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Abstract: Auranofin (AF) is a gold-based compound with a well-known pharmacological and
toxicological profile, currently used in the treatment of some severe forms of rheumatoid arthritis.
Over the last twenty years, AF has also been repurposed as antiviral, antitumor, and antibacterial
drug. In this review we focused on the antibacterial properties of AF, specifically researching the
minimal inhibitory concentrations (MIC) of AF in both mono- and diderm bacteria reported so far
in literature. AF proves to be highly effective against monoderm bacteria, while diderm are far less
susceptible, probably due to the outer membrane barrier. We also reported the current mechanistic
hypotheses concerning the antimicrobial properties of AF, although a conclusive description of
its antibacterial mode of action is not yet available. Even if its mechanism of action has not been
fully elucidated yet and further studies are required to optimize its delivery strategy, AF deserves
additional investigation because of its unique mode of action and high efficacy against a wide range
of pathogens, which could lead to potential applications in fighting antimicrobial resistance and
improving therapeutic outcomes in infectious diseases.

Keywords: auranofin; drug repurposing; thioredoxin reductase

1. Introduction

Auranofin (AF, CAS 34031-32-8, molecular weight of 678.5 g/mol, Figure 1) is a gold-
based compound, approved by the Food and Drug Administration (FDA) in 1985 as an
effective anti-rheumatic drug [1,2]. Its chemical structure is based on the presence of a
gold(I) center, linearly connected to two distinct substituents, a triethylphosphine ligand
on one side and a thiosugar tetraacetate moiety on the other. AF activation typically occurs
through release of the thiosugar ligand, making the gold(I) center available for direct
interaction with biomolecular targets [3]. It is characterized by a pronounced lipophilic
nature and its toxicological properties and safety profile for human treatment are now well-
established [4]. This compound is administered orally [5], and it is used in the treatment of
juvenile and adult rheumatoid arthritis [6]. In particular, in vitro studies have highlighted
its significant inhibitory effects on inflammatory processes [7] and modulation of the human
immune system [8].

The last two decades have seen a surge in the so-called “drug repurposing” strategy,
which focuses on finding new uses for already approved and established drugs [9]. Due
to the difficulties of identifying new antibiotic molecules and the exponential growth of
resistant strains to currently used antibiotics, the antimicrobial activity of several approved
drugs has already been screened in recent years; for example, phenothiazine neuroleptics
and antipsychotic agents [10], local anesthetics [11], antipyretics [12], antihistamines [13],
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and antihyperlipidemic agents [14]. However, most of these did not demonstrate any
antimicrobial activity [15] (Table S1).
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21] (Table S2). 
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The effective antiparasitic activity of AF has been confirmed against a wide range of 
organisms [23]. For instance, Entamoeba histolytica, a well-known human intestinal para-
site, has shown sensitivity to pharmacological treatment with AF in animal models both 
in vitro and in vivo. Indeed, AF acts by disrupting the proper functioning of the protozoan 
redox system, ultimately leading to its death [24]. Additionally, research conducted by 
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On the other hand, metal-based compounds appear to be particularly promising, since
they simultaneously act on multiple cellular targets, reducing the possible development
of resistance mechanisms [16,17]. However, there are only a few publications on the
subject, probably due to the possible toxicity linked to massive use of metals [17]. Among
them, the antibacterial activities of Gallium nitrate, approved by FDA for the treatment of
cancer-related hypercalcemia, and Cisplatin, an anti-cancer agent, have been tested [18–21]
(Table S2).

AF is a leading example in the application of this approach, with researchers exploring
its potential in various therapeutic areas to minimize time loss and financial risks, also
considering the mild side effects and the already well known pharmacological and pharma-
cokinetic profile of this drug [22]. Starting with the identification of possible antiparasitic
activity, AF was later assessed for its relevant antiviral, antitumoral, and antibacterial
capabilities (Figure 1) [2].

The effective antiparasitic activity of AF has been confirmed against a wide range of
organisms [23]. For instance, Entamoeba histolytica, a well-known human intestinal parasite,
has shown sensitivity to pharmacological treatment with AF in animal models both in vitro
and in vivo. Indeed, AF acts by disrupting the proper functioning of the protozoan redox
system, ultimately leading to its death [24]. Additionally, research conducted by Peroutka-
Bigus and colleagues demonstrated the beneficial effects of AF on Naegleria fowleri, a
pathogen responsible for a lethal human brain disease, meningoencephalitis [25]. Similarly,
Leishmania donovani [26] and Schistosoma mansoni [27] have also exhibited reduced viability
in the presence of this gold-based compound. Finally, successful treatment of mouse models
infected with Giardia lamblia further confirmed the potential of AF as a therapeutic agent
on different types of parasites [28].



