire set V ′ by invoking the min-set-cover procedure [33], determining
so a subset of P ′ ⊆ P of waypoints with cardinality |P ′| ≤ |V ′| (Line 2). In the min-set-cover
procedure, we are given a set V ′ (sensors) and a family of subsets on P (waypoints), and the
requirement is to select the minimum number of subsets whose union equals V ′. Finally, since
the drone has to perform a mission M to/from the depot visiting the waypoints P ′, we try to
minimize the energy required by performing the traveling-salesman procedure [33] (Line 3). In
the traveling-salesman procedure, we are given the set of points |P ′| (waypoints) in the Euclidean
plane and a starting position p0, with the requirement to traverse a tour starting and ending in p0
so that all points are reached once and the traveled distance (energy) is minimized.

If the mission M is energy-feasible, then M is returned, otherwise we have to reduce M by
removing a vertex (along with two edges) during the second phase. From all the waypoints that
form M , we remove the one that minimizes the loss of reward associated to the that waypoint
(Line 5). When we remove such a waypoint, we need to add an edge that ensures the existence
of a closed path to/from the depot. This is repeated until M is energy-feasible. Eventually, the
solution M is returned (Line 7).

Theorem 2. RSEO-s solves MDMP with a single drone with an approximation ratio of ψ
µϕ where

µϕ is the number of waypoints returned by a ϕ-approximation algorithm for the min-set-cover whose
optimal solution has µ elements, which cover the sensors selected by a ψ-approximation algorithm
for the knapsack.

Proof. The solutionM depends on the computed cycle starting from the knapsack invocation (that
returns a subset V ′ ⊆ V of sensors), which in turn depends on the ψ-approximation algorithm for
solving it [33]. Recall that, ψ ≤ 1 because the knapsack is a maximization problem. Then, in order
to reduce the number of waypoints from which we collect the data, we rely on a ϕ-approximation
version of the min-set-cover that returns at maximum |P ′| ≤ µϕ ≤ |V ′| ≤ n waypoints [33], where
µ is the minimum number of waypoints able to cover V ′. Recall that ϕ ≥ 1 because the min-
set-cover is a minimization problem. If the resulting cycle given by the traveling-salesman [33]
is energy-feasible, the approximation ratio of RSEO-s would be directly ψ, otherwise we need to
prune some vertices reducing so the goodness of the solution. So, assuming R(SOL), R(OPTKP),
and R(OPT) as the reward collected by the solution M , by the knapsack, and by the optimum

12

algorithm, respectively, we can now prove that:

R(SOL) ≥ ψ

µϕ
R(OPTKP) ≥

ψ

ϕµ
R(OPT).

The first inequality holds since we rely on a ψ-approximated solution provided by knapsack. More-
over, according to our assumption, the drone actually selects at least one waypoint. Therefore,
by selecting the best waypoint among the µϕ ones, the collected reward of R(SOL) is at least a
fraction 1

µϕ of the ψ-approximated solution of the knapsack. Finally, since R(OPT) ≤ R(OPTKP)
is clearly true, the last inequality is also satisfied.

In the next, we discuss the time complexity. In this paper, we rely on the greedy strategy
for fractional knapsack which requires O(n log n) time and also guarantees a 1

2 -approximation [33],
i.e., ψ = 1

2 . Recall that |P ′| ≤ |V ′| ≤ n. To implement min-set-cover we rely on a greedy
strategy which takes O(m|V ′|) (because m is the cardinality of the subsets of sensors given by the
waypoints) and guarantees a (log |V ′|)-approximation [33], i.e., ϕ = log |V ′|. Regarding traveling-
salesman, we exploit Christofides’ 3

2 -approximation algorithm [33] (although it does not affect our
ratio), which takes O(|P ′|3). Finally, since M comprises of O(|P ′|) edges, and considering that
at each iteration we remove one vertex, the time required by the loop (Line 4) is O(|P ′| log |P ′|).
Thus, the overall time complexity of RSEO-s is O(n log n+m|V ′|+ |P ′|3 + |P ′| log |P ′|) = O(n3),
and our approximation bound is bounded from below by Ω

(
1

2µ log |V ′|

)
.

4.2. The MRE-s Algorithm

In this section, we devise a heuristic algorithm that suboptimally solves MDMP with a single
drone, called Max ratio Reward-Energy (MRE-s). MRE-s greedily adds, to the current solution
the sensor whose ratio between the reward and the additional energy cost with respect to the
current drone mission is the largest. When computing this ratio for any new sensor, we also have
to consider the energy for going back to the depot, since the drone cannot remain without energy.
Moreover, a sensor can be selected only if the current drone’s residual storage is enough. The
pseudocode of MRE-s is given in Algorithm 2.

Algorithm 2: The MRE-s Algorithm

1 M ← ∅, P̂ ← {p0, p1, . . . , pn} ⊆ P
2 while P̂ ̸= ∅ do
3 p← argmaxpi∈P̂

ri
CM∪{pi}−CM

4 if CM∪{p} ≤ E and UM∪{p} ≤ S then
5 M ←M ∪ {p}

6 P̂ ← P̂ \ {p}
7 return M

Initially, the solution M is empty, and a subset of waypoints P̂ perpendicular to the sensors is
created (Algorithm 2, Line 1). Then, the main cycle starts (Line 2) evaluating all possible waypoints
P̂ . Among them, we select the waypoint pi whose sensor vi has the largest ratio between the reward
and the additional energy cost with respect to the current drone’s mission (Line 3). This greedy
selection is justified by the fact that we aim at maximizing the reward while trying to keep low the

13

energy consumption. Then we evaluate whether p can be added to the current solution M without
violating both the energy and storage constraints (Line 4). In any case, p will not be considered
anymore and removed from P̂ (Line 6). Finally, the solution M is returned (Line 7).

