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a b s t r a c t

The probability distribution of a sequence X = (X1, X2, . . .) of random variables is
determined by its predictive distributions P(X1 ∈ ·) and P

(
Xn+1 ∈ · | X1, . . . , Xn

)
, n ≥ 1.

Motivated by applications in Bayesian predictive inference, in Berti et al. (2020), a class
C of sequences is introduced by specifying such predictive distributions. Each X ∈ C
is conditionally identically distributed. The asymptotics of X ∈ C is investigated in this
paper. Both strong and weak limit theorems are provided. Conditions for X to converge
a.s., and for X not to converge in probability, are given in terms of the predictive
distributions. A stable CLT is provided as well. Such a CLT is used to obtain approximate
credible intervals.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction

Throughout, (S,B) is a measurable space and Xn the nth coordinate projection on S∞, namely, Xn(s) = sn for each
n ≥ 1 and each sequence s = (s1, . . . , sn, . . .) ∈ S∞. To avoid needless technicalities, S is assumed to be a Borel subset of
a Polish space and B the Borel σ -field on S. Moreover, P denotes the collection of all probability measures on B.

Following Dubins and Savage (1965), a strategy is a sequence σ = (σ0, σ1, . . .) such that

• σ0 ∈ P and σn = {σn(x) : x ∈ Sn} is a collection of elements of P;
• The map x ↦→ σn(x)(B) is Bn-measurable for fixed n ≥ 1 and B ∈ B.

Here, σ0 should be regarded as the marginal distribution of X1 and σn(x) as the conditional distribution of Xn+1 given that
(X1, . . . , Xn) = x. The probabilities σ0 and σn(x) are also called the predictive distributions of the sequence (Xn).
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According to the Ionescu-Tulcea theorem, for any strategy σ , there is a unique probability measure P on (S∞,B∞)
satisfying

P(X1 ∈ ·) = σ0 and P
(
Xn+1 ∈ · | (X1, . . . , Xn) = x

)
= σn(x)

for all n ≥ 1 and P-almost all x ∈ Sn. Such a P is denoted as Pσ in the sequel.
The Ionescu-Tulcea theorem plays a role in Bayesian predictive inference. In fact, in a Bayesian framework, to make

predictions on (Xn) the statistician needs precisely a strategy σ . At each time n ≥ 1, having observed (X1, . . . , Xn) = x, the
next observation Xn+1 is predicted through the predictive distribution σn(x). This procedure makes sense, for any strategy
σ , because of the Ionescu-Tulcea theorem.

1.1. Standard and non-standard approach for exchangeable data

In Bayesian predictive inference, the data sequence (Xn) is usually assumed to be exchangeable. In that case, there are
essentially two procedures for selecting a strategy σ . Following Berti et al. (2020), we call them the standard approach
(SA) and the non-standard approach (NSA). This terminology is adopted just for the sake of clarity and its only possible
motivation is that SA is much more popular than NSA.

According to SA, to obtain σ , the statistician should:

(i) Select a prior π , namely, a probability measure on P;
(ii) Calculate the posterior of π given that (X1, . . . , Xn) = x, say πn(x);
(iii) Evaluate σ as

σ0(B) =

∫
P
p(B)π (dp) and σn(x)(B) =

∫
P
p(B)πn(x)(dp) for all B ∈ B.

Steps (i)–(ii) are troublesome. To assess a prior π is clearly hard. But even when π is selected, to evaluate the posterior
n may be not straightforward. Frequently, πn cannot be written in closed form but only approximated numerically.
On the other hand, SA is not motivated by prediction alone. Another motivation, possibly the main one, is to make

nference on other features of the data distribution, such as a mean, a quantile, a correlation, or more generally some
andom parameter (possibly, infinite dimensional). In all these cases, the posterior πn is fundamental. In short, SA is a
ornerstone of Bayesian inference, but, when prediction is the main target, is possibly quite involved.
On the contrary, NSA entails assigning σn directly, without passing through π and πn. Merely, instead of choosing π and

hen evaluating πn and σn, the statistician just selects his/her predictive distribution σn. As noted above, this procedure
akes sense because of the Ionescu-Tulcea theorem. See Berti et al. (1997, 2009, 2020), Cifarelli and Regazzini (1996), de
inetti (1937), Dubins and Savage (1965), Fortini et al. (2000), Fortini and Petrone (2012), Hahn et al. (2018), Hill (1993)
nd Lee et al. (2013).
NSA is in line with de Finetti, Dubins and Savage, among others. Pitman’s work should be mentioned as well; see

.g. Pitman (1996, 2006). Moreover, NSA has been recently adopted in Hahn et al. (2018) to obtain a fast online Bayesian
rediction via copulas.
From our point of view, NSA has essentially three merits. Firstly, it requires to place probabilities on observable facts

nly. The value of the next observation Xn+1 is actually observable, while π and πn (being probabilities on P) do not deal
ith observable facts. Secondly, when prediction is the main target, NSA is much more direct than SA. In this case, why to
elect the prior π explicitly? Rather than wondering about π , it looks reasonable to reflect on how the next observation
n+1 is affected by (X1, . . . , Xn). Thirdly, NSA is especially appealing in a nonparametric framework, where selecting a
rior with large support is usually difficult.