Antibiotics 2024, 13, 652 3 of 13

Recently, numerous studies have proposed AF as a promising candidate for various
antiviral applications. Its ability to inhibit the replication of the human immunodeficiency
virus type 1 (HIV-1) and to contribute to the depletion of the viral reservoir in infected
patients, as well as that of other RNA viruses, is an appealing feature for the further
investigation of its antiviral potential [29]. Moreover, current investigations are actively
exploring the antiviral activity of AF against severe acute respiratory syndrome coronavirus
2 (SARS-CoV-2) [7]. K. Sonzogni-Desautels and colleagues hypothesized that future clinical
trials may provide promising data, due to Auranofin’s anti-inflammatory properties, which
may counteract the so-called “cytokine storm”, a dangerous immune response produced
during infection [7].

On the other hand, there is a growing interest in exploring the potential of AF as an an-
titumoral agent. Several clinical trials have been conducted to investigate its effectiveness in
treating acute lymphoblastic leukemia [30] and ovarian [31] and breast tumors in vitro [32].
Although further research is needed to fully understand the clinical mechanism, AF has
also been tested as a potential radio modulator in the treatment of colorectal [33] and
pancreatic cancer [34].

Beyond the anticancer activity of AF—which, crucially, created new momentum in the
investigation of AF as a potential antibacterial agent—is the need for an urgent response to
the severe public health problem of antibiotic resistance, combined with an almost complete
absence of novel antibiotics [35]. Since developing a new antibiotic from scratch is a highly
time consuming and costly process, often resulting in unsuccessful outcomes, screening
among existing and approved compounds could greatly speed up the process of finding
new eligible candidates for the treatment of bacterial infections [36].

Therefore, the antimicrobial potential of AF has been tested recently [37], both against
monoderm and diderm bacteria, producing interesting results, especially towards the
former class of pathogens, which could lead to promising and innovative antimicrobial
treatments [22,35]. This review aims to summarize the currently available data on the
antibacterial activity of AF, providing an overview regarding its efficacy and mechanism of
action (MoA). All peer-reviewed articles published in open access from 1997 to 2024 found
in established databases were selected.

2. Antimicrobial Activity of Auranofin

Based on their cell wall structure, bacteria are usually classified as monoderm or di-
derm [38]. Monoderm bacteria are characterized by a single cytoplasmic membrane coated
by a thick peptidoglycan layer and teichoic or lipoteichoic acids [39]. In contrast, diderm
bacteria possess a thinner peptidoglycan layer but a second outer membrane (OM), often
containing a lipopolysaccharide (LPS) in the outer leaflet [38]. Despite this classification not
being fully representative of the diversity of bacterial cell envelope structures [39] (e.g., in
the cell envelope of Mycobacteria and other Actinobacteria, mycolic acid forms a barrier
on the outer surface of cells), it is still useful for describing the different behaviors of AF
in bacteria.

The first studies exploring the potential repositioning of AF as an antibacterial agent
date back to 2009. One of the landmark publications from that year, authored by Jackson-
Rosario and colleagues, demonstrated the successful growth inhibition of four strains
of Clostridium difficile [40] treated with this drug. Similar findings were reported more
recently, using clinical isolates (derived from human patient fecal material) and model
strains of C. difficile, confirming the inhibitory effects of AF towards this bacterial species at
concentrations ranging from 0.25 to 4 µg/mL (Table S3) [41].

In the following years, numerous investigations have been conducted to evaluate the
antibacterial properties of AF against a wide range of monoderm bacteria, such as Bacillus
subtilis [42,43], Enterococcus faecium [37,42–45] and Enterococcus faecalis [37,42,45,46], not
only on wild-type but also on drug-resistant variants (Table S3).

The activity of AF against tuberculous [42] and non-tuberculous mycobacteria (NTM)
(which show high levels of resistance against many commercially available antibiotics) has
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been investigated [47]. The growth of Mycobacterium tuberculosis, responsible for tuberculo-
sis, was inhibited by low concentrations of AF (in the range of 0.5–4 µg/mL) [42,47], while
Ruth et al. showed promising minimal inhibitory concentration (MIC) data against NTM,
such as Mycobacterium abscessus, but not against strains belonging to the Mycobacterium
avium complex (Table S3) [47].

