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ABSTRACT
◥

Purpose:Myelofibrosis (MF) is a clonal myeloproliferative neo-
plasm characterized by systemic symptoms, cytopenias, organome-
galy, and bone marrow fibrosis. JAK2 inhibitors afford symptom
and spleen burden reduction but do not alter the disease course and
frequently lead to thrombocytopenia. TGFb, a pleiotropic cytokine
elaborated by the MF clone, negatively regulates normal hemato-
poiesis, downregulates antitumor immunity, and promotes bone
marrow fibrosis. Our group previously showed that AVID200, a
potent and selective TGFb 1/3 trap, reduced TGFb1-induced
proliferation of human mesenchymal stromal cells, phosphoryla-
tion of SMAD2, and collagen expression. Moreover, treatment of
MF mononuclear cells with AVID200 led to increased numbers of
progenitor cells (PC) with wild-type JAK2 rather than JAK2V617F.

Patients and Methods: We conducted an investigator-initiated,
multicenter, phase Ib trial of AVID200 monotherapy in 21 patients
with advanced MF.

Results: No dose-limiting toxicity was identified at the
three dose levels tested, and grade 3/4 anemia and throm-
bocytopenia occurred in 28.6% and 19.0% of treated patients,
respectively. After six cycles of therapy, two patients attained
a clinical benefit by IWG-MRT criteria. Spleen and symptom
benefits were observed across treatment cycles. Unlike other
MF-directed therapies, increases in platelet counts were
noted in 81% of treated patients with three patients achiev-
ing normalization. Treatment with AVID200 resulted in
potent suppression of plasma TGFb1 levels and pSMAD2
in MF cells.

Conclusions: AVID200 is a well-tolerated, rational, therapeu-
tic agent for the treatment of patients with MF and should be
evaluated further in patients with thrombocytopenic MF in
combination with agents that target aberrant MF intracellular
signaling pathways.

Introduction
Myelofibrosis (MF) is a progressive myeloproliferative neoplasm

(MPN), resulting in diminished quality of life and limited survival due
to the consequences of symptomatic splenomegaly, systemic symp-
toms, ineffective hematopoiesis, bone marrow fibrosis, and eventual
evolution to acute myeloid leukemia (AML; ref. 1). MF is associated
with increased JAK/STAT signaling due to driver mutations in JAK2
(JAK2V617F), calreticulin (CALR), and the thrombopoietin receptor
(MPL). A risk-adapted treatment approach to MF is currently con-
sidered the standard of care, which is centered on alleviating spleen size
and systemic symptom burdens with JAK2 inhibitors that down-
regulate the JAK/STAT signaling pathways, which promote cell
proliferation and inflammatory cytokine expression (2). Although
these agents have collectively improved the quality of life of patients
with MF, they frequently exacerbate disease-related anemia and
thrombocytopenia, which limit dose optimization and consequently
compromise the possibility to achieve bone marrow histopathologic
remissions or halt disease progression (3). Allogeneic hematopoietic
cell transplantation, which is used in approximately 10% of patients
with advanced forms of MF, is currently the only modality of therapy
that provides patients with a chance for long-term maintenance-free
survival (4).

A major hallmark of MF is a marked elevation in proinflammatory
cytokines (5). These cytokines are elaborated by the malignant clone
and modify the bone marrow microenvironment, thereby promoting
malignant hematopoiesis. TGFb is a pleiotropic cytokine implicated in

1Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York,
New York. 2Altius Institute for Biomedical Sciences, Seattle, Washington.
3Department of Quantitative Health Sciences, Mayo Clinic, Scottsdale, Arizona.
4Comprehensive Cancer Center of AtriumHealthWake Forest Baptist,Winston-
Salem, North Carolina. 5Mayo Clinic Scottsdale, Arizona. 6Department of Hema-
tologic Malignancy, Moffitt Cancer Center, Tampa, Florida. 7Leukemia Service,
Department of Medicine, Center for Hematologic Malignancies, Human Oncol-
ogy and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center,
New York, New York. 8Cleveland Clinic Taussig Cancer Institute, Cleveland,
Ohio. 9The University of Kansas Cancer Center, Westwood, Kansas. 10University
of Michigan, Comprehensive Cancer Center, Ann Arbor, Michigan. 11The Univer-
sity of Texas Health Science Center at San Antonio, San Antonio, Texas. 12Center
for Hematologic Malignancies, Memorial Sloan Kettering Cancer Center, New
York, NewYork. 13NewYork BloodCenter, NewYork, NewYork. 14Department of
Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at
Mount Sinai, New York, New York. 15University of Florence, AziendaOspedaliero
Universitaria Careggi, Florence, Italy. 16Unit of Microscopic and Ultrastructural
Anatomy, University Campus Bio-Medico, Rome, Italy. 17National HIV/AIDS
Research Center, Istituto Superiore di Sanit�a, Viale Regina Elena Rome Italy.
18Sonic Healthcare, Austin, Texas.

Corresponding Author: John Mascarenhas, Tisch Cancer Institute, Icahn School
of Medicine at Mount Sinai, Once Gustave L Levy Place, New York, NY 10029.
E-mail: John.mascarenhas@mssm.edu

Clin Cancer Res 2023;29:3622–32

doi: 10.1158/1078-0432.CCR-23-0276

This open access article is distributed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International (CC BY-NC-ND 4.0) license.