.2. Predictive inference with conditionally identically distributed data

If (Xn) is required to be exchangeable, however, NSA has a gap. Given an arbitrary strategy σ , the Ionescu-Tulcea
heorem does not grant exchangeability of (Xn) under Pσ . Therefore, for NSA to apply, one should first characterize those
trategies σ which make (Xn) exchangeable under Pσ . A nice characterization is Fortini et al. (2000, Theorem 3.1). However,
he conditions on σ for making (Xn) exchangeable are quite hard to be checked in real problems. This is one reason for
SA has not yet been developed. Another reason is the lack of constructive procedures for determining σ . It is precisely
his lack which makes SA necessary for prediction, even if analytically more involved.

To bypass the gap mentioned in the above paragraph, the exchangeability assumption could be weakened. One option
s to assume (Xn) conditionally identically distributed (c.i.d.), namely, X2 ∼ X1 and

P
(
Xk ∈ · | X1, . . . , Xn

)
= P

(
Xn+1 ∈ · | X1, . . . , Xn

)
a.s. for all k > n ≥ 1.

Roughly speaking, the above condition means that, at each time n, the future observations (Xk : k > n) are identically
istributed given the past. Such a condition is actually weaker than exchangeability. Indeed, by a result in Kallenberg
1988), (Xn) is exchangeable if and only if is stationary and c.i.d.

There are at least three reasons for taking c.i.d. data into account.
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(j) It is not hard to characterize the strategies σ which make (Xn) c.i.d. under Pσ ; see Berti et al. (2012, Theorem 3.1).
Therefore, unlike the exchangeable case, NSA can be easily implemented.

(jj) C.i.d. sequences behave asymptotically much in the same way as exchangeable ones; see Section 2.1.
(jjj) A number of meaningful strategies cannot be used if (Xn) is required to be exchangeable, but are available if (Xn)

is only asked to be c.i.d. A trivial example is the strategy (2) reported below. Various other examples are in Airoldi
et al. (2014), Bassetti et al. (2010) and Berti et al. (2020).

Motivated by (j)–(jjj), in Berti et al. (2020), a few strategies σ which make (Xn) c.i.d. are introduced. One of such
strategies is the following.

Fix σ0 ∈ P , a constant q0 ∈ [0, 1] and the measurable functions qn : Sn → [0, 1]. For all n ≥ 1 and x = (x1, . . . , xn) ∈ Sn,
define

σn(x) = σ0

n−1∏
i=0

qi + δxn (1 − qn−1) +

n−1∑
i=1

δxi (1 − qi−1)
n−1∏
j=i

qj (1)

where qi is a shorthand notation to denote qi = qi(x1, . . . , xi) and δxi is the unit mass at xi.
If σ is the above strategy, (Xn) is c.i.d. under Pσ . Note also that

σn+1(x, y) = qn(x) σn(x) +
{
1 − qn(x)

}
δy for all n ≥ 0, x ∈ Sn and y ∈ S.

Thus, when a new observation y becomes available, σn+1(x, y) is just a recursive update of σn(x). Further, if σ0 vanishes
on singletons,

n−1∏
i=0

qi = Pσ

(
Xn+1 ̸= Xi for all i ≤ n | (X1, . . . , Xn) = x

)
and this equation may help to attach the qi some interpretation.

More importantly, choosing qi suitably, various real situations can be modeled by σ . For instance, if q ∈ (0, 1) is a
constant and qi = q for each i ≥ 0, one obtains

σn(x) = qnσ0 + (1 − q)
n∑

i=1

qn−iδxi; (2)

see also Airoldi et al. (2014) and Bassetti et al. (2010). Roughly speaking, this choice of σ makes sense when the statistician
has only vague opinions on the dependence structure of the data, and yet he/she feels that the weight of the ith observation
xi should be a decreasing function of n− i. In this case, σn(x) is not invariant under permutations of x, so that (Xn) fails to
be exchangeable under Pσ .

As another example, take a constant c > 0 and define qi =
i+c

i+1+c . Then, formula (1) yields the predictive distributions
of a Dirichlet sequence, i.e.

