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Non c’è bisogno di sottolineare che, senza di voi, non avrei potuto scrivere questa tesi.

Un ringraziamento a parte va ai miei angeli custodi a Pisa: Chicca e Sandra, senza
il vostro calore, entusiasmo e affetto, questi anni non sarebbero stati gli stessi.





Contents

Introduction v

List of publications x

1 The supersolid phase of matter 1
1.1 Superfluidity and supersolidity: first proposals and experiments . . . . . . 1

The search in solid helium . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Supersolidity in dipolar quantum gases . . . . . . . . . . . . . . . . . . . . 6

Dipole-dipole interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Dipolar BECs and roton instability . . . . . . . . . . . . . . . . . . . . . . 8
Beyond mean-field stabilization and quantum droplets . . . . . . . . . . . . 11
The supersolid phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Spontaneously modulated superfluid phases in recent experiments . . . . . 18

2 Experimental realization and detection of a dipolar supersolid 27
2.1 Cooling and trapping Dy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

Tuning the interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2 Characterization of the supersolid phase: time of flight imaging . . . . . . 32
2.3 Characterization of the supersolid phase: in situ imaging . . . . . . . . . . 36

Test of the imaging system . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Phase-contrast imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
In situ imaging of the supersolid phase . . . . . . . . . . . . . . . . . . . . 40

3 The superfluid-supersolid quantum phase transition 45
3.1 Landau theory for the superfluid-supersolid transition . . . . . . . . . . . . 47
3.2 Phase diagram from ground-state simulations . . . . . . . . . . . . . . . . 52
3.3 Experimental evidence of continuous and discontinuous phase transitions . 56

Excitation of collective modes . . . . . . . . . . . . . . . . . . . . . . . . . 59
Fluctuations and Landau energy . . . . . . . . . . . . . . . . . . . . . . . . 64

4 Supersolidity and rotations 69
4.1 Leggett model for a rotating supersolid . . . . . . . . . . . . . . . . . . . . 70
4.2 The scissors mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3 Moment of inertia of the supersolid . . . . . . . . . . . . . . . . . . . . . . 77
4.4 Discussion about the superfluid fraction . . . . . . . . . . . . . . . . . . . . 82



iv Contents

5 Sub-unity superfluid fraction from self-induced Josephson effect 87
5.1 Superfluid fraction and Josephson oscillations . . . . . . . . . . . . . . . . 88
5.2 Excitation of Josephson oscillations: phase imprinting . . . . . . . . . . . . 91
5.3 Detection of Josephson oscillations: phase and imbalance . . . . . . . . . . 94
5.4 The supersolid as an array of Josephson junctions: a model . . . . . . . . . 101
5.5 Sub-unity superfluid fraction . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.6 A self-induced Josephson junction: the Goldstone mode . . . . . . . . . . . 109

6 Towards a supersolid in a ring 113
6.1 Optical scheme for a ring-shaped potential . . . . . . . . . . . . . . . . . . 115

The DMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
Optical trap and imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.2 A laser source at 404 nm for repulsive optical potentials . . . . . . . . . . . 119
6.3 Dysprosium polarizability at 404 nm . . . . . . . . . . . . . . . . . . . . . 123
6.4 Persistent currents in the ring: preliminary numerical studies . . . . . . . . 127

Outlook 133

Bibliography 135



Introduction

”Can a solid be superfluid?” This question is the title of a famous 1970 paper from the
Nobel laureate A. J. Leggett, in which he proposed some of the first ideas related to the
possible existence of a supersolid phase of matter [1]. Superfluidity was well established
at the time, both theoretically and experimentally, thanks to the successful pioneering
investigations of liquid helium at low temperatures. A superfluid, as the word itself says,
is a state of matter somewhat related to fluids but with extraordinary properties: the
possibility of moving without friction, rotating without inertia, and sustaining quantized
vortices are some of them [2, 3]. The tantalizing question that started to be discussed in
some papers around 1970 (by Gross [4], Chester [5], Andreev and Lifshitz [6]), and that is
so efficiently condensed in the title of Leggett’s paper, is whether it is possible to extract
the concept of superfluidity from its native environment of liquid helium, from which it
bears its name, and investigate the emergence of superfluidity in another state of matter,
namely a solid. At first glance, this idea seems highly doubtful: a solid, for definition, is a
piece of matter that can resist shear stress, contrary to liquids, while a superfluid can flow
without friction, like an ideal fluid. The two phases seem incompatible. However, since the
first proposals it appeared that it is possible to conceive the coexistence of superfluidity
and a crystal structure in the same phase of matter: the supersolid.
Similar to superfluidity, it is very hard to give a satisfying and general definition of
supersolidity able to capture all the subtle phenomenology related to the merging of solid
and superfluid natures, regardless of the actual physical system in which such a phase
could emerge. A possible route is to follow a classification of the phases of matter based
on the kind of order that they bring along and the broken symmetries for which they
are responsible [7]. In a crystalline solid, atoms or molecules are arranged in periodic
structures, breaking the translational invariance of space. Macroscopic consequences of
the broken symmetry are the aforementioned resistance to shear stress, or the diffraction
pattern of light scattered from the crystal. In equations, the emerging spatial order in a
solid can be written as

ρ(r) = ρ(r + a),
where ρ(r) is the density at position r and a is a lattice vector. This periodicity condition,

absent in liquids for which the density is uniform, expresses the long-range order of a
crystalline solid. A different kind of order exists in the superfluid phase, related to its
quantum-mechanical nature: each particle inside the superfluid loses its individuality and
takes part in a global wavefunction, which determines the collective properties of the
system. All the particles are undistinguishable and are delocalized over the whole system.
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Can a superfluid be solid, or can a solid be superfluid ?

Since the wavefunction is a complex quantity, the broken symmetry is related to its global
phase, the so-called U(1) symmetry. Again, we can condense the superfluid order in one
equation employing the one-particle density matrix n(s):

lim
s→∞

n(s) = nc,

where s = |r − r’| is the distance between two points and nc is a finite value, the condensed
fraction [3]. This equation means that the quantum mechanical amplitude between two
states in which a particle is removed at position r or in a different, far apart, position
r’, is larger than zero. It expresses, therefore, the essence of the superfluid order, also
called off-diagonal long-range order, related to the delocalization of the single particle over
the whole system. The supersolid is a phase in which the crystalline and superfluid order
coexist, meaning that the particles are delocalized but also arrange in a crystal structure.
Note that both orders must be spontaneous, meaning that they cannot be induced and
fixed externally. Possessing both superfluid and crystalline properties doesn’t mean that
the supersolid is simply a sum of the two because the two orders influence each other and
give rise to novel phenomena, some of them I investigate in this thesis: the anomalous
rotational properties, the self-induced Josephson effect and partially-quantized persistent
currents.

A possible route to supersolidity consists of searching for superfluid behavior in a
crystal at low temperatures. The natural candidate, bringing in mind the history of
superfluidity, was the solid phase of helium. Solid helium was also the reference system for
the first theoretical proposals of supersolids, and indeed the question asked by Leggett
is if a solid (like helium) can also be superfluid. The research in solid helium has been
very rich for many years but without a demonstration of supersolidity [8]. On the other
hand, quantum gases at ultralow temperatures offer an alternative route to supersolidity.
Bose-Einstein condensates (BECs) in dilute quantum gases are a superfluid phase that



vii

can be controlled and manipulated both experimentally and theoretically with a high
tunability, and offer an extraordinary platform to study condensed matter problems that
can be very complicated in real materials, such as solid helium. Regarding the search for
supersolidity, the original Leggett’s question is reversed: now we wonder if a superfluid, a
BEC for example, can develop a crystal structure and become a solid.

Then, the question changes to ”Can a superfluid be solid?” In the last few years, the answer
has become positive. The spontaneous crystallization of a BEC requires a combination of
different factors: an attractive contribution to the interatomic interactions, which induces
an instability for some wavevector k; a repulsive interaction strong enough to arrest the
instability and ensure a new equilibrium configuration at higher densities; the possibility
for atoms in different lattice sites to interact, hence a long-range nature of the interac-
tions typically absent in the usual contact-like interactions characterizing dilute ultracold
atoms. Remarkably, all these ingredients are naturally present, without any need to be
externally engineered, in dipolar quantum gases. The dipolar interaction is long-range,
has an attractive component, and creates the conditions for the repulsive zero-energy of
quantum fluctuations, usually negligible, to play the role of the stabilizing mechanism.
The crystallization of dipolar BECs has been demonstrated by realizing lattices made
up of self-bound droplets [9]. However, a crucial ingredient was lacking: the different
clusters forming the lattice must preserve global phase coherence to allow a superfluid
flow across the whole system. Otherwise, the droplets are independent superfluids, each
with its own phase. In 2019, the Pisa-Florence group discovered an experimental region of
parameters in which the crystal structure coexists with global phase coherence, a hallmark
of supersolidity [10]. The results were promptly confirmed by the Stuttgart [11] and
Innsbruck groups [12]. Supersolid phases have been observed also in other BEC-based
platforms: BECs coupled to optical cavities [13] and BEC with spin-orbit coupling [14].

This thesis contains the research work I carried out in the Pisa-Florence group after
the discovery of the supersolid phase. Of course, many fundamental questions about
supersolids are still open and are the subject of debate in the scientific community, which
I think is a signal of the exciting activity inside the heterogeneous and growing field of
supersolidity. For this reason, I often complement the published results which are the
main corpus of my thesis with outlook and perspectives for future research.
One could naturally think about the supersolid-related research conducted in the field
of quantum gases as a remarkable example of the general quantum simulation program:
simulating in a clean and controllable environment phenomena that occur in condensed
matter physics, but that are hard to study in real-world materials due to their complex-
ity. However, in the case of the supersolid, we are in front of something that is beyond
standard quantum simulation. Indeed, we are studying a phase of matter that has been
predicted to exist in condensed matter systems, but has never been observed in them. This
situation is very different from, for example, the discoveries about superfluidity realized
with atomic BECs, for which the observation of quantized vortices, persistent currents, or
the Josephson effects, apart from their scientific importance, has always been an extension
or a confirmation of analog phenomena observed in liquid helium or in superconductors.
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For what concern the supersolid phase, we are at the same time simulating a physics that
could exist also in real-world materials and realizing for the first time that kind of physics.
That being said, the general aim of quantum simulation has still driven the research per-
formed during my PhD. Recently, superfluid phases with a spontaneous spatial modulation
have been observed in a variety of different systems, ranging from the aforementioned
BEC systems to 3He superfluids, from 2D crystal layers of 4He to exotic pair density waves
in superconductors. Nevertheless, connections with the supersolid phase are not always
straightforward or haven’t been clarified so far. I hope that the research conducted with
the dipolar supersolid, which is the first system for which a large and diverse amount of
evidence about supersolid behavior has been accumulated, can be stimulating and helpful
for all the other systems. For this reason, chapter 1 of my thesis is a long and general
introduction to the supersolid phase, where I dwell on the dipolar physics because it
concerns the experimental system I studied, but I also discuss some recent results related
to supersolidity in other systems.
Regarding the scientific results that I obtained during the PhD, I decided to follow a
logical rather than chronological order. In chapter 2 I introduce the experimental system,
the main tools to control the supersolid phase, and the techniques employed to get relevant
information. I present the first original research results in chapter 3, which deals with the
character of the quantum phase transition from the superfluid to the supersolid [15]. With
a joint theoretical and experimental collaboration, we find a crossover from discontinuous
to continuous phase transitions, which can be tuned with the atom number and the trap
geometry. We give a dimensional explanation of the crossover: if the crystal structure
develops in 2D, the transition is discontinuous, otherwise it is continuous. The ability
to change experimentally the nature of the phase transition is a key tool to control the
excitations and the formation process of the supersolid. From a fundamental point of
view, the different kinds of phase transitions open up the possibility of exploring general
mechanisms related to statistical physics in the supersolid phase [16, 17].
The central topic of the second half of the thesis is the concept of superfluid fraction.
Broadly speaking, the superfluid fraction is the fraction of the system that has a superfluid-
like response to external probes, like momentum or rotational kicks [18]. Usually, the
superfluid fraction is discussed in terms of a two-fluid model, in which the system is split
into two components: the superfluid and the normal part. The latter is populated by
thermal excitations and becomes negligible lowering the temperature [3, 2]. The superfluid
fraction fs then becomes unity at T = 0, because the whole system is superfluid. As
pointed out by Leggett [1], this is not true for the supersolid. The density modulation
competes with superfluidity and lowers the superfluid response even at T = 0. Therefore,
the supersolid has the exotic property of having fs < 1 even at zero temperature. The
sub-unity superfluid fraction doesn’t rely on a two-fluid model (there is no normal part) and
arises genuinely from the double nature of the supersolid. To investigate experimentally
the superfluid fraction of the dipolar supersolid, together with my group we realized a
rotational experiment, described in chapter 4, following the original proposal by Leggett
and the experimental works performed with solid helium [8]. Despite the small size of
our supersolid and its inhomogeneity, we were able to measure its moment of inertia and
demonstrate that it is lower than the classical value, which was the first direct signature of
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the superfluid response of a supersolid [19]. We could estimate a large superfluid fraction,
compatible with 1, which arises from the cluster nature of the dipolar supersolid. However,
the geometry of the system and the experimental technique employed didn’t allow for a
quantitative measurement of fs. This project has an overlap with my master thesis [20],
but I spent a large portion of my PhD finishing the paper and discussing its results (see
[21] for an original presentation of Leggett’s model and its relationship with our paper).
We then designed a different kind of experiment intending to detect a sub-unity fs, de-
scribed in chapter 5. Instead of relying on rotations, for which our elongated geometry is
not suitable, we focused on the transport of mass from one cluster to the other, which
is directly sensitive to the superfluid flow across the weak link spontaneously induced by
the crystal structure. Under appropriate conditions, this mass transport takes the form
of Josephson oscillations between neighboring clusters. In our work, we point out the
formal equivalence between the superfluid fraction defined in the context of rotations and
in the Josephson effect, and we demonstrate experimentally that the supersolid, despite
the absence of an external barrier, can display Josephson oscillations [22]. The dipolar
supersolid is therefore the first example of a self-induced Josephson junction, in which
the same atoms that take part in the superfluid flow are also responsible of the junction
structure. From the observed Josephson oscillations, we finally deduce the decreasing fs

in the supersolid regime, which can be tuned from 1 to about 0.1, and represents the first
observation of a sub-unity superfluid fraction in a supersolid.
The last chapter 6 deals with an ongoing project that occupied the last months of my PhD.
The goal is to realize a supersolid in a ring geometry, that has the advantage of being a
closed geometry with no finite-size effects. I describe the experimental progress to create
a repulsive optical potential for dysprosium atoms with a ring shape and some outlook
for future research directions. Again, a part of the discussion is focused on the superfluid
fraction, which plays a fundamental role in the exotic behavior of the supersolid persistent
currents in a ring.
Although most of the work reported in this thesis is experimental, I usually complement
experimental results with simple numerical simulations or analytical models, which, I
think, greatly help in getting an intuition about the fundamental aspects of the physics
observed in the experiment. The relative easiness in the modeling of the dipolar supersolid
reflects one of the most beautiful aspects of the research in this field: it is possible to
investigate fundamental questions about the nature of an exotic quantum phase of matter
in a relatively simple environment, a scenario probably unconceivable in other condensed
matter systems.
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The supersolid phase of matter
Chapter 1

In this introductory chapter, we give a global overview of state-of-the-art research on
supersolids. We start with a general description of the supersolid phase, based on the
original proposals of more than 50 years ago, and we highlight the differences with
standard superfluids. We then briefly describe the research in bulk solid helium, the first
experimental platform where supersolid physics has been investigated. In section 1.2, we
review the basic features of dipolar physics and we describe the dipolar supersolid, the
topic of this thesis. In section 1.3, we propose a list of recently discovered superfluids
with some kind of spontaneous spatial modulation, which have been demonstrated to be
supersolid, in some cases, or for which there are indications of possible connections with
supersolidity, in others. Differences and similarities with the dipolar supersolid are also
traced.

1.1 Superfluidity and supersolidity: first proposals
and experiments

Quantum mechanics strongly affects the properties of matter at low temperatures. The
most notable example is probably the liquid-superfluid transition which was first discovered
by Kapitza [23] and Missner and Allen [24] in 1938 by cooling liquid 4He below 2.17 K.
In the superfluid state, helium atoms can flow without friction and show spectacular
phenomena on a macroscopic scale, such as persistent currents or the fountain effect.
The analog of superfluidity with charged particles, superconductivity, was discovered
by Onnes in 1911, cooling down mercury. In superconductors, the frictionless flow of
electrons is an electrical current running with zero resistance, whose comprehension led
to enormous developments both in fundamental physics and technological applications.
The history of superfluidity and superconductivity is so rich that it can be schematically
summarized with a list of Nobel prizes. In addition to the cited Onnes and Kapitsa (Nobel
prizes in 1913 and 1978, respectively), Bardeen, Cooper and Schrieffer were awarded
the 1972 Nobel prize for the development of the BCS theory, which explains the onset
of superconducting order through the condensation of loosely bound electron pairs, the
Cooper pairs. Superfluidity of fermionic neutral particles, on the other side, was discovered
by Osheroff, Gully, Richardson and Lee in 1973 in liquid 3He (Nobel prize in 1996), at
temperatures three orders of magnitude lower than that of the bosonic isotope 4He. The
exotic superfluid phase of 3He, in which Cooper pairs have a non-trivial internal structure,
has been extensively studied in the following years, leading to the 2002 Nobel prize to
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A.J. Leggett (together with Abrikosov and Ginzburg, for their theoretical results about
superconductivity), a scientist who gave also great contributions to the first ideas about
supersolids and that will be extensively cited throughout this thesis. In the 90s, the
development of techniques to cool down and trap gaseous samples of atoms to the nK
regime opened the door to the field of quantum gases, in which Bose-Einstein condensates
(BECs) have been explored as an ideal platform where to study superfluidity (see the
Nobel prizes to Chu, Cohen-Tannoudji and Phillips in 1996 and to Cornell, Ketterle
and Wieman in 2001). In fermionic ultracold gases, it is even possible to tune the super-
fluid order from the BEC type to the BCS type, across the famous BEC-BCS crossover [? ].

Theoretically, superfluidity can be defined as a generalization of Bose-Einstein conden-
sation [3]. In the superfluid phase, a macroscopic number of particles occupy a single
state, described by the wave function ψ0(r, t), while all other states are occupied by a
number of particles of order 1. While in a classical fluid inter-particle interactions lead
to scattering between particles and to a non-zero viscosity, the superfluid is composed
of indistinguishable particles that behave as a single matter wave, moving coherently
without friction. The number of particles in the condensate N0 is less than the total
number of particles N , due to the thermal population of excited states. Even at zero
temperature, N0 < N , and (N − N0)/N , called quantum depletion, is the fraction of
atoms scattered off from the condensate state due to interactions. In superfluid helium,
which is a strongly interacting system, the condensate population is only 10 % of the total
particles, while in dilute ultracold atom gases the condensate fraction can be near to 100
%. The superfluid dynamics is described by the hydrodynamic equations of a fluid with
zero viscosity. The degrees of freedom of the superfluid are reduced compared to those of a
classical fluid, and are encoded in the condensate wave function ψ0(r, t) =

√
nc(r, t)eiφ(r,t),

where nc(r, t) = |ψ0(r, t)|2 is the condensate number density and φ(r, t) is the phase of the
condensate. Crossing the liquid-superfluid transition, the condensate gets populated and a
global phase φ is randomly chosen, spontaneously breaking the continuous U(1) symmetry.
The phase of the wave function sets the velocity of the superfluid through the relation

vs(r, t) = ℏ
m

∇φ(r, t), (1.1)

with m the particle mass. Since it is the gradient of the phase, the superfluid velocity is
always irrotational, ∇∧vs = 0. Eq. 1.1 lies at the heart of numerous dynamical phenomena
peculiar to superfluids, such as the reduction of the moment of inertia, persistent currents,
quantized vortices and the Josephson effect. I will discuss many of these phenomena and
their generalization to the supersolid case in this thesis.

It is interesting to note how, in the case of superfluidity, experimental observations
triggered the development of new ground-breaking theories, while in the case of superso-
lidity theoretical proposals brought forward by many years the first experimental results.
The ideas that came out around 1970 have all in common the same general question:
is it possible to have a superfluid state, with for example a coherent flow of mass, in a
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solid, where atoms are localized in the sites of the crystal? Such a system would break
simultaneously two continuous symmetries, the U(1) symmetry of superfluids and the
spatial translational symmetry of solids. The result is the so-called supersolid phase of
matter, which is not fully superfluid nor fully solid, but the properties of the two phases
mix together and give rise to new, exotic phenomena. One can imagine two possible routes
for the formation of a supersolid phase. First, one could start from a classical solid and
search for some kind of Bose-Einstein condensation of its constituent that preserves the
crystal structure, while the wave function delocalizes over the whole crystal. This is the
line of reasoning of the famous proposal by Andreev and Lifschitz [6] in 1969 (see also
the work by Chester [5]), who considered a quantum crystal made of bosons in which, at
low temperatures, the atoms arrange themselves in such a way to leave a small number
of vacancies, i.e. empty sites. In other words, the number of atoms should be different
from the number of sites. Such vacancies would obey Bose-Einstein statistics and at low
temperatures could condense, realizing the supersolid phase. The other approach is to
start from a fully superfluid system, described by a wavefunction with constant density
nc = N/V , with N the atom number and V the volume occupied by the superfluid. In 1957,
Gross [4] pointed out that, depending on the shape of the inter-atomic interactions, there
may be states with a periodic density modulation whose energy is lower than the uniform
state, breaking the translational symmetry. The two different routes to supersolidity are
sketched in Fig. 1.1. With a bit of over-simplification, we could say that the experiments
about supersolids in the field of condensed matter physics naturally deal with the vacancy
supersolid of Andreev and Lifschitz, while in the field of ultracold atoms, the starting
point is usually a fully superfluid BEC, realizing the scenario proposed by Gross. Note
that, while in the vacancy supersolid each lattice site is occupied by one atom, in the
other case the ’lattice site’ is a region of higher densities in the macroscopic wavefunction,
which could be occupied by a huge number of atoms. In this case we talk about a cluster
supersolid, which is what happens in dipolar BECs.

Another seminal work about supersolids came out in 1970, by A.J. Leggett [1]. Differently
from the others, Leggett didn’t investigate possible mechanisms for the supersolid formation,
but made some crucial predictions about differences between standard superfluids and
supersolids. Leggett considered a system in a ring geometry, with the container rotating at
a small angular velocity. In this configuration, a superfluid can acquire angular momentum
from the container only through the formation of quantized vortices, due to the irrotational
condition ∇ ∧ vs = 0. At low enough angular velocities, the formation of vortices is not
energetically favorable and the superfluid doesn’t move. The result is that a superfluid
in a ring geometry has a moment of inertia equal to zero, I = 0. On the other hand, in
the supersolid phase, the lattice sites with higher densities start moving quasi-classicaly,
following the container, while the superfluid background moves in the opposite direction
to preserve the irrotational motion. The moment of inertia increases compared to that of
a superfluid, while staying below that of a classical solid. In equations

I = (1 − fs)Ic, (1.2)
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Figure 1.1: Seminal proposals of a supersolid phase. a) In the Andreev-Lifschitz scenario [6], a quantum
crystal is supposed to spontaneously host vacancies even at zero temperature, indicated as dashed red
lines. If the gas of vacancies becomes a Bose-Einstein condensate, superfluidity cohexits with the crystal
structure. b) In the proposal by Gross [4], a superfluid described by a wave function ψ0, indicated as a red
homogeneous square, is supposed to spontaneously break the translational invariance forming regions of
higher densities embedded in a superfluid background.

where Ic is the classical moment of inertia and fs is the so-called superfluid fraction,
which interpolates between the full superfluid, fs = 1 and I = 0, and the classical solid,
fs = 0 and I = Ic. In Leggett’s model, the upper bound to the superfluid fraction is

fs ≤
(1
d

∫
cell

dx
n̄(x)

)−1
(1.3)

with n̄(x) is the normalized number density on the ring and the integral is performed
on a unit cell with dimension d. Remarkably, as it is clear from the upper bound in
Eq. 1.3, the sub-unity superfluid fraction of the supersolid comes only from the broken
translational symmetry (n̄(x) is not a constant), and not from other effects, such as the
population of thermal excitations. Leggett’s model points out a quantitative difference
between a standard superfluid and a supersolid, allowing experimentalists to search for a
transition to a supersolid state. Either one searches for a drop in the moment of inertia, if
the starting point is a classical solid as solid 4He, or one searches for an increase in the
moment of inertia, if the starting point is a superfluid such as a BEC, as in our dipolar
quantum gas. The concept of superfluid fraction and Leggett’s upper bound are central to
this thesis. We will show in chapter 4 our measurement of the moment of inertia of the
dipolar supersolids through rotations [19], and in chapter 5 another experiment where we
introduce a novel technique to measure the superfluid fraction, based on the Josephson
effect [22]. I also studied in detail Leggett’s model and conceived an original interpretation
[21], discussed in chapter 4. Finally, chapter 6 presents an outlook for future applications
of Leggett’s model in the original ring geometry.
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Figure 1.2: Experiments on solid helium, from [8]. (a) The torsional oscillator in Kim and Chan’s experiments
[25, 26] is composed of a torsion rod and an oscillating cell. Helium is introduced in the cell through a filling
line and then occupies an annular channel. Electrodes are used to drive and detect the oscillation of the cell.
(b) Period drop at about 0.1 K, compared with the measurement effectuated with the empty cell where
no drop is detected. (c) Temperature dependence of the Non-Classical Inertia Fraction measured in the
torsional oscillator experiments (empty circles) and the shear modulus variation (red circles), measured in
[27].

The search in solid helium

Solid helium has been the first system to be experimentally investigated searching for
a supersolid phase. Superfluidity, indeed, has been synonymous with helium for many
years, since no other superfluid system was known. The first theoretical proposals of
supersolidity were all about solid helium. Moreover, solid helium is the prototype of a
quantum crystal. First, the light mass of helium atoms enhances quantum fluctuations
around their equilibrium positions, whose kinetic energy is of the order ℏ2/(2m∆x2), with
∆x the quantum indetermination on the position of the helium atom. Second, the weak
inter-particle interactions allow for a large overlap between the wavefunctions of different
atoms, facilitating superfluid effects across different sites.
The first claim of the discovery of a supersolid phase in solid helium was made in 2004, in
two papers by Kim and Chan [25, 26]. Their experimental approach to supersolidity was
very close to Leggett’s idea: the authors searched for anomalous behavior of the moment of
inertia while lowering the temperature. The experimental set-up was a torsional oscillator,
in which a cylindrical cell containing solid helium in an annular channel was suspended on
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a torsion rod (see Fig. 1.1). At resonance, the period τ of the oscillator is given by

τ = 2π
√
I

K
, (1.4)

where I is the moment of inertia of the whole system and K is the torsional spring constant.
Remarkably, they found a drop in the oscillation period below about 0.1 K, as depicted

in Fig. 1.1(b). The measurements were consistent with the hypothesis of the formation
of a supersolid, whose superfluid component should have stopped participating in the
rotation, lowering the total moment of inertia I in Eq. 1.4. The authors found that the
fraction of the mass that decoupled from the oscillation, which they called Non-Classical
Rotational Inertia Fraction (NCRIF) and is related to the superfluid fraction fs, was very
small, of the order of 0.01. The same experiment was repeated with a sample of 3He,
and also with 4He with different concentrations of 3He, showing that the period drop was
observable only if the concentration of 3He was under a certain value, confirming that the
phenomenon originated from the bosonic nature of the atoms.

A great effort, both theoretical and experimental, was made to understand the data and
perform new experiments. For a review, see [28]. In 2007 it was discovered that solid helium
has unexpected elastic properties at low temperatures [27]. Its shear modulus, which
measures the resistance to transverse forces, increases exactly in the range of temperatures
in which the rotational signal was observed, suggesting that most of the experiments could
be explained in terms of changes of the elastic constant K, when the filling line containing
helium passed also through the torsional rod, or in terms of a frequency-dependent moment
of inertia, whose effects are different depending on the geometry of the cell. The change in
shear modulus not only explained the temperature dependence of the observed signals,
see Fig. 1.1 (c), but also the dependence on 3He impurity, with a model based on the
displacement of dislocations, which have effects in the elastic properties of the solid. The
original experiment by Kim and Chan was repeated with a new apparatus designed to
minimize the effect of the shear modulus anomaly, and indeed no period drop was found
[29]. So far, there is no conclusive evidence of a supersolid region in the phase diagram of
bulk solid helium.

1.2 Supersolidity in dipolar quantum gases
In this section, we give an introduction to dipolar quantum gases, the experimental
system studied in this thesis. After a brief description of the dipolar interaction and
the physics of dipolar BECs, we focus on the roton instability and the supersolid phase,
whose characteristics are briefly outlined. Chapter 2 contains a more detailed description
of the experimental realization of the dipolar supersolid, as well as its experimental
characterization. For reviews about dipolar quantum gases and magnetic atoms, see
[30, 31].
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Figure 1.3: Anisotropy of the dipole-dipole interaction in Eq. 1.5. Two dipoles polarized along the same axis
(shown as a dashed line) attract each other if they are in a head-to-tail configuration (blue regions) or repel
each other if they are side by side (red regions).

Dipole-dipole interaction
We consider a system of magnetic dipoles polarized along the direction z, which, in the
experimental realization, will be the vertical direction. The dipole-dipole interaction
potential is

Udd(r) = µ0µ
2

4π
1 − 3 cos2 θ

r3 , (1.5)

where µ is the magnetic moment of each atom, r is the modulus of the relative distance
between the atoms and θ is the angle between the polarization axis and r, see Fig. 1.3. The
dipolar interaction has two main features that strongly differ from the usual Van der Waals
interactions between neutral atoms in quantum degenerate gases. First, it is anisotropic,
with a d-wave symmetry given by the term 1 − 3 cos2 θ. Therefore, the interaction can be
repulsive or attractive depending on the relative orientation between the atoms, as sketched
in Fig. 1.3. Second, the dipolar interaction in three dimensions is long-range due to its
dependence ∼ 1/r3. To see why, we consider the thermodynamic definition of long-range
interactions. Given some generic inter-particle interaction energy u(r), the interaction
energy of a particle surrounded by a cloud of particles with homogeneous density n in d
dimensions is U = ∑

i u(ri) = n
∫

dΩ
∫ R

r0
u(r)rd−1dr, where the integral is over the whole

solid angle Ω and in between a hard core r0 and an external radius R. A potential is
short-range if the central particle only ’feels’ the interaction of some neighboring particles.
Mathematically, this condition means that the interaction energy U converges in the limit
of an infinite cloud, R → ∞, so that particles further and further away from the central
one give a negligible contribution to the total energy. On the other side, the interaction
is long-range if U diverges in the limit R → ∞, which means that the contribution of
the furthermost particles is never negligible. Since the integral diverges if u(r) ∼ 1/rd+ϵ,
with ϵ > 0, the interaction u is long-range if it goes to zero with an exponent larger
than d. The dipolar interaction in 3D is the marginal case in which u(r) ∼ 1/rd and the



8 The supersolid phase of matter

energy U diverges logarithmically. For this reason, it is also called ’marginally long-range’.
Interestingly, from a statistical mechanical point of view, a long-range interacting system
doesn’t favor a homogenous configuration in the thermodynamic limit, as it happens for
short-range interactions [32]. If the interaction is attractive, as the system grows, the
most energetically favorable configuration is the close-packing one, in which regions of
higher density are separated by regions of lower density. A clear example of this scenario
is a homogeneous gravitational system that fragments leading to, for example, the star
formation process. On the other hand, if the interaction is repulsive, the particles get
mashed at the edges of the space, as it happens in the classical electrostatic problem of
electrons repelling through the Coulomb interaction inside a conductor. Even if the dipolar
interaction doesn’t fill in this simple schematization because it has both attractive and
repulsive contributions, it is interesting to note that, indeed, in a trapped dipolar quantum
gas both the close-packing configuration, corresponding to the supersolid formation, and
the edge phase with atoms accumulated near the walls of a box [33] can happen.
The long-range nature of the dipolar interaction has implications for the scattering problem
at ultralow temperatures. In the case of Van der Waals interactions decaying with distance
as 1/r6, the centrifugal barrier prevents two particles from interacting in partial waves
with relative angular momentum l > 0. The scattering phase shifts, indeed, go to zero very
fast for low relative momenta k, and only the l = 0 phase shift is relevant, going linearly
with k. Thanks to this property, the whole scattering process can be described in terms
of a single parameter, the scattering length as, and the real interaction potential can be
substituted with a delta-like and isotropic pseudopotential having the same value of the
scattering length of the real one, i.e. Uc(r) = gδ(r), with g = 4πℏ2as/m [3]. On the other
hand, for the long-range dipolar interaction, the two colliding particles feel each other
beyond the centrifugal barrier. All the scattering phase shifts contribute to the dynamics
since they all behave linearly in k. No pseudopotential can be introduced for the dipolar
interaction, and the full expression in Eq. 1.5 must be considered.

Dipolar BECs and roton instability

A weakly interacting dipolar BEC in the mean field approximation is described by the
Gross-Pitaevskij equation (GPE) [3]

iℏ
∂

∂t
ψ(r, t) =

(
− ℏ2

2m∇2 + Vtrap(r) + g|ψ(r, t)|2 + ϕdd(r, t)
)
ψ(r, t) (1.6)

The mean field approximation consists in replacing the field operator ψ̂ with the classical
field ψ, neglecting completely the quantum fluctuations. The mean field approximation
is justified by the presence of a condensate, whose population N0, in the case of weakly
interacting quantum gases, is very close to the total atom number N . In this case,
the operators relative to the condensed state are safely approximated with c-numbers
â0 ∼ â†

0 ∼
√
N0, which corresponds to neglect their commutator (of order 1) compared

to their expectation value (of order
√
N0). On the right-hand side of the GPE equation,

the first term is the kinetic energy, the second term is the trapping potential and the last
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two terms are the contact and dipolar potentials, respectively. While the isotropic contact
potential is simply proportional to the density of the condensate n = |ψ(r, t)|2, the dipolar
potential is a non-local term

ϕdd(r, t) =
∫

dr’Udd(r − r′)ψ(r’, t). (1.7)

Finally, in the experiments described in this thesis, the trapping potential is usually
harmonic Vtrap(r) = 1/2m(ω2

xx
2 + ω2

yy
2 + ω2

zz
2). The GPE equation is a non-linear

Schrödinger equation for the macroscopic matter field ψ(r, t), where the non-linearities
come from the interactions.
In the stationary case, the phase of the wavefunction evolves with the chemical potential
µ, ψ(r, t) = ψ(r)e−iµt/ℏ. The GPE equation takes then its stationary form

(
− ℏ2

2m∇2 + Vtrap(r) + g|ψ(r, t)|2 + ϕdd(r) − µ
)
ψ(r) = 0. (1.8)

The chemical potential is fixed by the normalization condition
∫

|ψ(r)|2dr = N . The
solution of the stationary GPE equation with lower energy is the ground state of the
system. In the case of contact interactions only, the ground state of a BEC in a harmonic
potential is usually found neglecting the kinetic energy compared to the potential and
interacting energies, the so-called Thomas-Fermi approximation. The solution is an in-
verted paraboloid of the form n(r) = n0(1 − x2/R2

x − y2/R2
y − z2/R2

z), where Ri are the
Thomas-Fermi radii and n0 is the central density. Remarkably, the ground state of a
dipolar BEC has the same parabolic shape, even if the solution is complicated by the
dipolar energy term [? ]. However, while in the pure contact case the aspect ratio of the
atomic cloud is the same as the one of the harmonic potential, i.e. Ri/Rj = ωj/ωi, in
the dipolar case the two aspect ratios are different. The atomic cloud gets elongated in
the vertical direction due to the presence of the external magnetic field, which favors a
head-to-tail configuration of the dipoles, an effect called magnetostriction.