�2023 TheAuthors; Publishedby theAmericanAssociation forCancerResearch

AACRJournals.org | 3622

http://crossmark.crossref.org/dialog/?doi=10.1158/1078-0432.CCR-23-0276&domain=pdf&date_stamp=2023-8-26
http://crossmark.crossref.org/dialog/?doi=10.1158/1078-0432.CCR-23-0276&domain=pdf&date_stamp=2023-8-26


the promotion of angiogenesis, tumor growth, collagen fibrosis,
metastatic spread, and downregulation of antitumor immunity. TGFb
levels have been shown by numerous investigators to be increased in
patients with MF and to play a central role in the development of
progressive bone marrow fibrosis, which contributes to a dysregulated
marrow microenvironment (6, 7). Active forms of TGFb1 bind to a
membrane receptor serine/threonine kinase complex that phosphor-
ylates receptor SMADs (SMAD2 and SMAD3), which accumulate in
the nucleus where they complex with SMAD4 to regulate target gene
expression (8). TGFb can also signal through noncanonical pathways,
including ERK, p38 MAPK, and JNK activation (9, 10). TGFb1 and
TGFb3 have additional effects, including their ability to inhibit normal
hematopoiesis through the canonical SMAD-dependent signaling
pathway, which induces normal HSC quiescence (11–13). In MF, the
excessive production of TGFb has largely been attributed to its
increased production by megakaryocytes (14) and monocytes (15).
TGFb also negatively regulates the proliferation of hematopoietic
stem/progenitor cells (12, 16). Although megakaryocytic hyperplasia
is a pathologic hallmark of MF, thrombocytopenia frequently accom-
panies advanced forms of MF, which compromises the use of JAK2
inhibitors and contributes to an increased risk of developing bleeding
events (17). Up to 25% of patients with MF have platelet counts below
100 � 109/L at presentation. Patients with thrombocytopenia are
more likely to be anemic and transfusion-dependent, as well as have
high-risk disease characteristics and a poor overall survival rate. This
myelofibrosis presentation has also been described as myelodepletive
phenotype (18).

TGFb has been thought to play a role in the development of MF-
associated thrombocytopenia due to its well-known inhibitory effects
on several stages of megakaryocyte development (19, 20). Because of
the multiple pivotal roles of TGFb in the development of MF, we
considered this cytokine as a potential target for therapeutic inter-
vention (21). Therefore, we explored the use of AVID200, a potent and
highly specific trap for two isoforms of TGFb, TGFb1, and b3 with an
IC50s of �5 pmol/L to treat patients with MF (22). We previously
reported that TGFb1 was the predominant TGFb isoform elaborated
by MFmegakaryocytes (21). AVID200 notably does not affect TGFb2
levels, which is produced by cardiomyocytes and acts autonomously
onmyocardium and via paracrine signaling onAV cushions, which are
required for heart development (23). Although cardiac toxicity was not

observed in the participants of several clinical trials with galunisertib, a
small-molecule pan-TGFb inhibitor that acts by inhibiting signaling
through TGFb receptor I. This concern led to the interruption of
further clinical development of this agent (24–30). The inability of
AVID200 to affect TGFb2 levels provided a means of avoiding the
potential for cardiac toxicity, therefore, making it a promising
approach to interrupt TGFb signaling in patients with MF. A phos-
phorylated form of SMAD2 (pSMAD2) has been used to explore
endogenous activation of TGFb signaling in normal donor orMF cells.
Robust expression of pSMAD2 has been previously observed in the
absence of an exogenous source of TGFb, and addition of AVID200 to
MF-MK has been reported to decrease pSMAD2 levels without
affecting total SMAD2/SMAD3 levels, indicating that AVID200 blocks
the effects of TGFb produced in a paracrine/autocrine fashion in
MF (16).

The possible effectiveness of AVID200 was also demonstrated
by its ability in vitro to reduce TGFb1 levels, reduce TGFb1-induced
proliferation of human mesenchymal stromal cells, decrease phos-
phorylation of SMAD2, and to induce collagen expression (22).
Moreover, treatment of MF mononuclear cells with AVID200 led
to the appearance of increased numbers of assayable progenitor
cells with wild-type JAK2 rather than mutated JAK2. To evaluate
the toxicity and possible efficacy of AVID200 in patients with MF,
we conducted a first-in-human phase Ib study of AVID200 at three
dose levels.

Patients and Methods
This investigator-initiated clinical trial (NCT03895112) was spon-

sored by the NCI Myeloproliferative Neoplasm Research Consortium
(MPN-RC) andwas conducted in strict accordance with the Principles
of the Declaration of Helsinki and Good Clinical Practice guidelines.
Institutional ethical review board approval of the protocol was
required at each participating institution, and written informed con-
sent was obtained from all patients prior to screening. J.M. held the
investigational new drug application.