σn(x) =
c σ0 +

∑n
i=1 δxi

n + c
.

Various other examples of strategies which can be written by (1), including generalized Polya urns and species sampling
sequences, are obtained in Berti et al. (2020).

1.3. Main results

Obviously, if a strategy σ is used to make predictions, a meaningful information is the asymptotic behavior of the data
sequence (Xn) under Pσ . This paper investigates the asymptotics of (Xn) under Pσ when σ is given by (1). Our main results,
formally stated in Section 3, are a strong limit theorem, a stable CLT and some of its consequences. Here, we briefly sketch
such results.

Consider the probability space (S∞,B∞, Pσ ), where σ is given by (1), and define

Qn = qn−1(X1, . . . , Xn−1).

The strong limit theorem is

• Xn converges a.s. whenever α ≤ Qn ≤ β a.s. for all n, where 0 < α ≤ β < 1 are constants;
• Xn does not converge even in probability whenever σ0 is non-degenerate, Qn > 0 for all n and

∑
n(1− Qn) < ∞ a.s.

Thus, it may be that Xn is non-trivial and yet it converges a.s. This is a big difference with respect to the exchangeable
ase. In fact, an exchangeable sequence Yn converges in probability if and only if Yn = Y1 a.s. for each n. Overall, this
reater flexibility of c.i.d. sequences, with respect to the exchangeable ones, may be useful in real problems.
Let us turn to the stable CLT. We first recall that stable convergence is a strong form of convergence in distribution;

ee Section 2.2. In particular, stable convergence implies convergence in distribution.
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Suppose S = R (so that the Xn are real valued) and E(X2
1 ) =

∫
t2 σ0(dt) < ∞. Since (Xn) is c.i.d. under Pσ ,

1
n

n∑
i=1

Xi
a.s.

−→ V and
1
n

n∑
i=1

X2
i

a.s.
−→ V ∗

or some random variables V and V ∗; see Section 2.1. Define

Xn =
1
n

n∑
i=1

Xi, Ln =
1
n

n∑
i=1

(Xi − Xn)2 and L = V ∗
− V 2 a.s.

= lim
n

Ln.

Also, denote by N (0, b) the Gaussian law with mean 0 and variance b ≥ 0 (where N (0, 0) = δ0). In this notation, the CLT
is:

• Suppose Qn ≤ Qn+1 a.s. for all n. Then,
√
n
(
Xn − V

) stably
−→ N (0, L)

provided (at least) one of the following two conditions is satisfied:
–

∑
n ∥1 − Qn∥ < ∞, where ∥ · ∥ denotes the sup-norm, namely

∥1 − Qn∥ = sup
x∈Rn−1

|1 − qn−1(x)|;

– S ⊂ R is a bounded subset and
∑

n

{
1 − E(Qn)

}
< ∞.

In a Bayesian framework, the limit V of the sample means can be seen as a random parameter (see Section 2.1) and
he above CLT can be used to make inference on V . In particular, it allows to build (approximate) credible intervals for V .
n fact, since convergence is stable, one obtains

1{Ln>0}

√
n
(
Xn − V

)
√
Ln

stably
−→ N (0, 1)

whenever Q1 > 0, σ0 is non-degenerate and the assumptions of the CLT are satisfied. Therefore, for α ∈ (0, 1) and large
n, an approximate (1 − α)-credible interval for V is Xn ± uα/2

√
Ln/n where uα/2 is the quantile of order (1 − α/2) of the

tandard normal distribution. See Example 7 for details.
Finally, under the same assumptions of the CLT, we also prove that

√
n
{
Xn − E

(
Xn+1 | X1, . . . , Xn

)} stably
−→ N (0, L).

2. Preliminaries

From now on, (Ω,A, P) is a probability space, (Yn : n ≥ 1) a sequence of S-valued random variables on (Ω,A, P), and

F0 = {∅, Ω}, Fn = σ (Y1, . . . , Yn).

Moreover, a kernel on S (or a random probability measure on S) is a map K : Ω → P such that ω ↦→ K (ω)(B) is
-measurable for fixed B ∈ B.

.1. Conditionally identically distributed random variables

As recalled in Section 1.2, (Yn) is c.i.d. if

P
(
Yk ∈ · | Fn

)
= P

(
Yn+1 ∈ · | Fn

)
a.s. for all k > n ≥ 0.

C.i.d. sequences have been introduced in Berti et al. (2004) and Kallenberg (1988) and then investigated in various papers;
see e.g. Airoldi et al. (2014), Bassetti et al. (2010), Berti et al. (2009, 2012, 2013, 2020), Cassese et al. (2019) and Fortini
et al. (2018).