Regarding the time complexity of MRE-s, since the number of waypoints is n + 1 (because
we only considered waypoints perpendicular to the sensors), the main loop is repeated O(n) times
(Line 2). Since the selection of the best waypoint (Line 3) takes into account at most O(n)
waypoints in each iteration, the total time complexity of the MRE-s algorithm is O(n2).

4.3. The MRS-s Algorithm

In this section, we devise a heuristic algorithm that suboptimally solves MDMP with a single
drone, called Max ratio Reward-Storage (MRS-s). MRS-s, similar to MRE-s, is based on the
highest reward-to-storage ratio (instead of reward-to-energy). The Line 3 in Algorithm 2 is replaced
by p ← argmaxpi∈P̂

ri
wi
. Once the selection is done, MRS-s tries to add p to the solution by

evaluating if the energy and storage constraints are satisfied or not. In either cases, p will not be
considered anymore. Eventually, the solution is returned.

Unlike MRE-s, all ratios can be initially calculated once, and hence we can sort them in a
decreasing manner, which takes O(n log n). So, at each iteration of the algorithm, we extract the
current best one in constant time. Therefore, its time complexity is O(n log n+ n) = O(n log n).

5. Solving MDMP with Multiple Drones

In this section, we extend the previous three algorithms for the single-drone case (in Section 4)
to multiple-drones to solve MDMP in the general case, specifically the heuristic algorithms RSEO-
m, MRE-m, and MRS-m, respectively. Moreover, we present two heuristic algorithms called Span
And Split (SaS-m), and Clusterize And Assign (CaA-m). Note that the suffix “-m” stands for
“multiple-drone”.

5.1. The RSEO-m Algorithm

In this section, we devise a heuristic algorithm that suboptimally solves MDMP with multiple
drones, called RSEO-m. It extends the RSEO-s algorithm to a multiple-drone scenario, so they
work similarly. In fact, the idea is to initially select and assign a subset of sensors to each drone
such that the sum of the total collected reward is maximized while ensuring that the storage
requirement is met (neglecting so the energy). Furthermore, as for RSEO-s, for each drone, we
reduce the number of required waypoints to cover its assigned subset of sensors, then we compute
a tour that connects all the waypoints and eventually shrink that tour if it is energy-unfeasible.
The pseudocode of RSEO-m is given in Algorithm 3.

The RSEO-m algorithm works as follows. Initially, the solution is empty (Algorithm 3, Line 1).
Then we determine a collection of subsets of sensors V ′ = {V ′

1 , . . . , V
′
l } such that the sum of the

reward obtained from each V ′
j is maximized and the storage constraint S is satisfied, by invoking

the multi-knapsack procedure [34] (Line 2). The multi-knapsack procedure is a generalization of
the knapsack procedure extended to multiple knapsacks. After that, for each knapsack V ′

j (Line 3)
assigned to the drone dj , we reduce the number of required waypoints (Line 4), we connect all
of them (Line 5), and possibly shrink the tour created if it exceeds the energy budget (Line 6).
Eventually, the solution is returned (Line 10).

In the next, we discuss the time complexity. In the RSEO-m algorithm we need to invoke
the multi-knapsack procedure at the beginning, which is an NP -hard problem [34]. In particular,

14

Algorithm 3: The RSEO-m Algorithm

1 M← ∅
2 V ′ = {V ′

1 , . . . , V
′
l } ← multi-knapsack(V,S, l)

3 foreach V ′
j ∈ V ′ do

4 P ′
j ← min-set-cover(V ′

j , P)

5 Mj ← traveling-salesman(P ′
j)

6 while CMj
> E do

7 p← argminpi∈Mj
RMj

−RMj\{pi}

8 Mj ←Mj \ {p}
9 M←M∪ {Mj}

10 returnM

Chekuri et al. proposed a (1 − ϵ) polynomial-time approximation scheme (PTAS) which takes
nO(1/ϵ8 log(1/ϵ)) time [35, 36]. However, in this paper we decided to rely on the fast heuristic
algorithm proposed by Martello et al. whose time complexity is O(ln2) [37, 38]. The other
subprocedures, i.e., min-set-cover and traveling-salesman, are executed l times, but on inputs
smaller than those in the RSEO-s algorithm, and in the worst case, the loop in (Line 3) takes
O(ln3) time. In conclusion, the overall time complexity of the RSEO-m algorithm is O(ln3).

5.2. The MRE-m Algorithm

In this section, we devise a heuristic algorithm that suboptimally solves MDMP with multiple
drones, called MRE-m. It extends the MRE-s algorithm to a multiple-drone scenario, and there-
fore they work similarly. In fact, MRE-m greedily adds to the current drone’s solution among the
available l ones, the waypoint whose ratio between the overall obtainable reward and the addi-
tional energy cost with respect to the current drone’s mission is the largest. Basically, MRE-m
sequentially invokes MRE-s for each drone at the residual waypoints. The pseudocode of MRE-m
is given in Algorithm 4.