Enrolled subjects had a confirmed diagnosis of primary MF (PMF)
or postessential thrombocythemia/polycythemia veraMF usingWHO
criteria. Subjects were required to have intermediate-2, or high-risk
disease according to the IWG-MRTDynamic International Prognostic
Scoring System (DIPSS; ref. 31) and at least grade 2 bone marrow
fibrosis (BMF) as quantitated using the European Consensus on
Grading of Bone Marrow Fibrosis (32). Subjects were not eligible for
therapy with the JAK2 inhibitor ruxolitinib, had been previously
treated and experienced a lack or loss of response on ruxolitinib as
determined by the investigator, or chose not to receive ruxolitinib.
Baseline platelet counts of ≥25 � 109/L were required.

Cohorts of three patients were followed for at least one cycle and
evaluated for dose-limiting toxicity (DLT). A modified toxicity prob-
ability interval (mTPI) dose-escalation design (33) was used with three
dose levels and a target toxicity rate of 30%. Following conclusion of
the dose escalation, dose levels 2 and 3were expanded to include a total
of nine patients at each dose level. Subjects received intravenous
AVID200 (lots A and B) in dose cohorts of 180 mg (A), 550 mg
(A), 180 mg (B) on day 1 of a 21-day cycle (Supplementary Fig. S1).
Upon exhaustion of the first lot and completion of additional phar-
macokinetic (PK) studies, subjects enrolled in dose level 3 and the
expansion phase were treated with lot B of AVID200. All subjects
treated with lot B received a lower calculated dose to match the
exposure of the original doses administered with lot A. Therefore,
subjects enrolled in the dose-escalation phase received 70 mg (B) and

Translational Relevance

Increased levels of TGFb1 have been implicated as a pivotal
mediator of myelofibrosis (MF) disease activity. AVID200, a TGFb
1/3 protein trap was evaluated in a phase Ib trial in 21 patients with
advanced MF. Dose-limiting toxicities were not observed. Two
patients attained clinical benefit by IWG/MRT criteria at 24 weeks.
Spleen and symptom responses were observed across treatment
cycles. Remarkably, platelet counts increased in 81% of treated
patients and normalized in three patients, a therapeutic effect not
observed with other MF therapies. AVID200 resulted in suppres-
sion of plasma TGFb1 levels andMFmononuclear cell p-pSMAD2
levels. All patients hadmegakaryocytes (MK)with reduced levels of
GATA1, amarker of impairedMKmaturation, that was reversed in
MK from patients with increased platelet numbers following
therapy. These data indicate that AVID200 treatment promotes
MK maturation and platelet production in MF by interrupting the
effects of TGFb1.
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180 mg (B) for dose levels 2 and 3. Additional information regarding
lot B dose selection based on estimated exposure in humans is provided
in the Supplementary materials.

AVID200 was infused on day 1 of a 21-day cycle. Patients who
completed six cycles and maintained at least stable disease (SD) by
International Working Group/European Leukemia Net (IWG/ELN)
criteria (34) with at least one grade reduction in bone marrow fibrosis
were allowed to continue treatment with repeat response assessment
after cycle 12. After six cycles, if the subject did not attain theminimum
response, they were removed from treatment.

The primary objective was to estimate the MTD of AVID200
treatment in MF. Secondary objectives included characterization of
the safety of AVID200 and estimation of response by IWG/ELN
criteria and change in bone marrow fibrosis after cycles 6 and 12.
Exploratory objectives included evaluation of quality of life (QOL) and
patient-reported symptoms using the Myelofibrosis Symptom Assess-
ment Form (MF-SAF) version 4.0 and European Organisation for
Research and Treatment of Cancer Quality of Life questionnaire-C30
(EORTC QLQ-C30) and to conduct correlative studies to measure
biomarkers of TGFb activation or inhibition and explore biomarkers
of AVID200 therapeutic response. PK profiling was also performed for
lot A of study drug.

Toxicity was assessed according to the NCI Common Toxicity
Criteria for Adverse Events (CTCAE), version 5.0. DLTs were defined
as an absolute neutrophil count <500/mm3 for ≥7 days, a platelet
count <20 � 109/L with a documented hemorrhagic event, or other
nonhematologic adverse events of grade ≥ 3 occurring in cycle 1.
Criteria for AVID200 dose modifications after cycle 1 for hematologic
and nonhematologic Treatment Emergent Adverse Events (TEAE)
regardless of causality were specified in the protocol.

Response assessment was the primary objective of the dose-
expansion phase and was based on the proportion of treated
subjects that attained either a complete response (CR), partial
response (PR), or clinical improvement (CI) as defined by the
revised IWG/ELN (34), or a decrease in bone marrow fibrosis by
≥1 grade with otherwise stable disease (SD) after cycle 6.

Pharmacokinetic data were available for the first six patients
treated [three at DL1 (180 mg/m2) and DL2 (550 mg/m2) using lot
A of study drug]. PK time points per the protocol were prior to
infusion, end of infusion, þ2 hours, þ4 hours, þ24 hours (day 2),
day 8, and day 15 for cycle 1. PK data are presented as mg/mL. The
R package PKNCA was used to perform noncompartmental anal-
ysis for PK data (R version 4.1.2).