The asymptotic behavior of a c.i.d. sequence (Yn) is similar to that of an exchangeable one. We support this claim by
three facts.

(k) If S = R (so that the Yn are real valued) and E{|Y1|} < ∞, then

1
n

n∑
Yi

a.s.
−→ V and E

(
Yn+1 | Fn

) a.s.
−→ V
i=1
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for some real random variable V . Note that, since (Y 2
n ) is still c.i.d., if E(Y 2

1 ) < ∞ there is a random variable V ∗ such
that

1
n

n∑
i=1

Y 2
i

a.s.
−→ V ∗ and E

(
Y 2
n+1 | Fn

) a.s.
−→ V ∗.

(kk) Let µn =
1
n

∑n
i=1 δYi be the empirical measure. There is a kernel µ on S satisfying

µn(B)
a.s.

−→ µ(B) as n → ∞ for every fixed B ∈ B.

As a consequence, for fixed n ≥ 0 and B ∈ B, one obtains

E
{
µ(B) | Fn

}
= lim

m
E
{
µm(B) | Fn

}
= P

(
Yn+1 ∈ B | Fn

)
a.s.

In other terms, as in the exchangeable case, the predictive distribution P
(
Yn+1 ∈ · | Fn

)
can be written as E

{
µ(·) | Fn

}
.

kk) (Yn) is asymptotically exchangeable, in the sense that

(Yn, Yn+1, . . .) → (Y ∗

1 , Y ∗

2 , . . .) in distribution, as n → ∞,

where (Y ∗
n ) is an exchangeable sequence. Moreover, (Y ∗

n ) is directed by the kernel µ of (kk), namely

P
(
Y ∗

1 ∈ B1, . . . , Y ∗

k ∈ Bk
)

= E
{ k∏

i=1

µ(Bi)
}

for all k ≥ 1 and B1, . . . , Bk ∈ B.

The kernel µ is a meaningful random parameter, even if it does not completely determine the probability law of (Yn);
see Berti et al. (2020, Section 8). In fact, µ(B) is the long run frequency of the events {Yn ∈ B}. On noting that

P
(
Yn+1 ∈ B | Fn

)
= E

{
µ(B) | Fn

} a.s.
−→ µ(B),

µ(B) can be also regarded as the asymptotically optimal predictor of the event {the next observation belongs to B}. In
addition, µ is the directing measure of the exchangeable limit sequence (Y ∗

n ). Therefore, as in the exchangeable case, it
may be reasonable to make inference on µ. Similar considerations can be repeated for the random variable V involved in
(k). In fact, if S = R and E{|Y1|} < ∞, V agrees with the mean of µ, that is, V (ω) =

∫
t µ(ω)(dt) for almost all ω ∈ Ω .

2.2. Stable convergence

Let K be a kernel on S. Say that Yn converges stably to K if

P
(
Yn ∈ · | H

) weakly
−→ E

(
K (·) | H

)
for all H ∈ A with P(H) > 0.

In particular, if Yn → K stably, then Yn converges in distribution to the probability measure E
(
K (·)

)
(just let H = Ω).

In case S = R, a remarkable kernel is N (0, L) where L is any real non-negative random variable on (Ω,A, P). (Recall
that, for each b ≥ 0, N (0, b) denotes the Gaussian law with mean 0 and variance b). The next corollary provides conditions
for stable convergence toward a kernel of this type.

Corollary 1. Let (Yn) be a c.i.d. sequence of real random variables such that E(Y 2
1 ) < ∞. Define Zn = E

(
Yn+1 | Fn

)
,

Y n =
1
n

∑n
k=1 Yk and V a.s.

= limn Y n. Suppose that

(a) 1
√
n E

{
max1≤k≤n k |Zk−1 − Zk|

}
−→ 0,

(b) 1
n

∑n
k=1

{
Yk − Zk−1 + k(Zk−1 − Zk)

}2 P
−→ F ,

(c)
√
n E

{
supk≥n|Zk−1 − Zk|

}
−→ 0,

(d) n
∑

k≥n(Zk−1 − Zk)2
P

−→ G,

where F and G are real non-negative random variables. Then,
√
n (Y n − Zn)

stably
−→ N (0, F ) and

√
n (Y n − V )

stably
−→ N (0, F + G).

roof. This is a straightforward consequence of Berti et al. (2011, Theorem 1). □

. Results

We begin with introducing a sequence (Yn : n ≥ 1) of S-valued random variables whose predictive distributions agree
ith (1).
Fix σ0 ∈ P , a constant q0 ∈ [0, 1] and the measurable functions qn : Sn → [0, 1], n ≥ 1. Moreover, on some probability

space (Ω,A, P), take random variables (T : n ≥ 1) and (U : j ∈ N, 1 ≤ i ≤ j) such that
n i,j
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• (Tn) is an i.i.d. sequence of S-valued random variables with T1 ∼ σ0;
• (Ui,j) is an i.i.d. array of [0, 1]-valued random variables with U1,1 uniformly distributed on [0, 1];
• (Tn) is independent of (Ui,j).

