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Abstract—Photovoltaics represents one of the key sources of 

clean energy to help reduce the carbon footprint and fight 

climate change, enabling the so-called green energy transition. 

To maximize photovoltaic production in any irradiation and 

temperature conditions, Maximum Power Point Tracking 

techniques must be implemented to determine and set the 

working point at which the photovoltaic panel delivers the 

maximum power. Such techniques usually exploit real-time 

measurements of voltage and current on the photovoltaic cell, 

and possibly of the operating temperature. This paper proposes 

an assessment of the effects of measurement uncertainty on the 

maximum power point calculation. We compare the sensitivity 

to measurement noise of different tracking algorithms, 

including perturb and observe, incremental conductance and 

feedforward neural networks. The results show that neural 

networks become the most attractive solution when 

measurement uncertainty is introduced in the system. 

Keywords—Maximum Power Point Tracking, Perturb and 

Observe, Incremental Conductance, Neural Networks 

I. INTRODUCTION 

Climate change calls for a transition to a more sustainable 
energy system to support human activities. This process, 
known as green energy transition [1], poses several 
challenges, which can be ultimately grouped into two major 
objectives: first, the increase of the percentage of energy from 
renewable sources to meet certain goals [2], along with the 
necessary adaptation of the electricity infrastructure to sustain 
the passage from centralized to distributed generation; second, 
the development of new technologies to achieve optimization 
[3]-[5] and robustness [6]-[9] of production, transmission, 
distribution, storage and usage of electric energy. 

In this context, photovoltaics (PV) represents one of the 
key sources of clean energy [10]. To maximize the produced 
energy, it is crucial to ensure that a PV system works at its 
Maximum Power Point (MPP), which depends on the 
irradiation and temperature operating conditions. To this aim, 
MPP Tracking (MPPT) methods must be implemented. The 
research activity on this topic has produced many approaches 
to address the MPPT problem. Following the classification 
proposed in [11], MPPT techniques can be categorized as 
classic methods, e.g., analytical [12], Perturb and Observe 
(P&O) [13], Incremental Conductance (IC) [14] and Hill 
Climbing (HC) [15], intelligent methods, including Artificial 
Neural Networks (ANNs) [16], [17], optimization-based 
methods [18], and hybrid methods [19]. 

Classic methods are capable of achieving high accuracy in 
the individuation of the MPP, but they perform well only 
under uniform irradiation conditions. Additionally, as these 
methods are usually based on iterative algorithms, they tend 
to be slow and therefore not suited for fine dynamic MPPT. 
On the other hand, intelligent methods, even though time-
consuming in the training phase, can guarantee high tracking 
speed, allowing for tracking the MPP even in rapidly changing 
weather conditions. Finally, optimization and hybrid MPPT 
strategies are best suited under partial shading conditions [20]. 
In this case, the power-voltage curve of a PV device exhibits 
multiple local maxima, resulting in the impossibility for 
algorithms such as P&O, HC, IC and ANNs to identify 
univocally the global maximum. 

All these methods are based on input quantities (typically, 
current, voltage and temperature) that must be measured on 
the PV system. Although much scientific effort has been put 
into developing more accurate and efficient maximum power 
tracking techniques, only few works have investigated the 
effects of measurement uncertainty on the tracking 
capabilities. In [21], the authors study the behavior of an HC 
algorithm, showing that measurement noise not only slows 
down the algorithm convergence, but also shifts the settling 
operating point from the true MPP. Similar considerations are 
advanced in [22] for IC algorithms. In the work presented in 
[23], the authors remark the relevance of measurement noise 
for the MPPT task, proposing a hybrid strategy based on P&O 
and fuzzy logic.   