A comprehensive view of the action of AF against Staphylococcus aureus is currently
available [43,46]. For example, methicillin-resistant S. aureus (MRSA), a pathogen respon-
sible for invasive human diseases, and methicillin-susceptible S. aureus (MSSA) were
subjected to the gold-based compound treatment, demonstrating significant antimicro-
bial activity (Table S3) [37,42,44,47,48]. In addition, AF has been tested against several
vancomycin-resistant S. aureus (VRSA) strains, resulting in MIC values ranging from
0.0625 to 0.5 µg/mL (Table S3) [37,42]. Finally, the growth of glycopeptide-intermediate
and vancomycin-intermediate S. aureus (VRSA and VISA) were also inhibited in pres-
ence of minimal concentrations of AF, as demonstrated by Thangamani and colleagues
(Table S3) [37]. Furthermore, the antimicrobial activity of AF was evaluated against a group
of different strains and clinical isolates of Streptococcus, revealing positive results with MIC
values below 0.25 µg/mL for the different species analyzed (Table S3) [37,45,49].

In contrast, in diderms, several studies have indicated (Table S3) a lower sensitivity to the
drug compared to monoderms. For example, Acinetobacter baumannii was inhibited only by
high concentrations of AF, with MIC values well above 50 µg/mL (Table S3) [37,42,44,45,50,51].
Similarly, the growth of Stenotrophomonas maltophilia [45], Enterobacter cloacae [44,51], Salmonella
typhimurium [37], and of the model bacterium Escherichia coli are inhibited only in the presence
of high concentrations of AF (Table S3) [37,44,45,48,50,52–54].

Likewise Klebsiella pneumoniae (an opportunistic pathogen associated with pneumonia)
and Pseudomonas aeruginosa (a pathogen responsible for severe antibiotic-resistant infec-
tions), showed higher MIC values between 16 and 256 µg/mL [37,42,44,45,50,51] and above
256 µg/mL, respectively (Table S3) [37,42,44,45,48,50,51].

Finally, AF has been tested on the Burkholderia genus, a group of diderm bacteria whose
members inhabit a wide range of ecological niches, including soil, plant rhizospheres, water,
animal species, and humans [55,56]. Maydaniuk et al. also found a low efficacy of AF
against these species (Table S3) [56].

Some notable exceptions to this general low activity trend against diderm bacteria have
been identified in Burkholderia mallei [56], Helicobacter pylori [57], Neisseria gonorrhoeae [58]
and Bacteroides fragilis [59], for which the reported MIC values are more in line with the
ones observed for monoderms, with values varying between 0.25 and 1 µg/mL (Table S3).

Interestingly, two research teams independently demonstrated a stronger antibacterial
activity of AF against diderm bacteria using Polymyxin B nonapeptide hydrochloride
(PMBN) [37,45], a permeabilizing agent. When used in combination with AF, this com-
pound triggered a significant reduction in MIC values, thereby improving the susceptibility
of diderms (Table S3).

3. Mechanism of Action

The observation of significant antimicrobial properties for AF, as detailed above,
sparked great attention in the underlying molecular mechanisms (MoA). Accordingly,
several studies addressed the expected mechanisms responsible for the antimicrobial
properties of AF.

As mentioned above, the first studies on the repositioning of AF as an antimicrobial
concerned its potential antiparasitic activity and coincided with those regarding its MoA.
AF turned out to be a potent in vitro inhibitor of selenoproteins, such as the thioredoxin
reductase enzyme (TrxR) in E. histolytica [24,60] and thioredoxin–glutathione reductase
(TGR) in S. mansoni [27,61]. Inhibition of TrxR produced by AF in these microorganisms
is mainly ascribed to direct gold association with functional cysteines on the active site of
the enzyme.