Using (Tn) and (Ui,j) as building blocks, define (Yn) as follows. Let Y1 = T1. At step 2, let Q1 = q0 and define Y2 = T2 or
Y2 = Y1 according to whether U1,1 ≤ Q1 or U1,1 > Q1. At step n + 1, after Y1, . . . , Yn have been defined, let

Qi+1 = qi(Y1, . . . , Yi) for i = 0, . . . , n − 1

and then define

Yn+1 = Tn+1 if Ui,n ≤ Qi for all i,
Yn+1 = Yi if Ui,n > Qi and Uj,n ≤ Qj for some i and all j > i.

The predictive distributions of such (Yn) are actually given by (1).

Lemma 2. Y1 ∼ σ0 and

P
(
Yn+1 ∈ · | Fn

)
= σ0

n∏
i=1

Qi + δYn (1 − Qn) +

n−1∑
i=1

δYi (1 − Qi)
n∏

j=i+1

Qj

.s. for each n ≥ 1 (recall that F0 = {∅, Ω} and Fn = σ (Y1, . . . , Yn)).

roof. It is clear that Y1 = T1 ∼ σ0. Fix n ≥ 1, B ∈ B, and let

Gn = σ (Y1, . . . , Yn,U1,n, . . . ,Un,n), An = {Ui,n ≤ Qi for all i}.

ince An ∈ Gn and Tn+1 is independent of Gn,

P
(
An ∩ {Yn+1 ∈ B} | Fn

)
= E

(
1AnP

(
Tn+1 ∈ B | Gn

)
| Fn

)
= σ0(B) P(An | Fn) = σ0(B)

n∏
i=1

Qi a.s.

imilarly,

P
(
Un,n > Qn, Yn+1 ∈ B | Fn

)
= 1B(Yn) P

(
Un,n > Qn | Fn

)
= δYn (B) (1 − Qn) a.s.

inally, if i < n and Ai,n = {Ui,n > Qi and Uj,n ≤ Qj for j = i + 1, . . . , n}, one obtains

P
(
Ai,n ∩ {Yn+1 ∈ B} | Fn

)
= 1B(Yi) P

(
Ai,n | Fn

)
= δYi (B) (1 − Qi)

n∏
j=i+1

Qj a.s. □

One consequence of Lemma 2 is that

P
(
(Y1, Y2, . . .) ∈ ·

)
= Pσ

(
(X1, X2, . . .) ∈ ·

)
where the strategy σ is given by (1). Since (Xn) is c.i.d. under Pσ (by Berti et al., 2020) it follows that (Yn) is c.i.d. as well.
More importantly, to fix the asymptotic behavior of (Xn) under Pσ , we may work with (Yn).

Our first result is the following.

Theorem 3. If α ≤ Qn ≤ β a.s. for each n, where 0 < α ≤ β < 1 are constants, then Yn converges a.s.

Proof. Since S is a Borel subset of a Polish space, each probability measure on B is tight. Hence, by Berti et al. (2006,
Theorem 2.2), it suffices to show that f (Yn) converges a.s. for each bounded continuous function f : S → R.

Fix a bounded continuous f : S → R and define ∆m = E
{
f (Ym+1) | Fm

}
− f (Ym). Then,

∆m+1

Qm+1
=

∫
f dσ0

m∏
i=1

Qi + f (Ym)(1 − Qm) +

m−1∑
i=1

f (Yi)(1 − Qi)
m∏

j=i+1

Qj − f (Ym+1)

= E
{
f (Ym+1) | Fm

}
− f (Ym+1) = ∆m + f (Ym) − f (Ym+1).

umming over m = 1, . . . , n,

∆n+1/Qn+1 +

n−1∑
∆m+1/Qm+1 =

n∑
∆m + f (Y1) − f (Yn+1)
m=1 m=1



P. Berti, E. Dreassi, L. Pratelli et al. / Statistics and Probability Letters 168 (2021) 108923 7

F

f

or equivalently
n∑

m=2

∆m
(
1/Qm − 1

)
= −∆n+1/Qn+1 + ∆1 + f (Y1) − f (Yn+1).