Plasma TGFb1 levels measured at baseline and after AVID200
treatment were quantified by MesoScale Discovery (MSD) U-PLEX
Platform (N05228A-1 Rockville). Briefly, stored plasma was thawed,
and the levels of TGFb1 were determined according to the manufac-
turer’s instructions by an electro-chemiluminescent signal. MSD
assays work on the same principle as ELISA assays but have a higher
sensitivity, less matrix interference, and high consistency between
runs (35, 36).

Levels of pSMAD2 were determined with a commercial Elisa
(catalog No. MBS 269933, M BioSource Life Technology; ref. 37) or
by Western blot analyses with pSMAD2 and SMAD2 antibodies.
Activation of p38-MAPK was determined by comparing levels of
pp38 and total p38 in blood mononuclear cells as assessed byWestern
blotting (38) at baseline andweekly during thefirst cycle and thenday 1
of every cycle for thefirst six cycles. Canonical and noncanonical TGFb
molecular signaling targets pSMAD2 and pp38 were measured in
mononuclear cells at baseline and at the end of AVID200 treatment by

Western blotting. Whole cell extracts were prepared in NP40 buffer
plus proteases and phosphatase inhibitors (Roche). Fifty micrograms
of total proteins was separated on SDS-PAGE gels and transferred to
nitrocellulose membranes. Transferred proteins were detected with
primary antibodies pSMAD2 (No. 3108); SMAD2/SMAD3 (No.
3102), pp38 (No. 4511), pERK1/2 (No. 9101; Cell Signaling Technol-
ogy); GAPDH (No. CB1001, Calbiochem); and then with appropriate
horseradish peroxidase–coupled secondary antibodies (Calbiochem).
Immune complexes were detected with an Enhanced Chemilumines-
cence Kit (Amersham) or LUM-LIGHTPlus (Roche).

qPCR was used to assess the variant allele frequency (VAF) of the
patient’sMPNdrivermutation at baseline and day 1 of cycles 7 and 13.
Results were comparedwith baseline for determination of absolute and
relative decrease in VAF of the driver mutation in granulocytes.
Changes in histomorphologic features in the bone marrow after six
and 12 cycles were also assessed by central blinded pathology review.

Next-generation sequencing, using targeted panels that encompass
167 genes associated with hematologic malignancies, was utilized on
samples from baseline and response timepoints or end of treatment
(whichever occurred later). Sequencing was performed using an
Illumina ILLUMINA-HISEQ-4000 with 2�101-bp paired-end reads,
yielding an average depth of�500�. The sequencing reads were then
aligned to the human genome (hg19) using the WA-MEM algorithm
(v. 1–14–0; ref. 39), and their quality was evaluated using FastQC.
Variant calling was conducted using an in-house pipeline that incor-
porates three variant callers (CAVEMAN (1.7.4; ref. 40), Mutect
(4.0.1.2; ref. 41), Strelka (2.9.1; ref. 42), andPINDEL (1.5.4; refs. 41, 43).
All variants were annotated using the Ensembl Variant Effect Pre-
dictor (VEP, version 86; ref. 44) and OncoKb (45). A subset of the
candidate variants, specifically those that were called by at least two
callers or matched known somatic mutations, was selected for fur-
ther manual annotation. The variants reported in this study were
identified as pathogenic or likely pathogenic based on the outcome of
the manual annotation process.

In addition, sections of paraffin-embedded bone marrow biopsies
from three patients who experienced increases in platelet numbers
(platelet-responsive) and three platelet-unresponsive patients at base-
line and at the end of therapy (matched) were provided as deidentified
material (Supplementary Table S1). Bone marrow sections from
untreated patients with PMF, ET, and from patients with hematopoi-
etic malignancies but without fibrosis provided were analyzed in
parallel as control. The 3-mm sections were incubated for 1 hour with
a decalcifying solution (Osteodec; Bio-Optica) and subjected to treat-
mentwith EDTAbuffer pH8 for 20minutes in a pressure cooker (110–
120�C, high pressure) for antigen retrieval. The sections were then
sequentially incubated with appropriate primary rabbit monoclonal
anti-CD42b (Ab183345, 1:150, Abcam) and rat monoclonal anti-
GATA1 (SC-265; 1:100, Santa Cruz Biotechnology) antibodies for
1.5 hours, respectively, at room temperature. The binding of the
antibodies was revealed by incubation with secondary Alexa Fluor
488 and/or Alexa Fluor 568-conjugated donkey anti-rabbit and anti-
rat antibodies (Invitrogen, both 1:200) for 1 hour. The sections were
observed blindly by two independent investigators with the Nikon A1
Confocal laser Microscope System (Nikon). Fluorescent images were
acquired with the Imaging Software NIS-Elements (Nikon) and
processed with the Fiji software (NIH). Events were quantified by
examination of images acquired at 60� from at least 10 randomly
selected areas per section. Results are presented as mean (�SD) of at
least three separate patients per group. Results obtained at baseline and
after posttreatment were analyzed by paired t test and differences
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considered statistically significant with a P < 0.05. Results from
controls were compared by ANOVA for multiple comparisons.

Data Availability
The data generated in this study are not publicly available but are

available upon reasonable request from the corresponding author.