Antibiotics 2024, 13, 652 5 of 13

Indeed, TrxR is a nearly ubiquitous enzyme that is present both in eukaryotic and
prokaryotic systems. Two different classes of this enzyme have evolved independently:
higher eukaryotic organisms, including humans, possess a higher molecular weight (55 kDa
per subunit) selenocystein-containing isoform of the enzyme, whereas prokaryotic organ-
isms present a lower molecular weight variant (35 kDa per subunit) and normally lack the
presence of this amino acid in their active site (Figure 2). Additionally, these two proteins
differ in terms of their electron transfer reaction: while the eukaryotic TrxR is characterized
by two sequentially involved active sites—one at the FAD binding domain and one at
the C-terminal (the latter containing the selenocysteine residue)—, the prokaryotic one
possesses a single active site at the NADPH binding domain [49]. So, the bacterial TrxR is a
70-KDa homodimeric flavoenzyme which possesses a redox active site and a catalytic site
on each of its subunits. While the former site hosts a molecule of flavin adenine dinucleotide
(FAD), the latter is composed of a CXXC aminoacidic motif [62].
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Figure 2. Crystal structure and mechanism of mammalian and bacterial thioredoxin reductase.
Escherichia coli (A) (PDB DOI: https://doi.org/10.2210/pdb1TDF/pdb [63]) and (B) Rattus norvegicus
(https://doi.org/10.2210/pdb1H6V/pdb [64]) thioredoxin reductases are shown in ribbon represen-
tation. Both homodimer enzymes contain a FAD prosthetic group (green) and an NADPH binding
domain (yellow), shown in ball-and-stick representation, and an active site with a redox-active
disulfide bond. The electron flow in the Trx system is illustrated (C), respectively, for the bacterial
(up) and mammalian (down) catabolism. Thioredoxin reductase (TrxR) is reduced by FADH2 using
electrons from NADPH. The latter in turn reduces thioredoxin (Trx) by oxidizing it. Finally, Trx
reduces target proteins before being reduced again by TrxR. Both mammalian and bacteria active sites
are shown in detail (C). In eukaryotic cells, TrxR specifically contains a highly nucleophilic selenium
(Se) atom in the form of selenocysteine. TrxR and Trx can also directly reduce ROS, providing the cell
with a strong defense system.

https://doi.org/10.2210/pdb1TDF/pdb
https://doi.org/10.2210/pdb1H6V/pdb
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TrxR is part of the thioredoxin (Trx) system, which employs NADPH to reduce disul-
fide bonds on cytoplasmic enzymes, thereby regulating many intracellular processes in-
cluding redox homeostasis, DNA synthesis, and detoxification from xenobiotics, oxidants,
and radicals [49,65,66]. The same functions can be performed by the glutaredoxin (Grx)
system (NADPH, glutathione reductase (GR), glutathione (GSH), and Grx) [67]. TGR is an
enzyme found in many organisms, capable of combining the activities of TrxR and GR into
a single protein [68].

Based on these previous data on parasites, literature on the MoA in bacteria focused on
TrxR as the main—although not the only—target of AF. As previously discussed, the global
MIC values clearly indicate that, in general, AF demonstrates more potent antimicrobial
activity against monoderm rather than diderm bacteria. This disparity in efficacy suggests
that AF interacts differently with monolayer and bilayer bacteria, potentially indicating
variations in its mechanism of action. The following two sections will address the most
established theories regarding AF’s MoA in more depth, highlighting the differences
between these two categories of bacteria.

3.1. Monoderm Bacteria

Initially, the bacterial selenium metabolism has been suggested as the most likely
target of AF. One of the earliest investigations was carried out in C. difficile, where the
presence of AF was linked to disruption of the selenium metabolism by directly preventing
this element’s uptake from the bacterial growth medium [40]. Since selenium is a crucial
micronutrient in the biosynthetic pathway of selenoproteins through its incorporation into
selenocysteine residues, one of the first hypotheses was that the lack of selenium could
impair the biosynthesis of these proteins, which could ultimately lead to inhibition of cell
growth [40]. However, this hypothesis has been lately proven incorrect since C. difficile
strains lacking selenoproteins were as susceptible to AF as their respective wild-type
strains [69]. In addition, they demonstrated that selenite supplementation reduces the
activity of AF both in the presence and absence of selenoproteins. This suggested that
selenite’s neutralization of AF is not due to a compensation for a chemically induced
selenium deficiency [69].

As mentioned above, from this point onwards, AF has been extensively tested against
a huge panel of monoderm bacteria, including MSRA, MSSA, VRSA, and VISA, and
the collected results suggest that the main target of the growth inhibitory action is TrxR
(Figure 3) [42,70,71]. The mechanism involved in this inhibition likely occurs through a
displacement of the most labile ligand of AF (the thiosugar moiety) from the gold center,
with the subsequent formation of a novel bond between the metal and the thiol group
of the cysteine residue in the TrxR active site. As TrxR is an essential gene that regulates
bacterial thiol-redox homeostasis, antibacterial treatment with AF induces oxidative stress
and depletion of thiols in the cell [72]. In particular, TrxR is essential for DNA synthesis and
protein repair through the reduction of ribonucleotide and methionine sulfoxide reductase,
respectively [42].