Next, since (Yn) is c.i.d. and Qj is Fj−1-measurable, then

E
{
∆i

( 1
Qi

− 1
)
∆j

( 1
Qj

− 1
)}

= E
{
∆i

( 1
Qi

− 1
) ( 1

Qj
− 1

)
E(∆j | Fj−1)

}
= 0

for all i < j. Therefore,

E
{( n∑

m=2

∆m
( 1
Qm

− 1
))2}

=

n∑
m=2

E
{
∆2

m

( 1
Qm

− 1
)2}

.

urther, since α ≤ Qm ≤ β a.s., one obtains

(1 − β)2

β2

n∑
m=2

E(∆2
m) ≤

n∑
m=2

E
{
∆2

m

( 1
Qm

− 1
)2}

= E
{( n∑

m=2

∆m
( 1
Qm

− 1
))2}

= E
{(

−
∆n+1

Qn+1
+ ∆1 + f (Y1) − f (Yn+1)

)2}
≤

(2 sup|f |
α

+ 4 sup|f |
)2

.

Hence, E
{∑

∞

n=2 ∆2
n

}
=

∑
∞

n=2 E(∆
2
n) < ∞, so that ∆n

a.s.
−→ 0. To conclude the proof, recall that E

{
f (Yn+1) | Fn

} a.s.
−→ Vf

or some real random variable Vf ; see Section 2.1. Therefore, f (Yn)
a.s.

−→ Vf . □

As an example, Theorem 3 implies that Yn converges a.s. when the strategy σ is given by (2) (i.e., when Qn = q for all
n and some constant 0 < q < 1).

In Theorem 3, the Qn are separated from 0 and 1 and Yn converges a.s. Things change drastically if Qn approaches 1
quickly enough.

Theorem 4. Yn does not converge in probability provided σ0 is non-degenerate, Qn > 0 for all n and
∑

n(1 − Qn) < ∞ a.s.

Proof. Let d be the distance on S. It suffices to show that d(Yn, Yn+1) does not converge to 0 in probability. Since σ0 is
non-degenerate, there is ϵ > 0 such that P

(
d(T1, T2) > ϵ

)
is strictly positive. Define

Hn = {Ui,n ≤ Qi for each i ≤ n and Ui,n−1 ≤ Qi for each i < n}.

Since (Q1, . . . ,Qn) is a function of (Y1, . . . , Yn−1), then (Tn, Tn+1) is independent of Hn. Hence,

P
(
d(Yn, Yn+1) > ϵ

)
≥ P

(
Hn ∩ {d(Tn, Tn+1) > ϵ}

)
= P

(
d(T1, T2) > ϵ

)
P(Hn)

= P
(
d(T1, T2) > ϵ

)
E
{ n∏

i=1

Qi

n−1∏
i=1

Qi

}
.

Finally, Qn > 0 for all n and
∑

n(1 − Qn) < ∞ a.s. implies that
∏n

i=1 Qi
a.s.

−→ Q , where Q is a random variable such that
Q > 0 a.s. Therefore,

lim inf
n

P
(
d(Yn, Yn+1) > ϵ

)
≥ P

(
d(T1, T2) > ϵ

)
E(Q 2) > 0. □

We next turn to the CLT. Suppose S = R (so that the Yn are real valued) and E(Y 2
1 ) < ∞. Define Y n =

1
n

∑n
i=1 Yi and

Zn = E
(
Yn+1 | Fn

)
. Since (Yn) is c.i.d., there are random variables V and V ∗ such that

Y n
a.s.

−→ V , Zn
a.s.

−→ V ,
1
n

n∑
i=1

Y 2
i

a.s.
−→ V ∗ and E

(
Y 2
n+1 | Fn

) a.s.
−→ V ∗.

Some CLT’s for dependent data are concerned with

Cn =
√
n (Y n − Zn) and Wn =

√
n (Y n − V );

see e.g. Berti et al. (2004, 2009, 2011, 2012). Note that, in the special case where (Yn) is i.i.d. (namely, when Qn = 1 for
all n) one obtains Cn = Wn =

√
n
(
Y n − E(Y1)

)
.

Theorem 5. Suppose S = R, E(Y 2
1 ) < ∞, and Qn ≤ Qn+1 a.s. for all n. Define L = V ∗

− V 2 a.s.
= limn

1
n

∑n
i=1(Yi − Y n)2. Then,

C
stably
−→ N (0, L) and W

stably
−→ N (0, L)
n n
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p

T

T

H

A

H

rovided (at least) one of the following two conditions is satisfied:

•
∑

n ∥1 − Qn∥ < ∞, where ∥ · ∥ denotes the sup-norm;
• S ⊂ R is a bounded subset and

∑
n

{
1 − E(Qn)

}
< ∞.