Algorithm 4: The MRE-m Algorithm

1 M← ∅, P̂ ← {p1, . . . , pn}
2 foreach dj ∈ D do

3 Mj ←MRE-s(P̂ ∪ {p0})
4 M←M∪ {Mj}, P̂ ← P̂ \Mj

5 returnM

The MRE-m algorithm works as follows. Initially, the solution is empty (Algorithm 4, Line 1),
and the set of current waypoints is also created. Then, for each drone dj (Line 2), we iteratively in-
voke the MRE-s algorithm on the current set of waypoints P̂ (Line 3). Specifically, we sequentially
return an energy- and storage-feasible drone’s mission Mj for each drone to/from the depot, and
then we add it to the set of missionsM, as well as we update the remaining waypoints (Line 4).
Eventually, the solution is returned (Line 5).

The MRE-s algorithm takes O(n2) time. Therefore, since the MRE-m algorithm sequentially
invokes MRE-m l times, in the worst case, the cost of MRE-m is O(ln2).

15

5.3. The MRS-m Algorithm

In this section, we devise a heuristic algorithm that suboptimally solves MDMP with multiple
drones, calledMRS-m. It extends theMRS-s algorithm to a multiple-drone scenario, and therefore
they work similarly. It exactly works as the MRE-m algorithm, with one exception, i.e., the Line 3
in Algorithm 4 is replaced by Mj ←MRS-s(P̂).

Since MRS-s is repeated l times, its time complexity is O(ln log n).

5.4. The SaS-m Algorithm

In this section, we devise a heuristic algorithm that suboptimally solves MDMP with multiple
drones, called Span And Split (SaS-m). The idea is to initially create a path that connects all
the vertices (sensors) plus the depot. This path is nothing but the sequence of vertices obtained
by visiting the minimum spanning tree, rooted at the depot itself. Such a path exists because we
assume that any two vertices can be connected following the straight line that connects them in
the Euclidean plane. Then, we split the obtained path into a set of energy- and storage-feasible
tours to be assigned to the drones. The pseudocode of SaS-m is given in Algorithm 5.

Algorithm 5: The SaS-m Algorithm

1 M← ∅
2 T ← min-spanning-tree(G)
3 N ← tree-visit(T, p0)
4 while N ̸= ∅ do
5 L← create-tour(N, p0)
6 M←M∪ {L}, N ← N \ L
7 M← best-l-missions(M)
8 returnM

The SaS-m algorithm works as follows. Initially, the solution is empty (Algorithm 5, Line 1).
Then, we determine the minimum cost tree T in terms of drone’s traveling energy that connects
all the sensors V plus the depot p0, by invoking the min-spanning-tree procedure (Line 2). In the
min-spanning-tree procedure, since we are given a weighted graph G with weights on edges that
represent the energy cost of flying between any two sensors, the objective is to select the tree that
spans all vertices while minimizing the total flying/traveling energy cost on the edges. Once the
tree is built, we perform a tree-visit procedure, and a sequence of vertices N is generated in output
(Line 3). After that, we begin splitting the sequence of vertices N in tours to/from the depot p0
(Line 4). Specifically, through the create-tour procedure (Line 5), starting every time at the point
p0, we try to create a tour L by selecting the next available vertex v ∈ N not already taken in
other tours. A vertex v can be added to the current tour L if the travel cost to visit v and go back
to p0, plus the hovering cost at v, is within the energy budget (as well as the whole collected data
is within the storage budget); otherwise, the current tour L is closed (Line 6). When N = ∅, we
assign the best l tours in terms of the collected reward to the l drones (Line 7), and eventually we
return the solution (Line 8).

In the next, we discuss about the time complexity. The min-spanning-tree procedure that we
have used in this paper is Kruskal’s implementation and requires O(|E| log n) time [39], where
|E| is the number of edges of the (complete) graph. The tree-visit procedure visits the minimum
spanning tree T . In this paper, we implemented the Depth-first search (DFS) and the Breadth-first

16

search (BFS): both take time O(n) on trees [40]. Now, the cycle in Line 4 sequentially considers
the vertices given by the tree-visit procedure, one at the time. The vertices are n. Whenever
a vertex is not anymore neither energy- nor storage-feasible, the current tour is closed (create-
tour procedure). Hence, the cycle in Line 4 costs O(n). Finally, the selection of the best l
submissions costs O(n log n) due to the sorting procedure. In conclusion, the SaS-m algorithm
costs O(|E| log n+ n+ n log n) = O(n2 log n) since |E| = O(n2).

5.5. The CaA-m Algorithm

In this section, we devise a heuristic algorithm that suboptimally solves MDMP with multiple
drones, called Clusterize And Assign (CaA-m). The idea is to initially split the set of vertices
into l partitions (one for each drone) trying to balance the total energy cost. Then, we make
each partition energy- and storage-feasible by invoking the previous RSEO-s algorithm. The
pseudocode of CaA-m is given in Algorithm 6.