Starting from these studies, this work specifically focuses 
on investigating the effects of measurement uncertainty on 
different MPPT algorithms, attempting to provide a numerical 
indication of the expected deviation from the actual maximum 
power for each technique. In particular, the considered MPPT 
methods are fixed step P&O, adaptive step P&O, IC and 
ANNs. All the algorithms are tested in a simulated 
environment on a sample PV panel, modeled with the one-
diode equivalent circuit [24], using a realistic irradiance and 
temperature dataset obtained from PVGIS [25]. The control 
technique in which these different MPPT approaches are 
tested involves the direct definition of the solar panel output 
voltage. As shown in Figure 1, the controller action is 
commonly used to set the duty cycle of the DC-DC converter 
applied downstream of the panel (dashed black line output 
from the gate driver) [26]. In this work the converter is not 
considered explicitly and the main goal of the algorithms is to 
set the output voltage reaching the MPP in each operating 
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condition (dashed red line output from the MPPT controller). 
To the authors’ knowledge, this kind of comparative analysis, 
including also neural networks, has never been conducted 
before. 

 

Figure 1 – Block diagram of PV panel connection setup with MPPT 

controller. 

This manuscript is organized as follows: section II 
provides the necessary theoretical background of the one-
diode model, a description of the PVGIS dataset and the 
details of the implemented MPPT algorithms; section III 
presents the results of the measurement noise sensitivity 
analysis, comparing the different MPPT techniques; finally, 
section IV draws the conclusions. 

II. MATERIALS AND METHODS 

A. The one-diode model 

The one-diode model, or single-diode model, of a PV 
panel is represented in Figure 2. Considering such model, the 
current-voltage (I-V) relationship characterizing the PV panel 
is given by: 

 ��� � ��� � �� 	exp ��� � ���������� � � 1� � ��� � ��������  (1) 

where ���  is the photogenerated current, ��  is the diode 

dark saturation current, � is the diode ideality factor, �� is the 
number of PV cells in series, �� is the thermal voltage, ��� is 
the shunt resistance, ��  is the series resistance, ���  and ��� 
are respectively the voltage and current produced by the PV 
panel. 

 

Figure 2 – One-diode model of a PV device. 

For a given PV device, the five parameters defining the 
single-diode model, namely ���, ��, ��, ��� and �, are usually 

known from datasheet information at Standard Test 
Conditions (STC), i.e., at the operating temperature ���� �298.15 %  with an irradiance &��� � 1000 ( )*⁄ . From 
these reference values (see Table 1), indicated in the following 
with a STC  subscript, the values of the parameters in any 
condition of temperature � and irradiation & can be calculated 
using the equations: 

 ���/�, &1 � ���,��� &&��� 21 � 3/� � ����14 (2) 

 ��/�, &1 � ��,���  ������5 exp 678,���9���� � 78/�1
9� : (3) 

 ��/�, &1 � ��,��� (4) 

 ���/�, &1 � ���,��� &���&  (5) 

 �/�, &1 � ���� (6) 

where 3 is the PV current temperature coefficient, 78,��� 

is the PV cell material energy gap at STC, 78/�1  is the 

material energy gap at temperature �. Combining equations 
(2)-(6) with equation (1), it is possible to derive numerically 
the complete I-V curve of the PV panel, given the working 
irradiance and temperature. From the I-V characteristic, the 
maximum power point can be easily individuated. In this 
study, this procedure is adopted to obtain the actual MPP value 
in each working condition included in the PVGIS dataset. 
Such MPP value is used as a reference to evaluate the 
performance of the tracking algorithms. 

B. PV panel module and PVGIS dataset 

The study presented in this paper is conducted on a 
1SolTech 1-STH-250 solar panel. Table 1 reports the 
parameters at STC that can be extracted from the manufacturer 
datasheet. The Nominal Operating Cell Temperature (NOCT) 
is used to calculate the PV device operating temperature �, 
given the ambient temperature �;<=  and the irradiance &, by 
applying the following formula [27]: 

 � � �;<= � /NOCT � 201 &800 (7) 

Table 1 – Parameters at STC of the solar panel model selected for 

experimentation. 

Parameter Value Description 

�� 60 Number of cells in series. 

��@,��� 8.66 A 

Short-circuit current at STC 
(usually considered equal to the 
photogenerated current ���,���). 

�A@,��� 37.3 V Open-circuit voltage at STC. 