Proof. By Corollary 1, it suffices to prove conditions (a)–(d) with F = L and G = 0.
First note that Qn Zn−1 = Zn − Yn(1 − Qn) a.s., which in turn implies

Zn − Zn−1 = (1 − Qn) (Yn − Zn−1) a.s.

Since Qn ≤ Qn+1 a.s. for all n, one also obtains

n (1 − Qn) ≤ j (1 − Qn) +

n∑
i=j+1

(1 − Qi) a.s. for each j < n.

Next, suppose
∑

n ∥1 − Qn∥ < ∞. Fix j < n. Since

E
{
(Yn − Zn−1)2

}
= E(Y 2

n ) − E(Z2
n−1) ≤ E(Y 2

n ) = E(Y 2
1 ),

one obtains

n2 E
{
(Zn − Zn−1)2

}
= E

{(
n (1 − Qn) (Yn − Zn−1)

)2}
≤ E

{(
j (1 − Qn) +

n∑
i=j+1

(1 − Qi)
)2

(Yn − Zn−1)2
}

≤ ∥j (1 − Qn) +

n∑
i=j+1

(1 − Qi)∥2 E
{
(Yn − Zn−1)2

}
≤ E(Y 2

1 )
{
j ∥1 − Qn∥ +

n∑
i=j+1

∥1 − Qi∥

}2
.

herefore,

lim sup
n

n2 E
{
(Zn − Zn−1)2

}
≤ E(Y 2

1 )
{ ∞∑
i=j+1

∥1 − Qi∥

}2
for each j.

hus,
∑

n ∥1 − Qn∥ < ∞ yields limn n2 E
{
(Zn − Zn−1)2

}
= 0, which in turn implies

E
{
n

∑
k≥n

(Zk−1 − Zk)2
}

= n
∑
k≥n

E
{
(Zk − Zk−1)2

}
= n

∑
k≥n

1
k2

k2 E
{
(Zk − Zk−1)2

}
−→ 0.

ence, condition (d) holds with G = 0. Conditions (a) and (c) can be checked in a similar way. In fact,
1
n
E
{
max
1≤k≤n

k |Zk−1 − Zk|
}2

≤
1
n
E
{
max
1≤k≤n

k2 (Zk−1 − Zk)2
}

≤
1
n

n∑
k=1

k2E
{
(Zk−1 − Zk)2

}
−→ 0 and

n E
{
sup
k≥n

|Zk−1 − Zk|
}2

≤ n E
{
sup
k≥n

(Zk−1 − Zk)2
}

≤ E
{
n

∑
k≥n

(Zk−1 − Zk)2
}

−→ 0.

s to condition (b), first note that

1
n

n∑
k=1

(
Yk − Zk−1

)2 a.s.
−→ V ∗

− V 2
= L.

ence, (b) holds with F = L since limn n2 E
{
(Zn − Zn−1)2

}
= 0.

This concludes the proof if
∑

n ∥1 − Qn∥ < ∞. If S ⊂ R is bounded, say S ⊂ [a, b], essentially the same argument
applies. But in this case, since

|Z − Z | = (1 − Q ) |Y − Z | ≤ (b − a) (1 − Q ) a.s.,
n n−1 n n n−1 n
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∑

w

f

the condition
∑

n ∥1 − Qn∥ < ∞ can be weakened into
∑

n

{
1 − E(Qn)

}
< ∞. More precisely, arguing as above,

n

{
1 − E(Qn)

}
< ∞ implies limn n

{
1 − E(Qn)

}
= 0 and limn n (Zn − Zn−1)

a.s.
= 0, which in turn imply conditions (a)–(d)

with F = L and G = 0. □

From a Bayesian point of view, the limit V of the sample means can be seen as a random parameter (see Section 2.1)
and Theorem 5 may be exploited to make inference on V . To this end, we first highlight a consequence of Theorem 5.

Theorem 6. Let Ln =
1
n

∑n
i=1(Yi − Y n)2 and Rn = 1{Ln>0}

√
n
(
Yn−V

)
√
Ln

. Then, Rn
stably
−→ N (0, 1) provided Q1 > 0, σ0 is

non-degenerate, and the conditions of Theorem 5 are satisfied.

Proof. Suppose first L > 0 a.s. Let K be the kernel on R2 given by

K (A × B) = δL(A)N (0, L)(B) for all Borel sets A, B ⊂ R.

Then, (Ln,Wn)
stably
−→ K since Ln

a.s.
−→ L and Wn

stably
−→ N (0, L); see Berti et al. (2011, Lemma 1). Fix H ∈ A with P(H) > 0 and

define the function

f (x, y) = 1(0,∞)(x)
y

√
x

for all (x, y) ∈ R2.