We now turn to the problem of the stability of the dipolar gas. The attractive part
of the dipolar interaction makes the stability issue much more subtle than the case of pure
contact interactions, for which only the sign of the scattering length matters. First, we
consider the simple case of a homogenous system with density n0. If the dipolar interaction
is strong enough, we expect all the dipoles to arrange in a head-to-tail configuration,
forming a long wire whose density would increase indefinitely, leading to the collapse. It is
evident, therefore, that stability can be reached only with a repulsive contact interaction,
i.e. g > 0, balancing the dipolar attraction. To quantitatively understand the stability
conditions of the dipolar gas, one has to study the elementary excitations. The spectrum
of the elementary excitations is obtained considering small density and velocity excitations
with frequency ω and wavevector k around the equilibrium density n0 [3]. Linearizing the
time-dependent GPE 1.6 one obtains

ω = k

√
n0

m

[
g + µ0µ2

(
cos2 α− 1

3

)]
+

( ℏk
2m

)2
, (1.9)
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where the term in square brackets is the Fourier transform of the interaction potential,
given by the sum of the contact and dipolar part. The dipolar interaction contributes
with a dependence on the relative angle α between the wavevector k and the polarization
axis. As in the case of pure contact interactions, the excitation spectrum has a phononic
behavior for low k, where the excitations are collective, and a quadratic behavior for
large k, where excitations are of single particle nature. In the dipolar case, however,
many different phononic branches appear, depending on the angle α, each one with a
different speed of sound. The most unstable branch is the one with α = π/2, for which
the direction of k, and hence of the density modulation, is perpendicular to the dipoles.
In the region with higher density, the dipoles are in a head-to-tail configuration, so the
energy is lower. The most stable branch is the one with α = 0, for which the opposite
happens: the modulation is in the direction of the dipoles, and in the high-density regions
the interaction is mostly repulsive. The anisotropy in the dipolar excitation spectrum has
been experimentally explored through Bragg scattering [34] and transport measurements
[35]. The collapse happens when the mode with the lowest energy becomes imaginary for
small k. From Eq. 1.9 with α = π/2, the instability occurs when µ0µ

2/3 > g. We define
the interaction parameter ϵdd and the associated dipolar length add as

add = µ0µ
2m

12πℏ2 , ϵdd = µ0µ
2

3g = add

as

. (1.10)

With these definitions, the dipolar collapse in the homogeneous case happens when
ϵdd > 1.
In the presence of a trap, the condition is modified. Intuitively, a harmonic trap in the
vertical direction helps prevent the collapse, since the dipoles need to pay a potential energy
cost to arrange themselves in a head-to-tail configuration. Generally, the collapse happens
at values of ϵdd larger than 1. We consider a homogenous system in the xy plane and
harmonic confinement in the z direction with frequency ωz and harmonic oscillator length
lz =

√
ℏ/(mωz). The new length scale lz modifies the energy spectrum and introduces

an exciting novelty: the appearance of a minimum at finite momentum k ∼ 1/lz [36],
see Fig. 1.4. The minimum is called roton minimum, in analogy with superfluid liquid
helium. For long wavelengths of the excitation (small k) the dipoles feel only the repulsive
part of the interaction, and the spectrum is phononic. When the wavelength is of the
order of lz, the dipoles form local structures in which the attractive part of the interaction
becomes relevant, decreasing the energy. For lower wavelengths (larger k), the kinetic
energy of the excitation dominates and we enter the single-particle regime, where ω ∼ k2.
Close to the roton minimum, the quasi-particle energy has a parabolic shape of the form
(ℏω)2 = ∆2 +a(k−k2

rot), where krot and ∆ are the wavevector and the energy corresponding
to the roton minimum, respectively. In superfluid helium, the roton minimum arises from
the strong interparticle interactions and has a deep influence on the properties of the
superfluid state. For example, it determines the Landau critical velocity setting the
dissipation-free dynamics, which otherwise would be determined by the speed of sound [3].
In ultracold dipolar gases, the roton mode comes from the peculiar shape of the interaction,
even if the system is very dilute and the interactions are small. The energy of the roton ∆
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Figure 1.4: Sketch of the roton minimum in the excitation spectrum of trapped dipolar gases. In the phononic
regime (low k) the wavelength of the excitation is much larger than the vertical harmonic oscillator length
lz , and the interaction is mainly repulsive. For wavevectors k ∼ 1/lz , the attractive part of the interaction
becomes relevant and the dipoles reduce the energy of the excitation forming elongated structures. The
roton minimum can be controlled with the interaction strength ϵdd .

can be easily tuned by changing ϵdd, as depicted in the sketch in Fig. 1.4. While the energy
∆ decreases, the roton quasiparticles get more and more populated. The experimental
observation of the roton minimum was reported by the Innsbruck group in [37]. In the
experiment, the BEC was elongated along one direction, so that the minima appeared in
two points k = ±krot, and not on a whole annulus with radius krot as in the infinite case.
The population of the roton mode, triggered by an interaction quench toward high values
of ϵdd, was revealed in time of flight from the appearance of symmetric peaks at ±krot.

Beyond mean-field stabilization and quantum droplets
The population of the roton mode is a precursor of crystallization. If the roton excitation
could be populated more and more, the system would spontaneously form a density
modulation with a period proportional to lz. However, when the roton energy becomes
imaginary, the mean-field theory predicts the collapse of the system, similar to the phononic
collapse discussed previously for the homogeneous case. Instead of observing the collapse,
experiments in the strongly dipolar regime reported the observation of a transition from
the BEC to a stable state of separated liquid-like quantum droplets [38, 39, 9, 40], that can
be also self-bound. The new crystal-like state was stabilized by the repulsion of quantum
fluctuations, which was enough to prevent the attractive part of the mean-field interactions.
To understand this beyond-mean field stabilization mechanism, which is crucial also for
the existence of the supersolid phase, we consider a simple, single-particle, example [41].
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Figure 1.5: Sketch of the stabilization mechanism by quantum fluctuations. (a) The classical unstable
potential of Eq. 1.11. The red line indicates one unstable classical trajectory. (b) The same potential
stabilized by the quantum zero-point energy of the y degree of freedom. (c) Solution to the single-particle
Schroedinger equation in the potential plotted in (a).

Let’s take a classical potential for a particle with mass m of the form

Uclassical(x, y) = −1
2mx

2 + 1
2mωy(x, y)2y2. (1.11)

The potential is plotted in Fig. 1.5 for ωy(x, y) = 1 + 6x2 + 2x4 + 2x2y2. It has no
minimum so the classical particle will roll down the negative valley and reach larger and
larger x values. What happens if we switch on quantum mechanics? The zero-point energy
of the harmonic oscillator is repulsive and equal to ℏω/2. Since in the classical potential
in Eq. 1.11 the frequency in the y direction increases as |x| increases, also the quantum
zero-point energy increases with |x|. If the increase is fast enough, it can compensate
for the classical instability in the x direction. Indeed, the quantum potential considering
quantum fluctuations, Uquantum(x, y) = Uclassical(x, y) + ℏωy(x, y)/2, has a minimum in the
origin, and the solution of the single-particle Schrödinger equation is localized at the center
of the xy plane 1, see Fig. 1.5(b-c). This is an example of a classical unstable degree of
freedom (x) stabilized by quantum fluctuations in another degree of freedom (y).

The same mechanism happens also in dipolar quantum gases. In this case, quantum
fluctuations come from the fully quantum nature of the bosonic field operator, which
can be expanded as ψ̂(r) = ψ(r) + δψ̂(r). The classical wavefunction ψ(r) is the one
relative to the condensed state, i.e. the one with k = 0, and fulfills the GPE equation
1.6, while the quantum fluctuations term is a sum over all the other single-particle
states, δψ̂(r) = ∑

k ̸=0 ϕkâk, where ϕk and âk are the single particle wavefunction and the
annihilation operator relative to the state k, respectively. One can treat the quantum
fluctuations term with different degrees of approximation. Usually, one takes all the
quadratic terms with k ̸= 0, and the resulting Hamiltonian describes a gas of non-
interacting quasiparticles following the Bogoliubov energy dispersion E(k) [3]. Physically,

1The solution is ψ(x , y) ∼ e−(1+x2)(1/2 + y2).
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there are two main consequences. First, the condensate state is not fully populated, but
some particles are scattered into states with k ̸= 0, the so-called quantum depletion of
the condensate. Second, the ground-state energy E0 is modified by the population of
higher-energy states. This additional zero-point energy is called Lee-Huan-Yang (LHY)
correction. For a homogeneous system in a volume V with dipolar interactions, it reads
[42]

ELHY = gn2V

2
128

15
√
π

√
na3

s

(
1 + 3

2ϵ
2
dd

)
. (1.12)

The two main features of the LHY correction are that it is isotropic and repulsive, also
for dipolar interactions, and that it has a steeper dependence on the density n compared
to the mean-field interactions: ∼ n5/2 instead of ∼ n2. However, the LHY correction
scales as the gas parameter

√
na3

s, which is very small in dilute ultracold gases. For this
reason, quantum fluctuations are usually negligible compared to the mean-field energy. In
dipolar gases, tuning the interaction parameter ϵdd, it is possible to reduce the mean-field
interactions and eventually change their sign from positive to negative, at the mean-field
critical point. While mean-field interactions decrease, they can become comparable in
magnitude with the zero-point energy. In this regime, the LHY correction behaves as a
stabilization mechanism, thanks to its fast dependence ∼ n5/2, which ensures the formation
of a new ground state at higher densities, even if the mean-field part alone ∼ −n2 would
predict the collapse. In analogy with the previous example of the quantum harmonic
oscillator, the quantum fluctuations arising from higher energy modes (the ’fast’ degree of
freedom y) stabilize the low-energy instability of the mean-field theory (the ’slow’ degree
of freedom x).
The same stabilization mechanism happens also in binary Bose-Bose mixtures with pure
contact interactions. In that case, the mean-field interactions are tuned by changing the
attractive inter-species scattering length compared to the repulsive intra-species one. If the
attraction prevails, the mean-field theory predicts the collapse. Again, since the critical
point is in a region where two different mean-field interactions approximately compensate
each other, quantum fluctuations provide an effective stabilization mechanism. The result
is a single quantum droplet with liquid-like properties [43, 44], contrary to the dipolar
case in which the long-range nature of the interaction leads to the formation of an array
of multiple droplets [38, 39, 9].

The supersolid phase

In the previous paragraphs, we have seen that trapped dipolar quantum gases are a very
promising system for the formation of a supersolid phase: starting from a fully coherent
system, the BEC, the roton instability triggers a crystallization mechanism. However,
the first observed arrays of dipolar droplets weren’t supersolid. While displaying phase
coherence inside each droplet as shown by interference fringes in time of flight, indeed, they
didn’t establish phase coherence across the array, preventing any superfluid motion from
one cluster to the other [38]. In an experiment with a dipolar gas of dysprosium in 2019
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Figure 1.6: Experimental observation of the supersolid phase in a dipolar quantum gas [10]. (a) Sketch
of the superfluid-supersolid phase transition in a cigar-shaped harmonic trap. The control parameter is
the relative strength of dipolar over contact interactions, ϵdd = add/as , tuned with Feshbach resonances.
The supersolid phase consists of an array of macroscopic clusters immersed in a superfluid background.
For weaker dipolar interactions, the ground state is a BEC, while for stronger dipolar interactions it is an
incoherent droplet crystal. (b) Observation of the three phases BEC, supersolid, and droplet crystal, from
top to bottom, after a free expansion [10]. The horizontal axis is time. The supersolid phase is characterized
by stable interference fringes. (c) Variance of the interference pattern phase in the supersolid regime as a
function of time. In the first tens of ms phase coherence is maintained between different clusters. The red
dashed line is the variance of a random variable, indicating the loss of global coherence.
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[10], the group in Pisa found instead a small region of parameters in which the droplets
overlap each other, maintaining the phase coherence across the whole array and hence
combining the crystal and superfluid order. The BEC was trapped in a cigar-shaped trap,
with the strongest confinement along the vertical direction, along which the dipoles were
aligned. The elongated geometry favors the instability of the roton mode in the long-axis
direction, forming a 1D array of few clusters, separated by a lattice period d ∼ lz ∼ 4µm,
see Fig. 1.6. The supersolid region lies in between the BEC side, where the system is
superfluid but without a crystal structure, and the so-called droplet crystal side, where
the array of droplets loses global phase coherence. The experimental signature of the
supersolid formation was the appearance of an interference pattern in time of flight images,
coming from the overlapping of the different matter waves forming each cluster of the
supersolid, see Fig. 1.6(b). From the interference fringes, it is possible to extract the phase
difference between neighboring clusters (see chapter 2). Crucially, the phase difference was
constant over different repetitions of the experiment demonstrating the phase coherence
between different clusters. On the other hand, when the superfluid background disappears
and the density between different clusters goes to zero, phase coherence is suppressed and
the measured phase distribution gets larger, reaching the incoherent droplet crystal regime.
Similar results have been obtained also from the Stuttgart and Innsbruck groups, with
dysprosium and erbium dipolar gases [11, 12].
The dipolar supersolid is of the cluster type since each lattice site hosts thousands of
atoms, and can be reconduced to the first proposal by Gross, as opposed to the vacancy
supersolid proposed by Andreev and Lifshitz, see Fig. 1.1. The cluster nature naturally
enhances the superfluid properties, but, on the other hand, strongly limits the spatial
extension of the crystal. Since the typical atom number in the BEC is of the order of a few
ten thousand atoms, the number of clusters, i.e. of lattice sites, in the supersolid phase is
of the order of a few units (typically from 4 to 8 clusters, see Fig. 1.6). Moreover, due
to the presence of the trap, the population of the clusters is not homogeneous, with the
central ones more populated than the lateral ones. On the other hand, the large period of
the dipolar supersolid and the large dimensions of each cluster enable the study of the
superfluid motion locally in each cell, as we will explain in this thesis, opening perspectives
that would be very challenging in other condensed matter systems.
A significant limitation of the supersolid phase in dipolar gases is the limited lifetime due
to three-body losses. Even if the system is very dilute, the probability for three particles
to interact (instead of two) is not zero. The main three-particle interaction is inelastic,
with two of the three particles that form a molecular state and the third one acquiring the
remaining energy in the kinetic form. This three-body interaction leads to atom losses,
scaling fast with the density Ṅ/N = −L3⟨n2⟩, where L3 is the recombination constant and
⟨n2⟩ the mean squared density. In the supersolid regime, the peak density in the clusters is
about 10 times larger than that of the BEC, so the lifetime is much shorter. Considering
that three-body losses also decrease the phase coherence, the typical observation time in
the supersolid regime is of the order of 100 ms. Nevertheless, it is enough to observe typical
dynamical modes of the supersolid. Just after the first observations of the coherent density
modulation, indeed, the Goldstone modes arising from the double symmetry breaking
of the supersolid phase were observed [45, 46, 47], one related to the superfluid nature
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Figure 1.7: Energy terms in the ground-state solutions of the stationary eGPE (Eq. 1.13) across the
BEC-supersolid phase transition, as a function of the scattering length as (lower axis) or of the dimensionless
interaction parameter ϵdd = add/as . Insets show examples of the density ρ(x , y) integrated in the vertical
direction z in the BEC regime (right, as = 93 a0) and in the supersolid regime (left, as = 91 a0).

and the other to the crystal one. In particular, the low energy Goldstone mode [46] is
associated with the broken continuous symmetry, and is the analog of the Goldstone mode
observed in cavity supersolids [13], see next section. The presence of the harmonic trap
in the dipolar case increases the energy of the mode, which is not zero, but it is much
smaller than the trap frequencies and all the other modes. The higher energy Goldstone
modes [45], instead, are related to phononic oscillations of the crystal structure, and
demonstrate the elasticity of the crystal, necessary for full supersolid dynamics. To our
knowledge, only in the dipolar supersolid there is experimental evidence of the coexistence
of phase coherence, density modulation, and elastic solid behavior so far. Recently, also
dipolar supersolids with 2D lattice structures have been realized [48, 49]. We note that, in
addition to the quantum phase transition from the superfluid to the supersolid, crossed
varying the interaction parameter ϵdd at low temperature, it is possible also to evaporate
the thermal gas directly into the supersolid regime, crossing therefore a classical phase
transition varying the temperature, as demonstrated in [50].

From a theoretical perspective, the ground state and the dynamics of the dipolar
supersolid are simulated using an extension of the GPE equation that takes into account
also the energy of quantum fluctuations through a local density approximation [51, 52].
The result is the so-called extended Gross-Pitaevskij equation (eGPE)
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The long-range dipolar potential ϕdd is the same as in Eq. 1.7, and the LHY term
is the one proportional to |ψ|3. As in the usual GPE, stationary solutions correspond
to ψ(r)e−iµt/ℏ. The eGPE equation can be numerically integrated to find the ground
state in the stationary case, or to simulate the full dynamics of the system. The main
novelty compared to calculations for non-dipolar condensates, apart from the LHY term,
is the long-range dipolar potential ϕdd. Due to its non-local nature, it represents a huge
complication for integrating the equation. It is usually treated in Fourier space, where it
is conveniently computed with fast Fourier-transform algorithms [53, 54]. The interaction
potential must also be regularized to avoid spurious boundary effects due to the long-range
nature of the interaction. The main approximations of the eGPE simulations compared to
experimental conditions are the absence of thermal effects, because all the dynamics is
reduced to the wavefunction of the condensate, and the absence of dissipation mechanisms,
mainly three-body losses which have a strong impact in the lifetime of the experimental
samples. Nevertheless, eGPE simulations are quite accurate in describing the experimental
systems, and usually the addition of phenomenological parameters like temperature and
loss rates is not required to reproduce the experimental observations. The mean-field
approach is supposed to break down in the independent droplet regime, where the system
is no longer described by a global wavefunction, and the densities inside each cluster are
larger, leading to stronger correlations. Reference [55] provides a comparison between
experimental data, GPE equation, and quantum Monte Carlo simulations.
For our experiments in the supersolid regime, we compare to eGPE calculations. Most of
the simulations performed in this thesis employ a code written by M. Modugno and A.
Alaña, Bilbao University [15, 56].
Fig. 1.7 reports the evolution of the different energy terms appearing in the eGPE for the
ground state of the dipolar system across the superfluid-supersolid transition, for typical
experimental parameters: trap frequencies (ωx,ωy,ωz) = 2π × (20, 90, 100) Hz and atom
number N = 2 × 104. As discussed in the previous paragraphs, the dipolar energy becomes
more and more negative lowering the scattering length as, and it is responsible for the
development of the density modulation. When the energy cost of contact interactions and
kinetic energy gets overcome by the dipolar energy gain, the transition from the superfluid
to the supersolid happens. In the example of Fig. 1.7, the critical point is around as = 92.9
a0. The contact repulsive energy then rapidly increases because of the increase in the peak
density inside the clusters. Globally, the mean-field energy is negative, but the collapse is
prevented by the repulsive LHY energy.
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1.3 Spontaneously modulated superfluid phases in
recent experiments

Recently, superfluid and superconducting phases with spontaneous density modulation have
been discovered in a variety of different systems. Only for some of them a direct connection
with the supersolid phase has been traced. Without attempting to be exhaustive, this
section reports a brief overview of these systems. On one side, to our knowledge, a similar
general discussion doesn’t exist in the literature. On the other side, it is useful to get
an idea of what happens in other fields to put the research on dipolar supersolids in
perspective, and to trace useful connections between the results presented in this thesis
and the other systems.
Excluding bulk solid helium, discussed in section 1.1, the most in-depth investigations
of supersolid structures and properties come from ultracold atoms. As discussed in the
previous section, the dipolar supersolid is probably the system for which the most striking
evidence of supersolid behavior has been accumulated in the last years. The modulation
is 100 % induced by inter-atomic interactions, the period is large and the cluster nature
enhances the superfluid properties. Many of the key supersolid properties have been
experimentally assessed: coexistence of density modulation and superfluidity, phononic
crystal modes in the form of Goldstone modes and, in this thesis, we report on the
superfluid behavior under rotation and the measurement of a sub-unity superfluid fraction
at zero temperature. However, supersolid phases have been realized also in other ultracold
atom platforms, with completely different physical mechanisms, which we discuss here:
spin-orbit-coupled BECs and BECs in high-finesse optical cavities.
Moving from ultracold atoms to condensed matter systems, the energy and length scales,
of course, change by order of magnitude: the lowest temperatures are of the order of the
mK, and the spatial modulation is typically of the order of the lattice unit cell, a few nm
or less. Supersolid-like phases have been investigated in 2D layers of solid 4He and 3He
under confinement. The latter is an exception since the modulation is macroscopic, of the
order of 1 µm, and shows some interesting parallelisms with the dipolar supersolid. We
also briefly cite the elusive pair density wave phase in cuprate superconductors and more
exotic phases, such as nuclear pasta in neutron stars. A comparison summary is presented
in Table 1.1.
This overview is not for its own sake. The relative easiness, compared to other systems, of
the experimental investigation and theoretical modeling makes the dipolar supersolid an
ideal platform to study the fundamental properties of a new phase of matter, that, hopefully,
will be assessed also in real-world condensed matter systems. Most of the research in
this thesis has been performed with this goal in mind. Most of all, the measurement of a
sub-unity superfluid fraction through the Josephson effect, discussed in chapter 5, could
be of interest outside of the ultracold-atom community.

Spin-orbit-coupled BECS

Spin-orbit coupling (SOC) refers to the situation in which the spin degree of freedom
is coupled to the orbital degree of freedom, namely the momentum of the particle. In
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Figure 1.8: Stripe phase in SOC BECs from [14]. (a) SOC coupling induced by a two-photon Raman transition.
The wavefunction has four components: two spin states at zero momentum and two spin states with plus
and minus the momentum exchanged with the Raman beams. (b) The stripe phase emerges as a spatial
interference between components of different momenta. The spatial modulation is detected through Bragg
spectroscopy [14].

atomic physics, spin-orbit coupling arises due to the interaction of the electron with the
magnetic field produced by the nucleus and is responsible for the fine-structure splitting.
In condensed matter systems, the coupling between the electron spin and momentum
is mediated by electromagnetic fields in the material. In ultracold atoms, spin-orbit
coupling can be engineered by exploiting Raman transitions, in which a two-photon
transition couples two hyperfine states (the two ’spin states’) and is accompanied by a
finite momentum transfer [57]. The phase diagram of SOC BECs is rich and can be
explored by tuning the Raman coupling Ω, the detuning of the Raman transition δ and
the density of the BEC [58, 3]. The interesting region hosting supersolid physics is the
so-called stripe phase, which can be simply understood as a spatial interference within a
wavefunction with four different components, as sketched in Fig. 1.8. The mixture of the
two spin components, when SOC is present, has two additional components with momenta
±kR, the momentum acquired in a Raman transition. The interference between the k = 0
and k = ±kR components in the same spin sector gives rise to the stripe phase, as sketched
in Fig. 1.8(b). The period of the modulation is close to that of the Raman potential,
but not equal because it gets modified by inter-particle interactions. The translational
symmetry is thus spontaneously broken, because the period of the modulation was absent
in the original Hamiltonian. Since the period is close to the Raman laser wavelength, it is
usually 1 µm or smaller. Combined with a typical low contrast [59], the direct detection
of the stripe phase with in situ imaging is challenging. The first experimental evidence of
the stripe phase and its connection with supersolidity was pointed out in [14], where the
density modulation was detected through Bragg spectroscopy, see Fig. 1.8(b). To favor the
presence of the stripe phase in the phase diagram, one has to reduce the miscibility between
the two spin species. This helps also in increasing the stripe contrast [60]. In standard
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Figure 1.9: Supersolid phases of atoms in optical cavities. (a) Pump plus single cavity from [63], realizing a
lattice supersolid that breaks a discrete spatial symmetry forming a checkerboard pattern (middle picture).
The population of atomic momentum states with k ̸= 0 signals the onset of self-organization (right picture).
(b) Pump plus two optical cavities from [13]. In this case, a continuous spatial symmetry is broken, and the
density modulation forms with a spontaneously chosen spatial phase (middle picture). The supersolid phase
forms when atoms are equally coupled to both cavities, as observed in the momentum populations (right
image).

SOC experiments, the condensate is made of 87Rb, for which the inter and intra-species
interactions are very similar and the miscibility is high. The stripe phase lies at low Rabi
frequencies Ω, in a region where magnetic field fluctuations are an experimental limiting
factor. In the experiment [14], the two lowest eigenstates of a superlattice potential have
been used as pseudospin states, for which the miscibility can be controlled by tuning
the parameters of the superlattice. More recently, the stripe phase has been observed
also in the originally proposed 87Rb spin mixture [61], and the phase coherence of the
stripe phase was also assessed. Theoretical works showed that the stripe phase possesses
Goldstone modes associated with the double-symmetry breaking [62]. The supersolid
lattice, therefore, is predicted to be deformable and to show phononic excitations, as in
the dipolar supersolid. The experimental observation of the stripe dynamics is lacking,
but the experiment on 39K lead by L. Tarruell at ICFO, Spain, is promising for a direct
detection of the density modulation. Exploiting Feshbach resonances, it is possible indeed
to tune the miscibility of the spin states and to realize high-contrast stripes with observable
supersolid effects.

BECs in optical cavities

Atoms inside high-finesse optical cavities are a source of rich and complex physics related to
collective light-matter phenomena, in which long-range interactions and self-organization
mechanisms can be engineered [64]. Supersolid phases have been experimentally explored
in different cavities geometries, see Fig. 1.9. The basic platform consists of a BEC
dispersively coupled to the photon fields of an optical cavity and a 1D transverse pump
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lattice. The frequency of the pump laser is far red-detuned with respect to the atomic
transition line but close detuned from a particular cavity mode. When the pump beam is
perpendicular to the optical cavity, as in Fig. 1.9, the potential of the pump and cavity
modes is a square lattice. By increasing the power of the pump beam, a quantum phase
transition related to the Dicke model is crossed, and the atoms break the discrete symmetry
of the lattice forming a checkerboard pattern [63]. The onset of this self-organization is
monitored both through the occupation of atomic momenta states related to the scattering
of photons between the pump and the cavity modes, see Fig. 1.9(a), and through the
mean intracavity photon number. The resulting phase is a lattice supersolid, in which the
broken continuous symmetry U(1) is inherited by the BEC, and an additional discrete
spatial symmetry is spontaneously broken.
A different geometry, consisting of two crossing optical cavities at an angle of 60◦, enables
the engineering of a continuous symmetry breaking along the direction perpendicular to
the pump beam [13]. In this configuration, the atoms in the BEC scatter photons from the
pump beam to one of the two cavity modes. By changing the coupling with the cavities, for
example with the pump-cavities detunings ∆1 and ∆2, one goes from a self-organization
in a single cavity to a balanced coupling scheme in which the two cavity fields form a
continuously degenerate manifold. In this configuration, atoms are self-organized in a
modulated structure perpendicular to the pump beam, whose spatial phase is different in
each experimental run, because it emerges from the spontaneous symmetry breaking. The
period of the modulation for the experimental parameters of [13] is d = λP/ cos 60◦, with
the pump wavelength λP = 785 nm. The dynamic of the modulation has been also studied,
in relation to the Goldstone and Higgs modes of the supersolid phase [65]. Although the
cavity supersolid displays a double-symmetry breaking, it doesn’t possess higher energy
Goldstone modes, related to phononic excitations of the crystal structure. In other words,
the crystal is infinitely stiff because its period is fixed by the cavity fields. This is a major
difference compared to the dipolar supersolid, for which the modulation is completely due
to inter-atomic interactions and the lattice is deformable. Recently, a new cavity scheme
that should be able to overcome this limitation has been implemented [66].

2D layer of solid 4He

Bulk solid helium has been a candidate to host a supersolid phase at low temperatures for
many years, as explained in section 1.1. While torsional oscillator results excluded the
presence of a supersolid in 3D solid helium, promising research is going on in 2D layers
of 4He. The system consists of layers of bosonic helium adsorbed on graphite. While the
first helium layer is strongly affected by the interactions with the graphite layer and forms
a triangular lattice, the second helium layer is expected to show superfluid properties
in some range of coverage densities, see Fig. 1.10. At low coverages, the layer is in a
gas-liquid coexistence, while close to layer completion it forms a solid incommensurate
with the previous layer. Two recent papers [67, 68] reported measurements of superfluid
behavior in torsional oscillator experiments for intermediate coverages of the second layer
around n ∼ 18 atoms/nm2, see Fig. 1.10(b-c). The technique is analog to that explained
in section 1.1 about bulk solid helium. The temperature dependence of the superfluid
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Figure 1.10: Superfluid phase in 2D solid 4He from [67, 68]. (a) Two layers of 4He adsorbed on graphite.
The second layer (blue circles) shows superfluid properties for intermediate layer coverages. (b-c) Torsional
oscillator frequency shift (b) and, analogously, superfluid fraction (c), as a function of the second layer
coverage, from [67] and [68], respectively.

fraction isn’t described by the usual BKT transition in 2D, and in [67] it is suggested that
the reason could be the softening of roton modes and the formation of a density-wave order
coexistent with superfluidity. In [68] a phase diagram with a possible supersolid region is
proposed. As opposed to ultracold atom systems, the supposed supersolid in the second
layer of 4He on graphite probably belongs to the group of vacancies supersolids, namely a
condensate of mobile vacancies immersed in a strongly correlated solid. The corresponding
superfluid fraction should be lower than for cluster supersolids, see Fig. 1.10(b).

Superfluid 3He under confinement

The fermionic isotope of helium, 3He, becomes superfluid through the formation of Cooper
pairs, in analogy to electrons in superconductors. In the absence of a lattice that mediates
attractive interactions between the fermions, the attraction between 3He atoms, needed
for the formation of Cooper pairs, comes from the attractive part of the Van der Waals
interaction. To avoid the strong hard-core repulsion, the pairs form with non-zero relative
angular momentum, in a p-wave state, contrary to standard s-wave superconductors. For
symmetry reasons, the spin part of the wavefunction must be a triplet state. The 3He
Cooper pair is, therefore, a very complex object, and the order parameter is a multi-
dimensional tensor rather than a single complex wavefunction [2]. The superfluid phases
exhibited by 3He are very rich. The dominant superfluid phase is usually the B-phase, which
has an isotropic energy gap in momentum space, as opposed to the A-phase. A typical
phase diagram is shown in Fig. 1.11. The spontaneous breaking of translational symmetry
can happen when the superfluid is confined in the vertical direction, as investigated in
two recent works [69, 70]. For confinement dimensions D of the order of 1 µm or less,
the gap in the B-phase gets distorted, and the A-phase gains space in the phase diagram.
Correspondingly, a new phase appears at the boundary between the A and B phases,
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Figure 1.11: Pair density wave phase in confined 3He, from [69, 70]. (a) Sketch of the system. Domain walls
separating regions with different signs of the gap ∆ spontaneously form to suppress pair-breaking effects.
(b) The gap modulation could be in the form of stripes (middle image) or in a ’polka dot’ pattern (right
image) [69]. (c) Phase diagram for vertical confinements D getting thinner from left to right. The blue
region is the B-phase, the red region is the A-phase and the gray region is the pair density wave phase [70].

see Fig. 1.11. Such a phase has been experimentally explored through nuclear magnetic
resonance [69] or through Helmholtz resonators [70], and it has been identified with a
predicted pair density wave phase, in which the energy gap of the Cooper pairs ∆ gets
spatially modulated, as sketched in Fig. 1.11(a). The physical origin of the modulation
lies in an energetic balance between pair-breaking effects near the confining walls and
the formation of domain walls in the order parameter [71]. When a Cooper pair scatters
from the surface, the sign of its momentum is reversed, and this favors the breaking of
the pair. The creation of domain walls in which the energy gap changes sign, passing
through zero, suppresses pair-breaking effects. For small confinements D, the energetic
cost of creating a domain wall is compensated by the energetic gain of the suppression of
pair-breakings, and a pair-density wave is predicted to be stable. The two experiments
[69, 70] provide evidence of the modulated phase, although a direct observation of the
modulation is lacking. Also, the consensus about the shape of the modulation is missing:
it could be a 2D lattice, named ’polka dot’ phase [69], or a stripe phase [70], see Fig.
1.11(c).
Interestingly, the pair density wave phase in 3He has some strong similarities with the
dipolar supersolid: it is mainly due to interactions and it requires a macroscopic vertical
confinement of the order of 1 µm. The spatial period of the pair density wave is of the
order of the vertical confinement so that it would belong to the group of cluster supersolids.
Of course, the main difference is that the modulated quantity is not directly the density of
the condensate, but the energy gap.

Pair density waves in high-Tc superconductors

High-Tc superconductors are among the most fascinating and complex condensed-matter
systems. Cuprate superconductors, for example, have a rich and only partially understood
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Figure 1.12: Pair density wave (PDW) phase in cuprates superconductors. (a) Phase diagram of the cuprate
La2−xBaxCuO4. The green region is the superconducting phase. The blue line indicates the onset of the
charge order. The PDW lies in the region of reduced critical temperature Tc . (b) Measurement of the
spatial modulation of the Cooper pair density in Fourier space for the cuprate Bi2Sr2CaCu2O8+x from [72],
showing Fourier peaks corresponding to a periodic modulation equal to 8 a0 in real space.

phase diagram, featuring a d−wave superconducting phase but also many other ordered
states, that could compete with superconductivity [73]. For what regards supersolid
physics, a region of pair-density wave (PDW) phase inside the elusive ’pseudogap’ regime
is particularly interesting. The PDW is predicted to appear around a critical hole doping
of 1/8, and consists in a sinusoidal modulation of the energy gap ∆ with a period d = 8
a0, where a0 is the dimension of the underlying lattice unit cell [74]. Also, the density
of Cooper pairs should be modulated with half that period, 4 a0. The periodicity has
its origin in the formation of Cooper pairs with finite momentum, which becomes the
momentum of the spatial modulation. Without even trying to be exhaustive on the topic,
we cite the first observation of the gap modulation [75] and of the Cooper pair density
modulation [72]. Very recently, a PDW has been observed also in another class of high-Tc

superconductors, the iron-based superconductors [76]. A phase related to PDWs, the
so-called FFLO phase, is under study in unbalanced two-species ultracold Fermi gases
[77]. The PDW exhibits global phase coherence in the form of superconductivity and
also a spontaneous modulation of the order parameter, namely the energy gap. It has
therefore all the characteristics to candidate for the group of supersolid phases of matter.
However, the large literature about PDW in superconductors never mentions the possible
relationship with supersolid physics. It is particularly interesting for the purposes of this
thesis, that the PDW exists in a region of the phase diagram where the critical temperature
for superconductivity has a dip, see Fig. 1.12. This effect suggests a competition between
the spatial and superconducting order, and it is very tempting to associate it with a
mechanism of reduced superfluidity quantified by the superfluid fraction, the main topic
of chapters 4 and 5 of this thesis. There is indeed evidence that the superfluid stiffness of
cuprate superconductors, quantifying their superfluid behavior, is particularly low and is
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correlated with the critical temperature Tc for superconductivity [78, 79]. Any reference to
the superfluid fraction or a similar quantity related to superconductors is however missing.

Neutron stars

As a last example, we cite an astrophysical object in which the extreme conditions of high
density and low temperature make quantum effects important: the neutron star. It is
widely believed that the core of neutron stars is composed of neutrons in a superfluid state,
with densities of the order of the nuclear saturation density. The outer crust, instead, is
expected to be a crystalline solid made of neutron-rich ions. In between the core and the
outer crust, at intermediate densities, the superfluid smoothly connects to the crystal,
possibly forming something similar to a supersolid phase. In this region, many theories
point to the existence of the so-called ’pasta phases’, in which neutrons are arranged in
spatially-ordered structures of different geometries and dimensionalities [80]. Interestingly,
the interaction between the superfluid and solid parts is often discussed in terms of an
’entrainment’ mechanism, for which the free neutrons are entrained by the crystal structure
[81]. The concept of entrainment has many similarities, also formally, with Leggett’s
model for a rotating supersolid and the concept of superfluid fraction, see section 4.1, and
could be connected to the problem of the superfluid density of neutrons [82]. Recently, a
theoretical paper proposed to simulate the phenomenon of glitches, namely the sudden
increase of the rotational frequency of pulsars, with a dipolar supersolid, studying the
analogy between the unpinning of vortices from the inner to the outer crust in a neutron
star and the dynamics of vortices in the dipolar supersolid [83].



26 The supersolid phase of matter

System Modulated
quantity

Lattice period
d

Control
parameter (at

T = 0)

Dimensionality
of the lattice

Dipolar BECs Number
density

few µm ∼ lz
(harmonic
vertical confine-
ment)

ϵdd = add/as

(dipolar over
contact)

1D or 2D

SOC BECs Number
density

≲ 1 µm ∼ λR

(Raman laser
wavelength)

ΩR (Raman cou-
pling)

1D

BECs in cavities Number
density

λP/ cos 60◦ ∼ 1
µm (pump laser
wavelength)

ΩP (Rabi fre-
quency of the
pump laser) or
pump-cavities
detunings

1D

2D 4He Number
density

< 1Å 2nd layer coverage 2D

Confined 3He Energy gap ∼ 1 µm ∼ D
(vertical con-
finement)

D (vertical con-
finement)

1D or 2D

PDWs in cuprates Energy gap
and density
of pairs

8 times the un-
derlying lattice
period (few nm)

Doping percent-
age

1D

Table 1.1: Modulated superfluid phases in recent experiments (see text). The images in the first column are
from [15, 14, 13, 67, 70, 72] from top to bottom.



Experimental realization and
detection of a dipolar supersolid

Chapter 2
To realize dipolar supersolids, we work with bosonic dysprosium atoms cooled down
to quantum degeneracy and trapped with optical methods. The key ingredient for the
formation of the dipolar supersolid, the long-range and anisotropic dipolar interaction,
arises due to the large permanent magnetic moment of dysprosium in its ground state,
µ = 9.93 µB, about ten times larger than for alkali atoms, which means a dipolar interaction
100 times larger. According to the definition in Eq. 1.10, we quantify the strength of the
dipolar interaction with the dipolar length, which for dysprosium is add = 130 a0, a large
value that comes mainly from the large magnetic moment but also from the large mass.
Therefore, to get into the strongly dipolar regime we need to tune the s-wave scattering
length to values as ∼ 100 a0 and lower.
In this chapter, we describe the experimental setup for the production of the dysprosium
BEC, the crossing of the supersolid phase transition tuning as and the imaging techniques to
get information on the supersolid phase. Section 2.1 is a brief overview of the experimental
sequence for the cooling of dysprosium to quantum degeneracy. Since this is not a specific
topic of the thesis, we do not enter into details and we refer to [84, 85, 10] for further
information on the experimental apparatus. In sections 2.2 and 2.3, we instead deepen
the description of the imaging methods: the time of flight imaging after a free expansion
and the in situ imaging, respectively. Note that the time of flight imaging is the standard
technique that we employed in all the publications described in this thesis, while the in
situ imaging was built appositely for the Josephson experiment, described in chapter 5,
and is therefore absent in the other chapters.

2.1 Cooling and trapping Dy
Dysprosium is a rare-earth element belonging to the family of lanthanides (see the review
[31] for a general description of the physics of ultracold lanthanides atoms). It has several
abundant fermionic and bosonic isotopes. We work with the bosonic isotope 162Dy, which
has a relative abundance of 25.45 %. Some important properties of dysprosium are sum-
marized in Tab. 2.1. The large magnetic moment of dysprosium arises from its peculiar
submerged-shell electronic configuration, [Xe]4f 106s2, in which the higher energy orbital
6s is fully occupied, while the lower energy 4f orbital is populated by only 10 electrons.
Among the 7 sublevels of the 4f orbital, 4 are populated by unpaired electrons which are
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Table 2.1: Some key properties of the element 162Dy.