Algorithm 6: The CaA-m Algorithm

1 M← ∅
2 V ′ = {V ′

1 , . . . , V
′
l } ← clusterize(V, l)

3 foreach V ′
j ∈ V ′ do

4 Mj ← RSEO-s(V ′
j ,E,S)

5 M←M∪ {Mj}
6 returnM

The CaA-m algorithm works as follows. Initially, the solution is empty (Algorithm 6, Line 1).
Then we split the set of sensors V into l partitions by performing the clusterize procedure (Line 2).
The clusterization phase takes into account the energy cost, so the hope is to determine clusters that
are immediately energy-feasible regardless of the storage constraint. In other words, each cluster
should be considered a neighborhood. This is in contrast to the RSEO-m algorithm, in which the
“clusterization” given by the multi-knapsack procedure guarantees to have storage-feasible tours,
while neglecting their energy cost. Therefore, each cluster V ′

j should be adequately reduced in
terms of storage, and shrunk in terms of energy cost, through the RSEO-s algorithm (Line 4).
Finally, the solution is returned (Line 6).

In the next, we discuss about the time complexity. The clusterize procedure is an implementa-
tion of k-means clustering, which aims to minimize the sum of the squares of the distances between
each point and its closest center by locating k cluster centers. This can be achieved through various
methods, including Lloyd’s local search algorithm, MacQueen’s algorithm, and Hartigan-Wong’s
algorithm [41]. In this paper, for its implementation easiness, we utilized Lloyd’s implementation
through the clusterize procedure, which has a time complexity of O(nl) [42].

Then, recalling that the RSEO-s algorithm costs O(n3), the cost of running it l times is O(ln3).
So, the final time complexity of the CaA-m algorithm is O(ln3).

6. Performance Evaluation

In this section, we evaluate the performance, in terms of the reward obtained, of the algorithms
presented to solve MDMP. We implemented1 our algorithms in Python language version 3.9, and

1The code is available on GitHub here: https://github.com/TheAnswer96/JCSS

17

https://github.com/TheAnswer96/JCSS

run all the instances on an Intel i7-10genK computer with 16GB of RAM. However, the ILP-based
optimal OPT algorithm is implemented using IBM’s ILOG CPLEX Optimizer solver v22.1 with
Python used to wrap the objective and constraints and invoke the parallel solver.

In Section 6.2 we present the results with a single drone scenario, while in Section 6.3 we present
the results with a multiple drone scenario. For the previous scenario, we compare the RSEO-s,
MRE-s, and MRS-s algorithms with respect to OPT (the optimal one), while in the latter one, we
compare the RSEO-m, MRE-m, MRS-m, SaS-m, and CaA-m algorithms with respect to OPT.

In Table 2, we compare the algorithms presented evaluating their time complexities.

Table 2: Comparison between the algorithms for solving MDMP.

Algorithm Section Time Complexity

Single-drone

RSEO-s 4.1 O(n3)
MRE-s 4.2 O(n2)
MRS-s 4.3 O(n log n)

Multiple-drone

RSEO-m 5.1 O(n3)
MRE-m 5.2 O(ln2)
MRS-m 5.3 O(ln log n)
SaS-m 5.4 O(n2 log n)
CaA-m 5.5 O(ln3)

6.1. Settings

The field F is a square of the side 5 km, where the depot is located at the center of it. We
uniformly generate n = {10, . . . , 200} sensors whose height is −5m ≤ zi ≤ 5m. We also have a fleet
of l = {1, 2, 3, 4} drones that will be used to collect data. Each sensor has 100MB ≤ wi ≤ 1GB
data to transfer. This is a reasonable assumption because text data and picture data have different
sizes in general. Moreover, each sensor has an associated reward 1 ≤ ri ≤ 10 that models the
relevance of the data, so ri = 1 models the lowest priority, while ri = 10 models the highest
priority. Both wi and ri are generated according to the Uniform distribution.

The drones fly at a fixed altitude h = {10, . . . , 45}m and have a fixed communication range
of R = 50m [43]. Their storage is S = {2, . . . , 16}GB and their battery capacity is E =
{2.5, 5, 10}MJ [44]. We fix an average energy consumption for flying α = 200 J/m and hover-
ing β = 700 J/s [45]. The data transfer rate between drones and sensors is set to γi = 9MB/s
(Wi-Fi 4 standard) regardless of the actual distance.

In the next plots, each algorithm is tested with different configurations of parameters, and we
plot the average of the results on 33 random instances along with their 95% confidence interval.
The optimal OPT is only run with small instances in input. In particular, when we run the OPT
algorithm, we report in the y-axis the ratio ρ = R(SOL)

R(OPT) , i.e., the ratio among the total reward
collected by the compared algorithm, and the total reward collected by the optimal algorithm.
Clearly, 0 ≤ ρ ≤ 1 because MDMP is a maximization problem. However, for larger instances in
input, the OPT algorithm starts to be unsuitable due to the large number of variables/constraints,
and therefore we only compare the other proposed approximation and heuristic algorithms. Ob-
viously, since we do not compute the optimal solution, we report in the y-axis only the collected
reward R(SOL) for each algorithm.

18

6.2. Results with a Single Drone

In this section, we evaluate our algorithms when solving MDMP with a single drone scenario.
In Section 6.2.1, we assess the impact of drone altitude, while in Section 6.2.2, we assess the impact
of energy and storage constraints.

6.2.1. Impact of the Altitude

In this section, we evaluate the impact of the altitude of the single drone.