�B�,��� 8.15 A 
Current corresponding to the 

maximum power point at STC. 

�B�,��� 30.7 V 
Voltage corresponding to the 

maximum power point at STC. 

��,��� 8.71×10-14 A Dark saturation current 

���� 0.75 Ideality factor 

��,��� 0.35 Ω Series resistance 

���,��� 171.64 Ω Shunt resistance 

NOCT 50 °C 
Nominal Operating Cell 

Temperature 

A realistic dataset of operating circumstances, including 
irradiance and ambient temperature, is obtained by using the 
PVGIS web tool, as mentioned in the Introduction. The 
dataset under consideration comprises hourly temperature and 
irradiance data collected over a 30-day period in late summer 
in the central Italy region (see Figure 3). To acquire a 5-minute 
temporal granularity, data points with irradiance lower than 50 
W/m2 are deleted and additional data points are added by 
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interpolation. As such, 3951 operating circumstances are 
included in the final dataset. 

 

Figure 3 – Hourly irradiance (top) and hourly temperature (bottom) from 

the selected PVGIS dataset. The solar panel operating temperature is 

obtained from the ambient temperature and the irradiance applying 
equation (7). 

C. Maximum Power Point Tracking Techniques 

This section illustrates the working principles of the 
implemented MPPT techniques. 

1) Perturb and Observe 
The principle at the basis of P&O techniques is to 

iteratively impose a variation (perturb) to a quantity (such as 
voltage, current or converter duty cycle) that influences the 
PV device behavior, while monitoring the response (observe). 
The entity of the perturbation can be always the same (fixed 
step P&O) or change iteration by iteration following some rule 
(adaptive step P&O), while the direction of the perturbation is 
established in such a way that the next iteration should move 
towards the MPP. By repeating this procedure for enough 
steps, the MPP is eventually reached [13]. 

 

Figure 4 – Flowchart of the implemented fixed step P&O algorithm.  

This work features a fixed step and an adaptive step P&O 
algorithm, both acting on the PV device by imposing the 
voltage and measuring the current. The workflow of the fixed 

step P&O is represented in the flowchart in Figure 4. At the 

beginning of each iteration 9 , the PV panel current ���/C1
 is 

measured, while its voltage ���/C1
 is considered equal to the 

value imposed at the previous step. Then, the PV power D��/C1
, 

and the quantities ∆D��/C1
 and ∆���/C1

, can be calculated. The 

sign of the product ∆D��/C1∆���/C1
 determines the direction of the 

next perturbation, which in this case is of fixed amplitude ��FG�/HIJGK1
. In this study, ��FG�/HIJGK1

 is set equal to 0.1 V. 

An adaptive step version of the algorithm is obtained as 
illustrated in Figure 6. In this case, the magnitude of the 
perturbation is enlarged of a factor %L M 1 when the working 
point of the PV panel is far from the MPP and is reduced of a 
factor %K N 1 as the MPP is approached. More specifically, 
the implemented algorithm establishes which factor to use at 
each iteration by comparing the sign of the last two variations, O/C1 and  O/CPQ1. If the signs are discordant, it means that the 
last step surpassed the MPP, therefore the algorithm starts 
searching backwards with a finer perturbation. In this study, 
we set heuristically %L � 1.3 and %K � 0.5. Figure 5 visually 
shows the behavior of the adaptive step algorithm for the first 
11 iterations applied on one of the I-V curves obtained from 
the PVGIS dataset. At the beginning, the algorithm starts 
searching to the right, increasing the step size at each iteration. 
When the MPP (red cross) is surpassed (step 4), the algorithm 
reverses the direction of the next step and halves its amplitude 
(since %K is equal to 0.5). The same happens after iterations 6, 
8 and 10. The number of iterations is fixed at 200 for both the 
P&O algorithms. 

 

Figure 5 – Behavior of the adaptive step P&O on an example of I-V curve 

obtained from the PVGIS dataset. 