µµµ mass add Tmelting Tboiling Ground state ΓΓΓ421 ΓΓΓ626
(µB) (amu) a0 (°C) (°C) (MHz) (kHz)
9.93 161.93 130 1412 2560 5I8 2π× 32.3 2π× 136

responsible for the high spin and orbital angular momentum quantum numbers, S = 2
and L = 6. The total angular momentum J = L + S has quantum number J = 8, which
means a manifold of 2J + 1 = 17 Zeeman sublevels. This large Zeeman space has been
exploited to simulate bulk quantum Hall physics [86]. The spectroscopic notation for the
ground state is 5I8. The bosonic isotopes of dysprosium (contrary to the fermionic ones)
have an even number of protons and neutrons in the nucleus and hence they have zero
nuclear magnetic moment I. The hyperfine structure is, therefore, absent. Anyway, the
excitation spectrum is very complex since excited states can be reached in many ways,
both from the f - and s- electrons.
The melting point of dysprosium is Tmelting = 1412 ◦C, so our source is heated up in an
oven to produce an atomic beam. We typically work at T = 1200◦C, which is enough for
the vapor pressure to produce a sufficient flux of Dy atoms. The critical condensation
temperature, for our typical atom number and trap frequencies, is about Tc ∼ 60 nK. The
main cooling stages to gap this 11 orders of magnitude in temperature are sketched in Fig.
2.1. We exploit two dysprosium resonances, both of them from the ground state J = 8 to
an excited state J ′ = 9, involving the s-electrons. The first one is a strong transition at
λ = 421 nm with a large linewidth Γ421 = 2π × 32.3 MHz, employed for the first stages of
transverse and Zeeman cooling, but also for the imaging. The second one is at λ = 626 nm
with a narrow linewidth of Γ626 = 2π × 136 kHz and it is used for the Magneto Optical
Trap (MOT).

Following the schematic sequence in Fig. 2.1, we start with a hot and fast atomic beam
exiting from the oven. At T = 1250 ◦C, the mean velocity of the atoms is v ∼ 500 m/s.
We employ a transverse cooling with two retroflected blue beams crossing perpendicularly
with respect to the atomic beam (I), to cool down the transverse motional degree of
freedom and limit the beam divergence. The atoms are then cooled in a spin-flip Zeeman
slower (II) where the blue light counter propagates with respect to the atomic beam. The
final velocity, at the position of the science cell, is of the order of 10 m/s. The third
stage (III) consists of a 3D MOT on the narrow transition at 626 nm. We employ three
retroflected beams with large waists and a quadrupole field generated by two coils in an
anti-Helmholtz configuration. On one side, the small linewidth Γ626 = 2π136 kHz ensures
a small Doppler temperature TD = 3.3 µK, favorable for the subsequent optical trapping
and evaporation. The downside of the narrow transition is that the capture velocity is low,
about 5 m/s. Since atoms exiting from the Zeeman slower with a low velocity have also a
large divergence, many of them can miss the MOT beams. To overcome this problem, we
employ two different techniques. First, we frequency-modulate the MOT beams, effectively
increasing the linewidth during the loading phase [87]. Second, we employ a final cooling



Cooling and trapping Dy 29

stage with the blue light, just before the MOT position, called angled slowing [88]. Two
red detuned laser beams at 421 nm intersect in front of the MOT and exert a longitudinal
force against the atoms, allowing for an increase of the final velocity at the end of the
Zeeman slower and hence a reduced divergence of the cold beam. During the loading of
the MOT, we polarize the sample in the ground state mJ = −8 with a magnetic field
B = 1.5 G in the vertical direction. After the loading, we compress the MOT reducing
the detuning and the intensity, to lower the temperature and increase the density. The
typical final temperature is T = 15 µK and the atom number is N ∼ 5 × 107.
From the MOT, we load the atoms in an optical trap realized by the standing wave pattern
inside an in-vacuum optical resonator with finesse F ∼ 1500 (IV). The resonator is seeded
by a single-mode laser at 1064 nm, which produces a deep trap of 200 µK with a large
waist of 300 µm. This configuration ensures a large geometrical overlap with the MOT
and an efficient loading into the optical trap with a limited input power (about 1 W) [89].
Inside the optical resonator, we perform a first stage of evaporative cooling and we load
the atoms in an optical trap realized by two focused beams with λ = 1064 nm, ODT1 and
ODT3, at a temperature T ∼ 3 µK (V). ODT1 has a waist of about 40 µm, while ODT3
is elliptical with a horizontal waist of 80 µm and a vertical one of 40 µm. The two beams
intersect at about 40◦. We perform the final stage of evaporative cooling in the crossed
dipole trap, in which the vertical trapping frequency is always larger than the average
in-plane frequency, to avoid collapse due to the attractive part of the dipolar interaction.
This is possible thanks to the ellipticity of the ODT3. We finally cross the thermal-BEC
transition and form a BEC, for which the lowest detectable temperature, inferred from
the thermal fraction in a free expansion, is 30 nK (VI) [85, 10]. The typical atom number
can be adjusted between 2 and 5 ×104 atoms. As explained in section 1.2, the harmonic
trapping has a cigar shape, with a weak confinement of about 20 Hz in one direction (x)
and a tighter confinement in the vertical direction (z) of about 100 Hz. The transverse
confinement (y) is variable by changing the relative power of the two trapping beams. In
the experiment about the phase transition [15], described in chapter 3, we change the
transverse confinement from 67 Hz to 100 Hz. In the experiment about the scissors mode
[19], described in chapter 4, we instead work with the ODT3 plus another beam, ODT2,
intersecting at an angle of 80◦, see Fig. 2.1. This configuration produces smaller transverse
frequencies, reducing the aspect ratio in the horizontal plane and favoring the excitation
of the scissors mode, see chapter 4.

Tuning the interactions
We cross the BEC-supersolid phase transition by tuning the relative strength of dipolar
and contact interactions, as explained in section 1.2. The dipolar length add = 130 a0 is
fixed, and we tune the s-wave scattering length through Feshbach resonances. The relevant
parameter for the phase diagram is ϵdd = add/as, and the critical value for the phase
transition is around ϵdd ∼ 1.4, depending on the trap geometry and the atom number. We
need therefore to tune the scattering length around the values 90-100 a0. Commonly to
the other lanthanides atoms, dysprosium has a rich spectrum of Feshbach resonances [31].
We employ a set of two Feshbach resonances located around B = 5.1 G, characterized in
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Figure 2.1: Experimental setup for the production of a dysprosium BEC [84, 85]. The two transitions employed
for the cooling (421 nm and 626 nm) are highlighted. The insets show sketches of the main steps for the
cooling and trapping on a temperature scale, from the production of the atomic beam in the oven (I) to the
measured BEC density after a free expansion (VI). See text for a description.
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Figure 2.2: Tuning the interactions with Feshbach resonances. (a) Magnetic field B to scattering length
as conversion in the region 5-6 G, where two resonances dominate [55]. The region in which we cross the
BEC to supersolid transition and we perform the experiments reported in this thesis is shown in gray and
corresponds to an interval of about 80-120 a0, highlighted in the inset. (b) Radiofrequency calibration of
the Feshbach coils. The Zeeman resonance corresponding to a transition mJ = −8 → mJ = −7 is detected
through atom losses. (c) Finding the radiofrequency resonance at different values of the Feshbach coils’
voltage, we calibrate the voltage to magnetic field conversion.

[55], with centers B1 = 5.126(1) G and B2 = 5.209(1) G and widths ∆B1 = 35(1) mG and
∆B2 = 12(1) mG plus a broader resonance at B3 = 21.95(5) G, with width ∆B3 = 2.4(8)
G, measured in [85]. The model for the B to as conversion is then

as(B) = abg

(
1 − ∆B1

B −B1

)(
1 − ∆B2

B −B2

)(
1 − ∆B3

B −B3

)
, (2.1)

where abg = (139 ± 4) a0 is the background scattering length [55]. Eq. 2.1 is plotted
in Fig. 2.2, where the relevant region for the experiments in the supersolid phase is
highlighted. We typically produce the BEC around as = 140 a0 and then lower the
magnetic field to form the supersolid at the desired scattering length value. To calibrate
the voltage of the Feshbach coils, we employ radio-frequency spectroscopy addressing
the transition between the ground state mJ = −8 and the Zeeman level mJ = −7. The
Zeeman splitting is

∆EZ = µBgJB (2.2)

where gJ is the Landè g-factor, which is 1.24 for the dysprosium ground state. When the
radiofrequency energy hνRF matches the Zeeman splitting ∆EZ , atoms are transferred in
the excited Zeeman level and are lost due to inelastic dipolar scattering [31]. We scan the
radiofrequency νRF at a fixed Feshbach voltage to find the resonance, shown in Fig. 2.2(b).
Repeating the measurement for different Feshbach voltages, we calibrate the coefficients
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in the conversion B[G] = aFV [V ] + b, with FV [V ] the voltage of the Feshbach coils, as
shown in Fig. 2.2(c). The width of the resonance is about 3 kHz, which translates into a 1
mG uncertainty in the calibration of the magnetic field. The magnetic field stability is
0.5 mG, resulting in an error in the scattering length of 0.3 a0. However, the background
scattering length abg is known with quite a large error and dominates the error in the
absolute scale of scattering lengths. Also with the latest and most precise measurement,
performed through the critical atom number for the droplet formation [55], the error is 4
%, abg = (139 ± 4) a0, of the same order of the extension of the supersolid region (∼ 6 a0
over 95 a0, 6 %). It is therefore very challenging to determine experimentally the critical
scattering length. This is not a limitation, since in all the experiments in this thesis, we are
not interested in the global scale of scattering lengths but only in relative changes. When
we need to compare experimental and theoretical results, we identify a precise calibration
of the absolute scale by comparing the critical point of the phase transition observed in
the experiment and in the GPE numerical simulations [10, 15], as discussed in chapter 3.

2.2 Characterization of the supersolid phase: time of
flight imaging

A very powerful technique in the field of ultracold quantum gases is the so-called time of
flight imaging, which consists of switching off all the trapping potentials and letting the
atomic gas expand in the gravitational field. After an expansion time tT OF , we perform
an absorption imaging at the resonant transition at 421 nm. In the ideal case of a non-
interacting system, the real space density ρ(r) is mapped, after a long enough expansion,
in the momentum space density ρ(k), related to the real space wavefunction by a Fourier
transformation ρ(k) = |FT[ψ(r)]|2. In this simplified case, all the potential energy of the
trap is transformed into kinetic energy. Since the spatial directions in which the gas is
more strongly confined are the ones with more potential energy, the system acquires more
kinetic energy along those directions. As a result, the aspect ratio of the atomic cloud gets
inverted during the expansion: the smaller dimension in situ becomes the larger one after
the time of flight. This technique is very useful, for example, to distinguish between a BEC
and a thermal cloud. In the latter, many states with momentum k ̸= 0 are populated,
and the expansion of the cloud is very fast: after a few ms it becomes too dilute to be
detected with absorption imaging. In the BEC, on the other hand, the state with k = 0
is macroscopically populated, and the expansion is much slower. For tT OF > 10 ms, we
observe a gaussian-shaped density distribution, centered around k = 0. In the supersolid
phase, instead, typical time of flight images in the kx − ky plane are shown in Fig. 2.3.
The density in momentum space shows an interference pattern, with typically three main
interference fringes, corresponding to kx = 0 and kx = ±krot. The interference comes
from the overlap of the matter waves that form each cluster of the supersolid, each with
its well-determined phase. The observed pattern comes mainly from next-neighboring
clusters since coherences between more distant clusters would produce weaker peaks at
smaller momenta [11]. The stripes are elongated along the ky direction because in real
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Figure 2.3: Time of flight images of the supersolid phase. Top row: absorption images of the momentum
distribution in the kx − ky plane after tTOF = 61 ms. Lower row: integrated momentum distribution ρ(kx)
and corresponding double slit fit (red lines) with the function in Eq. 2.4. The images show three typical
situations with different phase differences, from left to right, φ ∼ 0.2π, 0.5π and 0.8π. The middle case
corresponds to the ground state of the system.

space the system is more confined in the y than in the x direction. The relative amplitude
of the interference peaks is determined by the relative phase φ between the clusters. The
interference pattern is qualitatively similar to that of a coherent laser field diffracted by a
rectangular double slit. In that case, the intensity recorded on a screen in the far field is

I(x) = I0
sin2

(
πax
λL

)
(

πax
λL

)2 cos2
(
πdx

λL
+ φ

)
. (2.3)

The first factor is the diffraction pattern from the single slit, whose dimension is a and
whose distance from the screen is L. The second factor is the interference between the two
slits, whose separation is d. The phase difference of the electric field between the two slits
is φ, and λ is the wavelength of light. The width of the envelope (the central diffraction
peak) is proportional to the inverse of the single slit dimension a, while the period of the
interference fringes to the inverse of the slit separation d, see Fig. 2.4. Analogously, in the
supersolid interference pattern, the width of the envelope is of the order of one over the
cluster’s dimension, while the distance between the fringes is proportional to the inverse
of the supersolid period d, krot ∼ 2π/d. There are however some differences compared
to the electromagnetic analogue, as sketched in Fig. 2.4(b). First, the density clusters
do not have sharp edges like the rectangular slits, therefore we use a gaussian envelope
instead of the cardinal sine. Second, we add a second guassian with the same width of
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Figure 2.4: Sketch of the modelization of the interference pattern. In a double-slit (a) the interference pattern
is given by Eq. 2.3, plotted in (b) as a blue line, together with the interference (green) and the envelope
(yellow) terms. For the supersolid clusters (b) we modify the interference pattern as in Eq. 2.4, plotted in
(d) as a blue line, together with the interference (green) and gaussian (red) terms.

the envelope to take into account the finite contrast of the interference. The contrast is
less than one for two reasons: the optical resolution of the imaging system is finite, about
0.2 µm−1 in momentum space (1/e gaussian width) [10], and the clusters have a finite
overlap, depending on the amplitude of the density modulation, and hence on the value of
the interaction parameter ϵdd. The resulting double slit fitting model is

ρ(kx) = Ae
− (kx−k0)2

2σ2
k

[
1 + A1 cos2

( π

krot

(kx − k0) + φ
)]

, (2.4)

where σk is the width of the envelope and k0 is the center of the interference pattern.
In Fig. 2.3 three examples of time of flight images are depicted with the corresponding
integrated density distribution ρ(kx) and the fitted model of Eq. 2.4.

Time of flight images are needed to get information on the relative phase φ, which is
not measurable in situ. On the other hand, in situ imaging is preferable for measuring
quantities related to the real-space density, such as the period or the amplitude of the
density modulation. However, an optical microscope with a good enough spatial resolution
is required to image the density modulation in situ, which wasn’t available in the experiment
at the beginning of my PhD. In the next section, we will describe an implementation of
such a microscope. Nevertheless, it is possible to get information on the density modulation
also from the time of flight images. The task would be very simple if the hypothesis
of the absence of interactions during the expansion were correct. In that case, the real
space and momentum space densities would be linked just by a Fourier transform, and



Characterization of the supersolid phase: time of flight imaging 35

from a measurement of the latter would be possible to quantitatively trace it back to
the real space density. Unfortunately, interactions play a relevant role in the expansion.
Both contact and dipolar interactions affect the expansion of the atomic cloud in the first
milliseconds, while they get transformed into kinetic energy. Afterwards, the gas becomes
much more dilute and the expansion is effectively interaction-free. While the Fourier
transform still gives qualitative information about the observed time of flight images (for
example the order of magnitude of the period, d ∼ 2π/krot) it is difficult to extract more
precise information. The role of contact interactions in the interference of multiple BECs
is relatively well understood [90, 91], but the more complex dipolar interaction is much
more difficult to model. The role of the dipolar interaction has been measured in the
expansion of a chromium BEC through the modification of its aspect ratio [92], and some
simulations studied the interference fringes produced by the expansion of two separated
dipolar BECs [93], but there is no work on the expansion of the supersolid phase. In the
experiment, to mitigate the role of dipolar interactions in the expansion dynamics, we
ramp the scattering length to as = 140 a0 about 200 µs before the release of the atoms
from the trap.
We developed an empirical analysis to quantitatively measure the formation of the density
modulation in the superfluid-supersolid transition from the time of flight images [15]. The
idea is that the relative amplitude between the lateral and central peaks of the interference
pattern is proportional to the density contrast between minima and maxima in the real
space density. On the BEC side, it is zero because there are no lateral peaks, and it starts
increasing entering the supersolid region, where the lateral peaks become more and more
visible. We therefore define a contrast C̃ = maxL/maxC as depicted in Fig. 2.5. There
are two technical problems with this definition. The first is that the amplitude of the
lateral peaks is not always symmetric, but it changes for different values of the relative
phase φ. Since we do not want to take into account the phase degree of freedom, but
only the density modulation, we first shift the fitted momentum density ρ(kx) imposing
φ = π/2, to get the symmetric configuration plotted with a red line in Fig. 2.5. The
second problem is that we would like an observable capable of distinguishing between
the BEC and supersolid phase. As a matter of fact, the contrast C̃ is not always zero
on the BEC side, because the double slit fit sometimes finds a fictitious lateral peak
due to fluctuations in the shape of the gaussian profile. To overcome this problem, we
define a second observable taking into account also the minimum between the two peaks,
C̃control = (maxL − min)/(maxL + min), which is indeed zero on the BEC side, because
eventual fictitious lateral peaks practically coincide with their relative minimum. We use
C̃control as a control parameter: if C̃control = 0, we set C̃ = 0. We do not use C̃control to
quantify the density modulation on the supersolid side because we found that it is much
more sensitive to the atom number than C̃. Typically, as a function of ϵdd, C̃control has a
maximum in the supersolid region and then starts decreasing, because the atom number
decreases approaching the droplet crystal.

Fig. 2.6 summarizes the information we get from a time of flight experiment, as a
function of ϵdd. The contrast C̃ increases from zero on the BEC side up to about 0.6 in
the supersolid, then saturates. The point in which C̃ becomes larger than zero sets the
experimental transition point. The complementary observable, φ, has a narrow distribution
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Figure 2.5: Defintion of the momentum space contrast C̃ . Black points are the measured momentum space
density ρ(kx) in a time of flight experiment, in the supersolid regime. The gray solid line is the double slit
fit in Eq. 2.4. The red solid line is the result of the fit shifted such that φ = π/2. Markers indicate the
points employed in the definition of C̃ and C̃control: the central and lateral maxima maxC and maxL, and the
relative minimum min.

in the middle of the supersolid phase and gets larger approaching the droplet crystal phase.
Contrary to the BEC-supersolid transition, we are not able to detect a clear transition
from the supersolid to the droplet crystal phase.

2.3 Characterization of the supersolid phase: in situ
imaging

Although from time of flight images we can get information on both the phase coherence
and the density modulation of the supersolid phase, there are observables that we can only
measure in situ. One major example is the relative population between the clusters, a key
quantity to understand the Josephson effect, as discussed in chapter 5. During my PhD,
we built an optical microscope to measure the density of the supersolid in real space. This
section deals with the optical setup and the experimental techniques employed to get real
space images of our system.

Test of the imaging system
The geometry configuration of our vacuum cell combined with the actual cooling and
trapping schemes, which determine the final position of the atomic cloud, limits the
minimum atom-lens distance to be about 50 mm. It is not possible, therefore, to reach
a high numerical aperture and a sub-micron resolution, as in modern quantum gas
microscopes. However, our goal is to resolve relatively large structures, because the lattice
period of the supersolid is of the order of 4 µm. To successfully resolve the population
of the different clusters, we need an imaging system with a resolution smaller than this
value. We developed a very simple optical scheme, with a commercial lens1 with a focal

1Achomratic doublet AC508-075-A, Thorlabs.

https://www.thorlabs.com/thorproduct.cfm?partnumber=AC508-075-A
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Figure 2.6: Supersolid formation in time of flight images. Lower row: contrast in momentum space C̃ as a
function of ϵdd in the same experimental configuration as in Fig. 2.3. The vertical dashed line indicates
the BEC-supersolid transition. Middle row: 3D sketches of the real space density in the three phases BEC,
supersolid, and droplet crystal, from left to right, respectively. Upper row: phase φ distributions for about
30 different experimental shots at the center of the supersolid regime at ϵdd = 1.396 (pink data) and close
to the droplet crystal regime ϵdd = 1.436 (gray data).
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length of 75 mm (f1) and a second lens with a focal length of 500 mm (f2) to focus the
image of the atoms on a camera. The sketch of the scheme and some measurements to
test the objective are shown in Fig. 2.7. To get an estimate of the optical resolution, we
took images of a standard USAF target2, composed by many groups of three black lines
with different dimensions. In Fig. 2.7(c) the element with spacing 3.48 µm, similar to the
period of the supersolid, is shown. We select a portion of the image, integrate it in the
vertical direction and obtain a 1D profile, where the steps of the target are blunt by the
finite resolution. We fit the 1D profile with the convolution of a sum of step functions,
representing the target, and the point spread function of the optical system, approximated
by a gaussian with width σ

f(x) = A
3∑

i=1

∫
Step(y − id)e−(x−y)2/(2σ2)dy, (2.5)

where Step(x) = 1 if |x| ≤ d/4 and 0 otherwise. The width σ is related to the optical
resolution by res = σ/0.35. We repeated the measurement for different positions in the
vertical direction of the first lens, which was mounted on a translational stage. The results
are plotted in Fig. 2.7(d). We obtain a minimum around res = 2 µm.

Phase-contrast imaging
The technique of absorption imaging, that we use for the time of flight images, is not
suitable for detecting the real space density. Especially in the supersolid regime, the
sample is much more dense than in the BEC, and the absorption tends to saturate. For
this reason, we employ phase-contrast imaging on the 421 nm transition line, which relies
on the dispersive phase shift introduced by the atoms on the light field at large detunings
from resonance. This technique has been introduced for the imaging of lithium BECS [94],
and more recently has been employed in an experiment on dysprosium quantum droplets
[9].
Since the absorptive and dispersive parts of the atomic polarizability scale with the
detuning ∆ and the linewidth Γ as (Γ/∆)2 and Γ/∆, respectively, at large detunings
the dispersive interaction prevails over the absorption. A sketch of the implementation
of phase-contrast imaging in our system is shown in Fig. 2.8. The physical mechanism
is based on an interferometric measurement. We employ light with linear polarization,
propagating in the vertical direction so that the electric field is perpendicular to the
polarizing magnetic field. The linear polarization can be thought of as a superposition of
two opposite circular polarizations, with complex versors ê+ and ê−. The atoms are in the
ground state with mJ = −8. The two circular polarization components drive the transition
to the excited states mJ ′ = −7 and mJ ′ = −9, respectively. However, the first transition
is suppressed compared to the second one by a factor of 150, due to the difference in
Clebsch-Gordan coefficients. Practically, the atoms interact only with the σ− polarization.
After interacting with the atoms, the two components of the electric field take a relative
phase β

21951 USAF Test Target, Thorlabs

https://www.thorlabs.com/thorproduct.cfm?partnumber=R1DS1P
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Figure 2.7: Test of the in situ imaging system. (a) Sketch of the optical scheme. Collimated blu light (421
nm) goes through a USAF target and is collected by a commercial lens f1. After the reflection from a
dichroic, the image is focused by a second lens f2 on a camera. The inset shows a typical image of the group
of the target. (b) Photograph of the test setup. (c) Image of element 2, group 7, of the USAF target, with
period 3.48 µm, similar to the supersolid one. Red lines indicate the selected area for the estimation of the
resolution. In the inset, the integrated 1D profile is fitted with Eq. 2.5, shown as a red line. (d) Fitted
resolution as a function of the vertical position of the first lens f1, displaying a minimum at res = 2 µm.
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E = E0√
2

(ê+ + ê−) → E = E0√
2

(ê+ + eiβ ê−). (2.6)

The dispersive phase β is proportional to the optical density OD, hence to the real space
density, β ∝ ρ(x, y)(Γ/∆). To gain spatial information from the phase β, we combine
the two components with a λ/2 waveplate and a polarizing beamsplitter, which select a
polarization axis forming an angle θ with the original light polarization. The observed
intensity is I = I0 cos2(θ − β/2). In the absence of atoms (β = 0), no light is detected if
θ = π/2, while all the light is detected if θ = 0. The first case is called ’dark-field’ imaging,
and one can show that the signal goes as β2 for small β. At θ = π/4, instead, the signal
is linear in β. Changing θ, therefore, one can adjust the signal-to-noise ratio. Since the
strength of the atom-light interaction depends on Γ/∆, the total signal depends also on
the detuning. Increasing the detuning suppresses the absorption and heating of the sample,
but also decreases the dispersive signal, for a fixed power. In our case, we found a good
compromise with ∆ = 5Γ and θ = 60◦.
The final image is acquired by an Andor camera. Assuming a linear camera response,
the intensity recorded Ic is proportional to the real one I, Ic = AI +B. To get a signal
independent of the camera parameters, we take three images. The first one I1 is taken with
both the imaging light and the atoms and contains the relevant information on the density.
The second one I2 is taken with the imaging light but without the atoms (β=0). The last
one I3 is a picture of the background, without the imaging light (I3 = B). Extracting the
angle β from the intensity I = I0 cos2(θ − β/2), we get a signal proportional to the real
space density ρ

ρ ∝ ∆
Γ

[
θ − arccos

(√
I1 − I3

I2 − I3
cos θ

)]
. (2.7)

Compared to the test setup in Fig. 2.7, we added a third lens with f3 = 75 mm
which focuses the primary image into the camera, to increase the total magnification. We
measured the magnification with a large-period optical lattice (employed for the Josephson
experiment, see Chapter 5). After loading the BEC in a deep lattice, we measured the
period from time of flight images, for which the magnification of the imaging system was
known. Then, from in situ images we calibrated the total magnification, which results in
M = 67(2).

In situ imaging of the supersolid phase
In order to search for the optimal position of the first lens f1, we loaded the BEC in our
1D optical lattice with period 8 µm, used also for the measurement of the magnification.
When the lattice potential is high, i.e. larger than about 100 nK, the BEC is well separated
into typically three sites, without tunneling between them. We changed the position of
f1, mounted on a 3D translational stage, searching for the configuration in which the
three sites of the BEC were best resolved. A typical image of the supersolid phase in
our best configuration is shown in Fig. 2.9. Although the period is similar to the one of
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Figure 2.8: Optical scheme of the phase-contrast imaging. We employ linearly polarized light at 421 nm
(blue line) detuned by ∆ = 5Γ from the transition. After the interaction with the atoms, the σ+ and σ−
components of the electric field take a relative phase β, proportional to the real space density. A λ/2
waveplate has its axis rotated by an angle θ to the original polarization, which determines how much light is
transmitted by a polarizing beamsplitter. The image is magnified by an objective composed of three lenses
and recorded by an Andor camera. We employ a dichroic mirror above the atoms to separate the imaging
light at 421 nm from the MOT light at 626 nm (red line).
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Figure 2.9: In situ imaging of the supersolid phase. (a) Supersolid with about N ∼ 3 × 104 atoms, at
ϵdd = 1.42, in the xy plane. The 1D density ρ(x) is fitted with the function in Eq. 2.4 (red line) to extract
the period and positions of the peaks. (b-d) Observation of the low-energy Goldstone mode. Positions of
the three supersolid clusters (b) and of the center of mass in the x direction (d) for about 100 experimental
runs, together with the histograms of the position of one of the supersolid clusters (red) and the center of
mass (blue) (c). The standard deviations are σcluster ∼ 1 µm and σcom ∼ 0.4 µm, respectively.

the USAF target in Fig. 2.7, the imaging of the supersolid phase is much more difficult,
because the density contrast can be much smaller than 1, and strongly depends on the
atom number, possible thermal backgrounds, and the interaction parameter ϵdd. Moreover,
the window of the science cell introduces aberrations. We found, indeed, that the best
configuration is the one in which we reduce the numerical aperture of the lens with an
iris, losing in resolution but eliminating aberrations and globally increasing the quality of
the images. Although we don’t have a quantitative measurement of the resolution in the
final configuration, comparisons with numerical simulations suggest that it is about 3 µm,
instead of 2 µm as measured in the test setup. In Fig. 2.9(a) we resolve three clusters,
separated by d = 3.6 µm. Depending on the final atom number, we can have also two-
and four-cluster configurations.
As a first in situ measurement, we report in Fig. 2.9(b-d) the positions of the three
supersolid clusters for different repetitions of the experiment. We observe that the single
peaks always form in slightly different positions, while the center of mass is much more
stable. This is a clear signature of the low-energy Goldstone mode, arising due to the
broken translational symmetry. In an infinite, homogeneous system, the Goldstone mode
would have zero energy, and all the possible positions of the lattice would be equally
favorable. In our case, the presence of the harmonic trap fixes the position of the main
clusters in the middle, and the Goldstone mode reveals itself in oscillations around this
position, with an energy much lower than the trap frequency. The change in the position
of the lattice comes with a superfluid flow which keeps the center of mass fixed. The
presence of the low-energy Goldstone mode was first demonstrated by the Stuttgart group
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[46]. The analog Goldstone modes with higher energy were observed by the Pisa group
studying the splitting of collective modes in time of flight images [45]. The presence of the
low-energy Goldstone mode has implications for the physics of the self-induced Josephson
junction, discussed in chapter 5.





The superfluid-supersolid quantum
phase transition

Chapter 3
Classical phase transitions from a liquid to a solid state are usually of the first order,
meaning that the order parameter itself, and not only its derivatives, has a discontinuity
at the critical point [17]. The dipolar supersolid is, however, very different from a classical
solid. First, each lattice site is a macroscopic cluster of thousands of atoms and second, the
inter-particle interactions have Van der Waals, dipolar, and purely quantum (LHY term)
contributions. It is not possible, therefore, to make predictions about the nature of the
superfluid-supersolid phase transition based on its classical counterpart. As an example of
the supersolid counterintuitive behavior, it was recently shown [95] that increasing the
temperature on the superfluid side induces a classical transition to the supersolid phase,
exactly the opposite how what happens for classical solids.
Moreover, in our experiment, we cross the phase transition at the lowest temperature we
can achieve, well below the condensation temperature. In a classical phase transition, the
temperature is changed and thermal fluctuations are responsible for the formation of a new
phase. In our case, the control parameter is another parameter of the hamiltonian, namely
the magnetic field which controls the strength of contact interactions between atoms. In
this configuration, we expect quantum fluctuations, rather than thermal fluctuations, to
be driving the phase transition. We therefore deal with a quantum, rather than classical,
phase transition [96].
The knowledge of the order of the phase transition has a twofold importance. From a
fundamental point of view, first- and second-order transitions share some very general
phenomenology, regardless of the system in which the transition actually takes place. For
example, the discontinuous nature of a phase transition involves the existence of metastable
states near the critical point, linked to hysteresis and the release of latent heat [17]. In
continuous phase transitions, the Kibble-Zurek theory is widely employed to describe the
emergence of the ordered phase after quenches across the critical point [97]. On the other
hand, the nature of the transition has deep implications in the experimental realization
of the ordered phase. Realizing the supersolid with a discontinuous phase transition
unavoidably produces excitations, which can disturb the experimental measurements
[45, 19], while in a continuous transition, it is in principle possible to adiabatically prepare
the ground state of the system.
Even if in the last few years numerous theoretical and experimental investigations on the
dipolar supersolid phase have been carried out, there was no general consensus about the
order of the superfluid-supersolid quantum transition, and the literature offered a quite
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complex scenario. For infinite systems in the thermodynamic limit, the situation is simpler,
with some general models predicting a discontinuous transition in 2D [98, 99, 100] and
a continuous one in 1D [101]. In trapped systems, the finite size and the inhomogeneity
introduced by the harmonic confinement considerably complicate the problem. Theoretical
simulations predicted both continuous and discontinuous phase transitions to a plethora
of supersolid states, from 1D arrays in infinite tubes [102, 103] to triangular, honeycomb
and labyrinthic phases in oblate trapping geometries [104, 105]. In simulations performed
in current experimental conditions, the transition was predicted to be discontinuous in 2D
[106, 48]. On the experimental side, there were partial indications of both a discontinuous
[19, 10, 11, 45, 9] and a continuous transition [107].
In this chapter, we discuss a systematic study of the quantum phase transition in our
elongated trapping geometry. The results are published in the main paper [15] and in a
theoretical follow-up [56]. We find clear signatures of both continuous and discontinuous
transitions, depending if the crystal structure has a 1D or a 2D nature. The resulting
scenario is a dimensional crossover in which the order of the transition can be tuned
through the geometry of the system. We interpret our results on the basis of the general
Landau theory, connecting our observations in the small, trapped systems to general
results in the thermodynamic limit. The peculiarities of our dipolar supersolid emerge
clearly. First, the shape of the crossover from continuous to discontinuous transition is
determined by the high compressibility of the supersolid, which can accommodate a 2D
structure in the density background. Second, the crystallization in macroscopic clusters
allows us to observe the character of the phase transition even in our lattice made of a few
sites, limiting the impact of finite-size effects. Finally, we explain some observations with
the presence of the unusual LHY energy contribution.
The structure of this chapter follows a line of increasing complexity. In the first section
3.1, we develop the Landau theory for a crystallization phase transition in an infinite
dipolar system, both in 1D and 2D. The Landau theory only deals with the ground
state of the system and neglects dynamical effects and fluctuations, but it gives the basis
of our dimensional interpretation of the order of the phase transition. In the second
section 3.2, we focus on the experimental trapped system. We therefore introduce the
inhomogeneity of the harmonic trap and finite size effects. However, we study only
ground-state simulations, neglecting again dynamical effects and fluctuations. In the third
section 3.3, we discuss the experimental observations of both continuous and discontinuous
transitions and the validation of the dimensional interpretation. In the experiment, the
dynamics, the excitation of collective modes and the fluctuations are important, and we
discuss them in detail.
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Figure 3.1: Sketch of the Landau theory for the superfluid-supersolid quantum phase transitions. (a-b) Energy
difference ∆E between homogeneous and modulated states as a function of the contrast C . The transition
happens when the energy develops an absolute minimum with C ̸= 0. (a) 1D lattice. In 1D the energy is an
even function of C and leads to a second-order phase transition. Two states differing only for the sign of C
are sketched in the insets and are physically equivalent. The dashed line shows the LHY-induced first-order
transition, see text. (b) 2D lattice. The energy is an odd function of C and develops a barrier between
the minimum in C = 0 and the one in C ̸= 0, leading to a first-order phase transition. Insets: density
modulations with C > 0 (triangular lattice) and with C < 0 (honeycomb lattice), physically different. The
dashed line is the LHY-induced transition to the honeycomb lattice, see text.

3.1 Landau theory for the superfluid-supersolid
transition

Here we develop a simple model based on the Landau theory of phase transitions, for an
infinite system undergoing the superfluid-supersolid quantum phase transition. The model,
even if very different from the actual physical realization, simply catches the main effect of
dimensionality in the order of the transition, and it is very helpful in getting an intuition
about the phenomena observed in the real trapped system. Moreover, even if our model is
not quantitative, it is able to predict some qualitative features we observe in numerical
simulations, and even, to some extent, the role of the trapping confinement.
In the Landau theory, the behavior of a system near a phase transition is described by the
so-called order parameter, which is zero on one side of the transition and different from
zero on the other side. For symmetry-breaking phase transitions, the order parameter is
zero in the disordered phase and becomes different from zero in the ordered phase. Famous
examples are the ferromagnetic phase transition, in which the order parameter is the
magnetization (zero in the paramagnetic state and different from zero in the ferromagnetic
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state), or the superfluid phase transition, in which the order parameter is the complex
wavefunction of the condensate [16]. For crystallization phase transitions, breaking the
continuous translational symmetry of space, a possible order parameter is the density
contrast C between the maxima and the minima in the density. The contrast is zero in the
liquid-like phase (uniform density) and larger than zero in the crystal phase. In Landau’s
theory, the energy of the system is expanded in powers of the order parameter when it is
close enough to the transition point, hence when the order parameter is small

∆E = aC + bC2 + cC3 + dC4 + .. (3.1)

where ∆E is the energy difference between the ordered state (C = 0) and the symmetry-
broken one (C ≠ 0). When ∆E is negative, the ground state of the system changes and
the phase transition happens. For classical phase transitions, ∆E refers to the free-energy
difference, which takes into account also the temperature. The coefficients of the expansion
a, b, c, d.. depend on the temperature, which is typically the control parameter. In the
superfluid-supersolid quantum phase transition, the control parameter is the scattering
length as and we consider zero temperature T = 0, so that ∆E is directly the energy
difference.
To model our dipolar system close to the transition point, a commonly employed ansatz
for the density is a sinusoidal one

ρ(r) = ρ0
[
1 + C

∑
i

cos(ki · r)
]
, (3.2)

where ρ0 is the average density and ki the lattice wavevectors determining the dimen-
sionality. The coordinate r refers to the xy plane, r = (x, y). We integrate out the vertical
coordinate z, and the vertical dimensions are absorbed in the averaged density ρ0. We
will refer to 1D or 2D supersolids depending on the breaking of translational invariance
happening along one or two dimensions, even if the system is always 3D from a collisional
point of view.
As usual in the context of Landau’s theory, we can gain information on the nature of
the phase transition from the symmetries of the order parameter, as sketched in Fig. 3.1.
For 1D lattices, the density ansatz in Eq. 3.2 describes a stripe state that is symmetrical
with respect to the operation C → −C, which produces only a global shift of the stripes.
Due to this symmetry, the energy ∆E must be unchanged when C → −C, hence all
the odd terms in the energy expansion must disappear a = c = .. = 0. The remaining
even terms lead to a second-order phase transition, depicted in Fig. 3.1(a). When the
scattering length is lowered, the density-modulated state gains energy until it becomes the
ground state. The transition is smooth, because the new minimum appears for arbitrary
small values of C. On the other hand, 2D lattices don’t have the symmetry in the sign
of the contrast. When C > 0, the system self-organizes in a triangular lattice, which is
the closest-packing configuration in a plane. When C < 0, instead, the same ansatz 3.2
describes a triangular lattice of holes, i.e. a honeycomb lattice. The two configurations
have different energies so the energy ∆E contains also odd terms in the order parameter.
In particular, the combination b > 0, c < 0 and d > 0 leads to the typical scenario of
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first-order phase transitions depicted in Fig. 3.1(b). The energy develops a minimum at
C ̸= 0 already before crossing the phase transition. When the ground state changes, the
contrast jumps from zero to a value larger than zero, and all the intermediate points are
not accessible. The metastable state leads to typical phenomena of first-order transitions,
such as hysteresis and the release of latent heat [17].
Symmetries of the order parameter simply predict the change in the order of the transition
depending on the dimensionality of the lattice. We will find that this result is true also
in the small and inhomogeneous experimental system. We note that, in principle, the
modulated state is not described only by the contrast C but also by a phase ϕ which
determines the position of the lattice. In infinite systems, all the lattices with different
phases have the same energy, and ϕ plays no role in the transition. The energy landscape,
instead of the 1D plots in Fig. 3.1, has the famous shape of a mexican hat, in which all
the infinite equivalent minima correspond to different ϕ. When we introduce the trap,
there are some lattice configurations favorable compared to others and the mexican hat
should be deformed to take into account energy variations for different ϕ. However, the
degree of freedom associated to the position of the lattice, i.e. the Goldstone mode of
the system, has much lower energy than the amplitude mode [45]. We therefore continue
neglecting the phase ϕ and consider only the contrast C.
Before turning to the numerical simulations and the experimental realization, we describe
in more detail the Landau theory for the dipolar system, showing some original results
that are confirmed in the numerical simulations of our system.