0.4

0.6

0.8

1

ρ

E = 2.5,S = 4

rseo-s mre-s mrs-s opt

E = 2.5,S = 8 E = 5,S = 4 E = 5,S = 8

0.4

0.6

0.8

1

ρ

10 15 20 25 30 35 40 45

0.4

0.6

0.8

1

h

ρ

10 15 20 25 30 35 40 45

h

10 15 20 25 30 35 40 45

h

10 15 20 25 30 35 40 45

h
n
=

10
n
=

15
n
=

20

Figure 3: Single-drone: comparison of all the algorithms when varying the drone’s altitude.

In Figure 3, we vary the altitude of the drone h = {10, . . . , 45}m in the x-axis, while we report
the ratio ρ in the y-axis. We fixed small instances with n = {10, 15, 20} sensors, since we also
executed the OPT algorithm. In particular, since n is small, we have chosen small values for
energy and storage constraints, i.e., E = {2.5, 5}MJ and S = {4, 8}GB, respectively, obtaining
so 4 different combinations of energy-storage. The plots in Figure 3 are organized in 3 rows, i.e.,
the first row shows the result with n = 10, the second and the third show n = 15 and n = 20,
respectively; while the 4 columns show the combinations of energy-storage mentioned above.

The first observation in Figure 3 is that, by fixing a particular energy-storage setting, the
results slightly change when we vary the height of the drone, with a few exceptions. The altitude
parameter affects the number of waypoints that the drone can consider. In fact, the higher is the
drone’s altitude, the less is the number of intersections among the sensors, and hence the less will
be the actual number of waypoints. Regardless of the drone’s height, we can see that the RSEO-s
algorithm poorly performs when the energy budget is small (E = 2.5MJ). This is due to the
fact that its initial strategy is aimed at finding a good partition of sensors such that the storage
constraint is met. The selected sensors can belong to much different sub-areas of the field, and

19

therefore the energy required for visiting all of them could be not sufficient. When the energy is
doubled (E = 5MJ), however, the drone has much higher chances of finding a suitable route that
can cover all the selected sensors and for this reason the RSEO-s algorithm performs better.

It is also interesting to see a counter-intuitive behavior with regard to the storage constraint.
In fact, when the energy is small (E = 2.5MJ), the more storage availability does not affect the
results, neither positively nor negatively. This can be justified by the fact that when the drone
has a limited battery, the resulted mission cannot be very long, and hence the larger availability
of the storage is not detrimental. Instead, when the energy is larger (E = 5MJ), a larger storage
(S = 8GB) slightly worsens the performance in terms of ratio. This is probably because the drone
can visit more sensors flying longer routes, but the more availability of storage is not optimally
exploited by the suboptimal algorithms.

The two greedy heuristic algorithms MRE-s and MRS-s perform more or less the same, with
MRE-s that always outperforms MRS-s when varying the drone’s height. When the energy is
small (E = 2.5MJ), the gap between the two strategies is more evident. In fact, MRE-s considers
the energy budget when it builds the drone’s mission. However, the time complexity of MRS-s is
the lowest among all compared algorithms and often shows good enough performance.

In conclusion, since the height of the drone does not heavily affect the performance of our
proposed algorithms, in the following, we consider a reasonable drone’s height fixed to h = 20m.

6.2.2. Impact of the Energy and Storage Constraints

In this section, we evaluate the impact of energy and storage constraints for a given drone’s
altitude, i.e., h = 20m. In particular, we considered many more sensors in this comparison and
therefore we do not execute the optimal OPT algorithm when n ≥ 25.

0

50

100

150

200

re
w
ar
d

S = 2

rseo-s mre-s mrs-s opt

S = 4 S = 8 S = 16

0

50

100

150

200

re
w
ar
d

10 15 20 25 50 10
0

15
0

20
0

0

50

100

150

200

n

re
w
ar
d

10 15 20 25 50 10
0

15
0

20
0

n

10 15 20 25 50 10
0

15
0

20
0

n

10 15 20 25 50 10
0

15
0

20
0

n

E
=

2.
5

E
=

5
E
=

10

Figure 4: Single-drone: comparison of all the algorithms when varying the drone’s energy and storage constraints.

20

In Figure 4, we fix the drone’s altitude to h = 20m. We set the number of sensors n =
{10, . . . , 200} on the x-axis, while we report the reward collected in the y-axis. Moreover, we set
the drone’s energy E = {2.5, 5, 10}MJ and storage S = {2, 4, 8, 16}GB. The plots in Figure 4 are
organized in 3 rows and 4 columns, i.e., fixing the energy values on rows, and the storage values
on columns.

In Figure 4 we can observe how the energy influences the performance of the algorithms. In
particular, it is interesting to see the behavior when the energy E changes from 2.5MJ to 10MJ,
specifically for n = {10, 15, 20}, i.e., the cases where we also performed the optimalOPT algorithm.
Let us now focus on the case with S = 8GB. In fact, when E = 2.5MJ, the gap between the optimal
algorithm and the other suboptimal ones is limited. Instead, when E = 5MJ, such a gap is much
more evident than before. However, when E = 10MJ, the gap is reduced and, in addition, RSEO-s
matches OPT. This is due to the fact that the RSEO-s algorithm can avoid pruning the sensors
if the energy budget is very large.