2) Incremental Conductance 
The implemented IC method works substantially in the 

same way as a P&O algorithm, with the difference that the PV 
voltage at each iteration is updated as follows [28]: 

 ���/CSQ1 � ���/C1 � % T ∆���/C1
∆���/C1 � ���/C1

���/C1U (8) 

where ∆���/C1 � ���/C1 � ���/CPQ1
 is the variation of the PV 

panel current from the last two iterations and % is a scaling 
factor. When the working point approaches the MPP, the 
quantity in brackets tends to zero. The factor % is set equal to 1 �* V⁄ . As for P&O, the number of iterations of the IC 
algorithm is 200. 
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Figure 6 – Flowchart of the implemented adaptive step P&O algorithm. 

3) Feedforward Neural Networks 
In contrast to P&O and IC, feedforward neural networks 

(FFNNs) need the operating temperature of the PV device as 
an input in addition to voltage and current in order to 
anticipate the converter duty cycle, voltage, or both that 
correspond to the MPP. The architecture in Figure 7 illustrates 
how an FFNN with a single hidden layer and 10 neurons is 
used in this study to predict the MPP voltage �B�  from an 
arbitrary measured point of the I-V curve and the operating 
temperature, adhering to the methodology previously 
suggested in [29]. 

 

Figure 7 – Block scheme illustrating inputs and outputs of the MPPT 
algorithm based on neural networks. 

The neural network is trained on a specific PV panel model 
by creating a fictitious dataset of temperature/irradiance 
operating points. Indicating with ��  and �W  respectively the 
number of temperature points and the number of irradiance 
points, in this study we set �� � 10 (equally spaced points 
from 263.15 K to 353.15 K) and �W � 10 (equally spaced 
from 200 W/m2 to 1150 W/m2), thus creating a grid-like 
dataset of 100 operating conditions. From the PV panel 
parameters at STC (see Table 1), using equations (1)-(6), the 
I-V curve corresponding to each operating condition can be 
derived. On each curve, it is possible to extract the �B�, which 
must be the output provided by the neural network for any I-
V point of that curve. The resulting dataset is depicted in the 
plot of Figure 8. 

 

Figure 8 – Representation of the training dataset for the neural network �B� predictor. Each curve corresponds to a temperature/irradiance 

operating condition. The red squares indicate the MPPs. 

III. RESULTS AND DISCUSSION 

This section presents the results of the application of the 
MPPT algorithms, illustrated in section II.C, to the dataset 
extracted from PVGIS. The performance of the algorithms is 
expressed in terms of Mean Absolute Percentage Error 
(MAPE). Indicating with �  the number of examples in the 

dataset (in this case, � � 3951), with XYYFZLG,[  and XYY\\\\\\[ 

respectively the true MPP value and the MPP value found by 
the tracking algorithm for the ]-th example, the MAPE index 
is computed as: 

 MAPE � 1� b cXYYFZLG,[ � XYY\\\\\\[XYYFZLG,[ c
d

[eQ
 (9) 

In section III.A, the results of the MPPT considering 
perfect measurements are presented. Section III.B repeats the 
analysis, but introducing noise on the measurements needed 
for MPPT.  

A. MPPT with perfect measurements 

Table 2 reports the MAPE index for the tested MPPT 
techniques. In addition, the first row of Table 2 indicates a 
special case where no MPPT is performed and the working 
voltage of the panel is always set equal to �B�,��� . This 

represents a baseline reference result that the MPPT 
algorithms must outperform to be considered viable solutions. 
The MAPE of the baseline is indicated as MAPE=f  In this 
noise-free test, the adaptive P&O and the IC methods achieve 
better accuracy, as they are able to precisely adjust the 
perturbations to arbitrary small values. 

Table 2 – MPPT performance in the hypothesis of perfect measurements. 

The best methods are highlighted in green. 