1D lattice

For a 1D lattice there is only one wavevector k1 = k and Eq. 3.2 becomes ρ(x) =
ρ0(1 + C cos kx). The Landau energy expansion ∆E is found calculating the total energy
of the dipolar system with our ansatz and expanding in powers of the contrast C. The
various energy terms are the ones appearing in the eGPE 1.13, with ρ = |ψ|2

E[ψ] = Ekin + Econt + Edip + Etrap + ELHY . (3.3)

The kinetic energy is Ekin = ℏ2/2m
∫

|∇ψ|2dV , the mean field interaction energies
are the contact one, Econt = g/2

∫
ρ2dV , and the dipolar one Edip = 1/2

∫ ∫
Udd(r −

r′)ρ(r)ρ(r′)dV dV ′, the trap energy is Etrap = m/2
∫

(ω2
xx

2 +ω2
yy

2)ρdV and the LHY energy
is ELHY = gLHY

∫
ρ5/2dV , with gLHY the LHY coefficent [15]. In the infinite case, Etrap = 0

and all the odd terms in the energy expansion correctly disappear. The contact and dipolar
interactions contribute only to the quadratic coefficient b1D, while the kinetic and LHY
energies contribute to all orders. The behavior of the energy terms as a function of as is
plotted in the previous section in Fig. 1.7. While lowering as, the dipolar energy decreases
and becomes negative, changing the sign to the coefficient b1D. To form the modulated
state, the energy gain of the dipolar term must overcome the energy cost of the contact,
kinetic, and LHY terms. The fourth-order coefficient d1D is determined by the kinetic and
LHY energies
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Figure 3.2: Effect of the trapping potentials in the Landau expansion of the energy. (a) 1D lattice with
a confinement in the x direction, simulated by a gaussian envelope g(x) with width σ. The plot shows
c1D/b1D (red line) and c1D/d1D (orange line), as a function of the width of the envelope σ over the lattice
period d . The odd coefficient c1D is well under 1 % for all values σ/d > 0.5, corresponding to systems that
have at least two lateral clusters, as shown in the insets. Red lines in the insets are the energy profiles of the
harmonic trapping potential. (b) 2D lattice with a confinement in the y direction, simulated by a gaussian
envelope g(y) with width σy . The blue (light blue) line shows the ratio of the even coefficients d2D/b2D for
the kinetic (LHY) energy, versus the ratio σy/d . Dashed lines are the prediction of the infinite model [99].
The kinetic energy coefficients are shifted vertically for clarity. Insets show density cuts along x for y = 0
(black line, corresponding to the central row of clusters) and for y =

√
3/2d (red line, corresponding to the

first lateral row of clusters) for σy/d = 0.4 and 1, respectively. The deviation from the infinite case happens
around σy/d ∼ 0.4, when the lateral clusters are suppressed at a level about 10 % of the central ones.
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d1D = ℏ2

2m
ρ0π

2

8d − gLHY

15ρ5/2
0 d

1024 , (3.4)

where d is the lattice period, k = 2π/d. With the typical densities of the experiments,
the kinetic contribution dominates over the LHY one, and d1D > 0, ensuring the stability
of the system at large values of the contrast. The transition is then of second order, and
the shape of ∆E follows the sketch in Fig. 3.1(a). However, also in the 1D case, the
Landau theory predicts a first-order transition under particular conditions. For very high
densities, the LHY contribution reverses the sign of d1D. In this case, the energy would
become more and more negative increasing the contrast, and no stable ground state would
exist. To get a new ground state, we have to consider the next term in the expansion,
∼ e1DC

6. The coefficient e1D is again given by a competition between kinetic and LHY
energies

e1D = ℏ2

2m
ρ0π

2

16d − gLHY

25ρ5/2
0 d

16384 (3.5)

but in the region where d1D is negative, e1D is positive, ensuring the presence of a new
minimum in the energy. In this regime, when the ground state has C ̸= 0, the combination
of the coefficients is b1D > 0, d1D < 0 and e1D > 0. The resulting energy curve, plotted
in Fig. 3.1(a) as a dashed line, resembles that of a first-order transition, with an energy
barrier between the minimum at C = 0 and that at C > 0.

We also partially investigated the effect of the confinement in the 1D system. To model
the presence of the harmonic trap, we modify the ansatz 3.2 adding a gaussian envelope
g(x) with width σ, ρ(x) = ρ0(1 + C cos kx)g(x). The presence of the envelope breaks
the symmetry of the energy for C → −C, so in principle the odd terms in the energy
expansion should differ from zero. However, we find that they are negligible compared to
the even terms also for quite strong confinements. In Fig. 3.2 we plot the ratios c1D/b1D
and c1D/d1D for different values of σ/d. The odd term is well under 1 % of the even terms
until one single macro droplet survives to the confinement, see the insets in Fig. 3.2(a).
Therefore, even for small systems like the experimental ones, the effect of the trap in
the long direction doesn’t change the thermodynamic prediction that the odd term must
vanish and hence the transition must be continuous.

2D lattice

In 2D the Landau theory has been developed in [99]. The authors employed the same
ansatz as in Eq. 3.2, with three wavevectors of equal length satisfying k1 + k2 + k3 = 0.
The density modulation has a triangular structure, see insets in Fig. 3.1(b). Contrary to
the 1D case, the third order coefficient c2D is different from zero and is determined by
the competition of kinetic and LHY energies. At low enough densities, the kinetic energy
dominates, similar to what happens to the even terms in 1D, giving c2D < 0. The presence
of a negative cubic term produces a first-order phase transition while lowering b2D, see Fig.
3.1(b). This is the general prototype of crystallization phase transitions, usually of the
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first order [17]. However, the LHY energy, specific to our dipolar system, can change this
established result. Increasing the density, the LHY term compensates the kinetic energy
one and c2D = 0, giving a second-order transition in one single point of the phase diagram.
Increasing more the density, the LHY term dominates and c2D > 0, producing a first-order
transition but towards a modulated state with C < 0, i.e. a honeycomb lattice, depicted
in Fig. 3.1(b).

Also in 2D, we investigated the effects of harmonic confinement. We added a gaussian
envelope g(y) in the y direction with width σy. Depending on the ratio between the
width and the lattice period σy/d, the lateral rows of clusters experience different levels of
suppression. We want to explore to which extent the results in the thermodynamic limit
apply also to a trapped system. The results are shown in Fig. 3.2(b). We plot the ratio of
the coefficients d2D/b2D for the kinetic and LHY energy, as a function of σy/d. We observe
deviations from the predictions of the infinite system only when σy/d ∼ 0.4, corresponding
to a configuration in which the density of the first lateral clusters row is about 10 % of
the central row, see the insets. This observation means that even a tiny 2D modulation
gives results very similar to the infinite system.

3.2 Phase diagram from ground-state simulations
We now turn to a quantitative analysis of the phase transition in the trapped system. In the
experimental configuration, many approximations of the previous simplified model based
on the Landau theory must be released. First, the system is not in the thermodynamic
limit but it is very small, with few lattice sites. Second, the inhomogeneity introduced by
the trap can mix different phases, depending on the local value of the density. We should,
therefore, replace the thermodynamic concepts of first- and second-order phase transitions
with continuous and discontinuous phase transitions, empirically distinguished depending
on the behavior of the order parameter at the critical point and on the amount of energy
the system gets in the form of excitations when crossing the phase transition. In principle,
it is even possible that finite-size effects completely mix continuous and discontinuous
transitions, canceling any difference between the two. Remarkably, we discover that, even
in our small system, it is possible to clearly distinguish between the two kinds of transition.

In this section, we present a study based on numerical simulations of the ground state of
the system. We therefore exclude dynamical effects, which are discussed in the experimental
section. In the simulations, we fix the trapping frequency in the x and z directions to
typical values νx = 20 Hz and νz = 80 Hz. The polarization axis is along z, as usual. We
explore a phase diagram of the transition by changing the transverse confinement νy and
the atom number N . For each configuration, we solve the eGPE 1.13 in its stationary
form to find the ground state and we explore how it evolves as a function of the scattering
length as. To quantify the density modulation, instead of the real-space contrast C, we
define a momentum-space contrast C̃, in analogy to the experimental observable discussed
in section 2.2, as the relative amplitude of the Fourier peak of the density modulation
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Figure 3.3: Crossover from discontinuous to continuous transitions in ground state simulations. (a) Character
of the superfluid-supersolid transition as a function of the transverse trapping frequency νy and the atom
number N. Black dots mark the boundary between the continuous and discontinuous regimes and the
corresponding error bars are the atom number resolution in the simulations. The gray region indicates the
discontinuous transition induced by the LHY term in the 1D configurations at high densities. Insets show
examples of the density distribution of the supersolid at different points of the diagram. (b) Contrast C̃
versus scattering length as for νy = 90 Hz and variable atom number, corresponding to the vertical dashed
line in (a). The black curve represents the transition at the continuous-discontinuous boundary. Inset:
definition of the contrast C̃ in the momentum distribution.
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Figure 3.4: Dimensional nature of the continuous-discontinuous crossover. Real space (a) and Fourier space
(b) density of a supersolid with N = 1.4 × 104 atoms and νy = 90 Hz, at the continuous-discontinuous
boundary. (c) 1D cut of the Fourier space density in (b) along the black line (ky = 0). (d) 1D cut along
the red line (kx = π/d), revealing the presence of peaks along the ky axis in a triangular geometry. (e)
Amplitude Ay of the lateral peaks along ky relative to that of the first lateral peak along kx , Ax , as a
function of N for νy = 90 Hz and C̃ ∼ 0.04 [same simulations as in Fig. 3.3(b)]. (f) Period 2k̄y of the
modulation along ky as a function of N.

at the momentum k = 2π/d, with d the lattice period. In the limit of small contrasts,
the two observables are related by C̃ = C2/16. Fig. 3.3 summarizes the results of the
simulations. Since most of the configurations we explored are strongly elongated in the x
direction, the density modulation develops mainly in that direction. One would, therefore,
naturally associate such configurations with the continuous phase transition of the 1D
infinite system discussed before. Instead, we observe both continuous and discontinuous
phase transitions, in agreement with other simulations in an infinite tube [103]. At low
atom numbers and low trapping frequencies, the discontinuous transition is favored, while
we reach continuous transitions increasing N or νy. We arbitrarily choose a boundary
between the two kinds of transitions as the smallest value of N that gives a jump in C̃
smaller than 0.001, for fixed νy. Such a boundary is plotted in Fig. 3.3(a) as a black line.
The behavior of C̃ versus as for different atom numbers across the boundary is shown in
Fig. 3.3(b).

We interpret this crossover between continuous and discontinuous transitions as a dimen-
sionality effect, in analogy with the Landau theory. An analysis of the Fourier transform
of the density distributions, indeed, reveals the presence of a triangular structure of the
background for the configurations with a discontinuous transition. An example of such
analysis for a specific simulation is shown in Fig. 3.4. Cutting the Fourier transform along
ky, we find small peaks with amplitude Ay, much smaller than the amplitude Ax of the
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peaks in the x direction, and tunable with N and νy. Fig. 3.4(e) shows the decreasing
of the triangular structure, quantified with the ratio Ay/Ax, while increasing the atom
number N for a fixed νy. Interpreting these results in the light of the Landau theory,
we conclude that increasing the atom number or the transverse frequency reduces the
cubic coefficient in the energy expansion, producing a smooth crossover from discontinuous
transitions, with a 2D lattice, to continuous transitions, with a 1D lattice. The boundary
between the two regimes is around Ay/Ax ∼ 10 %. Remarkably, this observation is in
qualitative agreement with our Landau model of the 2D trapped system in Fig. 3.2(b),
and demonstrates that even a tiny density modulation with a 2D structure is enough to
modify the nature of the phase transition.

The peculiar shape of the crossover in Fig. 3.3 comes from the compressibility of the
cluster supersolid. Contrary to a solid with one atom per lattice site, indeed, in the dipolar
supersolid the dimensions and shape of each cluster can be modified by the external
harmonic trapping and the total atom number. For low atom numbers, it is easier for
the system to accommodate a triangular structure in the density background, and the
discontinuous transition is favored. For weak confinements νy, the critical atom number to
cross the boundary becomes higher, since the system has to pay less potential energy cost
to form a triangular background. The deformability of the dipolar supersolid is shown in
Fig. 3.5, where we focus on the transitions at the boundary of the crossover (indicated as a
black line in Fig. 3.3). We observe that, in most of the phase transitions, the width of the
supersolid σy is very close to the dimension of a non-interacting system in the harmonic
trap, ly/

√
2, with ly the harmonic length in the y direction. This is consistent with the

expectation that, at the critical point, contact and dipolar interactions tend to cancel
each other. On the other hand, for small confinements, the width σy strongly increases.
This happens together with an elongation of the single clusters along y, as captured by
the behavior of the deformation parameter βss = ⟨x2 − y2⟩/⟨x2 + y2⟩, which at large νy is
positive (clusters elongated along x) and becomes negative at small νy (clusters elongated
along y), see Fig. 3.5(b). We explain this behavior as an effect of the repulsive LHY
energy. Since the boundary of the crossover happens at high atom number N for small
νy, also the peak density is higher, see Fig. 3.5(c). To lower the LHY energy, scaling
as ∼ ρ5/2, the system limits the increase in peak density elongating the clusters in the
y direction. This ’stripe’ phase has been reported also in other numerical studies [104, 105].

Finally, in the phase diagram in Fig. 3.3, we observe a second region of discontinuous
transitions at high atom numbers, hence at high densities (gray region). In this region, the
lattice is 1D, since the transverse confinement νy is strong. We interpret this additional
boundary as the finite-size analog of the first-order transition induced by the LHY energy in
1D (section 3.1), reversing the sign of the fourth order coefficient d1D. We think that such
a mechanism could explain the presence of both continuous and discontinuous transitions
in the infinite tube numerically investigated in [103]. Remarkably, our Landau model in
the infinite system captures quite well this discontinuous region in the phase diagram.
From the expressions of the fourth- and sixth-order coefficients d1D and e1D of the energy
expansion in 1D, Eq. 3.4 and 3.5, we get that the conditions d1D < 0 and e1D > 0 are
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Figure 3.5: Supersolid structure for the phase transitions at the boundary of the dimensional crossover (black
line in Fig. 3.3), as a function of the transverse confinement νy . (a) Transverse width σy normalized
to the width of a non-interacting system ly/

√
2 (ly is the harmonic length). (b) Deformation parameter

βss = ⟨x2 − y2⟩/⟨x2 + y2⟩ of the central clusters. (c) Peak density of the central clusters. Insets show
examples of the supersolid density distributions in the xy plane.

obtained simulatenously around a mean density ρ0 ∼ 8 × 1020 atoms/m3. Considering
a lattice period d ∼ 4 µm and realistic transverse dimensions Ly ∼ 4 µm, Lz ∼ 8 µm,
the critical atom number is Nc = ρ0dLxLy ∼ 105 for each lattice cell. Therefore, for a
4-clusters configuration, the model predicts a LHY-induced first-order transition in 1D at
around N ∼ 4 × 105. This result is of the same order of magnitude as the numerical one
in Fig. 3.3.

3.3 Experimental evidence of continuous and
discontinuous phase transitions

Experimentally, we tested the theoretical predictions for two trapping geometries, with
different aspect ratios in the yz plane: potential VC , with frequencies (νx, νy, νz) =
[15.0(0.7), 101.0(0.3), 93.9(0.6)] Hz, and potential VD, with frequencies [21.8(1.0), 67(0.8),
102.0(0.7)] Hz. The atom number in both configurations is about N = 3×104 atoms. From
ground-state numerical simulations, the transition to the supersolid state is discontinuous
for potential VD, with a jump of about 0.02 in the contrast C̃ at the critical point, and
continuous for potential VC , which has a stronger confinement in the y direction.
Contrary to the stationary simulations, in the experiment the dynamic has a relevant role.
The experimental dynamical sequence is sketched in Fig. 3.6. We start from the BEC
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Figure 3.6: Experimental characterization of continuous and discontinuous phase transitions. (a) Experimental
time sequence. We cross the superfluid-supersolid phase transition with a ramp in the scattering length
as . We wait for thold = 15 ms at a variable scattering length in the supersolid regime. At the end of this
in-going ramp, we take a time of flight image (full arrows) or we ramp back the scattering length, cross
again the phase transition and take an image after waiting at the final as for thold (empty arrows). Insets:
examples of time of flight images in different points of the protocol. (b-c) Contrast in momentum space
C̃ as a function of the scattering length as in the in-going ramp (full circles) and in the out-going ramp
(empty circles) for potential VC (b) and VD (c). Vertical dashed lines indicate the position of the transition
in the ground-state simulations.
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at high as, then we ramp linearly to the supersolid regime. In principle, the ramp speed
should be as slow as possible to cross adiabatically the phase transition. However, we
are limited by unavoidable three-body losses, which scale as ρ2 and lower the lifetime of
the system in the supersolid regime, so that our observation time is limited to about 100
ms1. We employ a ramp speed ȧs = 0.5 a0/ms, which allows us to cross the transition
in potential VC almost adiabatically. At the end of the ramp, we wait for a holding time
thold = 20 ms, larger than the formation time of the supersolid. We then characterize
the supersolid state by measuring the contrast in momentum space C̃ from time of flight
images, as explained in section 2.2. The measured C̃ as a function of the scattering length
is plotted with full circles in Fig. 3.6(b-c) for trap VC and VD, respectively. Following
this in-going ramp to the supersolid regime, we also perform an out-going ramp, from the
supersolid back to the superfluid regime, crossing for the second time the phase transition.
After the out-going ramp, we wait again thold = 20 ms and we measure the contrast C̃.
The results are plotted in Fig. 3.6(b-c) as empty circles. These measurements show some
key features that reveal the different nature of the phase transition in the two potentials.
The most apparent difference is the contrast in the out-going ramps. In potential VC we
are able to follow the ground state of the system, recovering an unmodulated state with
C̃ = 0 on the BEC side. On the other hand, in potential VD the system is highly excited
and preserves a strong density modulation after the out-going ramp, up to at least 10
a0 in the superfluid regime. Another important difference is that in potential VD, before
crossing the phase transition, we observe strong fluctuations in C̃, which are instead absent
in potential VC . All these observations are consistent with a different nature of the phase
transition in the two potentials: discontinuous for VD and continuous for VC .
We checked that these differences persist for different ramp speeds, repeating the same
experiment with ȧs = 0.25 a0/ms and with ȧs = 1 a0/ms. We enter by 2 a0 inside
the supersolid regime, wait for the hold time thold, and then we cross again the phase
transition ending at 4 a0 inside the superfluid regime. The results are plotted in Fig. 3.7
as empty circles. Each data point is the average of different waiting times 10, 20, and 20
ms in the superfluid regime. The contrast C̃, which quantifies the degree of excitation,
is always larger for potential VD than for VC . However, for both potentials, we observe
a linear increase of the final C̃ with the ramp speed. This dependence comes from the
finite formation time of the supersolid, about 15 ms, which is not much lower than the
total duration of the ramps [56]. We cannot, therefore, cross completely adiabatically
the transition, since longer ramps become comparable with the lifetime of the supersolid.
Extrapolating the linear fit in the limit of infinitely long ramp (ȧs → 0), the intercept for
potential VD is larger than for potential VC . We attribute the finite value of the latter
to atom losses, which lead to a loss of adiabaticity in the long-time limit. In a different

1As described in the rest of the chapter, the observation time is limited both by atom losses and by a
decoherence process that increases the fluctuations of the relative phase between the clusters. Three body
losses are responsible for the decreasing atom number in the supersolid regime, and they also introduce noise
in the phase distribution. Their effect is similar in the two traps, since the geometry and the scattering
length scales are quite similar, see Fig. 3.8(c-d). Decoherence is however induced also by the excitation of
high-amplitude collective modes. This effect is much more pronounced after crossing the discontinuous phase
transition, see Fig. 3.12.
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Figure 3.7: Effect of the ramp speed. Contrast C̃ after the in-going ramp (full circles) and the out-going ramp
(empty circles) for potential VD (blue) and VC (magenta) for different ramp speeds. The case ȧs = 0.5
a0/ms is the one of Fig. 3.6. Dashed lines are linear fits and colored bands are the confidence intervals at
one standard deviation.

kind of experiment, we studied the contrast C̃ after the in-going ramp in potential VD, in
the region of strong fluctuations just before the transition (around 92.5 a0). For all the
ramp speeds, we observe the same contrast C̃, once we exclude the shots in which C̃ = 0
(see full circles in Fig. 3.7). This is consistent with what we expect in a discontinuous
transition, for which two minima, one with C̃ = 0 and one with C̃ ≠ 0 exist near the
critical point. More information about fluctuations is in the last paragraph of this section.
As it is evident from the measurements in Fig. 3.7, with the available ramp speeds, limited
by the lifetime of the supersolid, we are not able to follow the ground state during the
dynamics, and the system is driven out of equilibrium. Therefore, we do not interpret the
high values of the contrast in the outgoing ramp in potential VD as a hysteresis, which
would be expected in a first-order phase transition but is an equilibrium concept. We
prefer to explain the behavior in the out-going ramp in terms of excitations of collective
modes, which is more appropriate for our out-of-equilibrium system. In the hypothetical
equilibrium case, numerical simulations show a small hysteresis which appears in a shift
of about 0.5 a0 of the critical point depending on the direction in which the transition is
crossed [15].

Excitation of collective modes

Crossing the discontinuous transition in potential VD excites many different collective
modes of the supersolid. To quantify the degree of excitation of the system and compare
with potential VC , we study the kinetic energy from the measured momentum distribution
ρ(kx, ky), as shown in Fig. 3.8. In addition to the energy of the collective modes, the
kinetic energy after the expansion contains also the contributions from the interaction
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Figure 3.8: Excitation of collective modes. (a-b) Released energy ∆E (see text for the definition) after the
in-going and out-going ramps for potential VC (a) and VD (b). The energy acquired by crossing back and
forth the transition is much larger for potential VD , Etrans ∼ 4 nK, than for potential VC , Etrans ∼ 0.5 nK.
(c-d) Atom number in the in-going and out-going ramps for potential VC (c) and VD (d). In both potentials,
N is reduced to about 40 % of the initial atom number due to three-body losses. The variation of N is
considered to normalize the energy ∆E in panels (a-b), see text. The jump in atom number at the critical
point in VD is used to calibrate the magnetic field-scattering length conversion. (e-f) Excitation of the order
parameter C̃ in potential VD after the in-going ramp at 87.3 a0 (e) and after the out-going ramp at 100.3
a0 (f).
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energies. For each potential, we thus subtract the average of all the images ⟨ρ⟩, computing
δρ = ρ− ⟨ρ⟩. The energy ’in excess’, due to the collective modes, is given by

Eexp = ℏ2

2m

∫
δρ(kx, ky)(k2

x + k2
y)dkxdky. (3.6)

Since we use normalized momentum distributions,
∫
ρ(kx, ky)dkxdky = 1, Eexp is the energy

per particle. However, due to the contribution of the interaction energies, scaling as N2 (or
N3/2), Eexp depends on the actual atom number N , which strongly varies across the phase
transitions, as depicted in Fig. 3.8(c-d). Due to three-body losses, we lose about 60% of
the atoms by going from the BEC to the supersolid with lowest as, in both traps2. Losses
are described by Ṅ = −L3ρ

2, where L3 stays approximately constant during our ramps
and the increased losses in the supersolid are due to the increase in the peak density ρ. On
the out-going ramp, instead, N is quite constant, because the density already decreased
during the permanence on the supersolid side and losses are less effective. We do not
observe substantial heating associated with atom losses. In all the supersolid regime, we
do not observe the appearance of a thermal fraction, meaning that the temperature stays
below our sensitivity to thermal components, which we estimate to be about 10 nK. This
is consistent with reference [10], in which heating above 10 nK was observed only in the
independent droplets regime.
To take into account variations in the atom number for the energy calculation, we rescale
Eexp using a linear regression Eexp → Eexp − γi(N − N̄), where N̄ is the average atom
number on the BEC side and the coefficients γi are independently determined in each
subsect i of images with similar atom number [15]. In this way, the energy in the images
with low atom number N < N̄ is increased, while in those images with high atom number
N ∼ N̄ it is unaffected. In Fig. 3.8(a-b) we plot the energy difference ∆E, obtained
subtracting to Eexp the energy of the superfluid with largest as. Also in this analysis, the
larger excitation of the supersolid in potential VD, compared to potential VC , is apparent.
It is difficult to extract quantitative information from ∆E measured in the in-going ramp,
because we cannot compare our results to the energy of the ground state, which we can’t
reach adiabatically in the experiment. However, we can make a quantitative measurement
of the excitation energy in the out-going ramp, since in this regime we can compare the
excited state to the BEC ground state of the in-going ramp. As shown in Fig. 3.8(a-b), in
potential VC the energy released after crossing back and forth the transition is Etrans ∼ 0.5
nK, while in potential VD it is much larger, Etrans ∼ 4 nK.
In Fig. 3.8(e-f) we show the effect of the released energy on the contrast C̃ in potential
VD. We observe oscillations as a function of time both after the in-going and after the
out-going ramps. However, the two oscillations reveal the different nature of the excited
states on the two sides of the transition. In the supersolid regime, the contrast C̃ os-
cillates around a mean value different from zero and shows a damping due probably to

2Note that the critical transition point in potential VD is detected as a jump in the atom number, see Fig.
3.8(b), associated with a sudden increase of the peak density in situ. We employ this jump to experimentally
identify the critical point and to calibrate the global scale of scattering length, as explained in section 2.1: we
apply a global shift (6.7 a0) to match the observed jump with the critical point of ground-state simulations.
We apply the same shift also for potential VC .
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Figure 3.9: Nature of the excited systems after the in-going and out-going ramps from numerical simulations
for potential VC . Contrast C̃ versus time after the in-going ramp from 95 a0 to 93 a0 (a) and the out-going
ramp from 90 a0 to 95 a0 (e). Panels (b-d) and (f-h) show snapshots of the real space density distribution
along x for selected times.

three-body losses. The fitted frequency ν = 21(3) Hz is consistent with the so-called
amplitude mode of the supersolid [45]. In the out-going ramp, instead, the oscillation
touches zero and has a larger frequency. We interpret the excited mode after the in-going
ramp as a collective mode of the supersolid, for which the real-space contrast C (pro-
portional to C̃) oscillates around the equilibrium value, while the excitation after the
out-going ramp is an excited mode of the superfluid, with the density modulation oscillating
around C = 0. Such a mode is related to the roton mode but in the large amplitude regime.

These conclusions are corroborated by dynamical numerical simulations, performed by M.
Mougno and A. Alana, at Bilbao University [15]. In the simulations, the time-dependent
eGPE 1.13 is integrated with a time-dependent scattering length as(t), which simulates the
experimental protocol. The simulated system is a simplification of the real one because it
doesn’t take into account losses and thermal effects. However, it is useful for a qualitative
comparison with the experiment, without introducing phenomenological parameters such
as the temperature and the loss rate. Due to the absence of dissipation, the phase transition
in potential VC is crossed quasi-adiabatically, as in the experiment, only with a ramp
speed one order of magnitude lower than the experimental one, ȧs = 0.05 a0/ms. In this
configuration, in potential VD, numerous collective modes are excited and mixed together,
and the single-frequency oscillations of C̃ observed in the experiment are not reproduced.
In Fig. 3.9, instead, we show the small-amplitude (see the scale in the vertical axes)
collective modes excited in potential VC , which are in qualitative agreement with the
experimental observations. After the in-going ramp, Fig. 3.9(a), the contrast increases
and then oscillates around a finite mean value. This mode produces an oscillation in the
amplitude of the clusters, as shown in the real space densities snapshots in Fig. 3.9(b-d).
On the other hand, for the excited mode on the superfluid side, C̃ touches periodically
zero, and the real space density periodically recovers the shape of the BEC.
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Figure 3.10: Transverse collective modes. (a-b) Time evolution of the y -width σky in time of flight images for
potential VC (a) and VD (b), after crossing the phase transition at 92.9 a0 and 90.9 a0, respectively. Thick
lines are a single-frequency fit for VC and a double-frequency fit for VD (see text). (c-d) Time evolution of
the transverse width σy for potential VC (c) and VD (d) in the numerical simulations. A transverse collective
mode is activated only in the discontinuous transition, in agreement with the dimensional interpretation of
the crossover. Time t = 0 ms corresponds to the crossing of the critical scattering length. In the simulations,
the formation time of the supersolid is longer than in the experiment, probably due to the absence of
dissipation [56]. (e-f) Snapshots of the simulations for potential VC at t = 63 ms (e) and VD at t = 73 ms
(f).

The same dynamical simulations are also in qualitative agreement with our measurements
in Fig. 3.8 of the energy released after crossing the phase transition. Starting from the
ground state in the BEC and after the in-going ramp, the energy is Etrans = 0.2 nK for
trap VC and 1 nK for trap VD.

Transverse collective modes

In a theoretical follow-up paper [56], we explored in more detail the effects of the continuous
and discontinuous transitions in the formation dynamics of the supersolid. Here, we discuss
an interesting observation that supports the dimensional nature of the crossover from
continuous to discontinuous transitions. We focus on the transverse collective mode excited
during the formation of the supersolid. In Fig. 3.10, we plot the time evolution of the
transverse width σy of the system following the in-going ramps, with speed 0.5 a0/ms
in the experiment and 0.05 a0/ms in the simulations. Remarkably, in the simulations
we observe a transverse collective mode only in potential VD, detected by the oscillation
of σy at a high frequency ν ∼ 60 Hz. This transverse oscillation is associated with the
formation of a 2D pattern in the density background, reminiscent of the triangular lattice
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expected in the infinite 2D case. In the experiment, we observe a similar fast oscillation
in the transverse width in momentum space, σky, in potential VD, and a much weaker
oscillations in potential VC , see Fig. 3.10(a-b). We fit the oscillation in VD with a sum
of two frequencies, ν1 = 76(3) Hz and ν2 = 30(4) Hz. The fast frequency component has
a 5 % amplitude. In VC , we fit a single frequency ν = 56(5) Hz with a 1 % amplitude.
The excitation of a collective mode in the transverse direction y in potential VD, both
in the experiment and in the theory, is a consequence of the enlarged dimensionality of
the supersolid formed in the discontinuous transition. This evidence, coming from the
formation dynamics, completes the analysis of the triangular structure in the ground state
density in Fig. 3.4 and strengthens the dimensional interpretation of the crossover.

Fluctuations and Landau energy
Fluctuations have an important role in phase transitions and are enhanced near the critical
point. Density fluctuations evaluated in situ allowed for the experimental measurement of
the static structure factor and the excitation spectrum across the superfluid-supersolid
phase transition [108]. In our case, the fluctuations properties of the order parameter C̃
provide further evidence for the different nature of the transitions in potentials VC and VD.
In the experimental system, fluctuations have both a fundamental origin, due to the finite
temperature and quantum indeterminacy, and a technical origin, due mainly to shot-to-shot
fluctuations in the atom number, which in turn determine shot-to-shot fluctuations in the
critical scattering length. In Fig. 3.11 we show histograms with the fluctuation spectra of
the contrast C̃ in different regions of the phase diagram for both potentials. Region I is on
the superfluid side, well before crossing the transition. We therefore observe always C̃ = 0.
Region II and III are just before and after the critical point, respectively. Region IV is
well inside the supersolid regime, near to the droplet crystal. The main difference between
the two potentials is in region II. Here, in potential VC we observe a smooth broadening of
the spectrum, with values slightly larger than zero being populated. On the other hand,
in potential VD the spectrum is well separated in a peak at C̃ = 0 and one at C̃ ̸= 0. In
region III, the peak in potential VC is shifted to non-zero values, while in potential VD

it keeps the double-peak structures, but becomes more noisy. Finally, in region IV both
spectra are very broad, probably because three-body losses strongly affect the density
distribution, depending on the details of the actual formation process.
We interpret these results with the different shapes of the Landau free energy in the two
transitions, as explained by our model in section 3.1. In the continuous transition, the
energy has always a single minimum, that smoothly moves from C̃ = 0 to C̃ ≠ 0. In
the discontinuous case, near to the critical point, two different minima compete, and due
to the experimental fluctuations, we populate one or the other from shot to shot. This
interpretation is validated by a calculation of the free energy of the system as a function
of C̃, shown in Fig. 3.11(c-d). We consider an ansatz similar to Eq. 3.2, but modified to
take into account the effect of the trapping potential

ρ(r) = A
[
1 + Ce
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x

∑
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Figure 3.11: Fluctuations of the order parameter and Landau free energy. (a-b) Histograms of the contrast
C̃ divided into four different regions of scattering lengths: well before (I), just before (II), just after (III),
and well after (IV) the phase transition, for potential VC (a) and VD (b). The different regions in scattering
lengths are highlighted in (e-f). (c-d) Free energy ∆E of the system as a function of C̃ calculated with
the ansatz 3.7 for potential VC (c) and VD (d). The different curves correspond to different values of as ,
spaced by 1 a0 (0.25 a0) around the central one at 94 a0 (90 a0), for potential VC (VD). Thick lines are
the first curves after the critical point, to be compared with the fluctuations of regions II in (a-b). (e-f)
Four regions I,II,III and IV in panels (a-b) highlighted in the C̃ versus as plots, for potential VC (e) and VD

(f). (g) Ansatz 3.7, used for the numerical calculation of the free energy in (c-d). Black points are a 1D cut
along the x direction of the numerical simulations of the ground state, just after the transition (94.25 a0 for
VC and 91.94 a0 for VD). Thick lines are fits using the ansatz 3.7 (blue for VD and magenta for VC ). To
calculate the free energy, the parameters of the fit are fixed and only the contrast C is varied.
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Here, the lattice wavevectors are k1 = 2π/λ(0, 1, 0), k2 = −2π/λ(
√

3/2, 1/2, 0) and
k3 = 2π/λ(

√
3/2, −1/2, 0),

√
3λ is the lattice period, r’ = (x −

√
3λ, y, 0), C is the

contrast and A a normalization constant. The effect of the trap is encoded in the gaussian
envelope along y with width σy and in the Thomas-Fermi profiles along x (z) with radii Rx

(Rz). We also add a gaussian envelope along x for the sinusoidal modulation, with width
wx. We set all the parameters characterizing the ansatz 3.7 to realistic values obtained
from fits of the simulated ground states in potentials VC and VD [15], see Fig. 3.11(g). We
then numerically calculate the energy of the system Eq. 3.3 using ansatz 3.7 as a function
of the contrast C only. The results are plotted in Fig. 3.11(c-d) for potentials VC and
VD, respectively, for different values of the scattering length as. For a direct comparison
with the experimental results, we plot the energy as a function of C̃, obtained from the
Fourier transform of the wavefunction, as in the simulations. We correctly reproduce the
same energy shapes of continuous and discontinuous transitions of the Landau model, see
Fig. 3.1. The critical regions of the model, highlighted by the thick lines in Fig. 3.11(c-d),
are in qualitative agreement with the experimental fluctuations spectra of region II. Our
simple model captures quite well also the critical scattering lengths, equal to 96 a0 (90
a0) for potential VC (VD) against 94 a0 (91.9 a0) obtained from the numerical simulations.
The qualitative success of the model in explaining the observations validates the choice of
the contrast C̃ as the order parameter of the transition, since its variation alone across the
critical point is enough to capture the main features of the fluctuation spectra. Overall,
the analysis of the order parameter fluctuations, together with the numerical Landau
energies, is clear evidence of the different nature of the two phase transitions.
In addition to amplitude excitations, related to the contrast C̃, we also studied the
fluctuations of the phase difference φ between the main clusters, extracted from time of
flight images, see section 2.2. The phase fluctuations must be small in both potential VC

and VD, otherwise the distinctive phase coherence of the supersolid phase is lost. Results
are shown in Fig. 3.12. Note that in our fitting function in Eq. 2.4, the ground state
corresponds to φ = π/2, consisting of a central peak and two symmetric lateral ones. In
potential VC , we observe a very high degree of coherence, with a variance σ2

φ = 0.035
considering all the images in the interval 89-93 a0. In potential VD, the variance is one
order of magnitude larger, σ2

φ = 0.17, in the interval 90-92 a0. Both values are safely
lower than the variance of a uniform distribution, σ2

φ = π2/12 ∼ 0.8, as expected in the
supersolid phase. However, it is clear that in the discontinuous phase transition also
collective modes related to the phase φ are excited, and the supersolid in potential VC is
much nearer to the ground state than in potential VD. For lower scattering length regions,
in both potentials the phase distribution gets broader, probably due to three-body losses.
In potential VC (VD), σ2

φ = 0.055 (σ2
φ = 0.48) in the interval 86-89 a0 (88-90 a0).