Results
Twenty-two subjects were enrolled (one withdrew before receiv-

ing treatment) and nine patients (three at each dose level) were
treated with AVID200 during the dose-escalation phase and 12
during the dose expansion phase (Table 1). After discontinuing
ruxolitinib, patients had a median time to start AVID200 therapy of
6.0 months (range, 0.5–59.9), and 90.5% of patients had previously
received ruxolitinib treatment. Supplementary Table S2 specifies all
the treatments administered prior to the initiation of AVID200 and
the time from discontinuation (when known) to C1D1 of AVID20O
in each case. According to DIPSS classification, patients with
intermediate-2 risk and high-risk disease accounted for 61.9% and
38.1%, respectively. Severe bone marrow fibrosis was present in 17/
21 (81%) of patients. An abnormal karyotype was present in 50% of
patients. Baseline somatic mutational profiles of the 21 subjects
enrolled in the study demonstrated 71% with JAK2, 29% TET2, 24%
ASXL1, and 19% CALR mutations (Supplementary Fig. S2). The

median TSS at baseline was 14 (range, 3–39). Representativeness of
study participants is described in Supplementary Table S3.

No DLTs were observed during the dose-escalation phase, and
therefore the dose-expansion phase was conducted for both dose levels
2 and 3 with six patients at each dose level. Across all cycles, grade 3 or
higher adverse events were observed in 16/21 (76.2%) patients. Grade
3/4 nonhematologic AE were observed in nine (42.9%) subjects and
included one subject in each case with epistaxis, mucositis, extraocular
muscle paresis, fatigue, rash, duodenal hemorrhage, gastric hemor-
rhage, urinary tract infection, and syncope. Grade 3/4 hematologic
AE were anemia (six, 28.6%) and thrombocytopenia (four, 19.0%)
(Table 2). No fatal events were seen in this trial. No cardiac adverse
events were observed.

The median number of cycles administered was six (range, 1–22),
and eight (38.1%) patients received more than six cycles. For
dose levels 2 to 3 at cycle 7, two patients attained CI [TSS: one,
spleen/anemia/TSS: one], five patients had SD, four had progressive
disease (PD), and seven were not evaluable (Supplementary Fig. S3).
Four patients received 12 or more cycles of treatment. Following
cycle 12, three of the four attained CI (TSS: two, spleen/anemia/
TSS: one). One patient (dose level 1) was not evaluable due to
proceeding with HSCT after four cycles of AVID200. Reasons for
discontinuation included disease progression (n ¼ 9), lack of
response (n ¼ 5), study completion (n ¼ 4), other (n ¼ 2), patient
decision (n ¼ 1).

Median percent change in palpable spleen length was 0.0% (range,
�70% to þ140%), and TSS reduction was 40% across all cycles of
treatment (�100% to þ185.7%), (Figs. 1A and B). Two (13.3%) of
the 15 patients with baseline palpable splenomegaly attained 50%
reduction in spleen length. Five (33.3%) patients attained a 25%
reduction in palpable spleen length at any time during the study
treatment. Nine (47.4%) patients achieved >50% decrease in TSS
across all cycles.

The median platelet count at baseline was 114 � 109/L (range, 27–
695) and 215 � 109/L (range, 44–263) after cycle 6 in eight subjects
(Fig. 2A). The median maximum change in platelets from baseline
across all cycles wasþ71.5% (range,�15.7% to 505.5%) in all subjects
(Fig. 2B). Seventeen subjects had an increase in platelets during
treatment. Three subjects normalized their platelet counts. In these
patients, the time from ruxolitinib discontinuation to initiation of
AVID200 was 1, 16, and 28 months. Prior ruxolitinib was received by
19 of 21 patients (Table 1) before trial enrollment, and median time
since discontinuation prior to AVID200 treatment was 6 months
(range, 1–60).

Comparison of somatic mutation profile of samples available from
baseline and at cycle 7 demonstrated a median change in JAK2V617F
VAF of þ0.83% (n ¼ 5 cases) and a median change in CALR VAF of
þ3% (n¼ 4 cases). No new somatic mutations were identified during
the course of treatment (Supplementary Fig. S4).

Paired BM biopsy samples for 16 subjects were available for central
histopathologic review and failed to show a reduction in bone marrow
fibrosis, overall cellularity, or MK number. Consistent with previous
reports, CD42bpos MK from BM of patients with MF showed barely
detectable levels ofGATA1 (Supplementary Fig. S5). BM sections from
both platelet nonresponder and responder patients at baseline showed
increased numbers of CD42bpos cells, which barely expressed detect-
able levels of GATA1 (Fig. 3A; Supplementary Fig. S6). After treat-
ment, GATA1 expression level was significantly decreased in the
platelet nonresponder group but was strongly positive in the CD42bpos

cells from patients that experienced an increase in platelet numbers
(Fig. 3B).

Table 1. Patient demographics and clinical characteristics by
study phase.