Another interesting aspect to discuss is the collected reward when the number of sensors in-
creases from n = 100 to n = 200. In fact, the total collected reward by the RSEO-s algorithm
slightly decreases when n = 200. Recall that the strategy of RSEO-s is to consider the waypoints
as a whole. Therefore, since the area of the field F is the same, when the number of sensors
increases, the density of them in F also increases accordingly. As a consequence, the number of
intersections dramatically increases and the hovering time on these will increase as well. Further-
more, during the pruning phase of RSEO-s, a certain number of waypoints, densely populated
by sensors, will be discarded in order to keep the route within the energy constraint. Therefore,
the final energy-feasible route will be sacrificed too much and there is a serious possibility that a
residual energy budget can exist. In fact, we have experimentally observed that when n = 200, the
residual non-used energy battery is a little bit larger than the cases when n = 100. This problem
could be partially avoided by implementing a route reward-increasing phase in order to regain the
unused energy, but this would not improve the guaranteed approximation ratio provided by the
algorithm proved in Theorem 2.

In general, MRE-s outperforms MRS-s, especially when storage availability is high. Instead,
for small storage in the input (S ≤ 4GB), the performance of MRS-s is better than that of MRE-
s. Despite its relatively poor general performance, the MRS-s algorithm is still worthy due to its
lower time complexity with respect to that of MRE-s.

6.3. Results with Multiple Drones

In this section, we evaluate our algorithms when solving MDMP with a multiple-drone scenario.
In Figure 5, we fix the drone’s height to h = 20m. We set the number of sensors n =

{10, . . . , 200} on the x-axis, while we report the collected reward on the y-axis. We set the drone’s
energy E = {2.5, 5, 10}MJ and the storage S = {2, 4}GB. The small values of the storage are
justified by the fact that here we employ a fleet of l = {2, 3, 4} drones, and hence drones can have
less capabilities. The plots in Figure 4 are organized in 3 rows and 4 columns, i.e., fixing the number
of drones on rows, and the energy-storage combinations on columns. Due to the large number of
constraints, the optimal OPT algorithms has been executed only for the smallest instances.

The general trend that we can observe in Figure 5 is that when the energy is very small (E =
2.5MJ), the best performing algorithm is CaA-m, while when the energy increases to E = 5MJ,
the best algorithm is SaS-m (when the BFS visit is implemented), and finally when the energy
increases to E = 10MJ, the best algorithm is RSEO-m. With respect to SaS-m, we can see a
symmetric behavior with respect to the energy in the input. In fact, when the energy is small, the

21

0

100

200

300

400

re
w
a
rd

E = 2.5,S = 2

rseo-m mre-m mrs-m CaA-m SaS-m (dfs) SaS-m (bfs) opt

E = 2.5,S = 4 E = 5,S = 2 E = 5,S = 4 E = 10,S = 2 E = 10,S = 4

0

100

200

300

400

re
w
ar
d

10 15 20 25 50 10
0

15
0

20
0

0

100

200

300

400

n

re
w
a
rd

10 15 20 25 50 10
0

15
0

20
0

n

10 15 20 25 50 10
0

15
0

20
0

n

10 15 20 25 50 10
0

15
0

20
0

n

10 15 20 25 50 10
0

15
0

20
0 10 15 20 25 50 10
0

15
0

20
0

l
=

2
l
=

3
l
=

4

Figure 5: Multi-drone: comparison of all the algorithms when varying the drone’s energy and storage constraints.

DFS version of SaS-m outperforms the BFS one, while with more energy it happens the opposite.
In the latter case, the gap between the two visit strategies is more evident. We can also observe
that the performance of SaS-m increases when the number of drones l also increases. Probably,
this is justified by the fact that the DFS version tends to balance the distance of the sensors in each
partition, whereas the BFS version is inclined to aggregate sensors into partitions with incremental
distance from the depot. Therefore, when the budget is limited, the balanced nature of SaS-m
DFS determines more profitable partitions, vice versa, it tends to “waste” energy by including very
far sensors. The opposite reasoning can be applied for SaS-m BFS.

The RSEO-m algorithm’s performance is poor when the energy level is low (E ≤ 5MJ). How-
ever, when there is more energy available (E = 10MJ), the algorithm significantly improves. This
trend is consistent with observations from the single drone scenario, where limited energy availabil-
ity negatively affects the construction of an energy-feasible route for each drone. In contrast, if there
is a large amount of energy available, the sub-sets of sensors returned through the multi-knapsack
procedure become much easier to visit. Therefore, the algorithm’s performance is dependent on
the availability of energy, and it is more efficient when there is a higher energy level.

Finally, with respect to greedy heuristic algorithms, the MRE-m algorithm confirms to be a
valid choice, although in the combination E = 10MJ, S = 2GB its performance is not so good. This
is because there is a high availability of energy, but a very low availability of storage. The other
greedy solution, i.e., MRS-m, is almost always outperformed by MRE-m, but its time complexity
is the lowest, and this is a good trade-off when the number of sensors and drones increases.

7. Conclusion

In this paper, we investigated the problem of using a fleet of drones to collect data from IoT
ground sensors deployed in a field to be monitored. As an example, in a smart agriculture scenario,
a fleet of drones is in charge of retrieving data from many sensors to detect the presence of insects

22

in orchards. The drones are constrained by both the available energy battery and the storage.
The data that sensors have to offload to the drones is characterized by a size, and by a reward
that models its relevance. The proposed problem is MDMP, whose goal is to plan a suitable set
of missions for the drones such that the sum of the overall collected reward is maximized and
the energy and storage constraints on each drone are both satisfied. We formally proved that
MDMP is NP -hard, and presented an ILP formulation that optimally solves it. We also devised
time-efficient approximation and heuristic algorithms capable of suboptimally solving MDMP.