Some remarks about phase transitions in finite systems

In this paragraph, I want to report some objections that I received, mainly from theorists,
presenting at international conferences the work about phase transitions. The first
objection is that we can’t speak about crystals in 1D and 2D, since stable crystals at
finite temperature exists only in 3D. The first answer is that our system is intrinsically 3D,
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Figure 3.12: Phase fluctuations. (a) Phase φ from all the images just after the transition for potential VC

(left) and VD (right). The intervals in scattering length are 89-93 a0 and 90-92 a0, respectively. (b) Same
phase fluctuations as in (a), but deeper in the supersolid regime: 86-89 a0 for VC and 88-90 a0 for VD . In
both panels, the shaded areas indicate the interval φ̄± σ2φ, with φ̄ and σ2φ the mean and variance of the
distributions, respectively.

but the translational symmetry breaking happens along one or two dimensions. However,
considering in detail the objection, I found that the reason for which 1D and 2D crystals
aren’t stable is that they are destroyed by long-wavelength fluctuations. Considering a
lattice of harmonic oscillators, one can calculate the mean fluctuation δ of the position of
the single lattice site due to the temperature T . Of course, the solid can’t be stable if δ is
larger than the lattice period. The result is that δ goes as kBT/m

∫
kd−3dk, where d is

the dimensionality of the system and the integral is over the wave vector k [109]. If d = 3,
δ is finite, but if d = 2 (d = 1), δ diverges as lnk (1/k) when k goes to zero.
However, it actually diverges only if the system is infinite. In a finite system with dimension
L there is a minimum wave vector k̄ = 2π/L, so that the solid is stable provided that
δ < a, with a lattice period. This is why 2D crystals such as graphene can exist also
at finite temperatures. Since our dipolar supersolid is of the cluster type, the mass of
each lattice site is ∼ 5 × 103 m, with m the mass of each atom, so that the fluctuations
of the single-site position are strongly suppressed. Moreover, the lattice period is a = 4
µm, which means that the stability is much more robust. Putting the numbers, we find
that at T = 50 nK, in d = 1 (where the divergence is more dramatic), supersolids up to
5 × 104 droplets are stable against thermal fluctuations3. A similar reasoning applies also
to quantum fluctuations.
The second objection is that we can’t speak about phase transitions if the system has

3The model consists of a chain of harmonic oscillators. The stability condition requires that the number of
lattice sites s should be much lower than

√
2π2Mω2a2

kBT
. To estimate the frequency ω, we take the typical

frequency of phononic excitations of the supersolid, ω ∼ 2π× 20 Hz [45]
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only a few lattice sites, of the order of 4-5: finite size effects are too strong and all the
thermodynamic functions are broadened. Nevertheless, the presence of a sharp transition
from the BEC to the supersolid is supported by experimental evidence, as demonstrated
in this chapter. The explanation of this observation is again related to the cluster nature
of the dipolar supersolid, and relies on the fact that finite size effects depend on the atom
number N : the broadening of the critical region of a first-order phase transition goes
as ∆TC/TC ∼ 1/N , see for example [110]. The atom number usually coincides with the
number of sites, but not in the cluster supersolid, where N is about 104 times the number
of sites. Regarding finite size effects, therefore, the cluster supersolid with 4 lattice sites
should be considered as a chain with 4 × 104 sites with one atom per site.



Supersolidity and rotations
Chapter 4

Some of the most striking differences between superfluids and classical fluids emerge in
the rotational properties. The reason at the core of the anomalous rotational behavior of
superfluids is the existence of the macroscopic wavefunction and the connection between
its phase and the velocity of the superfluid, v = ℏ/m∇φ. Since the velocity is the gradient
of the phase, the velocity field must be irrotational, ∇ ∧ v = 0. This condition is a striking
difference compared to classical systems and limits the possible dynamics of the superfluid.
The effects of the irrotational condition are enhanced in circular geometries. When the
container of the superfluid is rotated (a physical container for superfluid helium, or the
optical harmonic trap for atomic BECs and Fermi gases) the superfluid can’t acquire
angular momentum in the form of a rotational motion, meaning that its moment of inertia
is zero. This effect, in the context of superfluid helium, is called the Hess-Fairbank effect
[2]. For larger angular velocities, vortices can form. They correspond to a rotation of
the superfluid with a quantized angular momentum in multiples of ℏ per atom, related
to a phase jump along a closed path with amplitude equal to an integer multiple of 2π
[3], and a vanishing density at the center of the vortex. Pioneering experiments explored
rotational anomalies in superfluid 4He (the Hess-Fairbank experiment) [111], in superfluid
3He [112], in BECs [113], and in Fermi gases across the BEC-BCS crossover [114]. The
analog effect in superconductors is the so-called Meissner effect, namely the expulsion of
magnetic fields from the superconducting region, equivalent to the expulsion of rotational
fields from superfluids [2].

In this chapter, we investigate the general question of how a supersolid rotates, sticking
to the low-velocity regime in which vortices are not excited. What are the analogies and
differences with standard superfluids? Being described by a macroscopic wavefunction,
the fundamental relationship v = ℏ/m∇φ holds also for supersolids, but the presence
of a density modulation brings on important novelties, which highlight the intermediate
nature of the supersolid between superfluids and crystals. We start in section 4.1 with
a detailed description of the seminal Leggett’s model, cited in the first chapter 1.1, for
which we propose an original interpretation [21]. We then discuss in sections 4.2 and 4.3
our measurement of the moment of inertia of the dipolar supersolid through the scissors
mode [19], a collective mode previously employed to measure the moment of inertia of
standard BECs [115, 116]. The moment of inertia of the supersolid results lower than the
classical value, demonstrating its superfluid properties under rotation. The differences
relative to the BEC phase are connected to the concept of superfluid fraction fs, which
emerges clearly in the Leggett model as the quantity that determines the role of the density
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modulation in the rotation, interpolating between the fully superfluid and the classical
moments of inertia. In section 4.4, we deal with the role of the superfluid fraction in our
experiment, which we estimate to be of order 1.
We note that the superfluid fraction discussed here is different from the usual fs of su-
perfluids at finite temperatures. In that case, a two-fluid model depicts the system as
separated into a normal part, made of thermal excitations, and a superfluid part, described
by a macroscopic wavefunction [3]. The superfluid fraction then naturally goes to 1 when
thermal excitations are absent. For supersolids at zero temperature, the superfluid fraction
instead arises genuinely from the breaking of translational invariance and doesn’t rely
on a two-fluid model [1, 117]. The sub-unity superfluid fraction at zero temperature is,
therefore, a peculiarity of the supersolid phase.
We remark that the concept of superfluid fraction is also different from that of condensed
fraction fc. The latter quantifies the population of the macroscopic wavefunction, while
the first is the fraction of the system with a superfluid response to external probes. In
strongly interacting systems, such as superfluid helium or ultracold Fermi gases, it is
evident that the two quantities are different because the condensate depletion is high
at low temperatures (hence fc is less than one), but fs = 1 at T = 0 [18]. Even if
accurate measurements of fc in the supersolid phase are missing1, the general agreement of
experiments with the mean-field GPE simulations points toward a large condensed fraction
fc ∼ 1, while fs can be much less than 1, a situation similar to that of zero-temperature
Bose systems with disorder [118].
Even if the discussion in this chapter about fs only concerns the physics of rotations, in
the next chapter 5 we give a broader definition, from which we draw out a new measure-
ment technique enabling us to assess the sub-unity and tunable superfluid fraction of the
supersolid.

4.1 Leggett model for a rotating supersolid
The seminal model by Leggett [1] considers a system confined in a ring with radius R
and with thickness small enough to neglect all the degrees of freedom in the transverse
directions. We therefore consider a 1D numerical density n(x), which is known and
describes the ground state of the system at rest. The spatial coordinate x runs over the
ring and takes values from 0 to D = 2πR. The total atom number is N =

∫ D
0 n(x)dx.

The ring rotates at constant angular velocity ω, and we want to calculate the moment
of inertia I of the system through the definition I = limω→0⟨L⟩/ω, where ⟨L⟩ is the total
angular momentum the system takes from the container and the operation ⟨·⟩ is an average

1Generally, for weakly interacting BECs, the quantum depletion η at zero temperature, namely the fraction
of the atoms coherently scattered out of the condensate (η = 1 − fc), is calculated in the framework of
the Bogoliubov theory and depends on the small gas parameter

√
na3s . For dipolar BECs, the quantum

depletion is η = 8
3
√
π

√
na3s (1 + 3/10ϵ2dd) [42]. In our experiment, on the BEC side, near to the transition,

we have n ∼ 1014 cm−3, as ∼ 100 a0 and ϵdd ∼ 1, giving ηBEC ∼ 0.7 %. It is not clear to what extent the
Bogoliubov theory for a homogeneous superfluid applies also to the supersolid ground state. However, taking
the peak density n ∼ 1015 cm−3, as ∼ 90 a0 and ϵdd ∼ 1.5, we get ηSS ∼ 2.4 %.
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Figure 4.1: Leggett model for a rotating supersolid in the rotating frame. (a) Phase profile φRF (x) that
minimizes the kinetic energy 4.2 for a homogeneous superfluid (red) and a supersolid (blue). Dashed lines
indicate the density profiles in the two cases. Insets: sketches of the density of the system in the rotating
ring. (b-c) Kinetic energy densities associated with the phase profiles in (a) for a supersolid (b) and a
homogeneous superfluid (c). Thick green lines are the kinetic energy densities, while dashed lines are the
density profiles for the supersolid (blue) and the homogeneous superfluid (red). The superfluid fraction is
the ratio between the areas under the green lines in the two panels, according to Eq. 4.7.

over the density n(x). We consider small angular velocities ω so that we don’t excite any
vortex in the system, i.e. ω < ωc with ωc the critical angular velocity for the nucleation of
a vortex [3]. We know that for a classical system in equilibrium with the container, the
velocity field is vc = ωR and the moment of inertia is the classical one, I = Ic = NmR2.
For a homogeneous superfluid with n(x) = n̄ = N/D, like a BEC in a ring potential, the
irrotational condition of superfluid hydrodynamics ∇∧v = 0 prohibits the classical velocity
field, and no angular momentum can go from the container to the system. The irrotational
condition, in terms of the phase φ of the wavefunction, means that the wavefunction must
be single-valued when going back to the same position along the ring, φ(0) = φ(L). The
velocity is zero everywhere and the moment of inertia vanishes, I = 0.
We want to understand what happens to a supersolid, that has to fulfill the irrotational
condition but also has a spatially varying density n(x). The density is periodic in space
with period d, n(x+ d) = n(x). We tackle the problem by asking what is the state with
minimum energy, compatible with the rotation of the ring and the condition φ(0) = φ(D).
We would be tempted to answer that such a state is the one with zero velocity, as in the
superfluid case. However, the subtle point is that in the lab frame, the confining potential
is time-dependent, and to minimize the energy we must move into the time-independent
frame corotating with the ring (if we don’t do so, the minimum energy state also for a
classical system would be the one at rest). In the rotating frame, the wavefunction takes
on a Galileian phase, ψ′ = ψExp[−i(mV x+mV 2t/2)/ℏ] [3], with V = ωR the velocity of
the moving frame. Since the phase transforms as φ → φRF = φ − (mV x + mV 2t/2)/ℏ,
the single-valuedness boundary condition φ(0) = φ(L) becomes
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φRF (D) − φRF (0) = ∆φ = −mωRD

ℏ
. (4.1)

The effect of the rotation is therefore to impose a phase twist ∆φ proportional to the
angular velocity ω. We can then minimize the kinetic energy due to the rotation

Ekin = ℏ2

2m

∫ D

0
n(x)|∇φ|2dx (4.2)

with the boundary condition 4.1. The density profile n(x) is fixed and we search for the
phase profile φ(x) which minimizes the energy. Since the problem is 1D, ∇φ(x) = φ′(x).
The kinetic energy in Eq. 4.2 has the form of a classical action S =

∫
Ldx with the

lagrangian L(φ,φ′) = n(x)φ′2. The minimum of the action S, and hence of the kinetic
energy Ekin, is given by the Euler-Lagrange equation of motion of classical mechanics
d

dx
∂

∂φ′ L − ∂
∂φ

L = 0. In our case, it reduces to

d

dx

(
n(x)φ′(x)

)
= 0. (4.3)

This expression is nothing but the continuity equation for the superfluid in the rotating
frame, if one assumes a stationary flow ∂

∂t
n = 0 [119]. By integration and multiplicating by

ℏ/m we obtain that the current density in the rotating frame is a constant, n(x) ℏ
m
φ′(x) = J ,

to be determined imposing the boundary condition 4.1. The result is J = −ωRn̄fu
s , with

fu
s =

(1
d

∫ d

0

dx
n(x)/n̄

)−1
. (4.4)

The expression for fu
s is the upper limit for the superfluid fraction in Leggett’s model,

as it will be clear in a moment. Note that in Eq. 4.4 the lattice period d can be replaced
by the length of the ring D due to the periodicity of the density n(x). The phase in the
rotating frame is

φRF (x) = m

ℏ
J

∫ x

0

dx′

n(x′)
(4.5)

The phase is plotted in Fig. 4.1 for a homogeneous superfluid and for a supersolid with
fu

s ∼ 0.5. In the superfluid, with n = n̄ we get fu
s = 1, J = −ωRn̄ and φRF = −m

ℏ ωRx.
The phase profile is linear. In the supersolid, the phase variation is faster in the density
minima and slower in the density maxima. We can understand this behavior by noticing
that it is the most efficient way to minimize the kinetic energy, given a fixed phase twist
∆φ. Indeed, the faster variation in the phase is compensated by the low density, and
the integrand in Eq. 4.2 is lower. In Fig. 4.1(b-c) we plot the density of kinetic energy
ℏ2

2m
n(x)φ′

RF (x)2 using the phase we found before in Eq. 4.5. The kinetic energy is lower
for the supersolid than for the superfluid. In this sense the supersolid is ’less superfluid’
than the homogeneous superfluid: it pays less energy to accommodate a given phase twist
∆φ. Writing down the kinetic energy obtained from our variational approach, we get
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Figure 4.2: Leggett model for a rotating supersolid in the lab frame. Thick lines are the velocity fields along
the ring for a homogeneous superfluid (red), a supersolid (blue), and a classical solid (green). In the first
two cases, the velocity field is irrotational (

∫
vdx = 0), while in the third case, it is the classical rotational

velocity (
∫
vdx = 2πωR2.). The velocity field determines the moment of inertia in Eq. 4.9. Shaded areas

delimited by dashed lines are the density distribution of the homogeneous superfluid (red) and the supersolid
(blue). Insets: sketches of the density distribution in the rotating ring for a homogeneous superfluid (red), a
supersolid (blue) and a classical solid (green).

Evar
kin = Nℏ2

2mD2f
u
s ∆φ2. (4.6)

The superfluid fraction fu
s has the role of an elastic constant for the phase deformation.

The stiffer the system is to phase deformations, the more superfluid it is. Noting that
in the homogeneous case the kinetic energy cost for the twist ∆φ is Ehom

kin = Nℏ2

2mD2 ∆φ2,
because the phase slope is constant and equal to ∆φ/D, an equivalent definition of the
superfluid fraction is

fs = Ekin

Ehom
kin

, (4.7)

namely the ratio of the kinetic energies due to a fixed phase twist in the modulated
and homogeneous case. This definition of fs will be the starting point of the Josephson
experiment described in the next chapter.
Going back to the rotating ring, we can find the velocity field in the lab frame and calculate
the moment of inertia of the supersolid. The velocity field in the lab frame is given by
vLF = ωR + vRF and it is [21]

vLF (x) = ωR
(

1 − n̄

n(x)
fu

s

)
. (4.8)

This function is plotted in Fig. 4.2. When n = n̄, the superfluid fraction is 1 and
we correctly get vLF = 0. For a classical solid, instead, fu

s = 0 and vLF = ωR. For the
intermediate supersolid case, the velocity of the clusters tends to be near the classical
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value, while the superfluid background moves in the opposite direction. We can interpret
this motion as a combination of the crystal structure which is dragged by the classical
rotation and of the superfluid background that preserves the irrotational condition (indeed∫ D

0 vLF (x)dx = 0). Calculating the angular momentum ⟨L⟩ =
∫ D

0 n(x)mvLF (x)Rdx we get
the moment of inertia

I = (1 − fu
s )Ic (4.9)

with Ic = NmR2 the classical moment of inertia. This expression shows that fu
s is

indeed the superfluid fraction of the system, also from a rotational point of view. However,
since we employed a variational approach to calculate the kinetic energy, what we found
is an upper bound of the real superfluid fraction fs, fs ≤ fu

s . Remarkably, the simple
expression in Eq. 4.4 for fu

s depends only on the ground state density, and it is particularly
sensitive to the density depletion between one cluster and the other. When fu

s < 1, the
superfluid fraction is restricted to be lower than one. The sub-unity superfluid fraction
of the supersolid arises purely from the spontaneous symmetry breaking of the ground
state, and not from more familiar thermal effects that deplete the population of the
condensate. Leggett’s model, therefore, predicts the peculiar property of supersolids of
having a sub-unity superfluid fraction even at T = 0, tunable with the amplitude of the
density modulation.
Starting from the expression of the kinetic energy in 3D, with the full density n(x, y, z),
Leggett found also a lower bound [117]

f l
s =

∫
dydz

(1
d

∫ d

0

1
n(x, y, z)/n̄

dx
)−1

, (4.10)

where this time n̄ is the average 3D density. The upper and lower bound coincide if
the density is separable in the transverse coordinates y and z, i.e. n(x, y, z) = f(x)g(y, z).
For example, if the density modulation is in one dimension only (stripes), the density is
separable n(x, y, z) = Af(x). In this case fs = fu

s = f l
s and the expression in Eq. 4.4 is

exact.
Finally, we note that the model we developed in this section is analog to a classical problem,
namely finding the capacitance C of a capacitor with a fixed potential difference ∆V
and a spatially varying dielectric constant ϵ(x) [120]. Since the electrostatic energy is
Eel = ϵ0/2

∫
ϵ(x)|∇V |2dx, the problem is equivalent to that of the rotating supersolid with

φ → V and n → ϵ. The energy can be written as Eel = C∆V 2/2, so the capacitance C
has the role of the superfluid fraction. Indeed, it quantifies how much energy can be stored
in the capacitor (supersolid) for a given applied voltage ∆V (phase twist ∆φ).

4.2 The scissors mode
From a conceptual point of view, the most simple geometry to study rotations is the ring,
as explicated by the Leggett model of the previous section. Also on the experimental side,
many measurements about the rotation of superfluids have been performed in ring-shaped
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Figure 4.3: Superfluid versus classical rotation. (a) Velocity field of the scissors mode Eq. 4.12 in the xy
plane. The velocity field has a quadrupole character and is irrotational: the velocity circulation along any
closed path is zero. In the presence of the harmonic trap and in the limit of small oscillations, the motion is
shape-preserving and the atomic cloud (red region) oscillates back and forth around the equilibrium position.
The angle θ individuated by the main axis shows sinusoidal oscillations with frequency ωsc . (b) Classical
rotational velocity field. Globally, the motion is a rotation of the main cloud axis, as in the scissors case, but
the velocity field in this case is rotational and the circulation along a closed path is different from zero.

potentials. However, superfluidity affects the dynamics also in anisotropic potentials, as
the cigar-shaped trap of our dipolar supersolid. In this case, the most sensitive probe to
superfluidity is the so-called scissors mode, a collective mode that consists of an oscillation
of the atomic cloud around its main axis, as sketched in Fig. 4.3. The scissors mode bears
its name from nuclear physics, where it corresponds to an out-of-phase oscillation of the
neutron and proton clouds which resembles the movement of the blades of a pair of scissors
[121]. It has then been employed to measure the moment of inertia of BECs [115, 116] and
studied also in Fermi gases [122] and dipolar crystals of independent droplets [123]. The
motion of the atomic clouds during the scissors oscillation is very similar to the dynamics of
a sample oscillating in a torsional pendulum. In the latter case, the oscillation frequency of
the pendulum is determined by the moment of inertia of the sample, I = K/ω2

tp, where K
is the elastic constant of the rod of the pendulum. A measurement of ωtp gives, therefore, a
measurement of I. The torsional pendulum has been employed in solid helium experiments
to search for a superfluid quenching of the moment of inertia, as explained in section 1.1,
following the proposal suggested by Leggett. The scissors oscillation is the equivalent, for
quantum gases, of the torsional pendulum in condensed matter, with the difference that
the whole harmonic trap applies the torque needed to maintain the oscillation, instead of a
single rod. Each atom, therefore, feels a different restoring force depending on its position
in the trap. The frequency of the scissors oscillation ωsc, as in the torsional pendulum,
is directly related to the moment of inertia of the quantum gas through the following
relationship, independent of the shape of the density distribution (BEC or supersolid)
[124, 125]
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I

Ic

= αβ
ω2

x + ω2
y

ω2
sc

, (4.11)

where α = (ω2
y − ω2

x)/(ω2
y + ω2

x) and β = ⟨x2 − y2⟩/⟨x2 + y2⟩ are geometric factors
quantifying the deviation of the trapping potential and the density distribution from
cylindrical symmetry, respectively. The numerator in Eq. 4.11 has the role of the elastic
constant K. To highlight completely the relationship with the torsional pendulum, we
derive Eq. 4.11 exploiting this analogy [126]. In the harmonic trap, the force applied
on one atom at position (x, y) is Fho = −∇Vho = −m(ω2

xxx̂+ ω2
yyŷ). The torque in the

vertical z direction is τ = xFy − yFx = −mxy(ω2
y −ω2

x). During the oscillation, the spatial
coordinates rotate, in the small angle limit, as x → x− θy and y → y + θx. The effective
elastic constant is K = −∂τ/∂θ = m(y∂x/∂θ + x∂y/∂θ)(ω2

y − ω2
x) = m(x2 − y2)(ω2

y − ω2
x).

Averaging over the whole density distribution and remembering that Ic = ⟨x2 + y2⟩, we
get Eq. 4.11 in the form I = K/ω2

sc.
For the BEC, it is possible to derive the scissors mode from the hydrodynamic equations
moving in a frame rotating at constant angular velocity Ω [124, 125, 127]. The frequency
of the mode results to be ωsc = α

β

√
ω2

y + ω2
x and the associated velocity field is

vsc = Ωβ(y,x). (4.12)

The scissors velocity field is plotted in Fig. 4.3(a). While in the small angle limit the
motion of the cloud is shape-preserving and resembles a classical rotation, the velocity field
is very different from the classical one, plotted for comparison in Fig. 4.3(b). The scissors
field has a quadrupole character and satisfies the irrotational condition ∇ ∧ v = 0, while
the classical field is vc = Ω(−y,x) and it is rotational, ∇ ∧ vc ̸= 0. The possibility for the
superfluid to rotate with a finite angular momentum in the anisotropic trap means that
its moment of inertia is larger than zero, differently from what happens in the cylindrical
case. The angular momentum associated with the scissors field has a quadrupole character
L = |⟨r ∧ vsc⟩| = Ωβ⟨x2 − y2⟩ = Ωβ2Ic. The moment of inertia of the BEC is therefore

IBEC = β2Ic. (4.13)

We can obtain the same result from the general formula in Eq. 4.11 using the expression
for the scissors frequency of the BEC. Since β < 1, the moment of inertia of the BEC is
quenched compared to the classical one, but it is indeed larger than zero, a limit that we
recover in the cylindrical case with β = 0. In the opposite limit of β = 1, corresponding
to a 1D line, the behavior is completely dominated by the geometry and the scissors and
classical fields are undistinguishable, resulting in I = Ic. To employ the scissors mode
as a probe of superfluidity, the aspect ratio of the cloud should be neither too small
(the scissors oscillation is difficult to detect because the geometry is nearly circular and
vsc → 0) nor too large (superfluid effects are suppressed). In the non-dipolar case, we
have the simplification that the aspect ratio of the atomic cloud is completely determined
by the trap and α = β. In the dipolar case, instead, the cloud is elongated in the vertical
direction due to the polarizing magnetic field (magnetostriction effect), and the aspect
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ratio in the xy plane deviates from that of the trap [127]. The parameter β is, therefore,
different from α and varies with the interaction parameter, β = β(ϵdd).

The simple relationship in Eq. 4.11 between the scissors frequency ωsc and the moment
of inertia I is formally derived using a sum-rule approach [128, 129]. The frequency
appearing in the equation is actually an upper bound for the frequency of the lowest
energy state excited by the angular momentum operator. In a more general treatment,
one has to study the response of the many-body system to a sudden rotation of the trap.
Since the rotation of the harmonic trap by a small angle θ produces a perturbation in
the potential Hper ∝ xy, the dynamics is induced by the quadrupole operator Q = xy.
The moment of inertia is then determined by the frequency response of the quadrupole
operator Q through the relation

I

Ic

= αβ(ω2
x + ω2

y)
∫

dωSQQ(ω)/ω3∫
dωSQQ(ω)/ω

(4.14)

where SQQ(ω) is the dynamical structure factor relative to the quadrupole operator Q
[129]. In this more general framework, the response of the system to the perturbation
in the whole frequency domain contributes to the moment of inertia. In the case of
single-frequency response, as for the BEC for which the scissors mode is a normal mode,
SQQ(ω)/ω = Aδ(ω − ωsc) and we get the sum-rule prediction 4.11. The simplest case of
a multi-frequency response is that of a thermal gas. After the rotation of the trap, the
gas oscillates with two frequencies ω± = ωy ± ωx, with the same amplitude [124]. Using
SQQ(ω)/ω = Aδ(ω − ω+) + Aδ(ω − ω−) in 4.14 we get I = Ic, as we expect for a thermal
gas above the critical temperature for condensation.

4.3 Moment of inertia of the supersolid
In the experimental system, we excite the scissors mode and study its oscillation frequency
across the BEC-supersolid phase transition [19]. We collaborated with the theory group of
S. Stringari and A. Recati from Trento University. Their numerical simulations show that
the scissors mode indeed is well defined also in the supersolid regime, and its frequency
dominates the response of our system [128]. The sum-rule relationship 4.11 gives therefore
direct access to the moment of inertia.
The experimental configuration of the scissors experiment consists of a supersolid trapped
in a cigar-shaped harmonic trap with frequencies (ωx,ωy,ωz) = 2π×(23, 46, 90) Hz, realized
by two crossed off-resonant optical beams at an angle of about 80◦ 2. With a typical atom
number of N = 2 × 104 atoms, the critical point is at about ϵdd = 1.42, and the supersolid
is formed by two main clusters along the x axis. The transverse confinement along y is
quite weak and the transition is well in the discontinuous regime of the phase diagram in
Fig. 3.3 of section 3.2. The aspect ratio of the trap, however, is not too large, α = 0.6, and
favors superfluid effects in the scissors oscillation. Crossing the discontinuous transition

2ODT2 and ODT3 in the sketch of the experimental apparatus in Fig. 2.1.
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Figure 4.4: Scissors oscillation of the trapped supersolid. (a) Experimental images of the BEC at ϵdd = 1.14
(up) and of the supersolid at ϵdd = 1.45 (down) after a time of flight expansion and corresponding 2D
fitting functions to measure the tilting angle θ′. (b) Single frequency oscillations of the tilting angle θ′(t) for
the BEC (red) and the supersolid (blue). Thick lines are sinusoidal fits to extract the scissors frequency ωsc .

from the superfluid to the supersolid excites a combination of different modes, as discussed
in Section 3.3. Due to the cigar-shaped geometry of the trap, the strongest excited mode
is the breathing mode, consisting of an oscillation of the x-width of the supersolid [45].
One of the main technical challenges in measuring the scissors oscillation, indeed, has
been the development of a method to excite deterministically the scissors oscillation and
avoid a strong coupling with the unavoidable breathing mode3. We, therefore, developed
two different techniques. The first one consists of switching on for a short time a third
off-resonant optical beam, in addition to the two beams forming the trapping potential.
The angle of the main trap axis changes and the atoms start the scissor oscillation. This
method, however, also changes the trap frequencies and excites other modes, mainly
the axial breathing mode in the x direction. Both the resulting scissors and breathing
amplitude are quite large, about 0.3 rad in the first case and 20 % of the equilibrium
x-width in the second case. We employ this method on the BEC side, where the breathing
and scissors modes are normal modes of the system and don’t mix. The second method
consists of changing slightly the power in the two crossed beams that form the optical
trap. This method rotates the main axis of the trap without significantly modifying the
trap frequencies. As a result, the breathing mode is less excited (amplitude about 10 %,
coming mainly from the crossing of the phase transition), but the scissors mode also has
a lower amplitude of about 50 mrad. We employ the second method in the supersolid
regime, where with the first method we observe a mixing of breathing and scissors mode
that increases the scissors frequency.
The single-frequency oscillations of the BEC and the supersolid are shown in Fig. 4.4. In
addition to the small amplitude, the precision in determining the scissor frequency in the

3We first performed the scissors experiment and later we characterized the phase transition, as explained in
chapter 3. Indeed, the excitations we observed in the scissors experiment after crossing the transition have
been a strong motivation for searching for a continuous phase transition.
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supersolid is also limited by the shorter lifetime. To measure the tilting angle θ of the
atomic cloud, we take time of flight images and we fit with a 2D gaussian for the BEC
and with the 2D version of the double slit fit in Eq. 2.4, as shown in Fig. 4.4(a) [19].
After the time of flight, we observe a tilting angle θ′ different from the angle θ in situ.
Even if the two angles are not easily connected, due to the complicated dynamics during
the expansion, the oscillation frequency is the same [130]. We observe a single frequency
oscillations ωsc for all the interaction regimes we investigate. We measure the frequency
ωsc with a sinusoidal fit of the points θ′(t), see Fig. 4.4(b). In Fig. 4.5, we plot ωsc as
a function of ϵdd, normalized to the theoretical scissors frequency of a non-dipolar BEC,√
ω2

x + ω2
y. On the BEC side, ωsc slowly decreases, consistently with the expected slow

variation in the deformation parameter β(ϵdd). Crossing the transition to the supersolid
regime, we observe a sharper decrease in the frequency, signaling the onset of the transition,
in agreement with the numerical simulations [128].
To translate the frequency measurements in the moment of inertia, we employ Eq. 4.11,
where the deformation parameter β is taken from the numerical simulation of our system
[128]. In Fig. 4.5(b) we plot I/Ic versus ϵdd. The moment of inertia of the BEC agrees
with the prediction of superfluid hydrodynamics I = β2Ic, which gives I ∼ 0.5Ic for our
parameters. The moment of inertia of the supersolid is larger than that of the BEC
but, at least for the point at ϵdd = 1.45, well below the classical value. Our observation
demonstrates that, even if the formation of the crystal structure increases the moment of
inertia, the system is still superfluid. This is the first evidence of the superfluid behavior
of the supersolid phase under rotation. The following point at ϵdd = 1.5, closer to the
droplet crystal, has instead a moment of inertia consistent with the classical one.

We also studied the effect of the temperature on the scissors oscillations, repeating the
same experiment on the BEC side for different temperatures below and above the critical
temperature Tc for Bose-Einstein condensation (Tc ∼ 60 nK). The results are shown in
Fig. 4.6. Below Tc, we measure the scissors oscillation for the condensed part, while we
determine the temperature with an independent measurement of the thermal fraction with
a lower expansion time (25 ms). We always observe a single-frequency oscillation, with a
slight reduction compared to the zero-temperature limit for T/Tc ∼ 0.8, probably due to
interactions between the condensate and the thermal component. This measurement shows
that, at the low temperatures at which we perform the experiment, T/Tc < 0.4, thermal
effects are negligible. For T > Tc, we observe a scissors oscillation of the thermal cloud,
shown in Fig. 4.6(a). The behavior is very different from that of the condensate: the angle
θ′ oscillates with two frequencies, near the hydrodynamics prediction for a collisionless gas,
ω+ = ωx + ωy and ω− = ωx − ωy [124]. This observation demonstrates that our weakly
interacting Bose gas is indeed in the collisionless regime. Even if not surprising, it is an
important check because classical systems in the strongly interacting regime (the so-called
hydrodynamic limit) can have a behavior very similar to superfluids, for example showing
a single-frequency scissors oscillation. This is the reason why in strongly-interacting Fermi
gases the scissors mode is not a good probe of superfluidity. In our case, instead, the
observed scissors dynamics is a genuine consequence of superfluidity.
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Figure 4.5: Scissors frequencies and moment of inertia. (a) Scissors frequency ωsc as a function of ϵdd
across the BEC-supersolid phase transition. The vertical dotted line is the theoretical critical point. Red
points are in the BEC regime, while blue points are in the supersolid regime. Black points are the results
of numerical simulations with the experimental parameters reported in [128]. Gray points are numerical
simulations without the LHY energy term. Error bars correspond to one standard deviation. (b) Moment
of inertia calculated from the measured scissors frequency and the numerical deformation parameter β,
according to Eq. 4.11. Black points are the numerical results [128]. White points in the supersolid regime
are the prediction for a fully superfluid system (fs = 1) with the same β of the supersolid, namely I = β2Ic .
The dashed horizontal line is the classical moment of inertia, I = Ic .
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Figure 4.6: Scissors oscillations of the BEC at finite temperature. (a) Scissors oscillation θ′(t) for a thermal
sample at T > Tc , showing a two-frequency oscillation. (b) Scissors frequency as a function of T/Tc . Red
points are the frequencies measured on the thermal sample shown in (a). Dashed horizontal lines are the
prediction for a thermal gas in the collisionless regime [124]. Gray points are the frequencies measured on
the condensate for T < Tc . The first point with the large horizontal error bar corresponds to the final
temperature of the experiment, when no thermal fraction is detected.
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Figure 4.7: Superfluid fraction in the scissors experiment. The superfluid fraction is calculated from the
measured moment of inertia I/Ic and the numerical β according to Eq. 4.15. Black points are the result
of the same calculation with the numerical moment of inertia of [128]. The data point in the supersolid
regime is the weighted average of the two data points at ϵdd = 1.45 in Fig. 4.5. Open triangles are Leggett
upper bound f us in Eq. 4.4 calculated on the numerical ground state. Black diamonds are the estimation for
the superfluidity of the single cluster fsID , according to the ’independent-droplet’ model in Eq. 4.17. Inset:
numerical ground state density n(x) employed for the calculation of Leggett upper bound at ϵdd = 1.45
(continuous line) and at ϵdd = 1.5 (dashed line). The integral in Eq. 4.4 is performed on the central cell
between the two maxima (gray region).

4.4 Discussion about the superfluid fraction
The increase in the moment of inertia from the BEC to the supersolid has two causes.
The first and dominant one is a geometrical change in the density distribution, encoded in
the change of β. With the formation of the crystal structure, the system shrinks in the y
direction and β increases. In Fig. 4.5(b), on the supersolid side we plot, as open dots, the
moment of inertia I = β2Ic of a hypothetical fully superfluid system (fs = 1) with the
same β as the supersolid. The remaining discrepancy with the observed moment of inertia
is due to the decreased superfluid fraction of the supersolid, which physically implies a
deformed velocity field compared to the scissors field vsc ∝ (y,x) of the standard BEC. As
we see from the comparison between the results of the numerical simulations (black dots)
and the open dots, the difference is present but very small. With the experimental errors,
we are unable to appreciate the effect of the decreased superfluid fraction. Moreover, as
one moves towards larger ϵdd, the region between full superfluidity (I = β2Ic) and classical
rotation (I = Ic) shrinks, because β increases and the motion is dominated by geometrical
effects.
To translate these considerations in terms of a superfluid fraction, we modify the general
definition in circular geometries I = (1 − fs)Ic to include the effects of our anisotropic



Discussion about the superfluid fraction 83

trapping potential. We search for an empirical formula in which the superfluid fraction
should interpolate between the classical result Ic and the full superfluid result in the
cigar-shaped trap, I = β2Ic. We write4

I = (1 − fs)Ic + fsβ
2Ic, (4.15)

which correctly reduces to the general definition in the cylindrical case, β = 0. From
the measured I/Ic and the numerical β, we extract fs as defined in Eq. 4.15. The results
are plotted in Fig. 4.7. We obtain correctly fs = 1 in the whole BEC regime, a result
that supports the absence of thermal effects at the lowest temperatures achievable in the
experiment, as already discussed in Fig. 4.6. A residual thermal fraction would indeed
interact with the BEC and lower the scissors frequency, resulting in a lower superfluid
fraction. For the datapoints in the supersolid regime at ϵdd = 1.45, we get fs = 0.88 ± 0.14,
a large value compatible with 1 under the experimental error. This result confirms the
expectation of a large superfluid component in the dipolar supersolid, due to its cluster
nature that enhances superfluid effects and coherence between different clusters. In this
regard, the dipolar supersolid is strikingly different from other condensed matter systems.
For example, in 2D 4He and confined 3He the superfluid fraction seems to be of the order of
a few % [67, 68, 70], while in bulk solid helium, the first measurements indicated fs ∼ 1%
[25, 26](although they were then attributed to the elastic properties of 4He, as explained in
section 1.1). This large difference is not surprising: it arises from the cluster nature of the
dipolar supersolid, which favors superfluid effects, as opposed to the vacancy supersolid,
with one atom per lattice site, expected in the strongly-interacting regime of solid helium.
We also compare our results with Leggett’s upper bound for the ring geometry, Eq. 4.4.
We calculate fu

s from the numerical simulation of the ground state at ϵdd = 1.45. We
integrate the 3D density distribution along the y and z direction to obtain n(x), shown
in the inset in Fig. 4.7. To exclude the role of inhomogeneity, we calculate the Leggett
formula only in the unit cell at the center of the trap, in the region highlighted in the
inset. We also use the same interval to calculate fs in the BEC regime. With this choice,
we correctly get fu

s = 1 for the BEC, and fu
s ∼ 0.3 for the first point in the supersolid.