Dose escala-
tion (n ¼ 9)

Dose expan-
sion (n ¼ 12)

Total
(n ¼ 21)

Age (y) 69 (51–81) 74 (51–85) 73 (51–85)
Sex, F 2 (22.2%) 3 (25.0%) 5 (23.8%)
Prior ruxolitinib 8 (88.9%) 11 (91.7%) 19 (90.5%)
DIPSS

Int-2 6 (66.7%) 7 (58.3%) 13 (61.9%)
High 3 (33.3%) 5 (41.7%) 8 (38.1%)

JAK2V617 6 (66.7%) 9 (75.0%) 15 (71.4%)
VAF% 55 (5–84) 47 (21–96) 47 (5–96)

CALR 3 (33.3%) 1 (8.3%) 4 (19.0%)
Spleen length cm 10 (0–19) 11 (0–24) 10 (0–24)
Platelet count � 109/L 114 (42–290) 107 (27–695) 114 (27–695)
Platelet count
<100 � 109/L

4 (44.4%) 6 (50.0%) 10 (47.6%)

Platelet count
<50 � 109/L

1 (11.1%) 3 (25.0%) 4 (19.0%)

RBC transfusion
dependent

5 (55.6%) 9 (75.0%) 14 (66.7%)

PB blasts % 1 (0–21) 3 (0–8) 2 (0–21)
BMF grade

Mild — 1 (8.3%) 1 (4.8%)
Moderate — 3 (25.0%) 3 (14.3%)
Severe 9 (100%) 8 (66.7%) 17 (81.0%)

TSS 10.5 (3–26) 16.5 (3–39) 14.0 (3–39)
Normal karyotype 4 (44.4%) 6 (54.5%) 10 (50.0%)a

Abnormal karyotype 5 (55.6%) 5 (45.5%) 10 (50.0%)a

Adverse Karyotype 0 3 (27.3%) 3 (15%)a

Note: Median (range) or n (%) values are presented.
Abbreviations: DIPSS, dynamic international prognostic score; PB, peripheral
blood; RBC, red blood cell; VAF, variant allele frequency.
aBaseline karyotype available in 20/21 patients (escalation cohort: 9, expansion
cohort: 11).
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Elevated TGFb1 levels were detected (mean, 6,433 pg/mL) in
the plasma isolated from the trial participants prior to treatment and
were significantly decreased post-AVID200 treatment (P < 0.05;
Supplementary Fig. S7). TGFb1 levels were not significantly different
at baseline (P ¼ 0.12) and after treatment in nonresponder and
responder groups (P ¼ 0.25; Supplementary Fig. S8).

We next examined the effects of AVID200 on TGFb down-
stream signaling events (canonical and noncanonical pathways) in
MNC isolated from four patients at baseline and after AVID200
treatment. According to platelet response to AVID200 therapy, MF
cells isolated from those four patients were identified as nonre-
sponders (n ¼ 2) or responders (n ¼ 2). Four patients from those
groups were analyzed for TGFb1 levels (Supplementary Fig. S8) and
TGFb downstream targets (Fig. 4). All samples expressed similar
levels of pSMAD2 at baseline, whereas following AVD200 treat-
ment, pSMAD2 protein levels, a canonical TGFb downstream
signaling event, were decreased (Fig. 4A and B).

MEK–ERK pathways have been identified as contributing to
JAK2 inhibitor resistance (46, 47); TGFb is known to activate
MEK/ERK signaling. TGFb has been shown to also activate SRC
signaling in myofibroblasts (48), and overactivation of ERK1/2
causes a reduction in pro-platelet formation by human MK (49).
In MNCs from both responsive and nonresponsive patients, pp38

and pERK1/2 MAP kinase, noncanonical TGFb downstream sig-
naling events, were phosphorylated to a greater extent at baseline
than pSMAD2, but these levels were not affected by AVID200
treatment (Fig. 4A and B).

PK data for dose levels 1 and 2 (lot A) were consistent with
known characteristics of the study drug (Supplementary Table S4).
Maximum concentration was achieved within the first few hours
with a median half-life of 65.3 and 77.7 hours for the two dose
levels, respectively (Supplementary Fig. S9).

Discussion
The results of this investigator-initiated multicenter phase 1b study

of AVID200 in MF demonstrated both safety and tolerability at the
three doses levels tested. No deaths were attributable to AVID200
therapy. Pharmacodynamic studies indicated that AVID200 was
effective in interrupting TGFb signaling. Elevated TGFb plasma levels
were reduced following AVID200 therapy and pSMAD2 levels, which
are downstream of canonical TGFb signaling were also reduced inMF
MNC indicating the on-target effects of this agent.

In this high-risk patient population, clinical responses with single-
agent AVID200 therapy were observed. Two of the 12 subjects treated
in the dose-expansion phase at the two highest doses attained a CI by

Table 2. Adverse events across all dose levels and cycles (regardless of attribution) occurring inmore than 10%of patients or grade 3 or
higher events.