In future work, we would like to incorporate communication issues between drones and sensors,
as well as a more realistic environment with obstacles. Moreover, we can allow drones to fly at
different altitudes during the same mission, for example, to cover more sensors or to improve air-to-
ground communications. Finally, we plan to build a preliminary real test-bed with a single drone
to collect data from real IoT sensors that store text and image information.

References

[1] F. Betti Sorbelli, A. Navarra, L. Palazzetti, C. M. Pinotti, G. Prencipe, Optimal and heuristic algorithms for
data collection by using an energy-and storage-constrained drone, in: International Symposium on Algorithms
and Experiments for Wireless Sensor Networks, Springer International Publishing, Cham, 2022, pp. 18–30.

[2] T. Calamoneri, F. Corò, S. Mancini, A Realistic Model to Support Rescue Operations after an Earthquake via
UAVs, IEEE Access (2022).

[3] A. Shabani, B. Asgarian, S. A. Gharebaghi, M. A. Salido, A. Giret, A new optimization algorithm based on
search and rescue operations, Mathematical Problems in Engineering 2019 (2019).

[4] F. Betti Sorbelli, F. Corò, S. K. Das, L. Palazzetti, C. M. Pinotti, On the scheduling of conflictual deliveries in
a last-mile delivery scenario with truck-carried drones, Pervasive and Mobile Computing 87 (2022) 101700.

[5] J.-P. Aurambout, K. Gkoumas, B. Ciuffo, Last mile delivery by drones: An estimation of viable market potential
and access to citizens across european cities, European Transport Research Review 11 (1) (2019) 1–21.

[6] F. Betti Sorbelli, C. M. Pinotti, G. Rigoni, On the evaluation of a drone-based delivery system on a mixed
euclidean-manhattan grid, IEEE Transactions on Intelligent Transportation Systems (2022).

[7] P. P. Roosjen, B. Kellenberger, L. Kooistra, D. R. Green, J. Fahrentrapp, Deep learning for automated detection
of drosophila suzukii: potential for uav-based monitoring, Pest Management Science 76 (9) (2020) 2994–3002.

[8] F. Betti Sorbelli, F. Corò, S. K. Das, L. Palazzetti, C. M. Pinotti, Drone-based optimal and heuristic orienteering
algorithms towards bug detection in orchards, in: 2022 18th International Conference on Distributed Computing
in Sensor Systems (DCOSS), IEEE, 2022, pp. 117–124.

[9] HALY.ID, Project, https://www.haly-id.eu (2022).
[10] F. Betti Sorbelli, S. Carpin, F. Corò, S. K. Das, A. Navarra, C. M. Pinotti, Speeding up routing schedules on

aisle graphs with single access, IEEE Transactions on Robotics (2021).
[11] S. Petkovic, D. Petkovic, A. Petkovic, Iot devices vs. drones for data collection in agriculture, DAAAM Inter-

national Scientific Book 16 (2017) 63–80.
[12] C. Caillouet, F. Giroire, T. Razafindralambo, Efficient data collection and tracking with flying drones, Ad Hoc

Networks 89 (2019) 35–46.
[13] E. Aras, M. Ammar, F. Yang, W. Joosen, D. Hughes, Microvault: Reliable storage unit for iot devices, in:

2020 16th International Conference on Distributed Computing in Sensor Systems (DCOSS), IEEE, 2020, pp.
132–140.

[14] H. Wang, H. Ke, W. Sun, Unmanned-aerial-vehicle-assisted computation offloading for mobile edge computing
based on deep reinforcement learning, IEEE Access 8 (2020) 180784–180798.

[15] X. He, R. Jin, H. Dai, Multi-hop task offloading with on-the-fly computation for multi-uav remote edge com-
puting, IEEE Transactions on Communications (2021).

[16] G. D’Angelo, D. Diodati, A. Navarra, C. M. Pinotti, The minimum k-storage problem: Complexity, approxi-
mation, and experimental analysis, IEEE Trans. on Mobile Comp. 15 (7) (2015).

[17] M. Chen, W. Liang, Y. Li, Data collection maximization for uav-enabled wireless sensor networks, in: 29th Intl.
Conf. on Computer Communications and Networks (ICCCN), IEEE, 2020, pp. 1–9.

[18] M. Chen, W. Liang, J. Li, Energy-efficient data collection maximization for uav-assisted wireless sensor networks,
in: Wireless Communications and Networking Conf. (WCNC), IEEE, 2021, pp. 1–7.

23

[19] M. Chen, W. Liang, S. K. Das, Data collection utility maximization in wireless sensor networks via efficient
determination of uav hovering locations, in: PerCom, IEEE, 2021, pp. 1–10.

[20] J. Zhang, Z. Li, W. Xu, J. Peng, W. Liang, Z. Xu, X. Ren, X. Jia, Minimizing the number of deployed uavs for
delay-bounded data collection of iot devices, in: INFOCOM, IEEE, 2021, pp. 1–10.

[21] C. Zhan, Y. Zeng, R. Zhang, Energy-efficient data collection in uav enabled wireless sensor network, IEEE
Wireless Communications Letters 7 (3) (2017) 328–331.