For larger ϵdd, fu
s goes to zero because the overlap between the clusters vanishes. Leggett

prediction is definitely lower than our measurement, but it accounts only for the dynamics
between different clusters, which dominate in the ring geometry. Our case is very different
since the scissors oscillation involves complicated dynamics in the whole xy plane. Indeed,
the results of the numerical simulations, in which we calculate fs with the same procedure
as in the experiment, tend to saturate at fs ∼ 0.5 towards the droplet crystal regime,
while Leggett’s formula goes to 0.
We explain this behavior considering that a large contribution to fs should come from
the single cluster’s rotational motion around the trap’s center. Since the single cluster
is a superfluid itself, its moment of inertia should be reduced compared to the classical
value. The single cluster rotating around the trap’s center, therefore, should contribute to

4In some successive papers [129] the superfluid fraction introduced here is called Non-Classical Rotational
Inertia Fraction and indicated as fNCRI , to distinguish it from the superfluid fraction fs defined in the
cylindrical geometry.
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the superfluid fraction of the system, independently from the mass flow between different
clusters. To estimate this contribution, which we expect to be quite large since the
single cluster occupies a significant fraction of the whole system, we develop a simple
classical model, depicted in Fig. 4.8. For a homogeneous disk of radius R and mass
M rotating around an axis at a distance d from its center, classical mechanics predicts
Ic = ICM + Md2, where the first term accounts for the rotation of the disk around its
own center of mass, ICM = MR2/2, and the term Md2 accounts for the rotation of the
center of mass around the central point. This result is known as the Huygens-Steiner
theorem. For the superfluid cluster, the rotation around its own center of mass is zero,
due to its cylindrical symmetry, ICM = 0. Therefore, the actual moment of inertia for this
’independent droplet’ is IID = Md2. Dynamically, the difference between Ic and IID could
be explained with the shape of the velocity field: circular lines centered in the origin with
magnitude v = ωr in the first case, and straight lines with the same magnitude v = ωd
inside the same cluster in the second case, see Fig. 4.8. To quantify the contribution to fs

of the single cluster, we write Eq. 4.15 in the form

fs =
1 − I/Ic

1 − β2 . (4.16)

To estimate β for the single cluster, we apply the same reasoning of the Huygens-Steiner
theorem, considering a cluster with its center on the x axis at distance d from the origin.
Recalling β = ⟨x2 − y2⟩/⟨x2 + y2⟩, we calculate the numerator in this equation moving to
the reference frame x′y′ centered on the droplet at coordinates (x, y) = (d, 0). It becomes
⟨(x′ + d)2 − y′2⟩ = ⟨x′2 − y′2⟩ + ⟨d2⟩ + 2d⟨x′⟩. The first and last terms vanish due to the
cylindrical symmetry of the cluster. Calculating the average over the mass distribution,
the result is ⟨x2 − y2⟩ = Md2 = IID. The denominator ⟨x2 + y2⟩ is instead equal to Ic.
We therefore conclude that, for an independent droplet, β = IID/Ic. Using the expression
for fs in Eq. 4.16, we find

fsID = 1
1 + β

. (4.17)

Note that this estimation of fsID is unaffected by the number of clusters forming the
supersolid, as soon as they are all aligned in a 1D lattice. Indeed, for a system with n
clusters, both I and Ic are multiplied by n and the ratio I/Ic doesn’t change. From the
numerical calculated β, we plot fsID in Fig. 4.7 as black diamonds. The dependence
on ϵdd is weak and we get fsID ∼ 0.5, which explains the saturation towards the droplet
crystal regime, where only the contribution coming from the ’independent-droplet’ model
survives.
To conclude, we interpret the large value of fs that we estimate in our system as a
combination of the rotational motion of the single cluster around the center of the trap
(fsID) and the superfluid motion from one cluster to the other, estimated by Leggett
formula (fu

s ). This interpretation is visualized in Fig. 4.9, where we plot two snapshots of
numerical simulations during the scissors dynamics. While in the BEC case the velocity
field has exactly a quadrupole shape, as predicted by Eq. 4.12, in the supersolid it gets
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Figure 4.8: Model for the rotation of independent droplets around the center of the trap. (a) Classical
droplets are approximated as disks with radius R rotating around an axis at a distance d from their center.
The classical moment of inertia is Ic = ICM +Md2 according to the Huygens-Steiner theorem. Velocity field
lines are circles around the rotation center, accounting for both the rotation of the center of mass around
the trap center and of the single droplet around its center of mass (black arrows). (b) Superfluid droplets
have a vanishing ICM because of their cylindrical symmetry. Only the rotation of their center of mass around
the trap center contributes to the moment of inertia, I = Md2. The velocity field lines consistent with this
picture are straight lines instead of circular lines. The reduced moment of inertia contributes to the total
superfluid fraction of the system according to Eq. 4.17.

modified. The clusters are dragged by the rotational motion, and have a nearly constant
velocity distribution that resembles that of the independent-cluster model. On top of that,
there is a flow of atoms between the smaller lateral clusters across the weak links in the
density background (since the aspect ratio of the trap is quite large, small lateral clusters
appear also in the transverse direction). Even if this interpretation is largely qualitative,
it is the first attempt to probe the rotational properties of the supersolid phase, and more
generally the problem of superfluidity in a crystal, with the benchmark model by Leggett.

Comparison with larger systems

A natural improvement of our measurement would be to reproduce the same experiment in
a configuration in which the role of the single clusters is reduced, so that other contributions
to the superfluid fraction could emerge. A promising candidate is a supersolid with a more
2D crystal structure, in which the deformation parameter β is lower and hence geometrical
effects are reduced. Numerical simulations show, indeed, that in a 2D configuration made
up of two rows of clusters, rather than one single row as in our case, fs calculated from
the moment of inertia as in Eq. 4.16 correctly goes to zero in the independent droplets
regime [129]. The scissors experiment has been performed by the Innsbruck group in
the ’zig-zag’ configuration consisting of a two-row supersolid [126]. However, they found
out that the measured scissors frequency is unaffected by the density modulation and
doesn’t probe the decreasing superfluid fraction. The reason is that, in the more complex
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Figure 4.9: Snapshots from numerical simulations of the scissors oscillation. (a) Density of the BEC in the
xy plane together with the velocity field (colored arrows). The velocity field has the quadrupole shape
predicted for the scissors oscillation Eq. 4.12. (b) Density of the supersolid in the xy plane saturated to
make visible also the density modulation in the background. The velocity field is modified compared to the
BEC in (a). The differences of the velocity fields in (a) and (b) are the microscopic counterparts of the
differences between the moment of inertia of the supersolid and that of a fully superfluid system.

2D system, the simple connection between ωsc and the moment of inertia, namely Eq.
4.11, doesn’t hold anymore because the response of the system becomes multi-mode. One
should then rely on the more general Eq. 4.14 involving the whole frequency response of
the quadrupole operator Q. The subtle point is that the moment of inertia is determined
by the quadrupole structure factor SQQ weighted by the inverse of the mode frequencies,
see Eq. 4.14. Therefore, the weakest and slowest frequencies can make a huge contribution
to the moment of inertia, despite being negligible in the real-space dynamic of the atomic
cloud. As a matter of fact, the scissors oscillation detected experimentally still shows a
single-frequency response, but that frequency alone is not enough to correctly trace back
to the moment of inertia [126]. One should increase the interrogation time to measure
the slower frequency contributions, but this appears to be difficult also in the numerical
simulations [129], and practically impossible in the experiments. Therefore, the scissors
technique is limited to small and single-row systems, like the one we investigated, in which
the frequency response is saturated by a single componenet and Eq. 4.11 applies.



Sub-unity superfluid fraction from
self-induced Josephson effect

Chapter 5
In the previous chapter, we discussed how the anomalous superfluid properties of the
supersolid affect its rotational response. The superfluid fraction fs was pointed out as
the quantity which determines the departure of the supersolid behavior from that of a
fully superfluid system, through the modification of its moment of inertia. For the dipolar
supersolid, the measurement of this quantity through rotations is challenging. On one
side, in small linear systems, a simple relationship between the scissors mode and the
moment of inertia exists, but the superfluid rotation is strongly influenced by the behavior
of the single (big) clusters, rather than by the global motion from one cluster to the other.
On the other side, in larger and 2D systems, the relationship between scissors mode and
moment of inertia gets complicated and requires prohibitive experimental conditions to be
probed.
In this chapter, we present a novel approach to the problem. We discuss the superfluid
fraction in a more general framework than rotations, relating fs to the so-called superfluid
stiffness, namely the energy cost required to twist the wavefunction phase of a superfluid.
Within this approach, the superfluid fraction quantifies how much the superfluid stiffness
is reduced by the presence of the competing crystal-like order. Inspired by this new point
of view, we develop a new method for the measurement of the superfluid fraction, based on
the Josephson effect between different clusters of the supersolid. The Josephson effect is
peculiar to superfluids and superconductors and it is usually observed when two superfluid
baths are separated by an external potential barrier, forming a so-called Josephson junction.
The idea itself of a supersolid phase is very similar to a Josephson junction array: when
a superfluid develops a crystal structure, the different clusters are connected by a weak
link. However, in the supersolid, the barrier between different clusters is self-induced by
interactions between the same atoms that form the junction and is not externally imposed.
It is not clear a priori, therefore, if the supersolid can sustain Josephson oscillations
between its clusters.
In our work [22], we develop a method to excite Josephson oscillations in the supersolid,
and we observe coherent phase-population oscillations in perfect agreement with the
Josephson junction physics. We observe a progressive slowing down of Josephson oscilla-
tions by increasing the density modulation of the supersolid, and from our measurements
we quantitatively assess a sub-unity superfluid fraction, which is tunable from 1 to about 0.1.

Our method allows for a local measurement of the superfluid fraction, since in prin-
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ciple it involves only the dynamics inside the unit cell, as opposed to rotational kicks which
involve measurements of global quantities, such as the moment of inertia. Regarding the
specific case of dipolar supersolids, the Josephson method solves many problems related
to rotational probes: it is directly sensitive to the motion across the weak link between
clusters, and its local nature allows for eliminating the complications introduced by the
inhomogeneity of the density distribution. But, even more important, the generality of
the Josephson method could also be of interest for other systems, as the modulated states
in condensed matter superfluids, for which measurements of the superfluid fraction have
been performed only through rotational or similar probes [67, 68, 70] or in which the
concept of the superfluid fraction is not discussed at all, as in the pair density wave phases
in superconductors [72, 76]. As discussed in section 1.3, there is evidence of a reduced
superfluid stiffness in cuprate superconductors, associated with a competition between
spatial and superconductive orders [73], which is correlated with the critical temperature
for superconduction [78, 79]. Also in superconductors, the superfluid stiffness is measured
with a global probe, namely the penetration depth of magnetic fields. The superfluid
fraction, thanks to its generality, is a candidate for a universal system-independent quantity,
useful to compare supersolid-like phases in different fields of physics.
In section 5.1 we discuss the connection between the superfluid fraction and the Josephson
dynamic. In sections 5.2 and 5.3 we describe the experimental protocol to excite and mea-
sure Josephson oscillations in the supersolid. In section 5.4 we illustrate the modelization
of the supersolid as a Josephson junction and, finally, in section 5.5 we present the results
for the measured superfluid fraction, together with a discussion of interesting phenomena,
related to the sub-unity superfluid fraction, to be investigated in the future. Finally, in
section 5.6, we give an outlook on the possible role of the low-energy Goldstone mode,
related to the peculiar dynamics of the junction barrier.

5.1 Superfluid fraction and Josephson oscillations

One of the most striking differences between a solid and a liquid is that the first is able
to sustain shear stress, while the second is not. In other words, the solid is rigid and the
liquid is fully deformable. The changing degree of rigidity going from one state to the
other can be captured by a single parameter, such as the shear modulus, which is zero for
a liquid and different from zero for a solid. The emergence of rigidity is not a peculiarity
of the solid phase, but it is a general feature of symmetry-breaking phase transitions [16].
The ordered phase, which forms when the symmetry is broken, possesses some kind of
emergent rigidity that was absent in the disordered phase, when the symmetry wasn’t
broken. Another example is the so-called spin stiffness, which quantifies the energy cost of
modifying locally the spin direction in a ferromagnet, creating a spin wave. Generally, for
a transition with some order parameter θ, the generalized stiffness S quantifies the energy
cost of transverse spatial variations, namely in the direction perpendicular to θ

δF = S

2 ∆θ2
⊥. (5.1)
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The concept of emergent rigidity applies also to superfluids and superconductors. In
this case, the order parameter is the modulus of the wavefunction |ψ|2, and the emergent
rigidity is the energy scale relative to the deformation in the perpendicular direction.
Thinking about the mexican hat Landau’s potential, the perpendicular direction to |ψ|2 is
the space of the wavefunction phase, θ⊥ = φ. The superfluid stiffness, therefore, quantifies
the energy cost of phase variations, which are in the form of kinetic energy. The existence
of a finite superfluid stiffness is at the heart of most of the peculiar superfluid behavior,
such as supercurrents, quantized vortices and the Josephson effect. In superconductors,
the superfluid stiffness is an energy scale competing with the energy gap of the Cooper
pair ∆. The first is the energy scale of phase fluctuations that can destroy the coherence
of the superconductor, the second one is the binding energy of the Cooper pair. While in
standard superconductors, described by the BCS theory, ∆ is the only relevant energy scale
∆ ≪ S, in more exotic superconductors they can be comparable, and phase fluctuations
are responsible for new phenomena [74]. A notable example is the group of cuprate
superconductors, for which the superfluid stiffness is particularly low [73].
In our work [22], we show that the superfluid fraction fs is a measurement of the reduced
superfluid stiffness of the supersolid due to the competing crystal order. The basic idea of
our approach is shown in Fig. 5.1 and is related to the discussion of the Leggett model
in section 4.1. We consider a 1D superfluid system described by a number density n(x)
and we apply a phase twist ∆φ over some distance D. The phase variation has a kinetic
energy cost

Ekin = ℏ2

2m

∫ D

0
n(x)|∇φ(x)|2dx. (5.2)

We then search for the phase profile φ(x) which minimizes the kinetic energy. Since the
supersolid can accommodate most of the phase variations in the minima of the density,
the applied phase twist has less energy cost for the supersolid than for the superfluid, see
Fig. 5.1. The superfluid fraction is defined as the ratio between the two kinetic energies,
for the same phase twist

fs = Ekin

Ehom
kin

. (5.3)

In the Leggett model in section 4.1, the energies are calculated in the rotating frame
and the phase twist is a consequence of the rotating ring. For a homogeneous superfluid,
n(x) = n̄, the phase profile is linear and the energy cost is Ehom

kin = Nℏ2∆φ2/(2mD2). The
superfluid stiffness, according to the definition in Eq. 5.1, is simply dependent on the
atom number N and the spatial dimension D. For the supersolid, Leggett’s variational
result is Ekin = Nℏ2

2mD2f
u
s ∆φ2, where it is evident that the superfluid fraction quantifies the

reduction of the superfluid stiffness in the supersolid and has the role of an elastic constant
for the phase deformation. Leggett’s upper bound fu

s clarifies also that the reduction is
directly connected to the extent of the density modulation

fu
s =

( 1
D

∫ D

0

dx
n(x)/n̄

)−1
. (5.4)
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Figure 5.1: Sketch of the definition of the superfluid fraction at T = 0 in rotations and Josephson oscillations.
(a) Applied phase twist ∆φ on a homogeneous superfluid. The red line is the phase profile minimizing
the kinetic energy 5.2. The green line is the corresponding kinetic energy density, ϵ(x). The gray line
is the density n(x). (b) Same applied twist ∆φ to a supersolid. The kinetic energy cost is minimized
accommodating most of the phase variation in the minima of the density, as discussed in Leggett model in
section 4.1. The superfluid fraction is the ratio between the green areas in (b) and (a), according to Eq.
5.3. The dynamics described by the phase φ(x) is a global flow of atoms, which, in the ring geometry,
corresponds to a rotation. (c) Alternating phase twists ∆φ from one cell to the other. The phase profile is
the same as in (b), but with a changing slope from cell to cell. The kinetic energy cost is the same, as well
as the definition of fs . However, the resulting dynamics is a Josephson oscillation of phase and population
difference.

When the phase twist is applied globally on the whole system, the resulting dynamics is
a global superfluid motion that, if the geometry is closed in a ring shape, coincides with
the rotation discussed in the previous chapter. Here we change approach and we propose
an alternative method to measure the superfluid fraction. Instead of applying a global
phase twist, we apply local twists from cell to cell, with the same amplitude but with
different alternating signs. The situation is sketched in Fig. 5.1(c). The kinetic energy
cost supported by the supersolid is the same as the global phase twist of the panel (b),
because the kinetic energy is insensitive on the sign of the slope of φ(x). The definition of
fs is, therefore, unchanged. However, the dynamic produced by φ(x) is very different. The
alternating phase variations from one cell to the other produce a situation equivalent to
an array of Josephson junctions, in which the atom current induced by the phase variation
produces a population imbalance between the cells, which then oscillates back in a phase
difference, and so on. The resulting dynamics, instead of being a global flow of mass, is
a Josephson oscillation of the two variables characterizing each junction: the phase and
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population differences, ∆φ and Z, of two adjacent clusters [131].
In this framework, we can calculate the kinetic energy relative to the twist ∆φ using the
Josephson Hamiltonian. Restricting ourselves to a single Josephson junction, the energy is

H = N2U
z2

2 − 2NK(1 − cos ∆φ), (5.5)

where the first term is the interaction energy inside each cluster, quantified by the
interaction parameter U , and the second term is the kinetic energy associated with the
phase variation, quantified by the tunneling energy K. Their combination determines the
behavior of the junction, and for small excitations, when the system is equivalent to a
simple pendulum, they set the frequency of the oscillation ℏωJ = 2K

√
1 +NU/(2K). For

small twists ∆φ, the kinetic energy in the Hamiltonian 5.5 is Ekin = NK∆φ2. Using the
definition 5.3 and the energy for the homogeneous superfluid on a distance equal to the
unit cell d, we get an expression for the superfluid fraction

fs = K

ℏ2/(2md2)
, (5.6)

showing a direct relationship between fs and the tunneling energy of the junction K.
We note that Leggett discussed an expression similar to his upper bound fu

s in the context
of a single Josephson junction [120], to quantify the tunneling energy K, but with no
connection with the superfluid fraction. The relationship 5.6 is thus an original result of
our work.
We have shifted the problem of measuring the superfluid fraction to the problem of
detecting Josephson oscillations between the clusters of the supersolid and measuring the
coupling energy. This is not an easy task, since the supersolid has a self-induced structure,
and no external barrier guarantees that it can sustain stable Josephson oscillations. In the
next sections, we describe the experimental implementation of this program.

5.2 Excitation of Josephson oscillations: phase
imprinting

For the Josephson experiment, the supersolid is produced in the usual cigar-shaped optical
trap, with frequencies (ωx,ωy,ωz) = 2π[18(1), 97(1), 102(2)] Hz, similar to the potential
VC in chapter 3. The superfluid-supersolid phase transition is continuous, and we cross
it adiabatically enough to minimize the spontaneous excitation of collective modes [15].
The quasi-adiabatic preparation of the supersolid helps in preventing the coupling of the
mode we are interested in with other modes, as it happened in the scissors experiment in
chapter 4. To excite Josephson oscillations in our supersolid, we employ a long-wavelength
optical lattice realized with off-resonant light at λ = 1064 nm. The characterization of
the optical lattice and of the excitation method is summarized in Fig. 5.2. With an atom
number N = (2.8 ± 0.3) × 104, the ground state in the supersolid phase is formed by two
main clusters symmetric with respect to the trap center and two couples of smaller lateral
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Figure 5.2: Excitation of the Josephson oscillations. (a) Sketch of the method. We imprint on the supersolid
wavefunction a phase with the spatial profile of an optical lattice with a period dL about two times that of
the supersolid. The dynamic starts with an alternating phase twist between adjacent clusters, as in Fig.
5.1(c). (b) Optical scheme of the lattice. Two beams are separated by two polarizing beamsplitters and
then focalized on the atoms by a lens. The two crossed beams forming the cigar-shaped harmonic trap are
also indicated inside the octagonal science cell. The lattice develops approximately in the direction of the
supersolid modulation. (c) Position of the lattice (red points) and of the supersolid (gray points) in situ in
different experimental shots. Inset: the position of the lattice is determined by loading a BEC in a deep
lattice. (d) Phase difference ∆φ0 imprinted between the main clusters with a lattice depth UL = 100 nK,
for different pulse depths τ. The phase is measured in time of flight. The dotted line is the theoretical
prediction ∆φ0 = ULτ/ℏ. (e) Calibration of the lattice depth. Oscillation frequency in a single well of the
lattice in the experiment (red dots) and from a non-interacting Schrödinger equation (black dots), as a
function of the lattice depth in nK (bottom) and in power of the lattice beams (top).
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clusters, see Fig. 5.2(a). To imprint on odd excitation, we build an optical lattice with a
period two times that of the supersolid, so that adjacent clusters experience a maximum
and a minimum of the potential, respectively. The optical lattice is formed by two beams
separated by a couple of polarizing beamsplitters and then focused by a single lens on
the atoms, as shown in Fig. 5.2(b). Since the two beamsplitters are mounted together,
we find that this configuration minimizes fluctuations in the phase of the lattice. In a
test setup, we estimate these fluctuations to have a standard deviation of σ ∼ 0.05 rad,
over about one hour of measurements [20]. The separation between the two beams at the
lens position is h = 25.4 mm, and the focusing lens has f = 200 mm. Since the period
of the lattice is dL = λ/(2 sin θ/2) = λf/h, we get approximately two times the period
of the supersolid, dL ∼ 8 µm. The geometry of the beams is such that the stripes of the
optical lattice form approximately in the long direction of the cigar-shaped trap, along
which the clusters of the supersolid are aligned. We thus consider a 1D potential of the
form VL(x) = UL sin2(πx/dL), shown in Fig. 5.2(a).

To measure the position of the lattice on the atoms, we switch on the lattice at high
power (UL > 100 nK) and we observe in situ the localization of the atoms in the single
sites of the lattice, as shown in Fig. 5.2(c), employing the objective characterized in
section 2.3. We populate mainly two or three lattice sites, depending on the relative
alignment of the lattice and the atoms. The lattice period is1 dL = (7.9 ± 0.3) µm and
the standard deviation of the fluctuations of the single site position is about 10 % of
the period. The lattice is more stable than the supersolid, as shown in Fig. 5.2(c). The
reason is the low-energy Goldstone mode, which is thermally excited even at the lowest
temperatures of the experiment [46], as already explained in connection with the in situ
imaging in section 2.3. The Goldstone mode, associated with the spontaneous breaking of
the translational symmetry, consists in a slow oscillation of the supersolid peaks, associated
with a superfluid current in the opposite direction. Since the Goldstone mode is thermally,
rather than deterministically, excited, it has a different phase in each experimental shot.
This is the reason for the fluctuations in the supersolid peak positions shown in Fig. 5.2(c).
The presence of the harmonic trap, however, limits the possible range of fluctuations,
and the two central peaks always form near the center of the trap (in a homogeneous
system, all the different phases of the solid lattice would be equivalent, as discussed in
the Landau model in section 3.1). The standard deviation of the fluctuations in the
peak positions is about 25 % of the supersolid period. Moving the last mirror of the
optical lattice, we can adjust its position with respect to the supersolid. Despite the
Goldstone excitation, we can position one maximum of the lattice on a supersolid peak and
maintain this configuration for the total duration of a measurement, as shown in Fig. 5.2(c).

To excite the Josephson oscillation, we phase imprint the spatial profile of the optical
lattice on the atoms. Switching on the lattice potential for a short time τ , the wavefunction
evolves as

1Actually, the period of the lattice is measured in time of flight and then used to measure the magnification of
the in situ imaging, as explained in chapter 2.
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ψ(τ) = ψ0e
−iVL(x)τ/ℏ. (5.7)

If the time τ is much shorter than the typical dynamical timescales of the system, the
density stays constant and the only effect is to imprint the phase φ(x) = VL(x)τ/ℏ =
UL sin2(πx/dL)τ/ℏ on the wavefunction. The resulting phase profile consists of alternating
phase twists between neighboring clusters, as in Fig. 5.1(c). We measure the imprinted
phase difference between the main clusters ∆φ0 by measuring the phase in time of flight.
Fig. 5.2(d) reports the imprinted phase ∆φ0 for UL = 100 nK and different time pulses τ .
To calibrate the depth of the lattice, we load a BEC in a deep lattice and we measure the
oscillation frequency inside a single lattice site. The measurement is compared with the
solution of a non-interacting Schrödinger equation that calculates the eigenvalues in the
lattice potential. From the comparison, we derive the conversion between the power of the
lattice beams and the lattice depth. An example of this calibration is shown in Fig. 5.2(e).

5.3 Detection of Josephson oscillations: phase and
imbalance

The hallmark of the Josephson effect is the oscillation of both the phase difference ∆φ and
the population difference Z with the same frequency and with a π/2 phase shift. The two
conjugate observables behave, indeed, as the angle and velocity, respectively, of a simple
pendulum [131]. In quantum gases systems, the Josephson effect has been observed both
in BECs [132, 133, 134] and in Fermi gases [135] trapped in double-well potentials. The
oscillations of ∆φ and Z are the equivalent, in condensed matter physics, of the Josephson
alternating current when a constant voltage is applied (the so-called AC Josephson effect),
which was the original proposal by Josephson [136]. Recently, a Josephson array model has
been employed to describe the re-phasing dynamics of the supersolid after an interaction
quench [137], however without any connection to the possibility of observing Josephson
oscillations or to the superfluid fraction.
Our excitation protocol imprints an initial phase difference ∆φ0 between the central
clusters, while the initial population difference is zero, Z0 = 0. In the pendulum analogy,
this excitation corresponds to tilting the angle of the pendulum and starting the dynamic
with zero velocity. We measure the phase difference ∆φ with the time of flight imaging,
while the population imbalance is measured with in situ imaging, employing the objective
characterized in section 2.3, in a different experimental shot. Remarkably, we observe
single-frequency oscillations of both the observables in the whole supersolid regime, in
excellent agreement with the expected dynamic of a Josephson junction, as well as with
numerical solutions of the eGPE simulating the same experimental protocol. An example
of such oscillations is shown in Fig. 5.3 for the supersolid at ϵdd = 1.428. The measured
Josephson frequencies from both population and phase oscillations are shown in Fig. 5.4 as
a function of ϵdd. They decrease going towards the droplet crystal phase, signaling a slowing
down of the Josephson dynamic which is connected to the decreasing of the tunneling
energy and hence of the superfluid fraction. Our measurements not only demonstrate
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Figure 5.3: Josephson oscillations in the supersolid. (a) Experimental snapshots and corresponding integrated
1D profiles. Upper row: interference patterns after a free expansion. Red lines are double slit fits used to
extract the phase difference ∆φ. Lower row: in-situ images. Shaded areas indicate the populations of the
left and right halves of the supersolid used to extract the population imbalance Z , according to Eq. 5.8. (b)
Oscillation of Z for the supersolid at ϵdd = 1.428. The thick line is the numerical simulation for the same
experimental parameters. The dashed line is the sinusoidal fit to the data used to extract the Josephson
frequency ωJ . Error bars are the standard deviation of the mean for about 20-30 measurements. (c) Same
for ∆φ.
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Figure 5.4: Josephson frequencies as a function of the interaction parameter ϵdd . Red points are the results
of phase measurements, while blue points are the results of population imbalance measurements. Full and
open blue dots refer to measurements of Z with and without the optical separation technique, respectively.
Black points are the results of numerical simulations, while the dashed line is a guide for the eye. Vertical
error bars correspond to the error of the sinusoidal fit, while horizontal error bars indicate the stability of
the magnetic field, as explained in section 2.1. Insets show density profiles for different values of ϵdd . The
vertical dashed line indicates the critical point of the superfluid-supersolid phase transition.

that the supersolid can sustain robust Josephson oscillations, despite the absence of an
external barrier, but also that they are a normal mode of the system, since they have a
single-frequency in all the interaction regimes we explored.
Before investigating further the analysis of the supersolid Josephson oscillations and their
connection with the superfluid fraction, we discuss in more detail the measurement of the
observables ∆φ and Z, which is far from trivial due to the peculiarities of the supersolid
structure. Our supersolid, indeed, is different from a simple Josephson junction formed
by two superfluid baths separated by a barrier. The ground state has more than two
clusters, as shown in Fig. 5.2(a), although the two central ones have a density more than
two times larger than the lateral ones. In the experiment, we cannot detect independently
the population and phase of each cluster forming the supersolid. We have access only to
the phase difference ∆φ that we measure in time of flight with a double-slit model (see
section 2.2), and to the populations that we are able to resolve in situ.

Imbalance Z

Due to our limited optical resolution res ∼ 2 − 3 µm (see section 2.3), and the overlap
between different clusters, we can resolve only the two central clusters, while the lateral
ones are hidden below the tails of the central ones or under the image noise. We therefore
define a global population imbalance as the difference between the right and left halves of
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the density distribution

Z = N1 +N2 +N3 −N4 −N5 −N6

N
, (5.8)

where the indices of the clusters are defined in Fig. 5.2(a). To measure Z, we integrate
the in situ density ρ(x, y) along the transverse y direction and we detect the two main
peaks in the 1D density ρ(x). We then integrate the signal to the left and to the right
of the minimum between the main peaks, obtaining N1 + N2 + N3 and N4 + N5 + N6,
respectively. We finally compute Z. An example of this analysis on the experimental
images is shown in Fig. 5.3(a). Even this global observable is difficult to evaluate in situ,
depending on the value of ϵdd. Near to the BEC, indeed, the density modulation is very
low and we don’t resolve the different clusters (remember that we are probing a continuous
phase transition, so the modulation smoothly develops starting from the BEC). Therefore,
the first two points in Fig. 5.4 are only from phase measurements. For ϵdd > 1.415,
we distinguish the two main peaks, but the overlap is too large to correctly extract the
imbalance Z. We therefore employ an optical separation technique to increase the distance
between the clusters. We switch on the same optical lattice used for the excitation 5 ms
before the image acquisition, with UL = 5 nK. The presence of the additional potential
pushes the clusters into the minima of the lattice, increasing their distance. After 5 ms
they are distant enough to resolve the different populations. Although the optical lattice
doesn’t have the optimal spatial phase to separate the clusters, since it has a maximum
on the position of one cluster and a minimum on the other, we checked with numerical
simulations that the only effect on the imbalance Z is the addition of a constant offset,
as shown in Fig. 5.5. The efficiency of the optical separation, despite the unfavorable
relative position between the clusters and the lattice, can be explained by the fact that
the atoms that suddenly feel the potential maximum prefer to tunnel in the empty lattice
site, rather than mix with the other cluster, due to the dipolar repulsion between clusters
(see the snapshots of numerical simulations in Fig. 5.5). For the datapoint at ϵdd = 1.444,
instead, where the density modulation is deeper, we resolve the main clusters without the
need for optical separation. In Fig. 5.4, we compare the measured frequency with and
without applying the optical separation. The two frequencies are consistent under the
experimental error, corresponding to one standard deviation.

Phase difference ∆φ

The phase difference ∆φ measured in time of flight is the result of the expansion of at
least four clusters, each with its own well-defined phase. The typical Josephson situation
in situ is sketched in Fig. 5.6, with an alternating phase φ from one cluster to the other.
A combination of different factors leads to the conclusion that ∆φ extracted from a
double-slit fit of the interference pattern coincides with the phase difference between the
two central clusters, within a good enough approximation (the maximum error is about 0.6
rad, comparable with the typical standard deviation of a phase measurement, see Fig. 5.3).
Here we describe a model of the expansion of four clusters, approximated by four gaussians
of width σ, separated by a distance d and with central populations two times the lateral
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Figure 5.5: Optical separation method. Due to the limited optical resolution, when the density modulation
is weaker we need to artificially increase the distance between the clusters to measure Z . (a) Numerical
simulations of the dynamic after switching on the lattice potential with UL = 5 nK, for different initial
imbalances Z = 5 % (green), Z = 0 % (red) and Z = −5 % (blue). The time τ = 0 ms corresponds
to the switch-on of the lattice. The experimental image is taken at τ = 5 ms. Despite the non-optimal
spatial phase of the lattice, the only effect on Z is the addition of a constant offset, which doesn’t alter
the Josephson frequency. Insets: experimental snapshots of the supersolid before (left) and after (right)
the application of the optical separation. (b) Period between the clusters as a function of time τ. Insets:
numerical snapshots of the density ρ(x) at τ = 0 ms (left) and τ = 5 ms (right) for the negative imbalance
case (blue). The gray region indicates the convolution with a point spread function with res = 3 µm. The
red dashed line is the profile of the optical lattice.
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ones, N2 = N3 = 2N1 = 2N4, see Fig. 5.6. We consider an interaction-free expansion so
that the momentum distribution ρ(kx) after a long time of flight is the Fourier transform of
the in situ wavefunction ρ(kx) = |FT[ψ(x)]|2. In the case of only two clusters at distance d,
the phase difference ∆φ appears directly in the interference term cos(akx + ∆φ), and the
period of the modulation is 2π/d. With larger systems, we have more couples of clusters
that interfere, and the phase of the interference pattern gets contributions from all of
them. In the case of four clusters, we expect interference terms related to neighboring
clusters, with period 2π/d, to second-neighboring clusters, with smaller period 2π/(2d),
and to third-neighboring clusters, with period 2π/(3d) [11]. Due to the finite resolution
of our time of flight imaging (0.2 µm−1, 1/e gaussian width [10]), we resolve only the
contribution of neighboring clusters, as depicted in Fig. 5.6(b). This contribution comes
from three different couples of clusters. In the typical Josephson configuration shown in
Fig. 5.6(a), two of them have a phase difference −φ, and the central one has a phase
difference φ. Taking into account the different populations, the three interference terms
have the form

√
N1N2 cos(akx − φ) +

√
N2N3 cos(akx + φ) +

√
N3N4 cos(akx − φ). They

can be expressed as a single cosine A cos(akx + ∆φT OF ), where the phase ∆φT OF is the
one measured with the double-slit fit. It is related to the physical phase difference between
the central clusters ∆φ = φ by

tan ∆φT OF =
√
N2 − 2

√
N1√

N2 + 2
√
N1

tan ∆φ. (5.9)

In the case of equal populations N1 = N2, we get tan ∆φT OF = −(tan ∆φ)/3, which is
the average of the tangents of the three angles. Note that, since two couples contribute
with a negative phase, the final phase is negative. If N1 = 0, instead, we get ∆φT OF = ∆φ.
In Fig. 5.6(c) we compare the in situ phase ∆φ with the phase ∆φT OF extracted from a
double slit fit of the calculated momentum distribution ρ(kx), convolved with the point
spread function of the imaging system. The result is well described by the formula 5.9.
The first observation is that we estimate −∆φ instead of ∆φ. We take into account this
minus sign when plotting ∆φ(t) together with Z(t) as in Fig. 5.3. Second, the error is very
small near 0 and ±π/2, which are approximately the extrema of our Josephson oscillations.
This means that we can safely measure the Josephson frequency and also the amplitude of
the phase oscillations. Moreover, as anticipated at the beginning of the paragraph, the
maximum error, around ∆φ = ±π/4, is about 0.6 rad, which is similar to the standard
deviation of a phase measurement. We conclude that the observable ∆φT OF is a good
measurement of the phase difference ∆φ between the central clusters. This conclusion is
also confirmed by the measured phase twist in Fig. 5.2(d), which is in agreement with the
expected applied twist between the central clusters, ∆φ0 = ULτ/ℏ.

