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Abstract. In DBI inflation the cubic action is a particular linear combination of the two,
otherwise independent, cubic operators π̇3 and π̇(∂iπ)2. We show that in the Effective Field
Theory (EFT) of inflation this is a consequence of an approximate 5D Poincaré symmetry,
ISO(4,1), non-linearly realized by the Goldstone π. This symmetry uniquely fixes, at lowest
order in derivatives, all correlation functions in terms of the speed of sound cs. In the limit
cs → 1, the ISO(4,1) symmetry reduces to the Galilean symmetry acting on π. On the other
hand, we point out that the non-linear realization of SO(4,2), the isometry group of 5D AdS
space, does not fix the cubic action in terms of cs.
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Motivations. The study of non-linearly realized symmetries in the context of inflation
has proven to be a powerful tool to make model-independent predictions. A spontaneously
broken symmetry is manifested in relations among operators with different number of fields:
for example, in the framework of the EFT of inflation [1] one finds a relation between the
kinetic term and the cubic operators, as a consequence of the non-linear realization of time
diffeomorphisms. This implies that in any model with small speed of sound cs � 1, one has
parametrically large non-Gaussianities ∝ c−2

s . This regime is still allowed by observations,
although severely constrained by the beautiful Planck data [2].

In this note we study the consequences of the non-linear realization of ISO(4,1), the 5D
Poincaré symmetry, in the EFT of inflation. The motivation is twofold. On one hand this
symmetry is typical of inflationary models based on brane constructions, where the position of
a brane moving in an extra dimension plays the role of the inflaton. Although the inflationary
solution (spontaneously) breaks ISO(4,1), the dynamics of perturbations is constrained by
the non-linearly realized symmetries. On the other hand, observations are only sensitive to
small perturbations around the inflating solution and their dynamics is encoded in the EFT
of inflation. It is then of interest to study the possible symmetries that can be imposed
in this theory. In this respect ISO(4,1) naturally stands out, since it contains both the 4D
Poincaré group and the shift symmetry of the inflaton, which is usually imposed to justify
slow-roll and the consequent approximate scale-invariance of the spectrum. We will show,
for example, that the relation between the cubic operators π̇3 and π̇(∂iπ)2 which occurs in
DBI inflation [3] does not require any UV input, but it is just a consequence of the ISO(4,1)
symmetry at the level of the EFT of inflation.

Nonlinear realization of ISO(4,1). In general, the homogeneous inflaton background
φ0(t) breaks the 4D Poincaré symmetry to translations and rotations: ISO(3,1) → ISO(3).
(We here concentrate on scales much shorter than the Hubble scale H, where spacetime
can be considered flat; we will consider gravity later on.) At leading order in slow-roll, the
inflaton φ is also endowed with an approximate shift symmetry φ → φ + c and a solution
φ0(t) = vt preserves a combination of this shift symmetry and time translations.

Perturbations around this background can be parametrized by the Goldstone mode π

φ(~x, t) = φ0(t+ π(~x, t)) = v · (t+ π) (1)

and the most general action compatible with the symmetries reads

S =

∫
d4x

(
a0π + a1π̇

2 + a2(∂iπ)2 + f1π̇
3 + f2π̇(∂iπ)2

+g1π̇
4 + g2π̇

2(∂iπ)2 + g3(∂iπ)4 + · · ·
)
. (2)

All the constants are time independent as a consequence of the residual shift symmetry.1

Let us now impose the extra symmetry. We want to enlarge ISO(3,1)× shift (11 gener-
ators) to a 15-dimensional group, ISO(4,1). The additional four transformations act as2

δφ = ωµx
µ + φ ωµ∂µφ . (3)

1The observed deviation from exact scale-invariance [4] implies that the shift symmetry (and therefore the
whole ISO(4,1) in the following) is not exact, but slightly broken by corrections of order slow-roll. We neglect
these corrections in the paper.