Since S. aureus does not develop resistance against AF, this compound may have more
than one intracellular target, encouraging the exploration of alternative mechanisms of
action of AF in bacteria [71]. In support of this theory, Thangamani and colleagues have
shown that the antibacterial action of this gold-based compound can be extremely complex,
involving the inhibition of biosynthetic pathways including DNA, protein synthesis, and
cell wall formation (Figure 3) [37]. In addition, AF suppresses toxin production in S. aureus,
S. epidermidis and C. difficile in a dose-dependent manner [37,41], as well as spore formation
in C. difficile (Figure 3) [41]. This again suggests that the effect of AF may reverberate at the
whole cell level and not just affect the direct target of its MoA.
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bacterial types (A for diderm and B for monoderm), the primary target of AF’s action is thioredoxin
reductase, whose inhibition promotes an intracellular increase in reactive oxygen species (ROS) and
subsequent oxidative stress. In monoderm bacteria, AF also inhibits different pathways, such as DNA,
protein, and cell wall synthesis. AF demonstrates antibiofilm properties and is able to counteract
bacterial toxin production. Diderm bacteria exhibit lower sensitivity to AF; this resistance may be
attributed to the presence of glutathione reductase (compensating for the lack of TrxR activity), the
outer membrane (PMBN, a permeabilizing agent, promotes AF entry into the cells), and efflux pumps
(actively pushing drug molecules into the extracellular space). Red arrows indicate a decrease, and
green arrows indicate an increase.

Another remarkable effect of AF has been linked to the reduction of the biofilm mass
formed by S. aureus and S. epidermidis [72,73] Biofilms are aggregates of microorganisms in
which cells are frequently embedded in a self-produced matrix of extracellular polymeric
substances (EPS) that are adherent to each other and/or to a surface [74]. Growth as a
biofilm represents a very widespread lifestyle among microorganisms both in the environ-
ment and within a host, and infections caused by microbial biofilms represent a serious
clinical challenge [75]. Indeed, protection against the immune system and the action of
antibiotics are among the numerous advantages that biofilms offer to bacterial cells [75].
Thus, introducing valuable agents to fight this could be crucial for counteracting bacterial
infections. Surprisingly, AF efficacy in this field far surpasses that of the antimicrobial drugs
currently exploited for bacterial infection treatments, such as vancomycin and linezolid,
showing higher mass reductions at lower administered concentrations [73]. Moreover, AF
has shown a positive effect on the planktonic persister cells of S. aureus (Figure 3) [76].
Bacterial persistence represents another important clinical challenge and is implicated in
the development of chronic infections. Persisters are cells with a reduced metabolism that
allow them to transiently display phenotypic tolerance to antibiotics [77]. As in the case of
biofilms, AF action against these types of cells represents an important new avenue for the
application of this drug.

In summary, the current hypothesis for monoderm bacteria envisions a multitarget
mechanism, where the TrxR enzyme is the main target but other alternative pathways
could also be affected by exposure to the drug and, overall, lead to growth inhibition.
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3.2. Diderm Bacteria

Even in the case of diderm bacteria, TrxR has been recognized as the main target of AF,
despite the recorded reduced sensitivity to this gold compound with respect to monoderm
bacteria (Figure 3) [42,44]. As previously mentioned, the Grx system can operate in parallel
with the Trx system [49]. This system has been found to be absent in many pathogenic
monoderm bacteria, such as S. aureus and H. pylori, confirming the essentialness of the Trx
system in responding to oxidative stress [67].

The drop in susceptibility of diderms (as compared to monoderms) with respect to AF
was initially supported by the simultaneous presence of both systems, as the Grx system
compensates for the reduced functionality of TrxR [42]. However, studies have shown that
an E. coli double mutant strain (Origami-2), containing mutations in both the thioredoxin
reductase (trxB) and glutathione reductase (gor) genes, did not display a reduced growth
pattern in the presence of AF compared to the wild type strain [37]. This is also in line with
the recent proposal that glutathione reductase in B. cenocepacia is not a target of AF [56].