High amplitudes

In the experiment, we detect clear Josephson oscillations only if the initial imprinted
phase is ∆φ0 > 1 rad. The need for such large amplitudes is probably due to the presence
of the Goldstone mode, which introduces an unavoidable noise, with smaller amplitude,
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Figure 5.6: Relationship between the physical phase difference ∆φ of the central clusters and the phase
difference ∆φTOF extracted in time of flight. (a) Model of the in situ wavefunction. Four gaussians with
different populations (N2 = 2N1) have an alternating phase, as in a typical Josephson oscillation. (b) We
simulate the time of flight (TOF) expansion calculating the momentum distribution ρ(kx) = |FT[ψ(x)]|2
(gray dots). The limited optical resolution of the imaging system (black dots) washes out the small-period
contributions of next-nearest neighbor clusters. The resulting momentum distribution is fitted with a double
slit function (red line) to extract ∆φTOF . Upper panel: ∆φ = 0.2π. Lower panel: ∆φ = −0.7π. (c)
∆φTOF versus ∆φ. Black dots are the result of the fit of ρ(kx). Gray lines are the prediction of Eq. 5.9
for N2 = 2N1 (dark gray) and N2 = N1 (light gray). The red line ∆φTOF = −∆φ is for comparison. Light
gray points are the residual between ∆φTOF and −∆φ.
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Figure 5.7: Josephson frequencies versus the amplitude of the phase oscillation. Black dots are the result of
numerical simulations for ϵdd = 1.42 and ϵdd = 1.43. Red points are experimental results for ϵdd = 1.428
(circles) and ϵdd = 1.432 (open triangle). The Josephson oscillations studied experimentally lie in the pink
region, between 1.1 rad and 2.2 rad.

in the observables ∆φ and Z. We typically employ a lattice depth UL = 100 nK and a
pulse time τ = 100 µs, giving a phase amplitude of about π/2. In Fig. 5.7, we study the
dependence of the Josephson frequencies of phase oscillations on the amplitude ∆φ0. In
the numerical simulations, we observe single-frequency oscillations in all the regimes we
explored, with a decreasing frequency for larger amplitudes. In the experiment, we varied
the range of phase amplitudes from 1.1 rad to about 2.2 rad. We observe, in agreement
with the simulations, a 15 % decrease in the Josephson frequencies, which can explain the
slight disagreement between simulations performed in the small-amplitude limit and the
experiment in Fig. 5.4 at larger ϵdd.

5.4 The supersolid as an array of Josephson junctions:
a model

The experimental measurements presented so far demonstrate that the supersolid can
oscillate as a Josephson junction even without an external barrier. To derive information
on the superfluid fraction, however, we need a model of our system to extract the tunneling
energy K from the observed Josephson oscillations. Our model neglects the movement of
the barrier and considers an array of fixed Josephson junctions, with different populations
due to the inhomogeneity. In the case of a single Josephson junction, the equations of
motion can be derived from the Hamiltonian 5.5. The imbalance Z = N2 −N1 and the
phase difference φ21 = φ2 − φ1 satisfy

Ż = −2K sinφ21

˙φ21 = UNZ,
(5.10)
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Figure 5.8: Models of the supersolid as an array of Josephson junctions. (a) Four-modes model. Sketch of the
four clusters with the parameters characterizing the junction (upper panel) and function f (U ′/U,

√
γK ′/K )

entering the eigenvector 5.19 of the four-modes dynamic (lower panel). The black line indicates the validity
of the relation 5.14 between the Josephson currents, necessary to have a Josephson normal mode. The white
point indicates the parameters of our experiment. (b) Six modes model, developed in [22]. Comparison
between the oscillations of Z (blue) and ∆φ (red) in the numerical solutions of the eGPE (thick lines) and in
the model (dashed lines). Lowest panel: relative currents between the central and lateral clusters appearing
in the six-mode analog of Eq. 5.14, from eGPE simulations. The solid line is (Ṅ3 − Ṅ2)/2 and the dashed
line is Ṅ6 + Ṅ5 − Ṅ2 − Ṅ1.
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where we assume the interaction energy is much larger than the tunneling, namely
NU/2K ≫ 1. This condition is known as the Josephson regime [138, 133] and is well
realized in the supersolid, as discussed below. We also assume small imbalances Z ≪ 1.
The coupled equations 5.10 predict sinusoidal oscillations in the small-angle limit, φ21 ≪ 1,
with frequency ℏωJ =

√
2NUK. The same equations can also be written in terms of the

single populations

Ṅ1 = −Ṅ2 = −2K
√
N1N2 sinφ21

˙φ21 = U(N2 −N1),
(5.11)

where the condition Z ≪ 1 gives
√
N1N2 ∼ N/2.

We start from Eq. 5.11 to extend the model to an array of Josephson junctions. We discuss
the case of 4 clusters, but the model can be generalized to more clusters. We introduce
two symmetric lateral tunneling energies K ′ and interaction energies U ′, and the trapping
energy E0 experienced by the lateral clusters, see Fig. 5.8. The initial populations are
symmetric N0

1 = N0
4 and N0

2 = N0
3 = N0, and the lateral ones are smaller, N0

1 = γN0,
γ < 1. The central clusters exchange two currents this time, one for each neighboring
cluster. In the same approximation of small Z, which in this case means

√
N1N2 ∼ √

γN0

and
√
N2N3 ∼ N0, the equations for the populations are

Ṅ1 = −2K ′√γN0 sinφ21

Ṅ2 = 2K ′√γN0 sinφ21 − 2KN0 sinφ32

Ṅ3 = 2KN0 sinφ32 − 2K ′√γN0 sinφ34

Ṅ4 = 2K ′√γN0 sinφ34,

(5.12)

and are coupled to the three equations for the phase differences

φ̇12 = E0 + U ′N1 − UN2

˙φ32 = U(N2 −N3)
˙φ43 = −E0 + UN3 − U ′N4.

(5.13)

Even in the small-angle regime, the sets of equations for the 4 clusters predict a multi-
frequencies dynamic for both the populations and the phases. Harmonic single-frequency
oscillations with a π/2 shift between populations and relative phases are recovered with
an additional constraint on the Josephson currents

Ṅ3 − Ṅ2 = 2(Ṅ1 − Ṅ4). (5.14)

Remarkably, this relation between the different currents is very well satisfied in our
experimental conditions, as verified in the solutions of the eGPE, shown in Fig. 5.8. The
relationship 5.14 allows us to decouple the dynamical variables of the central clusters from
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the others. Putting together the populations 5.12, the phases 5.13 and the condition 5.14,
we finally obtain Josephson-like equations for the current between the central clusters

Ṅ2 − Ṅ3 = −4K(N0
3 +N0

2 ) sinφ23

˙φ23 = U(N2 −N3).
(5.15)

The only difference with the equations 5.10 for the single junction is a factor 2. The
condition 5.14 allows us also to write the Josephson equations in terms of the experimental
observables. In the four-modes model, the experimental global imbalance 5.8 takes the
form Z = (N1 + N2 − N3 − N4)/N , and it satisfies N2 − N3 = 2NZ. The equations for
the observables Z and ∆φ = φ23 are then

Ż = −2KN23

N
sinφ23

˙φ23 = 2UNZ,
(5.16)

where N23 = N0
3 +N0

2 . In the small angle limit, the Josephson frequency is

ωJ =
√

4N23UK. (5.17)

We will use both 5.16 and 5.17 in the next section to extract the superfluid fraction
from the Josephson measurements.

We could wonder where the relationship 5.14 comes from, apart from the numerical
evidence. It can be recast, indeed, in terms of relationships between the parameters of the
supersolid junction. Combining Eq. 5.12 and 5.13, we can write the whole dynamic of the
array as


N̈1
N̈2
N̈3
N̈4

 = 2KN0U


−U ′

U
K′

K

√
γ K′

K

√
γ 0 0

U ′

U
K′

K

√
γ −

(
K′

K

√
γ + 1

)
1 0

0 1 −
(

K′

K

√
γ + 1

)
U ′

U
K′

K

√
γ

0 0 K′

K

√
γ −U ′

U
K′

K

√
γ



N1
N2
N3
N4

+const.

(5.18)
The normal modes of the system are given by the diagonalization of this matrix. Among

the four eigenvectors, two have the correct form to describe an alternate dynamic from
cell to cell, realizing the Josephson mode, namely v ∼ (−a, b, −b, a). They look

v ∝


−1

f(U ′/U , √
γK ′/K)

−f(U ′/U , √
γK ′/K)

1

 , (5.19)

where f(x) is a function of the junction’s parameters, plotted in Fig. 5.8(a). The
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existence of the Josephson normal mode, related to the condition N3 −N2 = 2(N1 −N4).
requires that the eigenvector should be in the form v ∝ (−1, 2, −2, 1), namely the parame-
ters should satisfy the condition f(U ′/U ,K ′/K

√
γ) = 2. Fitting the numerical solutions

of the eGPE to the Josephson model 5.12 and 5.13, we find for our system U ′/U ∼ 2 and√
γK ′/K ∼ 1, which satisfy indeed f(U ′/U ,K ′/K

√
γ) = 2, as depicted in Fig. 5.8(a).

Interestingly, we can estimate the ratio K ′/K also from the Leggett formula. From our
expression of the superfluid fraction 5.6, we have K ′/K = f ′

s/fs, where f ′
s is the superfluid

fraction calculated between clusters 1 and 2. Calculating Leggett’s upper bound 5.4
between these two clusters in the ground-state numerical simulations, we find the same
result √

γK ′/K ∼ 1, with very small fluctuations of a few % with ϵdd.

Our theoretical collaborators in the group of A. Smerzi performed a more refined analysis,
modelizing the system as an array of 6 clusters. The two models are qualitatively similar,
and the results for the experimental observables 5.16 and 5.17 are the same provided
that we replace the indices as N23 → N34 and φ23 → φ34. In Fig. 5.8(b) we plot the
comparison between the six-mode model and the simulated dynamic. The analog of the
current relationship 5.14, namely Ṅ3 − Ṅ4 = 2(Ṅ6 − Ṅ1 + Ṅ5 − Ṅ2), is well satisfied. The
model confirms also that the supersolid is in the Josephson regime, since N34U/2K > 35
for all the values of ϵdd.

5.5 Sub-unity superfluid fraction
Combining the experimental Josephson oscillations and the model discussed in the previous
section, we are in the position to extract the superfluid fraction. The simplest analysis
consists of finding the tunneling energy K from the measured Josephson frequency ωJ ,
employing Eq. 5.17, namely K = ω2

J/(4N34U). We then extract the superfluid fraction
from Eq. 5.6, fs = 2md2K/ℏ2, where the supersolid period d = (3.7 ± 0.1) µm is measured
in situ. This method allows us to measure the superfluid fraction in all the supersolid
regime, also near to the BEC where we have only phase measurements. However, we
need to calculate the interaction energy N34U from numerical simulations. The results are
plotted in Fig. 5.9 as black dots. To take into account the effect of the relatively large
amplitudes in the experiment, we add a 15 % upper error bar due to the underestimation
of the Josephson frequencies, as explained in Fig. 5.7.
In the region of larger ϵdd, where we have combined Z and ∆φ measurements, we employ
also a different method that exploits the full Josephson oscillations. We fit the linear
dependence of Ż and sin ∆φ to extract K, according to the current-phase equation 5.16,
Ż = −2K(N34/N) sin ∆φ. Plots of Ż versus sin ∆φ are shown in Fig. 5.9(b) for both
the experiment and the numerical simulations, together with the corresponding linear
fit. The resulting superfluid fraction is indicated as pink circles in Fig. 5.9(a) and is in
agreement with the results from the Josephson frequencies. The pink circles demonstrate
the sub-unity superfluid fraction without any theoretical input of the interaction energy
U . However, we still compute the fraction of atoms in the central cluster N34/N from
numerical simulations to isolate the tunneling K in the slope of the current-phase relation.
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Figure 5.9: Superfluid fraction from Josephson oscillations. (a) Superfluid fraction as a function of ϵdd .
Black dots indicate fs derived from the Josephson frequencies, while pink dots indicate fs derived from the
current-phase relation 5.16. Closed and open pink dots refer to measurements of Z with and without the
optical separation technique, respectively. Green dots are the results of numerical simulations, employing
the current-phase relation 5.16. The gray region indicates Leggett’s upper and lower bounds, f ls ≤ fs ≤ f us ,
calculated on ground-state simulations. (b) Current-phase relation 5.16 employed to extract the tunneling
energy K in numerical simulations (left) and in the experiment (right) for the supersolid at ϵdd = 1.444.
Green and pink lines are linear fits to the data and the shaded areas are the confidence bands for one
standard deviation.
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Figure 5.10: Experiment-simulations check of the interaction parameter. Example of linear correlation between
d∆φ/dt and Z for the Josephson oscillation at ϵdd = 1.428. From the fitted slope 2NU we extract the
interaction parameter NU = (8± 5) nK, consistent with the value of 12 nK from numerical simulations.

As an additional check, we extract the interaction energy N34U from the experimental
data employing the second Josephson equation, ∆̇φ = 2NUZ, finding values consistent
with the theory. An example of this analysis is shown in Fig. 5.10 for ϵdd = 1.428.
Overall, the experimental data of the superfluid fraction are in good agreement with the
eGPE simulations, in which the same linear fit to the current-phase relation is employed to
compute K, as for the experimental pink data. The tunneling energy K decreases from 0.1
nK to about 0.01 nK, while the interaction energy weakly depends on ϵdd. Correspondingly,
the superfluid fraction shows a progressive decrease as the modulation depth increases
and can be tuned from 1 to about 0.1 with the inter-atomic interactions.
Since we extract the superfluid fraction from the tunneling energy K between the central
clusters, thanks to the modelization explained in section 5.4, our measurement is local
and probes the superfluid fraction in the central region of the system. For this reason, it
is not affected by inhomogeneity effects and coincides with the superfluid fraction of a
hypothetical homogeneous supersolid, composed of cells identical to our central one, like
the one in the ring geometry of Leggett model.
We also compute Leggett upper and lower bounds fu

s and f l
s (Eqs. 4.4 and 4.10) from

ground-state simulations. The region between the two bounds is indicated in gray in
Fig. 5.9(a). The bounds reduce to an equality when the density is separable in the
transverse coordinates y and z. Since our system develops a 1D modulation because
the transition is continuous [15], the two bounds are close each other. Remarkably, our
results well agree with Leggett’s prediction. The experimental error bars are too large to
claim that the measurements satisfy Leggett’s bound, but the numerical calculations lie
between the two bounds in the whole regime we investigated. This agreement is significant
because Leggett’s model is not directly related to the Josephson oscillations: it is an
important and independent check of the Josephson probe to measure the superfluid fraction.

As explained in the introduction of the chapter, the superfluid fraction quantifies the
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reduction of superfluid stiffness due to the density modulation. This connection is well
exemplified in Fig. 5.9(a) by the agreement between Josephson data and Leggett’s bounds.
The physical origin of the density modulation, however, has no role in the definition of the
superfluid fraction. Recently, indeed, a sub-unity superfluid fraction has been measured
also in BECs in which the translational symmetry is externally broken by a 1D optical
lattice [119]. In this case, it is natural to associate the superfluid fraction with the effective
mass m∗ of the atoms in the lattice, which quantifies the curvature of the energy band
for small quasi-momenta. The superfluid fraction can be expressed as fs = m/m∗. Since
the effective mass fixes the speed of sound in the condensate, c2 = (κm∗)−1, through the
compressibility κ, a measurement of the speed of sound gives access to the superfluid
fraction. In the experimental configurations of [119], the lattice is 1D, so the superfluid
fraction in the direction x of the modulation is measured by the ratio of the sound speeds
parallel and perpendicular to the density modulation, fsx = c2

x/c
2
y. Such a measurement

is consistent with a direct measurement of the density modulation and the associated
Leggett’s upper bound [119]. The application of this method to the dipolar supersolid is
not feasible because the excitation spectrum is more complex than that of a BEC, and a
simple connection between fs and the speed of sound doesn’t exist.

Our results are, instead, the first observation of a sub-unity superfluid fraction in a system
with spontaneously broken translational symmetry. The absence of an external potential,
which constrains the dynamic of the system, is crucial, and totally new phenomena
peculiar to the supersolid phase and associated with the sub-unity superfluid fraction are
expected. Some examples are the persistent currents with counter-propagating components
as discussed concerning the Leggett model in section 4.1: one semi-classical associated
with the density peaks and one fully superfluid associated with the background [21]. The
angular momentum transported by these persistent currents in a ring geometry should be
partially quantized, meaning that each atom should have less than ℏ angular momentum
[139]. Similar predictions in circular harmonic traps, instead of ring potentials, point out
the existence of partially quantized vortex states in the supersolid, linked to the sub-unity
superfluid fraction [140, 141]. We can understand the anomalous behavior of persistent
currents in the supersolid by adding together the results presented in the current and
previous chapters, namely that the moment of inertia of the supersolid is less than the
classical value but finite, even in a circular trap, and that the superfluid fraction is less
than one. The thought experiment consists of asking what is the angular momentum
L of the system as a function of the rotating frequency of the container Ω. A standard
superfluid shows a step-like function, see Fig. 5.11, corresponding to the excitation of
a vortex state (L = Nℏ) at the critical angular velocity Ωc [3]. On the other hand, a
supersolid has a finite moment of inertia I = (1 − fs)Ic so that its angular momentum
increases also before the excitation of a vortex, as L = (1 − fs)IcΩ. When the vortex is
excited, therefore, the jump in angular momentum must be less than Nℏ. In the limit
of a classical system, there is no jump and the angular momentum linearly increases as
L = IcΩ. Looking at the plot in Fig. 5.11, it is easy to conclude that the jump at Ωc

is δ = fsNℏ. The superfluid fraction, therefore, is responsible for the partial quantized
nature of a vortex in the supersolid phase. This intuitive picture is confirmed by theoretical
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Figure 5.11: Sketch of the role of the sub-unity superfluid fraction in a quantized vortex. Angular momentum
L versus angular velocity Ω of a rotating circular trap. For a standard superfluid (red) a vortex is energetically
favorable above a critical velocity Ωc , and the angular momentum has a jump δ = Nℏ. In a supersolid
(blue), angular momentum enters the system also before Ωc , because the moment of inertia is different
from zero, L = (1 − fs)IcΩ. The jump at the critical velocity is lower and proportional to the superfluid
fraction, δ = fsNℏ. For a classical system (green) there is no jump and the angular momentum grows
linearly, L = IcΩ.

calculations [140, 139].
Our measurements of a large and tunable superfluid fraction, with values ranging from 1 to
0.1, open the possibility of observing such exotic superfluid phenomena at a macroscopic
level. In order to make progress in this direction, however, we should change the geometry
of the system from the cigar-shaped harmonic traps discussed so far to a circular geometry,
favorable for experiments related to rotations. This is the topic of the last chapter of the
thesis.

5.6 A self-induced Josephson junction: the Goldstone
mode

The observation of Josephson oscillations in Fig. 5.3 demonstrates that the supersolid can
behave as a self-induced Josephson junction, without any external barrier separating the
two superfluid clusters. Since the effective barrier is completely induced by the inter-atomic
interactions, its position is not fixed a priori but is an additional degree of freedom of the
system. In other terms, since the junction structure arises from the spontaneous breaking
of the translation symmetry, there is an additional degree of freedom consisting in the
Goldstone mode, an oscillation of the barrier position coupled with an oscillation of the
population imbalance due to the harmonic trap [46]. As explained in section 5.2, the
experimental signature of the low-energy Goldstone mode is the shot-to-shot fluctuation
of the supersolid peaks position. A deterministic observation of the mode would be
challenging due to its low energy (much lower than the trapping frequency ℏωx). When
we excite the higher-energy Josephson mode with the phase imprinting protocol, we do
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not observe a coupling with the Goldstone mode. In the simulations, the movement of the
barrier is negligible and the dynamic is dominated by the standard Josephson oscillations.
The same is true in the experiment since we measure single-frequency oscillations of Z
and ∆φ that agree with the theory. The effect of the Goldstone mode in the experiment
is to introduce a noise in the oscillations, because the relative position between the optical
lattice and the supersolid changes from shot to shot, see Fig. 5.2(c), leading to fluctuations
in the imprinted phase that contribute to the error bars in Fig. 5.3.
To estimate the energy of the Goldstone mode, we perform simulations in which we excite
the Josephson dynamic with a different technique. Instead of triggering the oscillation
with an initial phase difference, we prepare the ground state of the supersolid in the lattice
potential, which has a population imbalance between the clusters. We then remove the
lattice and let the system evolve in the harmonic trap. The results are shown in Fig. 5.12
for ϵdd = 1.41. The initial ground state, due to the presence of the lattice, has the central
density minimum in a position δ0 displaced from the center of the trap. In the following
dynamic, we observe two frequencies in the oscillations of both Z and ∆φ: the usual
Josephson frequency ωJ = 2π × (23.85 ± 0.03) Hz, and the smaller Goldstone frequency
ωG = 2π × (3.56 ± 0.08) Hz. The latter dominates the oscillation of the weak link position
δ, see Fig. 5.12(a). The Josephson frequency ωJ is the same as the one observed with
the phase imprinting method, hence without exciting the Goldstone mode, demonstrating
the absence of coupling between the two modes. We propose a suggestive mechanical
analogy to interpret the two-frequency dynamics. The standard Josephson dynamics can
be mapped into that of a simple pendulum, where the phase difference ∆φ is the angle
that the pendulum forms with the vertical direction and the population imbalance Z
is the pendulum velocity. In the self-induced Josephson junction, the simple pendulum
acquires an additional lower frequency, resembling a double pendulum with one length
(the Goldstone one) larger than the other (the Josephson one), lG ≪ lJ , see Fig. 5.12(d).

Regarding possible applications of the Goldstone mode in the actual junction, we think
that it could affect the fluctuation properties. In a standard Josephson junction, Z and
∆φ display fluctuations of both quantum and thermal origin. Focusing on the relative
phase ∆φ, the variance of the quantum fluctuations in the two-mode approximation is
σ2

φ−Q =
√
U/(2NK) [142], while for thermal fluctuations it is σ2

φ−T = kBT/(2NK) [143].
With our parameters, the quantum fluctuations are small because of the large atom number
N , and we consider only thermal fluctuations. We know from the measurements performed
on the phase transition, that the variance of the supersolid phase just after its formation
is σ2

φ−T ∼ 0.035, see Fig. 3.12. From this value and the estimated junction parameters of
this chapter, we can extract the system temperature, exploiting the phase fluctuations as
a thermometer [144]. We recast the phase variance in terms of the Josephson frequency
ωJ =

√
4N34UK, obtaining σ2

φ−T = kBT
2U

(ℏωJ )2 . The estimated temperature is therefore

kBT = σ2
φ−T

(ℏωJ)2

2U . (5.20)

Using ℏωJ = 1 nK (corresponding to the measured ωJ ∼ 2π× 20 Hz) and N34U = 6 nK,
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Figure 5.12: Goldstone and Josephson oscillations in numerical simulations. (a-b) We start the Josephson
dynamics from the ground state in the presence of the lattice potential, instead of employing the phase
imprinting protocol as in the experiment. Doing so, the weak-link position δ is displaced from the center
of the trap and the Goldstone mode is also excited. We measure its low frequency (∼ 3 Hz) from the
oscillation of the weak-link position (a). The same low frequency appears also in Z and ∆φ, on top of
the faster Josephson oscillation (b). (c) Snapshots of the dynamical simulations at t = 0 ms (gray) and
at t = 190 ms (green), showing the different positions δ of the weak link. (d) Mechanical analogy with a
double pendulum, for which one length (the Goldstone, black) is much larger than the other (the Josephson,
green). Inset: the time evolution of the angle and velocity of the second pendulum is the sum of a fast and
slow frequency, similar to what happens in the self-induced Josephson junction (b).

we get kBT ∼ 60 nK, a quite large value of the order of the condensation temperature. On
the other hand, from time of flight measurements, we know that the thermal component
of the BEC is small, and when it is no longer detectable the temperature is very likely to
be less than 10 nK [10]. It is interesting to note that we can recover a result of this order
of magnitude (kBT ∼ 1 nK) if we substitute the energy scale of the Josephson oscillations
ℏωJ ∼ 1 nK with the energy scale of the Goldstone mode, ℏωG ∼ 0.15 nK. This is just
a rough estimation, which employs the standard two-mode approximation of Josephson
junctions, but the intuition at the basis of the reasoning is that the lower energy scale
of the Goldstone mode could strongly affect the fluctuation properties of the junction,
revealing its self-induced nature.





Towards a supersolid in a ring
Chapter 6

All the experiments described so far have been performed in a cigar-shaped trap. This
geometry favors the softening of the roton mode along the weak direction of the trap
and has been a key factor in the discovery of the supersolid phase. However, for future
developments, the cigar-shaped geometry has several limitations. The inhomogeneity is
strongly enhanced because the clusters are less and less populated while moving towards
the edges of the trap. This complicates the analysis of the superfluid-supersolid phase
transition, as discussed in chapter 3, and modifies the excitation spectrum. In chapter 4 we
have seen that the anisotropy of the trap plays a relevant role in the rotational dynamics,
and can hide peculiar supersolid properties, such as the sub-unity superfluid fraction. The
problem is complicated by the long-range nature of the dipolar interaction, which makes
homogeneous potentials impractical due to strong edge effects: the atoms get stacked at
the boundary of the box [33].
On one side, a possible route toward homogeneous systems consists of forming larger
supersolids in circular traps. In this regard, the recent realization of supersolids with 2D
lattices opens the door to exciting research directions [48, 49]. However, the long-term
goal of realizing a supersolid dominated by the bulk and with negligible edge effects, as in
real solids, is far away, as it requires a large number of atoms or a different mechanism for
supersolidity. To get an order of magnitude, we can think about a square lattice with L
clusters per side, containing in total L2 clusters. We naively estimate the transition to
bulk-dominated physics when the number of clusters on the edge of the square is much
less than the number in the bulk, namely 4L ≪ L2. This is realized with L ∼ 10, meaning
L2 ∼ 100 clusters, a number beyond current experimental possibilities.
A different approach consists of eliminating the edges, by realizing a closed geometry. In
this chapter, we describe recent experimental steps toward the realization of a supersolid in
a ring geometry. The ring doesn’t suffer from finite size effects and inhomogeneity, and it
resembles a 1D infinite system. The scientific motivations are numerous and some of them
are sketched in Fig. 6.1. The natural continuation of the results discussed in this thesis is
the study of persistent currents. In the ring geometry, we can excite persistent currents
using a phase imprinting technique as the one described in chapter 5 for the Josephson
experiment. We will investigate the anomalous quantization properties of the supersolid
currents [139], as discussed at the end of the previous chapter. We expect the shape of
the phase profile and the velocity field to be in the form predicted by Leggett’s model,
with two counter-propagating currents, one semiclassical associated with the clusters and
the other associated with the superfluid background, see section 4.1.
Regarding phase transitions, we know from chapter 3 that the transition will be continuous
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Figure 6.1: Scientific motivations for realizing a dipolar supersolid confined in a ring geometry. Left: density
of an 8-cluster supersolid state in a ring. Right: possible research directions, including the study of persistent
currents; the superfluid-supersolid phase transition and Kibble-Zurek mechanism; collective excitations and
connection to supersolid hydrodynamics.

if the width of the ring is small enough. An interesting question is the role of the Kibble-
Zurek mechanism across the continuous superfluid-supersolid phase transition. Originally
introduced in cosmology, the Kibble-Zurek mechanism has been studied in the BEC
transition in annular geometries [145] as well as in homogeneous potentials [97]. When the
phase transition is crossed with a quench, the symmetry can be broken differently in spatial
regions that don’t have the time to exchange information. In the superfluid case, this
leads to disconnected superfluid islands, each with its own phase. A persistent current can
appear depending on the pattern of the spontaneously chosen phases. This is a stochastic
process, whose statistics give information about the critical exponents of the transition.
We expect that the Kibble-Zurek mechanism applies also to the superfluid-supersolid phase
transition, but what is the nature of the resulting stochastic excitations is unknown and
is an exciting open question. Probably, the crystal structure would form with different
spatial phases, producing defects in the crystal and a stochastic dynamic exhibiting a
mixed superfluid and solid nature.
Finally, we cite the possibility of studying collective excitations in a homogeneous potential,
which, in contrast to the harmonic case, allows for a more direct connection to hydrodynamic
quantities, such as the speed of sounds. In a recent theoretical proposal [146], Goldstone
modes are excited in a ring geometry with our experimental parameters, and connections
with other general quantities as the superfluid fraction are discussed. An interesting
peculiarity of the ring configuration is that the low-energy Goldstone mode of the harmonic
trap (see section 5.6) reduces to exactly zero energy. This means that in every experimental
realization, the spatial phase of the supersolid lattice should be different since they have
all the same energy.
Most of the results reported in this chapter are preliminary. In section 6.1 we describe the
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Figure 6.2: Ground-state simulations of the supersolid state in a ring-shaped potential, as described by Eq.
6.1, with radius R = 5 µm and N = 5× 104 atoms. Superfluid fraction fs calculated along the ring as a
function of the scattering length as , for various ring thicknesses σR . The transitions are continuous for thin
rings and discontinuous for thick rings. Insets: density distribution in the xy plane for σR = 1 µm (upper
row) and for σR = 5 µm (lower row), for different scattering lengths. The supersolid forms with 8 clusters.

optical setup planned to realize the ring potential, through a Digital Micromirror Device
(DMD), which we characterized but is currently being mounted in the lab. In sections
6.2 and 6.3 we show the characterization of the repulsive potential that will form the ring
geometry, both for what regards the laser source and the dysprosium polarizability at
λ = 404 nm, which was unknown. Some of these results will be published in a paper in
preparation [147]. Finally, in section 6.4, we discuss some preliminary numerical simulations
about the excitation of persistent currents in the supersolid regime.

6.1 Optical scheme for a ring-shaped potential

To estimate some realistic parameters for the ring potential, we perform ground-state
simulations in a harmonic trap with frequencies (ωx,ωy,ωz) = 2π × (20, 20, 100) Hz plus
the potential

UR(x, y) = −URExp[−(r −R)2/(2σ2
R)] (6.1)
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where r =
√
x2 + y2, R is the ring radius, UR the depth of the ring potential and σR

the thickness of the ring. The resulting 3D potential is a torus, whose projection in the xy
plane is a ring. In principle, one could consider a steeper potential instead of a gaussian,
but as we will see the available optical resolution will smear out the potential walls, so the
expression 6.1 is a good approximation of the experimental configuration. The size of the
ring is determined by our vertical trapping frequency ωz = 2π × 100 Hz, which gives a
supersolid period d ∼ 4 µm, and by the atom number. Considering an atom number inside
each cluster of Nc = 5 × 103, for a given radius R we need N = Nc2πR/d ∼ 3 × 104R/d
atoms. From this estimation, we conclude that the radius R should be of the order of the
supersolid period d. We therefore set as a target a ring with radius R = 5 µm, for which
we get supersolid states with a realistic atom number N = 5 × 104. We checked with
simulations that for larger rings, for example R = 8 µm, we need N > 8 × 104 atoms to fill
the ring, while for smaller N , the ground state is an array of distant independent clusters.
Fig. 6.2 shows the results of ground-state numerical simulations withR = 5 µm, N = 5×104

atoms and a ring potential depth of UR = 100 nK. We plot the superfluid fraction fs

calculated through Leggett’s upper bound 5.4 as a function of the scattering length as,
for different ring thicknesses σR. Moving from thinner to larger rings the transition
from continuous becomes discontinuous, as evident from the appearance of a jump in the
superfluid fraction. This is the analog of the dimensional crossover in the cigar-shaped trap,
the topic of chapter 3: when the system gets enough ’space’ in the transverse direction, the
transition becomes discontinuous [15]. Since we plan to work with a continuous transition,
to minimize excitations in the supersolid, we will employ thin rings, σR ∼ 1 − 2 µm.

The DMD
To create a ring-shaped optical beam to trap the atoms, we will employ a Digital Mi-
cromirror Device (DMD), an optical element consisting of an array of micrometer-sized
mirrors, individually controllable. The mirrors can take two different positions (’on’ or
’off’), differing by the tiling angle with respect to the surface of the DMD. Our model1
is an array of 2560 × 1600 mirrors, where the ’on’ (’off’) state consists of a mirror tilted
by 12◦ (−12◦). The DMD takes in input a 2D binary matrix, which is translated into a
specific mirror configuration. When a laser beam is diffracted by the DMD, the spatial
shape of the mirror array gets imprinted on the intensity profile of all the diffraction orders.
Therefore, the DMD allows the generation of arbitrary-shaped optical potentials.
To perform rotational experiments like the ones proposed in the previous section, a cru-
cial prerequisite is that any defect in the ring potential should be as small as possible.
Fluctuations or distortion of the ring geometry would break the rotational symmetry and
would severely influence the dynamic of the system, for example inhibiting the flow of
persistent currents. Therefore, we performed a careful characterization of the optical ring
produced with the DMD in a test setup, shown in Fig. 6.3. We employ a laser beam with
wavelength λ = 404 nm, on the blue side of a dysprosium resonance, see next section.

1DMD DLP9000X Texas Instrument, controlled by the module Superspeed Vialux V-900-12. Mirror size =
7.56 µm.

https://www.ti.com/product/DLP9000X
https://www.vialux.de/en/superspeed-v-modules.html
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Figure 6.3: Characterization of the optical ring profile created with a DMD. (a) Photo of the DMD’s
programmable array. (b) Optical setup for the test of the DMD. A laser at 404 nm impinges on the
DMD with an incident angle of 24◦. The main diffraction order is selected, demagnified by a factor of 5
with a telescope and focused on a CCD camera. An iris in the focal plane inside the telescope eliminates
high-frequency components of the image. (c) Intensity profile acquired with the CCD camera displaying
the annular dark region (d) Ground-state simulation in the supersolid phase with the CCD image in (c)
injected in the GPE equation as an external potential in the xy plane, to simulate the effects of the potential
imperfections on the atoms. (e) Feedback protocol to eliminate the gaussian shape of the beam. 1D cuts in
the x direction without feedback (black) and with feedback with two different targets (magenta and cyan).
The insets show the corresponding 2D images.

The motivation for employing a repulsive potential is related to the need to minimize
imperfections: any fluctuation in the light field will have a minimal effect on the atoms if
they are trapped in the dark regions. The spatial profile imprinted into the laser beam
by the DMD is, therefore, a dark annular region. The light diffracted by the DMD is
focused on a CCD camera after a demagnification of a factor 5. Since the DMD is a
blazed diffraction grating, the maximum of the diffracted power isn’t in the 0th order,
but in a different order that depends on the incident angle. As shown in Fig. 6.3(b), we
decided to work with a 24◦ incident angle. In this configuration, we get a good diffraction
efficiency of about 50 %, and the reflected beam is perpendicular to the DMD surface.
This geometry minimizes aberration on the final image, because all the DMD’s mirrors are
at the same distance from the focal plane. We tested the quality of the ring produced with
the DMD by injecting into the eGPE equation the image acquired with the CCD camera
as an external potential in the xy plane and calculating the ground-state of the system.
This is done after mapping the spatial scale of the camera to the grid of the simulation
in such a way that the ring potential has a radius R = 5 µm, and mapping the intensity
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recorded by the camera into a temperature scale, such that the depth of the ring potential
is between 100 and 200 nK. The external potential is completed with a vertical harmonic
trap with frequency ωz = 2π× 100 Hz. All the fluctuations and aberrations of the optical
ring are then reflected in distortions of the calculated ground-state density distribution.
An example of this procedure is shown in Fig. 6.3(c-d), where for a given ring recorded by
the camera (panel c) we obtain a supersolid ground state (panel d) similar to the ones
calculated in the analytical potential, see Fig. 6.2, with only small modifications of the
lattice period along the ring. The optimization of the optical ring consists mainly of a
careful alignment of the optical path, the aforementioned choice of the incident angle on
the DMD, and the introduction of an iris in the focal plane inside the microscope, which
acts as a bandpass filter cutting high-frequencies in the Fourier space of the image. We also
implemented a feedback procedure that allows us to create nearly homogenous potential
and to get rid of the gaussian shape of the beam. The feedback consists of a Python code
that compares the camera image with a target image and corrects the DMD pattern to
minimize the error between the two images [148, 149]. The feedback is fast (a few seconds)
and it converges after about 5 iterations. An example of the feedback program on the ring
potential is shown in Fig. 6.3(e). The potential displayed in Fig. 6.3(c) has been obtained
after 5 iterations of the feedback program.

Optical trap and imaging
The beam diffracted by the DMD will propagate in the vertical direction z, providing
the ring-shaped confinement in the xy plane. The additional confinement in the vertical
direction is given by two attractive beams at 532 nm, shown in Fig. 6.4. The first one is a
light sheet propagating in the x direction with waists wy = 190 µm and wz = 20 µm. The
strong confinement in the z direction balances gravity and gives a harmonic frequency
between 2π× 100 Hz and 2π× 150 Hz, depending on the power. Up to 2 W are available
for the light sheet. However, despite the large aspect ratio, we found that the light sheet
produces also a harmonic confinement of about 2π× 30 Hz in the y direction, while the
confinement is negligible in the propagation direction (x). This configuration is anisotropic
in the xy plane, and it would result in a localization of the atoms along the ring. To
correct for the anisotropy, we add a second attractive beam at 532 nm, propagating in
the vertical direction z and with a similar aspect ratio: wx = 37 µm and wy = 300 µm.
The strong-confining direction of this second light sheet is in the x direction and can thus
compensate for the anisotropy. Changing the power of the second beam, we found an
approximately circular trap with frequencies (ωx,ωy) = 2π × [32.6(8), 30.1(3)] Hz. We
produce the BEC in the infrared optical trap discussed in the rest of the thesis and we
load it in the green trap at the end of the evaporation process, see Fig. 5.5(b). This
is the starting point for the loading of the ring potential, which is the next goal of the
experiment.
To correctly focus the optical potential imprinted by the DMD on the atoms, we also
need an objective with a good enough resolution. Our current objective has a resolution
between 2 and 3 µm, as described in chapters 2 and 4. The limited optical resolution has
been one of the main challenges in the Josephson experiment. Since we want to create
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a ring potential with radius R = 5 µm and width σR around 2 µm, and we want also to
detect the in situ density distribution of the supersolid, we designed a new microscope.
The imaging scheme is exactly the same: we will employ dispersive phase-contrast imaging
as described in chapter 2, but we will use a diffraction-limited aspheric lens2 as the first
lens of the microscope. Even if its focal length is larger than the previous one, f = 100
mm instead of 75 mm, we should achieve a diffraction-limited resolution of res ∼ 1.5 µm
due to the better performance of the lens. We confirmed this value with a test on the
USAF target exactly as described in Fig. 2.7 in chapter 2. Particularly, since the new
lens is aspheric, we should be able to use the full numerical aperture without incurring
detrimental aberrations, contrary to the previous achromat lens. Finally, the larger focal
length increases the depth of focus (15 µm) so that the alignment procedure of the objective
should be easier than the previous one.
The project combining the imaging and DMD paths is shown in Fig. 6.5. The imaging
light at 421 nm comes from the atoms and focalizes the image either in the Stringray
camera, for the time of flight imaging (with a magnification MTOF ∼ 2.5), or in the Andor
camera, for the in situ imaging (magnification Min situ ∼ 50). The DMD light at 404 nm
comes from the DMD and is focalized on the atoms through the same microscope, with a
total de-magnification of MDMD ∼ 35. The ring on the DMD should, therefore, have a
radius RDMD = MDMD × 5 µm ∼ 175 µm. The building of this scheme is currently ongoing
in the lab.