2Notice that we are using a parametrization where the 4D coordinates do not transform and the symmetry
only acts on fields.
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These are rotations and boosts in the 5th dimension, if we interpret φ as a coordinate in the
extra dimension, for example describing the position of a brane. The shift symmetry of φ
is interpreted as translation in the 5th dimension to complete the isometry group of 5D flat
space. However, the geometric interpretation is not mandatory and we may remain agnostic
about the origin of this symmetry. These transformations act on the Goldstone π as3

δπ =
1

v
δφ = ωµx

µ + v2 · (t+ π)(ωµ∂µπ + ω0) , (4)

where in the last equality we have reabsorbed 1/v into the definition of ωµ. Demanding that
the action (2) is invariant under these additional transformations imposes some conditions
on the coefficients a0, a1, a2, . . ..

4 If we focus on the variation of the action quadratic in π,
we get the following relations

a2 = −a1(1− v2) , f1 = a1
v2

1− v2
, f2 = −a1v2 . (5)

The first equation says that the speed of propagation of π excitations, the “speed of sound”
cs is related to v as

c2s = 1− v2 . (6)

From the 5D geometrical point of view, this is a consequence of the relativistic sum of
velocities. Here it is simply a consequence of the ISO(4,1) symmetry in the EFT of inflation.
The cubic action is fixed by the second and third relation, so that up to cubic order the
action (up to an overall coefficient) reads

S =

∫
d4x

(
π̇2 − c2s(∂iπ)2 +

1− c2s
c2s

(
π̇3 − c2sπ̇(∂iπ)2

))
. (7)

This is exactly the same result one gets in DBI inflation [3], but here we see that one does not
need any UV input: this action follows from the ISO(4,1) symmetry in the EFT of inflation.

As we are going to discuss later, these results will not change when gravity is taken into
account. In the notation of [5]

S3 =

∫
d4x
√
−g ḢM2

Pl(1− c−2
s )

[
− 1

a2
π̇(∂iπ)2 +

(
1 +

2

3

c̃3
c2s

)
π̇3
]
, (8)

the coefficient c̃3 (that is in general free), is fixed by ISO(4,1): c̃3 = 3
2(1−c2s). In terms of the

relative coefficient between the two operators A ≡ −
(
c2s + 2

3 c̃3
)
, the symmetry fixes A = −1.

The Planck limits [2] on these parameters are shown in figure 1.

We can go to higher order and set to zero the cubic variation of the action (2). We get
a simple system of algebraic equations whose solution is

g1 = a1
1− c2s
c4s

(
5

4
− c2s

)
, g2 = −a1

1− c2s
c2s

(
3

2
− c2s

)
, g3 = a1

1

4
(1− c2s) . (9)

3In general φ0(t) = c+ vt, but because of the shift symmetry the constant can be set to zero without loss
of generality.

4Notice that the tadpole term a0 will in general be different from zero, since the background solution will
also be affected by terms which are not ISO(4,1) symmetric, as a potential term and the Hubble friction.
Anyway a0 does not enter in the conditions below since its variation, eq. (4), is a total derivative.
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Figure 1. Planck limits [2]: the 68%, 95% and 99.7% regions in the parameter space (cs, c̃3) (left)
and (cs, A) (right). The red line shows the prediction if one imposes the ISO(4,1) symmetry (the
same as in DBI inflation).

Again all the coefficients are completely fixed in terms of a single parameter, the speed of
sound cs. This does not come as a surprise: the only operator with one derivative per field,
that linearly realizes the 4D Poincaré group and non-linearly realizes ISO(4,1) is the brane
tension operator

S = M4

∫
d4x

(
1−

√
1 + (∂φ)2

)
, (10)

so it is not surprising that everything is fixed for operators with one derivative per field. One
can check that expanding (10) around φ0 = vt one gets operators which satisfy (5) and (9).
Still it is nice to see the constraints directly at the level of the EFT of inflation, without
assuming to be able to extrapolate far from the inflationary solution.