Adverse event term Grade 1–2, n (%) Grade 3–4, n (%) All grades, n (%)

Hematologic Anemia 1 6 7 (33%)
Platelet count decreased 3 4 7 (33%)
Neutrophil count decreased 3 3 (14%)
White blood cell decreased 2 2 (10%)
Leukocytosis 1 1 2 (10%)

Nonhematologic Pruritus 9 9 (43%)
Fatigue 7 1 8 (38%)
Abdominal pain 7 7 (33%)
Diarrhea 6 6 (29%)
Edema limbs 5 5 (24%)
Nausea 5 5 (24%)
Epistaxis 4 1 5 (24%)
Hyperuricemia 5 5 (24%)
Gastrointestinal disorders 2 2 4 (19%)
Creatinine increased 4 4 (19%)
AST increased 3 3 (14%)
Pain 4 4 (19%)
Dizziness 4 4 (19%)
Cough 3 3 (14%)
Dyspnea 3 3 (14%)
Hypomagnesmia 3 3 (14%)
Hypocalcemia 2 1 3 (14%)
Headache 3 3 (14%)
Muscle cramps 3 3 (14%)
Anorexia 3 3 (14%)
Hyponatremia 3 3 (14%)
Vomiting 3 3 (14%)
Palpitations 3 3 (14%)
Rash maculopapular 2 1 3 (14%)
Mucositis 2 1 3 (14%)
Urinary tract infection 1 1 2 (10%)
Duodenal hemorrhage 1 1 (5%)
Gastric hemorrhage 1 1 (5%)
Extraocular muscle paresis 1 1 (5%)
Syncope 1 1 (5%)
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IWG/MRT criteria after six cycles of therapy. Improvements seen
across all cycles of treatment included spleen size reduction of at least
50% in two patients with large baseline spleen sizes. Due to financial
constraints, spleen volume assessment by imaging was not feasible.
Nine patients reported a ≥50% reduction in symptom burden, which
occurred within four cycles in four of the treated subjects. Notably
three of the four patients who received up to 12 cycles of therapy
attained a CI, which suggested that TGF-b inhibitor monotherapy
might require a longer duration of treatment to elicit clinical responses
in this advanced disease setting. These responses, however, were not
uniform in that 67% of patients discontinued participation in the trial

due to lack of response or disease progression, and none of the patients
attained any measurable reduction in their driver mutation VAF.

The therapies that are currently approved for treating advanced
phase MF are frequently associated with progressive thrombocytope-
nia, which could be drug induced or a consequence of the underlying
disease. Remarkably, AVID200 therapy was associated with clinically
significant and durable improvements in platelet counts. Although
platelet increases were observed across baseline platelet counts, the
greatest platelet response with AVID200 treatment was observed in
patients with baseline platelet counts >150� 109/L, and there were no
obvious clinical or laboratory features including TGFb level that were
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associated with this observation. This profound effect on thrombopoi-
esis could not be attributed to a rebound effect from prior ruxolitinib
therapy since most patients had a substantial drug holiday prior to
receiving AVID200. Patients generally did not experience worsening
platelet counts with more prolonged administration of this agent.
Currently, only pacritinib (CTI Bio) a JAK2/IRAK1 inhibitor is
approved for patients with MF and a platelet count <50 � 109/L
based on phase 3 clinical data demonstrating clinical activity in the
form of spleen and symptom benefit without significant worsening of
platelet level (50). However, this agent is not associated with normal-
ization of the platelet count, which usually remains suppressed despite
an anemia response rate of 25%. It is important to emphasize that the
present IWG/MRT criteria that are universally used to assess responses
to MF-directed therapies do not include improvement in platelet
numbers. Because these response criteria were used in the present
study, the true potential clinical utility of AVID200 may be under-
estimated due to the limitations of these response criteria.

TGFb is a pleiotropic cytokine, which has long been known to be
produced by many tissues but the elevated levels in MF are largely due
to its increased production by MK and monocytes. TGFb is a known
inhibitor ofmegakaryopoiesis reducing the numbers and ploidy ofMK
and acting at the MK progenitor cell level as well as impairing
maturation of differentiated MK (12). TGFb1 is also known to
modulate thrombopoietin-mediated effects on megakaryocytic pro-
liferation by interfering with thrombopoietin-induced signal trans-

duction, particularly by reducing the activities ofMAPK, ERK1/ERK2,
and STAT5 (38). The effect of AVID200 on thrombopoiesis was,
therefore, not unanticipated. The increase of GATA1 staining in the
MK of patients who experienced a substantial increase in platelet
numbers is likely due to the reversal of the effect of TGFb1 on MK
maturation. Whether the reduction of TGFb1 signaling associated
with AVID200 treatment led to greater numbers of MK progenitor
cells or improved thrombopoietin signaling remains the subject of
speculation since sufficient cells were not available to address these
alternative mechanisms. However, our group has demonstrated that
in vitro treatment of MF MK with AVID200 also reduced pSMAD2
levels and led to an increase in MK numbers (22).

Our group previously evaluated fresolimumab (GC1008, Sanofi-
Aventis) a human immunoglobulin G4 (IgG4) kappa mAb that
neutralizes TGFb1, 2, and 3 (51). This phase I single-institution trial
in patients with intermediate/high-risk MF was terminated early
due to corporate decision and only enrolled three patients without
objective spleen or symptom response after a total of 12 cycles of
fresolimumab therapy in two patients. Despite potent suppression
of elevated baseline levels of TGFb1, a reduction in bone marrow
fibrosis was not observed. Durable transfusion independence was
attained in one patient.