The set of discontinuity points of f is D = {(x, y) ∈ R2
: x = 0} and

E
(
K (D) | H

)
= P(L = 0 | H) = 0.

Therefore,

P
(
Rn ∈ · | H

)
= P

(
f (Ln,Wn) ∈ · | H

)
weakly
−→ E

(
K (f ∈ ·) | H

)
.

Finally, since L > 0 a.s. and K (f ∈ ·) = N (0, 1)(·) on the set {L > 0}, one obtains

E
(
K (f ∈ ·) | H

)
= E

(
K (f ∈ ·) 1{L>0} | H

)
= N (0, 1)(·).

It remains to show that L > 0 a.s. Under each of the conditions of Theorem 5, one obtains
∑

n(1−Qn)
(
1+|Yn|+Y 2

n

)
< ∞

a.s. Therefore,

V a.s.
= lim

n
E(Yn+1 | Fn) = E(Y1)

∞∏
i=1

Qi +

∞∑
i=1

Yi (1 − Qi)
∞∏

k=i+1

Qk and

V ∗ a.s.
= lim

n
E(Y 2

n+1 | Fn) = E(Y 2
1 )

∞∏
i=1

Qi +

∞∑
i=1

Y 2
i (1 − Qi)

∞∏
k=i+1

Qk.

In other terms, L = V ∗
− V 2 agrees with the variance of the kernel

µ = σ0

∞∏
i=1

Qi +

∞∑
i=1

δYi (1 − Qi)
∞∏

k=i+1

Qk.

Moreover,
∏

∞

i=1 Qi > 0 a.s. due to
∑

n(1 − Qn) < ∞ and Qn ≥ Q1 > 0 for all n a.s. Thus, L > 0 a.s. follows from σ0
non-degenerate. □

Among other things, Theorem 6 can be used to obtain credible intervals.

Example 7 (Credible Intervals for V ). Fix α ∈ (0, 1) and define

In(α) =

(
Y n − uα/2

√
Ln/n , Y n + uα/2

√
Ln/n

)
here uα/2 is the quantile of order (1 − α/2) of the standard normal distribution. Under the assumptions of Theorem 6,

lim
n

P
(
V ∈ In(α) | H

)
= lim

n
P
(
−uα/2 < Rn < uα/2 | H

)
= 1 − α

or each H ∈ A with P(H) > 0. Therefore, for large n, In(α) is an approximate (1 − α)-credible interval for V .
It is worth noting that In(α) is an approximate credible interval conditionally on every fixed H ∈ A with P(H) > 0.

In principle, one could profit of this fact by choosing some H related to the inferential procedure. An example could be
H = {F ∈ A}, where F is a vector of covariates and A any measurable set. If P(F ∈ A) > 0, then In(α) is an approximate
(1− α)-credible interval for V conditionally on F ∈ A, namely, P

(
V ∈ In(α) | F ∈ A

)
is close to 1− α for large n. Similarly,

given B ∈ B, another option could be H = {V ∈ B} or even H = {F ∈ A, V ∈ B} provided P(H) > 0.
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R

T
n

a

n

F

K
L
P

P

Finally, we briefly discuss some of the assumptions made in the previous results.

emark 8. In Theorem 3, the assumption Qn ≥ α a.s. for all n can be weakened into lim infn E(Q−2
n ) < ∞. Instead,

α ≤ Qn ≤ β a.s. cannot be replaced by α ≤ E(Qn) ≤ β . As an example, fix B ∈ B with σ0(B) ∈ (0, 1) and define

α = (1/2) σ0(B) + σ0(Bc), Q1 = 1, Qn = (1/2) 1{Y1∈B} + 1{Y1 /∈B} for n > 1.

hen, Yn = Tn a.s. for all n on the set {Y1 /∈ B}. However, Tn does not converge in probability since (Tn) is i.i.d. and σ0 is
on-degenerate. Therefore, Yn fails to converge in probability, even if E(Qn) = α ∈ (0, 1) for all n > 1.
Similarly, in Theorem 5, Qn ≤ Qn+1 a.s. cannot be weakened into E(Qn) ≤ E(Qn+1). However, Theorem 5 admits a few

lternative versions. One of these versions is the following. If S ⊂ R is a bounded subset, E
{
supn n (1 − Qn)

}
< ∞ and

(1 − Qn)
L2

−→ M , for some random variable M , then

Cn
stably
−→ N

(
0, (1 − M)2L

)
and Wn

stably
−→ N

(
0,

(
(1 − M)2 + M2) L).

or instance, letting M = 1, such a version applies to Dirichlet sequences (i.e., Qn =
n−1+c
n+c ).
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