MPPT technique MAPE 

Baseline (no MPPT) 1.720% 

P&O fixed step 0.008% 

P&O adaptive step < 0.001% 

IC < 0.001% 

FFNN 0.017% 

B. MPPT in presence of measurement uncertainty 

Table 3 and Table 4 summarize the MPPT results when 
measurement uncertainty is introduced in the system, 
respectively for P&O and IC, and for the FFNN. For P&O and 
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IC, the noise is added to the current measurement at each 
iteration as a disturbance distributed normally around the 
nominal value, with a standard deviation equal to a certain 
percentage of the nominal value (relative uncertainty). For the 
FFNN, the disturbance is added in the same way on voltage 
and temperature measurements as well. The relative 
uncertainties on current, voltage and temperature 
measurements are indicated respectively as gh , g�  and g� . 
Different levels of uncertainty are considered, ranging from 
1% to 20%. 

Observing Table 2, Table 3 and Table 4, it is interesting to 
notice the following aspects: 

• When measurement noise is introduced, fixed step P&O is 
a better option than adaptive P&O and IC. This means 
that the fixed step size, even if limiting the MPPT 
accuracy, is somehow beneficial to compensate for the 
variability of the measurements. 

• The method based on neural networks, even if slightly 
worse than the other techniques in the noise-free scenario, 
is capable of keeping high tracking accuracy also in 
heavily disturbed conditions. In particular, the FFNN 
performance is affected mostly by the uncertainty on 
temperature measurements, while its sensitivity to errors 
on voltage and current measurements is extremely 
limited. This means that neural networks are generally 
preferable if accurate temperature sensors are available. 
For instance, a scenario with g� between 1% and 2% can 
be a realistic representation of a PV panel equipped with 
a class B/C PT100 sensor [30]. 

Table 3 – MPPT results in presence of uncertainty on current 
measurements for P&O and IC algorithms. An asterisk indicates that the 

MAPE is greater than XVY7=f. 

ij 
MAPE 

P&O fixed step P&O adaptive step IC 

1% 0.328% 0.472% * 

2% 0.638% 0.936% * 

5% 1.683% * * 

10% * * * 

20% * * * 

Table 4 – MPPT results in presence of uncertainty on current, voltage and 
temperature measurements for the neural network algorithm. An asterisk 

indicates that the MAPE is greater than XVY7=f. 
 ik 0% 1% 2% 5% 

ij, il - - - - - 

0% - 0.017% 0.097% 0.353% * 

1% - 0.018% 0.106% 0.362% * 

2% - 0.029% 0.111% 0.368% * 

5% - 0.132% 0.208% 0.481% * 

10% - 0.461% 0.526% 0.764% * 

20% - 1.022% 1.172% 1.391% * 

IV. CONCLUSION 

This paper presented a comparative analysis of the 
performance of different MPPT algorithms in presence of 

measurement noise. The study was conducted in a simulated 
environment using an irradiance/temperature dataset extracted 
from PVGIS. Among the tested algorithms (P&O, IC and 
neural networks), FFNNs proved to be the most robust to 
voltage and current measurement uncertainty, provided that 
temperature readings with at maximum 2% uncertainty are 
available. Conversely, the performance of the other 
techniques considered in the study considerably worsens 
when measurement disturbance is introduced. 

Moreover, even though neural networks have the 
drawback of requiring more complex equipment (temperature 
sensor), on the other hand they hold the important advantage 
of providing the MPP estimation in a single execution, 
compared to iterative methods that typically require more 
time. As such, neural networks appear to be one of the most 
promising solutions for dynamic MPPT in rapidly changing 
operating conditions (e.g., for mobile PV systems installed on 
vehicles [31]).  

As regards future developments, we foresee at least two 
research lines: 

• The expansion of the investigation to other MPPT 
techniques, to provide a thorough overview of the effects 
of measurement uncertainty and support a more 
conscious choice of the best solution. 

• The implementation of the MPPT algorithms in an MPPT 
controller (e.g., deployed on a microcontroller) to assess 
the actual tracking capabilities of each solution in a real 
working scenario. 

• Incorporating voltage and current ripples, particularly at 
the switching frequency and double the line frequency, is 
crucial. The amplitudes of the ripple also depend on the 
PV operating point. These ripples represent additional 
sources of uncertainty that must be considered for future 
development. 
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