TGFb has also been demonstrated to exert immunosuppres-
sive effects on a variety of immune cells including dendritic cells,
tumor-associated macrophages and neutrophils, natural killer
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cells myeloid-derived suppressor cells (MDSC), regulatory T cells
(Treg), and cytotoxic T cells (52). In a phase I dose-escalation
study of AVID200 in solid malignancies, on-target suppression of
TGFb and pSMAD signaling was accompanied by biomarker
evidence of immune activation (53). Increasing evidence suggests
cooperation between TGFb and PD-1 immunosuppressive path-
ways in cancer. TGFb can compromise PD-1 inhibitor resistance
through CD14þ monocyte commitment and expansion of MDSC
that also promote Treg phenotype (54, 55). Dual blockade
of TGFb and PD-1 in a murine model of fibroblast-associated
immune-excluded phenotype, resulted in increased cytotoxic
T-cell infiltration and tumor regression and provides rationale for
this therapeutic strategy. This concept has translated into the clinic
with multiple therapeutic approaches, the most mature of which is
the first-in-class bifunctional fusion protein, bintrafusp alfa, com-
posed of the extracellular domain of the TGFb receptor II fused to a
human immunoglobulin G1 antibody blocking PD-L1 (56, 57).

The TGFb receptor type 1 kinase (ALK5) inhibitor, galunisertib (Eli
Lily), has also been evaluated in a multicenter trial of 41 patients with
lower-risk myelodysplastic syndrome (MDS; ref. 26). Hematologic
improvement erythroid response (Hi-E) was observed in 24.4% of
treated patients, and one patient with baseline thrombocytopenia
(<100 � 109/L) attained a platelet increase of >30 � 109/L for
>8 weeks on study. Notably, three of 11 patients with baseline bone
marrow fibrosis had a documented reduction in this biomarker. This
drug has not been evaluated in patients with MF due to lack of
accessibility of the agent from the manufacturer.

TGFb1 is also a potent inducer of collagen synthesis and has been
universally implicated in pathologic fibrosis observed in MF patient
BM. Our group has previously demonstrated treatment of mesenchy-
mal stromal cells with AVID200 reduced their proliferation, levels of

pSMAD2 and collagen expression (22). It is not surprising that the
administration of AVID200 to patients with MF as a single agent did
not result in reduction in BM fibrosis within a 6-month period. This
lack of effect of a TGFb1 trap on MF BM fibrosis may be due to the
relatively short time the drug was administered and the possibility,
which additional cytokines including PDGF, fibroblast growth factor,
IL8, and lipocalin 2 also contribute to the development of BMF in
MF (58).

An alternative explanation for the lack of effect of AVID200 onBMF
was provided by a report by Ishikawa working in our laboratory and
the recent report of Yao and colleagues (59, 60). We reported that
marrow cells from patients with MF expressed a noncanonical TGFb
signature, which included activation of ID1, c-Jun N-terminal kinase
(JUN), GADD45b, and genes with binding motifs for the JUN tran-
scriptional complex AP1. Subsequently, Yao and colleagues using a
mouse model of MF reported that SMAD4-independent TGFb sig-
naling mediated the bone marrow fibrosis but was not required for the
disruption of hematopoietic niches in MF. Specifically, the loss of
TGFb signaling in mesenchymal stem cells did not prevent the
suppression of key marrow niche factors, including KIT ligand and
CXCL12, or prevent the development of extramedullary hematopoi-
esis or reduction in the numbers of bone marrow hematopoietic stem
cells. Furthermore, treatment with a JNK inhibitor prevented the
development of the MF phenotype suggesting that the signals that
regulate niche gene expression in bone marrow mesenchymal stem
cells were distinct from those that induce the fibrosis program. These
authors, however, did not explorewhether JNK inhibitorswere capable
of reversing the totalMFphenotype after it had been established. These
data suggest that the degree of depletion of TGFb levels achieved with
intermittent AVID200 therapy might not be sufficient to diminish
JNK-dependent TGFb signaling to the degree needed to reverse bone
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marrow fibrosis and its hematologic sequelae beyond the observed
increase in platelet numbers. These reports provide a rationale for
combining AVID200 with a JNK inhibitor to treat patients with MF.
We are currently exploring the availability of tolerable JNK inhibitors
such as CC-90001, which is a selective JNK inhibitor, 12.9-fold more
potent for JNK1 inhibition, and associated with acceptable safety in
patients with pulmonary fibrosis to treat patients with MF in com-
bination with AVID200 (61–63).

AVID200 monotherapy in a population of patients with an
advanced stage of MF resulted in limited toxicity as well as improve-
ments in spleen size, symptom benefit, and platelet counts. We did not
identify evidence of improvement in BM fibrosis as assessed by
histomorphologic assessment; however, longer follow-up for bone
marrow evaluation was not performed in most of the treated patients.
The improvement in platelet counts following AVID200 treatment
provides a distinct advantage, as the currently approved therapeutic
approaches and those undergoing clinical development in MF are
universally associated with treatment-related thrombocytopenia. We
propose that future trials of AVID200 should include patients at an
earlier stage of their disease to determine if AVID200 is capable of
preventing the progression of bone marrow fibrosis. We also suggest
that administration of AVID200 be combined with other agents that
target noncanonical TGFb pathways or other MF dysregulated intra-
cellular signaling pathways that are currently not employed due to
preexisting MF-associated thrombocytopenia.
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