[22] R. A. Nazib, S. Moh, Energy-efficient and fast data collection in uav-aided wireless sensor networks for hilly
terrains, IEEE Access 9 (2021) 23168–23190.

[23] J. Liu, P. Tong, X. Wang, B. Bai, H. Dai, Uav-aided data collection for information freshness in wireless sensor
networks, IEEE Trans. on Wireless Communications 20 (4) (2020) 2368–2382.

[24] X. Li, J. Tan, et al., A novel uav-enabled data collection scheme for intelligent transportation system through
uav speed control, IEEE Trans. on Intelligent Transportation Systems 22 (4) (2020).

[25] M. B. Ghorbel, D. Rodriguez-Duarte, H. Ghazzai, M. J. Hossain, H. Menouar, Energy efficient data collection
for wireless sensors using drones, in: 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), IEEE,
2018, pp. 1–5.

[26] R. I. da Silva, M. A. Nascimento, On best drone tour plans for data collection in wireless sensor network, in:
Proceedings of the 31st annual ACM symposium on applied computing, 2016, pp. 703–708.

[27] C. Pu, A. Wall, I. Ahmed, K.-K. R. Choo, Secureiod: A secure data collection and storage mechanism for
internet of drones, in: 2022 23rd IEEE International Conference on Mobile Data Management (MDM), IEEE,
2022, pp. 83–92.

[28] A. Trotta, M. Di Felice, L. Bononi, E. Natalizio, L. Perilli, E. F. Scarselli, T. S. Cinotti, R. Canegallo, Bee-
drones: Energy-efficient data collection on wake-up radio-based wireless sensor networks, in: IEEE INFOCOM
2019-IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), IEEE, 2019, pp.
547–553.

[29] D. Zorbas, B. O’Flynn, Collision-free sensor data collection using lorawan and drones, in: 2018 Global Informa-
tion Infrastructure and Networking Symposium (GIIS), IEEE, 2018, pp. 1–5.

[30] R. I. da Silva, J. D. C. V. Rezende, M. J. F. Souza, Collecting large volume data from wireless sensor network
by drone, Ad Hoc Networks 138 (2023) 103017.

[31] I.-M. Chao, B. L. Golden, E. A. Wasil, The team orienteering problem, European journal of operational research
88 (3) (1996) 464–474.

[32] P. Vansteenwegen, et al., The orienteering problem: A survey, European Journal of Op. Research 209 (1) (2011).
[33] V. V. Vazirani, Approximation algorithms, Vol. 1, Springer, 2001.
[34] S. Martello, P. Toth, Solution of the zero-one multiple knapsack problem, European Journal of Operational

Research 4 (4) (1980) 276–283.
[35] C. Chekuri, S. Khanna, A polynomial time approximation scheme for the multiple knapsack problem, SIAM

Journal on Computing 35 (3) (2005) 713–728.
[36] K. Jansen, A fast approximation scheme for the multiple knapsack problem, in: International Conference on

Current Trends in Theory and Practice of Computer Science, Springer, 2012, pp. 313–324.
[37] S. Martello, P. Toth, Heuristic algorithms for the multiple knapsack problem, Computing 27 (2) (1981) 93–112.
[38] S. Martello, P. Toth, Knapsack problems: algorithms and computer implementations, John Wiley & Sons, Inc.,

1990.
[39] J. Kleinberg, E. Tardos, Algorithm design, Pearson Education India, 2006.
[40] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, Introduction to algorithms, MIT press, 2022.
[41] J. Sreevalsan-Nair, K-means clustering, in: Encyclopedia of Mathematical Geosciences, Springer, 2021, pp. 1–3.
[42] F. Nie, Z. Li, R. Wang, X. Li, An effective and efficient algorithm for k-means clustering with new formulation,

IEEE Transactions on Knowledge and Data Engineering (2022).
[43] J. Jansons, T. Dorins, Analyzing ieee 802.11 n standard: outdoor performanace, in: 2012 Second International

Conference on Digital Information Processing and Communications (ICDIPC), IEEE, 2012, pp. 26–30.
[44] J. K. Stolaroff, C. Samaras, E. R. O’Neill, A. Lubers, A. S. Mitchell, D. Ceperley, Energy use and life cycle

greenhouse gas emissions of drones for commercial package delivery, Nature communications 9 (1) (2018) 1–13.
[45] A. Khochare, Y. Simmhan, F. Betti Sorbelli, S. K. Das, Heuristic algorithms for co-scheduling of edge analytics

and routes for uav fleet missions, in: IEEE INFOCOM 2021-IEEE Conference on Computer Communications,
IEEE, 2021, pp. 1–10.

24

	Introduction
	Related Work
	Problem Definition
	System Model
	The Multiple-drone Data-collection Maximization Problem
	ILP Formulation

	Solving MDMP with a Single Drone
	The RSEO-s Algorithm
	The MRE-s Algorithm
	The MRS-s Algorithm

	Solving MDMP with Multiple Drones
	The RSEO-m Algorithm
	The MRE-m Algorithm
	The MRS-m Algorithm
	The SaS-m Algorithm
	The CaA-m Algorithm

	Performance Evaluation
	Settings
	Results with a Single Drone
	Impact of the Altitude
	Impact of the Energy and Storage Constraints

	Results with Multiple Drones

	Conclusion