6.2 A laser source at 404 nm for repulsive optical
potentials

To generate the repulsive optical potential, we work on the blue side of a strong dysprosium
resonance at λ = 404.7 nm [150], shown in Fig. 6.6, with a linewidth Γ405 = 2π × 33
MHz, similar to the 421 nm transition used for the cooling (section 2.1). The choice of
this wavelength is motivated by the possibility of achieving a better resolution compared
to larger wavelengths, and by the proximity of our imaging light (421 nm) so that we
can employ the same objective for the in situ imaging and the focalization of the optical
potentials. We employ a continuous wave multimode laser diode3 emitting around λ =
404 nm. The output power of the diode is about P = 120 mW, with a broad spectrum in
a free-running configuration shown in Fig. 6.6. The emission of the diode is very close to
the resonance and is more than 1 nm wide. The envelope of the emission can be tuned,
for example, with the temperature of the diode. Even at the lowest temperature, however,
the emitted light has some frequency component at resonance and gets absorbed by the
atoms, severely limiting the lifetime of the sample. Frequency filtering of the laser diode is
therefore required to make the light available for optical trapping. The positive drawback
of working with such a small detuning is that the polarizability of the atom is huge, as
shown in the next section, and even a moderate power of the laser beam produces deep

2Aspheric lens AL50100G-A, Thorlabs
3Nichia NDV4313

https://www.thorlabs.com/thorproduct.cfm?partnumber=AL50100G-A
https://www.alldatasheet.com/datasheet-pdf/pdf/240033/NICHIA/NDV4313.html
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Figure 6.4: Geometry of the optical potential for the ring trap. (a) Sketch of the two attractive light sheets
at 532 nm that form a disk trap. The horizontal light sheet (LSH) gives vertical confinement and has a
power between 1 W and 2 W. The vertical light sheet (LSV) has a similar aspect ratio but produces the
strongest confinement in the x direction, to compensate for the anisotropy of the first light sheet. The blue
ring-shaped beam will propagate vertically. (b) Time of flight imaging of the BEC trapped in the green trap,
with frequencies in the plane (ωx ,ωy ) = 2π× [32.6(8), 30.1(3)] Hz. (c) Simulations of the green potential
showing the method to obtain a disk-shaped trap. The two frequencies in the plane ωx and ωy are equal
for a given power of the vertical light sheet, PLSV , while the other beam has PLSH = 1.5 W.
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Figure 6.5: Project of the optical setup combining the DMD and the imaging. The 421 nm light (imaging)
propagates from the atoms and is focused by the objective either into the Stringray camera for the time
of flight imaging or into the Andor camera for the in situ imaging. The first beamsplitter (PCBS) is used
to recombine the light for phase-contrast imaging. The 404 nm light (DMD) is tailored by the DMD and
then focused on the atoms by the objective, after demagnification. A lateral camera will be used for the
calibration with the feedback program. A second beam at 421 nm (F421) propagating together with the
DMD beam will be used to facilitate the alignment of the optical potential on the atoms. All the numbers
are in cm.

Figure 6.6: Laser source for a repulsive potential. (a) Dysprosium spectrum in the region 400-425 nm. We
work on the blue side of a strong resonance at λ = 404.7 nm, with a detuning of about 1 nm.(b) Broad
spectrum of the free-running laser diode, for different temperatures of the diode (vertically displaced for
clarity). Even at the lowest working temperature (T = 16◦), a fraction of the light is on resonance with the
atoms, severely reducing the lifetime.
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optical potentials.
To filter the laser diode, we mounted a diffraction grating with 3600 grooves/mm and we
operated the diode in the Littrow extended cavity configuration (ECDL). The external
grating reflects back into the diode the first diffraction order and selects the emission of a
single mode, while the output beam is collected from the zeroth order of the grating. The
ECDL allows for a narrow spectral emission and a suppression by orders of magnitude of
the power at resonance, at the cost of a reduced output power. In our case, we get P = 20
mW in the ECDL configuration. The wavelength of the emission peak can be tuned to
about 1 nm changing the angle of the grating.
To test the performance of the laser diode in single-mode operation, we focalize the blue
laser onto the BEC, while it is trapped in the cigar-shaped infrared trap, and we measure
the lifetime. The optical setup is shown in Fig. 6.7. To monitor the spectral profile of the
diode, we couple the light to a scanning Fabry-Perot cavity, from which we can control
if the emission is multimode or single mode. Even with the ECDL, we observe a huge
reduction in the BEC lifetime, which is as low as 160 ms even at low power P = 2 mW.
This is probably due to residual amplified spontaneous emission light, with a fraction on
resonance with the atoms. We therefore further clean the laser spectrum with a second
diffraction grating, which spatially separates the different frequency components so that
the resonant ones don’t impinge on the atoms. The setup shown in Fig. 6.7 allows for the
simultaneous alignment of the 1st and 0th diffraction orders on the atoms, so that we can
compare the effect of the two beams in the same conditions. With the clean 1st diffraction
order we observe a relevant increase in the lifetime, τ = 2.5 s, which becomes comparable
to that in the infrared trap, of the order of a few seconds. In Fig. 6.7(b) the lifetimes of the
BEC with the two diffraction orders are compared. We can also estimate the lifetime from
theoretical calculations. Considering a detuning ∆ = −1.1 nm, a power P = 2 mW and
the predicted polarizability α = −8000 a.u. (atomic units), we expect a lifetime τ ∼ 500
ms (in the next section we experimentally confirm the theoretical prediction for α). The
observed lifetime of 2.5 s is due to the repulsive nature of the potential: the atoms are
pushed away from the high-intensity regions, and experience a lower intensity. Given the
ratio between the measured and theoretical lifetimes 2.5 s/0.5 s = 5, we estimate that the
equilibrium position of the atoms in the infrared plus blue potential should be distant
about 1 waist of the blue beam from the maximum intensity. This is consistent with a
modelization of the trapping potential [147]. The measured lifetime is a lower limit for
the experimental conditions since the atoms in the ring potential will be trapped in the
dark region and will experience an even lower intensity of the blue laser.
The lifetime increase comes at the cost of reduced power. The second diffraction grating
reduces by about 50 % the power of the beam so that we only have 10 mW left. To increase
the available power, we mounted an alternative configuration without diffraction grating
[149], shown in Fig. 6.8. We employ two diodes in a master-slave configuration. The first
one is in the ECDL configuration, while the second is free-running. The single-mode light
of the first diode is injected into the second, which works as an amplifier. It is forced to
emit at the frequency selected by the master diode. To further clean the spectrum, we
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Figure 6.7: BEC lifetime with and without the second diffraction grating. (a) Optical setup. The single-mode
ECDL light is diffracted by a holographic grating. The 1st diffraction order is cleaned from the residual light
on resonance with the atoms, contrary to the 0th order, thanks to the large distance from the atoms. Both
orders are focused on the atoms so that we can measure the lifetime with the two kinds of light in the same
conditions. A Fabry-Perot cavity is employed to monitor the emission of the ECDL and control that it is
single-mode. (b) Atom number N of the BEC as a function of time in the infrared attractive potential plus
the repulsive blue potential (P = 2 mW, λ = 403.6 nm) coming from the 0th (black points) or the 1st (red
points) orders of the second diffraction grating. In the first case the lifetime is τ = 160 ms, while in the
second case it is τ = 2.5 s. The dashed gray line is the estimated lifetime assuming the maximum intensity
of the blue beam (see text).

employ a narrow filter4 whose tilting angle can be tuned to cut by six orders of magnitude
the light on resonance with the atoms. The light reflected by the filter shows a sudden
drop when the amplifier gets injection-locked, and can in principle be used in a feedback
loop to stabilize the locking of the two diodes. The design is based on [151]. We then add
an AOM and a fiber which cleans the spatial mode. With this configuration, we obtain
about 40 mW of blue light after the optical isolator, and about 15 mW after the fiber. The
lifetime is similar to the one with the diffraction grating shown in Fig. 6.7(b).

6.3 Dysprosium polarizability at 404 nm
The depth of an optical dipole trap is determined by the intensity of the laser beam and
by the dynamic polarizability of the atom α̃(ω), through

Udip(r) = − 1
2ϵ0c

Re(α̃)I(r). (6.2)

The polarizability quantifies the induced electric moment on a neutral atom due to an
4Semrock laser clean-up filter LL01-405.

https://www.idex-hs.com/store/product-detail/ll01_405_12_5/fl-007943?search=true
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Figure 6.8: Injection locking of the diode laser. Optical setup for the operation of two diodes in a master-slave
configuration. The single-mode light emitted from the ECDL (master) is injected into a second free-running
diode (amplifier) through an optical isolator. The light is forced to emit the same single mode of the master.
The light is further cleaned with an interference filter. A Fabry-Perot cavity monitors the spectrum of the
emitted light. The light is then coupled to an AOM and an optical fiber.

external electric field. It is a complex quantity: the real part is related to the dispersive
interaction of the atom with the radiation and determines the conservative dipole potential
in Eq. 6.2, while the imaginary part is related to the absorptive part and determines
the scattering rate [152]. In the previous section, we characterized the laser source at
λ = 404 nm and we got an idea of the available power, and hence the intensity, for the
trapping potential. To estimate the achievable potential depths, we need a measurement of
the polarizability. For dysprosium, the dynamic polarizability has been measured for the
ground state at larger wavelengths [153, 154, 155], but there are no experimental results
around 404 nm. The real part of the polarizability, which we call α = Re(α̃) from now on,
has scalar, vectorial and tensorial contributions. We consider the case of linearly polarized
light so that the vectorial part is zero. While for alkali atoms the tensorial polarizability
is usually negligible compared to the scalar one, for lanthanide atoms it is much larger
and makes the atom-light interaction anisotropic [31]. Recently, the tensorial part of the
polarizability of dysprosium atoms has been exploited to produce an array of ultracold
atoms at sub-50 nm separation [156]. In our case of a stretched ground state (J = 8 and
mJ = −J = −8) the polarizability is

α(ω) = αs(ω) + 3 cos2 θ − 1
2 αt(ω), (6.3)

where αs and αt are the scalar and tensorial part, respectively, and θ is the angle between
the light polarization and the quantization axis, defined by the external magnetic field
(in our case, the z axis). While in spectral regions far away from resonances the tensorial
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Figure 6.9: Measurement of the polarizability at 404 nm with a momentum kick. (a) Sketch of the method.
A focused laser beam with variable λ, around 404 nm, is switched on for a small time δt. The atoms (black
circle), initially trapped in the infrared optical trap, get a momentum kick due to the dipole force in the
direction perpendicular to the beam propagation. We measure the displacement of the atomic cloud δ in
the xy plane after a free expansion in time of flight. The final displacement depends on the polarizability
and on the relative position between the beam and the atoms. The electric field of the light forms an
angle θ with the z axis. Inset: sketch of the potential during the kick. Atoms are trapped in the attractive
infrared potential and feel the repulsive potential of the blue beam. (b) Displacement δ as a function of the
beam position x0 along the x axis. The shape is the derivative of a gaussian, see Eq. 6.4. To measure the
polarizability, we place the beam in the position of maximum force. The distance between the two maxima
is the waist wx . (c) Displacement δ as a function of the beam position z0 along the z axis. The shape is a
gaussian, from which we fit the waist wz . In (b) and (c), thick lines are fits to the data.

part is much lower than the scalar part, as it happens for example at λ = 1064 nm, in
our case, due to the proximity of the 404.7 nm resonance, we expect αs and αt to be similar.

Because our potential is repulsive, we cannot rely on the usual method of extracting the
polarizability from the trapping frequencies [154]. Therefore, we develop a technique that
relies on the momentum kick imparted by the dipole force during a pulse of the repulsive
potential. A sketch of the method is shown in Fig. 6.9. A laser beam with a tunable
wavelength around 404 nm is focused on the BEC, which is trapped in the attractive
infrared potential. After switching on the repulsive blue potential for a small time δt, the
atoms get a momentum kick δp = Fdipδt, where the dipole force is F = −∇Udip. The
dipole force has two main components: one in the vertical z direction and one in the x
direction transverse to the beam propagation. We measure the position δ of the BEC in
the xy plane switching off all the laser beams just after the application of the kick, and
letting the BEC expand for tTOF = 25 ms. We are thus sensitive to the momentum kick
imparted by the x component of the dipole force, Fdip,x = − ∂

∂x
Udip. Using Eq. 6.2 for

Udip and the expression of the light intensity I = 2P/(πwxwz)Exp[−2x2/w2
x − 2z2/w2

z ] the
dipole force is
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Fdip,x(x, z) = 4αP
ϵ0cπw3

xwz

xe−2x2/w2
xe−2z2/w2

z . (6.4)

From the ballistic expansion δ = tTOFδp/m, we get an expression linking the obervable
δ to the polarizability

δ =
Fdip,xδt

m
tTOF. (6.5)

The maximum displacement δ corresponds to the largest module of the force Fdip,x,
exerted for x = wx/2 and y = 0, where the slope of the potential is maximum. To precisely
align the laser beam such that the center of mass of the BEC is located in the position
in which the force is the strongest, we employ a motorized mirror that changes the angle
of the beam on the last lens, changing therefore the position of the beam in the atomic
plane. We can scan the motorized beam in the x or z direction and measure the resulting
displacement δ in time of flight. The results are plotted in Fig. 6.9(b-c). Along the x
direction we observe an odd profile corresponding to the derivative of a gaussian, as in Eq.
6.4. We can clearly place the beam in one of the two maxima. The same measurement
with a scan of the mirror in the z direction produces instead a gaussian, as shown in Fig.
6.9(c). With an iteration of this process, we can find the global maximum of the force.
This kind of measurement gives also direct access to the waists of the beam on the atomic
plane. In the first case, we can fit the horizontal waist wx = (58 ± 7) µm, which is the
distance between the two peaks, while in the second case, we fit wz = (38 ± 3) µm which
is the waist of the observed gaussian. The errors come both from the fitting procedure
and the uncertainties in the mirror calibration.
Using the expression for the force 6.4 in x = wx/2 and y = 0, we get the relationship
between the displacement and the polarizability

δ =
2α(ω)PtTOFδt

ϵ0cπ
√
emw2

xwz

. (6.6)

To extract αs and αt, we do two kinds of measurement, shown in Fig. 6.10. First, for a
fixed interaction time δt, we vary the angle θ of the light polarization and we observe the
displacement δ. The polarizability changes according to Eq. 6.3, and we observe indeed
sinusoidal oscillations of δ, see Fig. 6.10(a). From these oscillations, we can fit the ratio
αs/αt. Remembering that αs is negative, because the potential is repulsive, but αt is
positive, the minimum displacement is obtained for θ = 0, when α = αs + αt. From Fig.
6.10(a) we see that |αs|/αt ∼ 1, because the minimum displacement is near zero, meaning
that the two components nearly cancel each other. Then, we set the angle θ = π/2 giving
the maximum displacement, corresponding to αs − αt/2, and we measure δ as a function
of the interaction time δt, see Fig. 6.10(b). We observe a linear correlation as predicted by
Eq. 6.6, and from the fitted slope we extract the absolute value of αs − αt/2. Combining
the two measurements, we obtain αs and αt. We repeat the same procedure for different
values of λ, varied by changing the tilting angle of the diffraction grating in the ECDL.
In Fig. 6.11 we plot the results for αs, αt and αmax = αs − αt/2 in atomic units (1 a.u.
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Figure 6.10: Measurement of αs and αt at λ = 403.6 nm. (a) For a fixed interaction time δt, we measure
the displacement δ changing the angle θ of the light polarization. The resulting oscillation comes from the
anisotropic light-atom interaction, see Eq. 6.3. From the fitted oscillation (thick line) we extract the ratio
αs/αt . (b) With the angle θ = π/2, corresponding to the maximum displacement δ, we measure δ as a
function of the interaction time δt. From the fitted slope (thick lines) we extract αs − αt/2. The three
lines correspond to three different powers of the beam.

= 4πϵ0a
3
0), together with theoretical calculations employing the models in [157, 158]. As

expected due to the proximity of the resonance, we obtain huge polarizabilities up to
about αmax ∼ − 13000 a.u. for λ = 404.1 nm. We do not explore the region closer to the
resonance because we observe a reduction in the lifetime. The experimental results are
in agreement with the theoretical calculations under the error bars, which are about 30
% of the mean value. The main contribution to the experimental error comes from the
uncertainty in the waists, as usual in polarizability measurements which cannot rely on
the comparison with another, known, species [154]. However, we note that our method
of the force kick involves a dependence on the beam waists with a power 3, see Eq. 6.6,
contrary to the usual harmonic frequency method for which the power is 4.

Finally, we can estimate the strength of the repulsive potentials that we can create with
our setup. We have P = 15 mW after the optical fiber and, considering that we will lose
50 % of the power on the DMD plus other possible losses in the optical path in Fig. 6.5,
we can safely estimate a power of P = 5 mW on the atoms. Since the laser beam will
propagate in the vertical direction (parallel to the magnetic field) the angle θ is fixed and
equal to π/2. The polarizability takes therefore its maximum value. With a polarizability
α = −10000 a.u. and a beam waist of w = 60 µm, we will obtain a ring potential with a
depth UR = 1.5 µK, with a lifetime of the BEC of a few seconds.

6.4 Persistent currents in the ring: preliminary
numerical studies

The most direct application of the results of this thesis to the ring geometry is the study of
persistent currents in the supersolid phase, realizing for the first time the seminal Leggett’s
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Figure 6.11: Real part of the polarizability α for the ground state of dysprosium as a function of λ, on
the blue side of the resonance at 404.7 nm. Blue squares indicate αs , red diamonds αt and green circles
αmax = αs − αt/2, obtained for a polarization angle θ = π/2. The corresponding thick lines are theoretical
calculations. The upper horizontal axis is the detuning ∆ from the transition.

model discussed in section 4.1. Persistent currents in ring geometries have been studied
for BECs [159, 160] and ultracold Fermi gases [161, 162], and have been among the most
spectacular demonstrations of superfluidity in these systems. In this section, we present
some preliminary numerical results about the excitation of persistent currents and their
features both in the BEC and in the supersolid, for our experimental configuration. An
extension of this work will be probably the topic of a proposal paper for experiments in
the ring geometry in the near future.
The first key question is how to excite persistent currents. In the discussion at the end of
section 5.5, we plotted the angular momentum of the system as a function of the angular
velocity Ω of the container, which is also the conceptual situation of Leggett’s model.
Theoretically, this is easily simulated by adding an energy term −ΩL in the GPE equation,
with L the angular momentum, and searching for the ground state in the frame rotating
with velocity Ω [139]. On the experimental side, it is not obvious how to rotate the ring, if
the system will come into equilibrium with the trap and how long will it take. Therefore,
we take a different approach: we inject a well-defined angular momentum in the system
by phase imprinting an initial velocity distribution, similar to our technique to excite the
Josephson oscillations (section 5.2). Recently, persistent currents have been successfully
phase-imprinted in ultracold Fermi gases [161]. Exploiting the DMD, we will be able to
imprint arbitrary phase profiles along the ring.
Here we show some recent simulations of the dynamics following the imprinting of different
phase profiles. All the simulations are performed with N = 5 × 104 atoms and a harmonic
trap with frequencies (ωx,ωy,ωz) = 2π × (20, 20, 100) Hz, plus the ring potential as
described in section 6.1. We imprint a phase profile φ(θ), where θ is the angular coordinate
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along the ring, by switching on a corresponding potential for 120 µs. A summary of the
results so far is shown in Fig. 6.12. We tried two linear gradients, one with amplitude
2π, which is the usual one to excite one quantum of circulation in the BEC, one with
amplitude π and a more complex shape corresponding to the Leggett’s velocity field in Eq.
4.8. The latter reads

φ(θ) = A
(
θ − n̄fs

∫ θ

0

dθ′

n(θ′)

)
, (6.7)

where n(θ) is the number density along the ring, n̄ its average value, A some amplitude
and fs the superfluid fraction in Leggett’s model, Eq. 4.4. We analyze the dynamic
evolution of the system by calculating the angular momentum L =

∫
dθmn(θ)v(θ)R, with

v(θ) = ℏ/mφ′(θ), as a function of time. In Fig. 6.12(a) we plot L(t) in four cases: BEC
with linear gradients with amplitude π and 2π, and supersolid with 2π-linear gradient
and with Leggett’s profile. For the BEC, we correctly excite a persistent current with
one quantum of circulation when the amplitude of the phase gradient is 2π. We indeed
measure L = Nℏ for the whole dynamics. If the amplitude of the gradient is lower (π)
the total angular momentum is instead zero and no persistent current is excited. In Fig.
6.13, we plot density and phase snapshots for different times. The energy imprinted in the
π-gradient takes the form of other excitations, such as a soliton which is clearly visible at
the position of the π-jump and persists for the whole dynamic.

For the supersolid, the imprinting of the 2π phase gradient gives L = Nℏ angular
momentum, as in the BEC. Indeed, if the phase varies linearly φ′(θ) = 2π/(2πR) = 1/R,
the angular momentum is always L = mRℏ/(mR)

∫
dθn(θ) = Nℏ, independent from

the density distribution. However, we expect that the persistent current with L = Nℏ
shouldn’t be stable, due to the reduced superfluid fraction [139]. We indeed observe a slow
decay of the current towards smaller angular momenta, even in the dissipationless system
of the simulations. The lost angular momentum probably is transferred to other kinds
of excitations, for example vortices inside the superfluid clusters, not detected with the
current analysis. Presumably, the decay in the experiment would be faster. Interestingly,
the system tends to stabilize to an angular momentum L ∼ fsNℏ. The decay of the
persistent current is associated with a small oscillation of the superfluid fraction, see
Fig. 6.12(b), and also with structural changes of the lattice (one cluster is lost when
fs drops around t ∼ 120 ms). Instead, when we phase imprint the Leggett’s profile, we
do not observe such decay and the persistent current is stable, demonstrating that the
peculiar Leggett’s shape of the phase corresponds to a stable rotational configuration of
the supersolid, analog to the 2π linear gradient for the superfluid. Also, the superfluid
fraction remains constant, reflecting a shape-preserving rotation. The angular momentum
associated with this rotation is L = fsNℏ, manifesting the role of the sub-unity superfluid
fraction in the persistent current. Regarding the evolution of the phase profile, in Fig.
6.13(c-d) we plot some snapshots in the case of the 2π gradient and of Leggett’s profile. For
the gradient, while at the beginning the phase grows linearly, we observe the appearance of
an oscillating pattern on top of the linear slope at later times, similar to Leggett’s profile.
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Figure 6.12: Numerical simulations of persistent currents in the ring. (a) Phase imprinting of different
spatial phase profiles φ(θ) along the ring: linear phase gradient with amplitude 2π (blue), with amplitude
π (green) and Leggett’s phase profile 6.7 (red). Insets show the phase profiles in the ring geometry. (b)
Angular momentum L as a function of time after phase-imprinting the spatial phase profiles in (a). Full
markers refer to the BEC phase (as = 150 a0), while open markers to the supersolid phase (as = 93 a0).
The stable persistent current in the supersolid phase brings L = fsNℏ. (c) Superfluid fraction fs calculated
with Leggett’s formula 4.4 versus time in the same four cases as in (b).

Starting with Leggett’s profile, instead, the shape of the phase is approximately preserved
during the motion. From the density snapshots, we see that in the second case, the lattice
is displaced from the starting point, demonstrating a shape-preserving rotation. In the
case of the gradient, instead, the lattice is modified by other excitations at larger times.

In the short future, on the simulations side, we will extend the preliminary results presented
here to include supersolids with variable fs and with different shapes of the phase profile.
It will also be interesting to study the decay of unstable persistent currents, which can
give rise to topological excitations such as vortices and solitons. On the experimental side,
we have to tackle and solve many challenges. The study of persistent currents requires the
capability of measuring the angular momentum of the system. Of course, we will try to
take advantage of both in situ and time of flight information. With phase-contrast in situ
imaging, we can in principle take non-destructive images and hence extract the velocity
from the movement of the real space density. We should carefully choose the detuning
of the beam in order to not heat the sample between two consecutive images. However,
this method only gives information on the clusters’ velocity, and it wouldn’t be possible
to observe the peculiar counter-propagating currents of the supersolid (see Fig. 4.2). It
would be possible, anyway, to determine if a current is stable or not, by observing the
velocity of the clusters as a function of time. To get information on the spatial phase, we
need to take time of flight measurements. A possible protocol, employed in [161], consists
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Figure 6.13: Snapshots of the dynamical simulations shown in Fig. 6.12. (a) Phase profile φ(θ) along the
ring in the BEC phase at t = 0 ms just after the phase imprinting (gray line) and at t = 64 ms (blue line)
for the imprinting of a linear gradient with amplitude 2π. The density profiles are plotted for comparison,
not in scale and shifted vertically for clarity. (b) Same as in (a) for the imprinting of a linear gradient with
amplitude π. The phase jump produces a soliton, detected as a dip in the density profiles. (c-d) Phase and
density profiles for the supersolid after the phase imprinting of a linear gradient with amplitude 2π (c) and
of Leggett’s phase profile 6.7 (d). Gray lines corresponds to t = 0 ms while colored lines to t = 148 ms.

of expanding the ring together with a ’local oscillator’ working as a phase reference, for
example a small BEC disk at the center of the ring. In [161], the interference pattern has
the form of a spiral, and the number of arms quantifies the amount of circulation in the
ring. How to extend this model to the supersolid, where the density is modulated, and to
partially quantized supercurrents is an open question.





Outlook

The results accomplished during my PhD can be summarized into two main groups. On
one hand, I explored the character of the quantum phase transition from the superfluid to
the supersolid in the cigar-shaped geometry employed so far in our experiment [15, 56]. I
discovered that the transition can be experimentally tuned from discontinuous to continuous
by changing the geometry of the system, increasing the degree of control over the formation
process of the supersolid, and opening up new perspectives in the study of the phase
transition. On the other hand, I spent a good portion of my PhD in studying the
concept of superfluid fraction and its implications in the physics of supersolids. I explored
the superfluid properties of the supersolid both through rotations [19, 21] and through
the detection of Josephson oscillations [22]. The latter experiment allowed for the first
observation of a sub-unity superfluid fraction induced by the spontaneous breaking of
translational symmetry. Finally, I worked on the realization of a supersolid in a ring
geometry, an exciting development that will result in the investigation of supersolids in
homogeneous potentials, with applications related to persistent currents, phase transitions
and hydrodynamics.
In the chapters of this thesis, I already discussed the main outlook of my research results.
Particularly, in chapter 6 I described in detail possible future research lines in the ring
geometry and the related extension of the research about the sub-unity superfluid fraction;
in chapter 5 I pointed out the novelty of the Josephson technique to measure the superfluid
fraction, that potentially can be of interest for the different systems discussed in chapter
1, in which modulated superfluid phases have been recently discovered and for which the
connection to supersolidity is an open question.
Here, I want to focus on a more general outlook on future research in the field of supersolids.
In my opinion, two topics about supersolids are largely unexplored so far and deserve
special attention in the near future. First, the supersolid phase has been successfully
described by a mean-field theory, which is a semi-classical approximation. However,
quantum phases of matter are expected to host complex and rich quantum correlations
and entanglement properties. Although the dipolar supersolid is a dilute system in which
interactions are typically weak, I expect that interesting correlations and entanglement
could emerge, also because we know that quantum fluctuations play an important role as
a stabilizing mechanism. It is indeed known that entanglement can be produced crossing a
quantum phase transition [163]. A study in this direction would move toward a desirable
full-quantum description of the supersolid phase of matter. Imaging to move the first steps
starting from our work on the Josephson effect, the reference model for the entanglement
properties is the bosonic Josephson junction, which is known to host in its ground state
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different kinds of entangled states, that can be also metrologically useful [142]. These
squeezed states have been realized experimentally and studied through the fluctuations
properties of the conjugate variables Z and ∆φ [164, 165]. It would be extremely interesting
to explore entanglement in an extended framework in which the self-induced nature of
the supersolid junction is included. Probably the low-energy Goldstone mode, which is
related to the movement of the Josephson barrier, should be included as explained in
chapter 5. Also a study of thermal, rather than quantum, fluctuations could be appealing
to develop new thermometry methods based on the supersolid instead of the standard
bosonic Josephson junctions [144].
The second outlook that I want to discuss is related to the solid nature of the supersolid.
During my thesis, I mainly dealt with superfluid properties and how they are modified
by the crystal structure. But how does the supersolid behave as a crystal? How much
is it stiff and how much is it different from real solids? It is important to address these
questions, which represent a unique novelty in the field of quantum gases, in which to
my knowledge solid-like properties have never been explored. It is tempting to imagine a
quantity similar to the superfluid fraction that quantifies how much the solid properties
are affected by the superfluid nature. It should be 1 for the classical solid and 0 for the
homogeneous superfluid: a ’solid fraction’. In this regard, an idea that I want to pursue is
the following. A distinctive property of solids is that they can support shear stress and, as
a consequence, a particular transverse wave can propagate in solids, the so-called shear
wave. It consists of an oscillation of the atoms in a direction perpendicular to the wave
propagation. The restoring force enabling the propagation of the wave is indeed shear
stress. Shear waves are well known in the field of seismology because they propagate in
earthquakes. The velocity of the shear wave is proportional to the shear modulus of the
system: the stiffer the solid is, the faster the shear wave. Does the supersolid sustain
the propagation of shear waves? Are they related to a shear modulus of the supersolid?
To excite a shear wave in our small system made by a few clusters, we could consider
a one-dimensional supersolid in the x direction (our cigar-shaped geometry) and apply
a transverse force in the y direction to a lateral cluster. This is experimentally feasible
by exploiting the DMD discussed in chapter 6. The lateral cluster will start oscillating
in the harmonic trap with frequency ωy, but will interact with the other clusters and
could mediate the transverse motion. Eventually, a shear wave could propagate in the x
direction. This scenario seems confirmed by some preliminary numerical simulations and
is promising to understand ’how much solid’ is a supersolid.



Colophon
This thesis has been written in the summer and autumn of 2023.
The LATEXstyle has been adapted from a code developed by Niccolò Preti (niccolo.preti@unifi.it).
The images in the introduction are the Atomium, Heysel park, Bruxelles (image from this
website) and a time of flight image of a dysprosium Bose-Einstein condensate.

https://www.rtbf.be/article/l-atomium-de-bruxelles-a-60-ans-voici-comment-celebrer-cet-anniversaire-9884018
https://www.rtbf.be/article/l-atomium-de-bruxelles-a-60-ans-voici-comment-celebrer-cet-anniversaire-9884018
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[13] J. Léonard, A. Morales, P. Zupancic, T. Esslinger, and T. Donner. Supersolid
formation in a quantum gas breaking a continuous translational symmetry. Nature,
543(7643):87–90, 2017. doi: 10.1038/nature21067. URL https://doi.org/10.
1038/nature21067.

[14] J. Li, J. Lee, W. Huang, S. Burchesky, B. Shteynas, F. Ç. Top, A. O. Jamison,
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[146] M. Šindik, T. Zawíslak, A. Recati, and S. Stringari. Sound, superfluidity and layer
compressibility in a ring dipolar supersolid, 2023.

https://doi.org/10.1038/s41567-020-01100-3
https://link.aps.org/doi/10.1103/PhysRevA.59.620
https://link.aps.org/doi/10.1103/PhysRevA.103.013313
https://link.aps.org/doi/10.1103/PhysRevA.103.013313
https://link.aps.org/doi/10.1103/PhysRevA.102.023322
https://link.aps.org/doi/10.1103/PhysRevA.102.023322
https://link.aps.org/doi/10.1103/PhysRevA.103.033314
https://link.aps.org/doi/10.1103/PhysRevA.103.033314
https://link.aps.org/doi/10.1103/RevModPhys.90.035005
https://link.aps.org/doi/10.1103/RevModPhys.90.035005
https://link.aps.org/doi/10.1103/PhysRevLett.87.180402
https://link.aps.org/doi/10.1103/PhysRevLett.87.180402
https://link.aps.org/doi/10.1103/PhysRevLett.96.130404
https://link.aps.org/doi/10.1103/PhysRevLett.96.130404
https://link.aps.org/doi/10.1103/PhysRevLett.113.135302


152 Bibliography

[147] N. Preti, N. Antolini, G. Biagioni, A. Fioretti, G. Modugno, L. Tanzi, and C. Gab-
banini. Blue light repulsive potentials for dysprosium atoms, 2023. in preparation.

[148] G. Del Pace. Tunneling transport in strongly-interacting atomic Fermi gases,
2023. PhD Thesis, University of Florence. https://quantumgases.lens.unifi.
it/theses/thesis_delpace_phd.pdf.

[149] N. Preti. Towards dipolar quantum gases in a ring, 2023. Master Thesis, University
of Florence.

[150] M. E. Wickliffe, J. E. Lawler, and G. Nave. Atomic transition probabilities for
Dy I and Dy II. Journal of Quantitative Spectroscopy and Radiative Transfer,
66(4):363–404, 2000. doi: https://doi.org/10.1016/S0022-4073(99)00173-9. URL
https://www.sciencedirect.com/science/article/pii/S0022407399001739.

[151] Z. Chen, B. Seo, M. Huang, M. K. Parit, P. Chen, and G. B. Jo. Active control of a
diode laser with injection locking, 2021. https://doi.org/10.48550/arXiv.2105.
11285.

[152] R. Grimm, M. Weidemüller, and Y. B. Ovchinnikov. Optical dipole traps for
neutral atoms. Advances In Atomic, Molecular, and Optical Physics, pages 95–170.
Academic Press, 2000. doi: https://doi.org/10.1016/S1049-250X(08)60186-X. URL
https://www.sciencedirect.com/science/article/pii/S1049250X0860186X.

[153] M. Kreyer, J. H. Han, C. Ravensbergen, V. Corre, E. Soave, E. Kirilov, and
R. Grimm. Measurement of the dynamic polarizability of Dy atoms near the 626-nm
intercombination line. Phys. Rev. A, 104:033106, Sep 2021. doi: 10.1103/PhysRevA.
104.033106. URL https://link.aps.org/doi/10.1103/PhysRevA.104.033106.

[154] C. Ravensbergen, V. Corre, E. Soave, M. Kreyer, S. Tzanova, E. Kirilov, and
R. Grimm. Accurate determination of the dynamical polarizability of dysprosium.
Phys. Rev. Lett., 120:223001, May 2018. doi: 10.1103/PhysRevLett.120.223001. URL
https://link.aps.org/doi/10.1103/PhysRevLett.120.223001.

[155] W. Kao, Y. Tang, N. Q. Burdick, and B. L. Lev. Anisotropic dependence of tune-out
wavelength near dy 741-nm transition. Opt. Express, 25(4):3411–3419, Feb 2017.
doi: 10.1364/OE.25.003411. URL https://opg.optica.org/oe/abstract.cfm?
URI=oe-25-4-3411.

[156] L. Du, P. Barral, M. Cantara, J. de Hond, Y.-K. Lu, and W. Ketterle. Atomic
physics on a 50 nm scale: realization of a bilayer system of dipolar atoms, 2023.
https://arxiv.org/abs/2302.07209.

[157] V. A. Dzuba, V. V. Flambaum, and Benjamin L. Lev. Dynamic polarizabilities and
magic wavelengths for dysprosium. Phys. Rev. A, 83:032502, Mar 2011. doi: 10.
1103/PhysRevA.83.032502. URL https://link.aps.org/doi/10.1103/PhysRevA.
83.032502.

https://quantumgases.lens.unifi.it/theses/thesis_delpace_phd.pdf
https://quantumgases.lens.unifi.it/theses/thesis_delpace_phd.pdf
https://www.sciencedirect.com/science/article/pii/S0022407399001739
https://doi.org/10.48550/arXiv.2105.11285
https://doi.org/10.48550/arXiv.2105.11285
https://www.sciencedirect.com/science/article/pii/S1049250X0860186X
https://link.aps.org/doi/10.1103/PhysRevA.104.033106
https://link.aps.org/doi/10.1103/PhysRevLett.120.223001
https://opg.optica.org/oe/abstract.cfm?URI=oe-25-4-3411
https://opg.optica.org/oe/abstract.cfm?URI=oe-25-4-3411
https://arxiv.org/abs/2302.07209
https://link.aps.org/doi/10.1103/PhysRevA.83.032502
https://link.aps.org/doi/10.1103/PhysRevA.83.032502


Bibliography 153

[158] H. Li, J. F. Wyart, O. Dulieu, S. Nascimbene, and M. Lepers. Optical trapping of
ultracold dysprosium atoms: transition probabilities, dynamic dipole polarizabilities
and van der Waals C6 coefficients. Journal of Physics B: Atomic, Molecular and
Optical Physics, 50(1):014005, 2016.
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[164] J. Estève, C. Gross, A. Weller, S. Giovanazzi, and M. K. Oberthaler. Squeezing
and entanglement in a Bose-Einstein condensate. Nature, 455(7217):1216–1219, Oct
2008. doi: 10.1038/nature07332. URL https://doi.org/10.1038/nature07332.
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