One can also explore the consequences of ISO(4,1) for operators with more derivatives.
If we look at operators with two derivatives on one of the π’s then the effective action starts
with cubic terms (quadratic terms are total derivatives) and reads

S =

∫
d4x

(
λ1π̇

2∂2i π + λ2(∂iπ)2∂2i π + µ1π̇
3∂2i π + µ2π̇(∂iπ)2∂2i π + · · ·

)
. (11)

Using the transformation (4) we can easily find the relations among λ1, λ2, µ1 and µ2

λ2 =
−c2s

2
λ1 , µ1 =

4

3

1− c2s
c2s

λ1 , µ2 = (c2s − 1)λ1 . (12)

As a check, one can start from the brane picture and consider an operator with one extra
derivative on π compared to the brane tension: there is only one, the extrinsic curvature of
the brane. This gives the following operator which non-linearly realizes ISO(4,1) [6]

S = M3

∫
d4x

1

1 + (∂φ)2
∂µ∂νφ∂

µφ∂νφ . (13)

Indeed, expanding (13) around φ0 = vt we find that the cubic action for the Goldstone is

S3 = M3

∫
d4x

(
1− c2s
c2s

π̇2∂2i π + ∂µ∂νπ∂
µπ∂νπ

)
, (14)

which satisfy the constraints (12).
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The limit of Galilean symmetry and the coupling with gravity. The ISO(4,1)
transformation (4) contains a dimensionless parameter v, which can be interpreted in a
5D picture as the brane velocity in the bulk. As we discussed, this parameter fixes the
speed of sound of perturbations, eq. (6). One can consistently take the limit v → 0 of the
symmetry.5 This is a group contraction and in this limit the symmetry does not act on
coordinates anymore and it thus commutes with the 4D Poincaré group. It reduces to an
internal symmetry acting on π only

δπ = ωµx
µ . (16)

This is the Galilean symmetry studied in [7], whose implications for the EFT of inflation have
been discussed in [8] (see also [9]). This symmetry requires cs = 1 and forbids all interactions
with a single derivative per field. All interactions come from higher derivative terms. For
example in eq. (14), for cs = 1 we have only the second operator which can be written as
(∂π)2�π, i.e. the cubic Galileon.

So far we discussed the ISO(4,1) symmetry in Minkowski space, without including grav-
ity. Ultimately we are interested in calculating correlation functions during inflation, so that
the coupling with gravity cannot be neglected. Similarly to what happens in the case of
the Galilean symmetry discussed above, gravity breaks the ISO(4,1) symmetry.6 This im-
plies that the symmetry is not a good one for the background evolution, since in general the
Hubble friction plays an important role. This is an additional motivation to formulate the
symmetry directly in the EFT of inflation as a non-linearly realized symmetry for π on scales
much shorter than Hubble, without reference to the background solution.

Another point to address is whether the actions for π derived above can be used, once
minimally coupled to gravity, to calculate observables during inflation or gravity will com-
pletely change the picture. The breaking of the symmetry due to gravity will manifest in two
ways. First of all, graviton radiative corrections will induce operators which do not respect
the symmetry. This effect is arguably small, as suppressed by powers of MPl. Second, in
calculating π loops on a gravitational background, non-invariant terms will also be generated.
These operators will be invariant under a shift of π, as the shift symmetry is compatible with
the coupling with gravity, but not fully ISO(4,1) invariant. As these terms arise only on a
curved background they will contain powers of the Riemann tensor, schematically

(Rµνρσ)n(∂π)m . (17)

On a quasi de Sitter background R ' H2, so we expect these terms to be suppressed with
respect to the ones we considered above by powers of (H/Λ)2 � 1, where Λ is the UV cut-off
of the theory.

These corrections can become relevant if the coefficient of some operator is unnaturally
large. For example, the effect of the induced gravity term on a brane is studied in [10, 11]
and the conclusion is that the cubic action is in general not uniquely fixed in terms of cs: a

5Notice that this simply corresponds to the non-relativistic limit, when the brane motion is slow com-
pared to the speed of light. This does not imply that the 4D Poincaré symmetry is restored. Indeed the
transformation of π under a 4D boost parametrized by βi is given by

δπ = βixi + π̇βixi + ∂iβ
it . (15)

This does not depend on v and is still non-linearly realized for v → 0.
6On a curved background, one cannot consistently define the constant vector ωµ that appears in eq. (4):

this shows that the symmetry is ill-defined in the presence of gravity.
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different linear combination of the operators π̇3 and π̇(∂iπ)2 is possible, giving in particular
an orthogonal shape of non-Gaussianity. This is at first surprising as the model respect
the ISO(4,1) symmetry we are discussing. However, the deviations are indeed due to cubic
operators with more than three derivatives in the EFT of inflation [11]: in curved space some
of these derivatives can be traded for the curvature scale H and one is left with only three
derivatives on π. However a basic tenet of the EFT approach is that operators of higher
dimension give small corrections: if they induce O(1) changes, it is not clear why one can
neglect all the other higher dimensional terms.