The currently accepted hypothesis is that the outer membrane of diderm bacteria may
contribute significantly to their lower susceptibility to the drug [37]. Exposure of bacteria
to a combination of AF and a permeabilizing agent, such as PMBN, resulted in significantly
lower MICs, ranging from 0.125 to 8 µg/mL [37,45] (Table S3). The efficacy of AF against
diderms may be hindered not only by the physical barrier of the outer membrane but
also by the presence of efflux pumps, which are predominantly present in diderms [78].
Efflux pumps are membrane proteins that actively pump unwanted substances out of cells;
they are crucial in the development of drug resistance by helping cells evade the effects
of certain antimicrobial agents or chemicals [79]. These systems may be involved in the
surge of resistance mechanisms of diderm bacteria to AF. This theory was confirmed by
observing that deletion of the acrAB pump in E. coli—which was shown to contribute to the
antibiotic-resistant phenotype in multiple strains and to be implicated in the resistance to
numerous antibiotics including ampicillin, rifampicin, and chloramphenicol—reduced the
MIC of AF from 32 to 8 µg/mL [37]. Further research is needed to assess the exact role of
efflux pumps in the development of AF resistance/tolerance.

Finally, AF reduces the expression of the ompA gene in B. fragilis, coding for an impor-
tant component of the outer membrane involved in several cellular functions, including
adhesion to substrate and regulation of cell shape [59]. This suggests that AF may also
interfere with biofilm formation and that it could prevent the formation of capsules, the
most typical virulence factor of B. fragilis [59].

4. Conclusions and Perspectives

In summary, AF has been shown to have important antibacterial activity both in vitro
and in vivo (higher than many other repurposed drugs) and may thus be a promising
candidate for drug repurposing in the treatment of multi-resistant pathogens. Particularly
relevant is its action against E. faecium and S. aureus (including MSRA, MSSA, VRSA, and
VISA), which are included in the ESKAPE (acronym for E. faecium, S. aureus, K. pneumoniae,
A. baumanii, P. aeruginosa, and Enterobacter species) pathogens panel. ESKAPE bacteria are
the main cause of nosocomial infections worldwide and are particularly dangerous due to
their high pathogenicity and antibiotic resistance [80]. Likewise, AF action against M. tuber-
culosis and the NTM bacterium M. abscessus is of particular interest. Indeed, tuberculosis
remains a widespread disease with a high mortality rate, which becomes increasingly diffi-
cult to treat due to the progressive ineffectiveness of anti-tuberculosis drugs [81]. On the
other hand M. abscessus causes severe lung infections in immunocompromised individuals
and is difficult to treat owing to its high antibiotics resistance [82].

The mode of action of AF appears to be complex and is not yet fully understood.
Undoubtedly, the enzyme thioredoxin reductase remains a crucial target. However, several
hypotheses suggesting a multi-target mechanism have been put forward. The combination
of AF interference with bacterial redox metabolism, inhibition of bacterial thioredoxin
reductase, and intense oxidative stress seem to be the most convincing hypotheses of this
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compound’s main mechanism. At the same time, there is strong evidence that other targets
and other pathways may be involved in determining the actual antimicrobial action of
AF. A more precise understanding of the overall mode of action is likely to emerge from
multiomics research programs, in which the effect on multiple cellular targets (if any) could
be detected in a single experiment. We believe that particular attention should also be paid
to AF’s action against persister cells and to its ability to disrupt biofilm formation.

Another interesting point that needs further exploration is the different activity against
mono- and diderm bacteria. Diderm bacteria are intrinsically more resistant to antibiotics
than monoderm bacteria, thanks to the combined activity of the outer membrane and of
efflux pumps located in the cytoplasmic membrane, which prevent antimicrobial accumula-
tion inside the cell [83]. While several studies demonstrated the role of the outer membrane
in reducing the AF sensitivity of diderm bacteria, the possible role of efflux pumps is still
poorly investigated.

Further studies along these lines will hopefully lead to better identification of the
biomolecular targets and to optimization of the metallodrug itself, through rational chemi-
cal modifications in the scaffold, which could allow for an increased effectiveness in diderm
bacteria. Indeed, to the best of our knowledge, several auranofin analogues that might be
comparatively investigated are already available.

Finally, to enhance the potency of antimicrobial treatment, AF could be conveniently in-
corporated into combination therapies. This kind of approach is a cornerstone methodology
for treating tuberculosis (TB), and recent studies have demonstrated that the administra-
tion of auranofin together with already exploited anti-TB agents, such as rifampicin and
isoniazid, can lead to promising results [42]. Therefore, the compatibility of auranofin with
these antituberculotic agents is crucial in developing novel strategies that can hopefully
increase the global efficacy of antimicrobial therapies.
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