ISO(4,1) or SO(4,2)? In DBI inflation [3] a probe brane lives in an AdS throat and
non-linearly realizes the SO(4,2) group, so that one may wonder why we did not consider
this group instead of ISO(4,1). One simple answer is that during inflation the brane does
not move much in units of the AdS radius L, so that the difference between flat and curved
bulk is immaterial. It is still interesting to understand whether SO(4,2) would give the
same predictions.

The answer is no. It is straightforward to check, for example supplementing the DBI
action with other SO(4,2)-invariant operators like the AdS conformal Galileons [6], that the
nice predictions of ISO(4,1) are lost. In particular the speed of sound is not fixed in terms
of the velocity v in the bulk and the cubic operators π̇3 and π̇(∂iπ)2 can appear in a general
linear combination. The fact that c2s is not fixed in terms of v may come as a surprise: after
all it simply comes from the relativistic sum of velocities and this should apply locally also
in AdS. This intuition however requires that higher derivative operators are suppressed by a
cutoff scale Λ� L−1: in this case only the tension of the brane is important and we get back
to the DBI inflation case. When, on the other hand, Λ ∼ L−1 higher derivative operators
are unsuppressed, the brane is a thick object in comparison with the AdS radius: it will not
follow geodesics and we do not expect the same predictions as for DBI inflation, though the
SO(4,2) symmetry is preserved.

All this can also be seen at the level of the EFT. The most general action allowed by
the symmetry up to quadratic order is

SEFT =

∫
d4x

(
a0π + a1π̇

2 + a2(∂iπ)2 +m2π2
)
, (18)

where all the coefficients are now time dependent. As in the ISO(4,1) case, a background
solution with constant velocity is not in general a solution, therefore we have to keep a0
that will be cancelled by additional terms which are not SO(4,2) symmetric. The non-linear
transformation of π that realizes SO(4,2) is

δπ =
1

φ̇0

(
ωµx

µφ+ ωµx
µxν∂νφ−

1

2
x2ωµ∂µφ+

1

2
ωµ∂µφ−

1

2φ2
ωµ∂µφ

)
. (19)

Again, requiring the invariance of the action under this transformation leads to a set of three
constraints on the coefficients

m2 − 1

2
ȧ0 +

φ̈

2φ̇
a0 = 0 ,

3a0 + 4ȧ1 − 2∂t

(
a1
φ̈0φ0

φ̇20

)
− 2

φ0

φ̇0
m2 = 0 , (20)

6a2 + 4a1 + 2∂t

(
a1
φ40 − φ̇20
φ30φ̇0

)
− 2

φ̈0φ0

φ̇20
a1 = 0 .

– 5 –
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It is straightforward to verify that, for a constant φ̇0, these constraints do not fix the relation
among the coefficients of the kinetic term and therefore cs.

A particular case in which these constraints actually fix the form of the speed of sound,
is the one in which the background preserves an SO(4,1) subgroup of SO(4,2) [12]. This
happens for a background solution φ0(t) = α t−1. In this case the tadpole term is absent
and π is massless so that the constraints in (20) greatly simplify. The speed of sound is then
fixed by the last constraint and the residual dilation symmetry [12]: c2s = 1− α−2.

Conclusions. Imposing an ISO(4,1) symmetry in the EFT of inflation leaves (at leading
order in derivative) a single free parameter, the speed of sound cs. It should be straightforward
to study the consequences of ISO(4,1) in the EFT of multi-field inflation [13]: this symmetry
is indeed at play in multi-field DBI models [14].
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