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Let X = (X1,X2, . . .) be a sequence of random variables with values in a standard space (S,B). Suppose

X1 ∼ ν and P
(
Xn+1 ∈ · | X1, . . . ,Xn

)
=
θν(·)+

∑n
i=1 K(Xi)(·)

n + θ
a.s.

where θ > 0 is a constant, ν a probability measure on B, and K a random probability measure on B. Then, X
is exchangeable whenever K is a regular conditional distribution for ν given any sub-σ-field of B. Under this
assumption, X enjoys all the main properties of classical Dirichlet sequences, including Sethuraman’s representa-
tion, conjugacy property, and convergence in total variation of predictive distributions. If μ is the weak limit of the
empirical measures, conditions for μ to be a.s. discrete, or a.s. non-atomic, or μ� ν a.s., are provided. Two CLT’s
are proved as well. The first deals with stable convergence while the second concerns total variation distance.

Keywords: Bayesian nonparametrics; central limit theorem; Dirichlet sequence; exchangeability; predictive
distribution; random probability measure; regular conditional distribution

1. Introduction

Throughout, S is a Borel subset of a Polish space and B the Borel σ-field on S. All random elements
are defined on a common probability space, say (Ω,A,P). Moreover,

X = (X1,X2, . . .)

is a sequence of random variables with values in (S,B) and

Fn = σ(X1, . . . ,Xn).

We say that X is a Dirichlet sequence, or a Polya sequence, if its predictive distributions are of the
form

P
(
Xn+1 ∈ · | Fn

)
=
θ P(X1 ∈ ·) +

∑n
i=1 δXi (·)

n + θ
a.s.

for all n ≥ 1 and some constant θ > 0. The finite measure θ P(X1 ∈ ·) is called the parameter of X . Here
and in the sequel, for each x ∈ S, we denote by δx the unit mass at x.
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Let L0 be the class of Dirichlet sequences. As it can be guessed from the definition, each element of
L0 is exchangeable. We recall that X is exchangeable if

π(X1, . . . ,Xn) ∼ (X1, . . . ,Xn) for all n ≥ 2 and all permutations π of Sn.

A permutation of Sn is meant as a map π : Sn → Sn of the form

π(x1, . . . , xn) = (xj1, . . . , xjn ) for all (x1, . . . , xn) ∈ Sn,

where ( j1, . . . , jn) is a fixed permutation of (1, . . . ,n). An i.i.d. sequence is obviously exchangeable
while the converse is not true. However, the distribution of an exchangeable sequence (with values in a
standard space) is a mixture of the distributions of i.i.d. sequences; see Subsection 1.2.

Since Ferguson, Blackwell and Mac Queen, L0 played a prevailing role in Bayesian statistics. It
was for a long time the basic ingredient of Bayesian nonparametrics. And still today, the Bayesian
nonparametrics machinery is greatly affected by L0 and its developments. In addition, L0 plays a role
in various other settings, including population genetics and species sampling. The literature on L0 is
huge and we do not try to summarize it. Without any claim of being exhaustive, we mention a few
seminal papers and recent textbooks: [1,8,10,12,14,18,21–24].

The object of this paper is a new class of exchangeable sequences, say L, such that L ⊃ L0. There
are essentially two reasons for taking L into account. First, all main features of L0 are preserved by L,
including the Sethuraman’s representation, the conjugacy property and the simple form of predictive
distributions. Thus, from the point of view of a Bayesian statistician, L can be handled as simply as L0.
Second, L is more flexible than L0 and allows to model more real situations. For instance, if X ∈ L,
the weak limit of the empirical measures is not forced to be a.s. discrete, but it may be a.s. non-atomic
or even a.s. absolutely continuous with respect to a reference measure.

1.1. Definition of L

Obviously, the notion of Dirichlet sequence can be extended in various ways. In this paper, for X
to be an extended Dirichlet sequence, two conditions are essential. First, X should be exchangeable.
Second, the predictive distributions of X should have a known (and possibly simple) structure. Indeed,
to define a sequence X via its predictive distributions has various merits. It is technically convenient
(see the proof of Theorem 13) and makes the dynamics of X explicit. Furthermore, having the predictive
distributions in closed form makes straightforward the Bayesian predictive inference on X; see e.g. [3]
and [15]. We also note that, as claimed in [16]: “There are very few models for exchangeable sequences
X with an explicit prediction rule”.

Let P be the collection of all probability measures on B and C the σ-field over P generated by
the maps p �→ p(A) for all A ∈ B. A kernel on (S,B) is a measurable map K : (S,B) → (P,C). Thus,
K(x) ∈ P for each x ∈ S and x �→ K(x)(A) is a B-measurable map for fixed A ∈ B. Here, K(x)(A)
denotes the value attached to the event A by the probability measure K(x). (This notation is possibly
heavy but suitable for this paper).

A quite natural extension of L0, among the possible ones, consists in replacing δ with any kernel K
in the predictive distributions of X . If K is arbitrary, however, X may fail to be exchangeable.

More precisely, fix ν ∈ P, a constant θ > 0 and a kernel K on (S,B). By the Ionescu-Tulcea theorem,
there is a sequence X such that

X1 ∼ ν and P
(
Xn+1 ∈ · | Fn

)
=
θν(·) +

∑n
i=1 K(Xi)(·)

n + θ
a.s. (1)
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for all n ≥ 1. Generally, however, X is not exchangeable. As an obvious example, take the trivial kernel
K(x) = ν∗ for all x ∈ S, where ν∗ ∈ P but ν∗ � ν. Then, condition (1) implies that X2 is not distributed
as X1.

Our starting point is that, for X to be exchangeable, it suffices condition (1) and

K is a regular conditional distribution (r.c.d.) for ν given G (2)

for some sub-σ-field G ⊂ B. We recall that K is a r.c.d. for ν given G if K(x) ∈ P for each x ∈ S, the
map x �→ K(x)(A) is G-measurable for each A ∈ B, and

ν(A∩ G) =
∫
G

K(x)(A) ν(dx) for all A ∈ B and G ∈ G.

Equivalently, K is a r.c.d. for ν given G if K(x) ∈ P for each x ∈ S and

K(·)(A) = Eν(1A | G), ν-a.s., for all A ∈ B.

Since (S,B) is a standard space, for any sub-σ-field G ⊂ B, a r.c.d. for ν given G exists and is ν-
essentially unique. See e.g. [7] for more information on r.c.d.’s.

Condition (2) makes the next definition operational.
Say that X is a kernel based Dirichlet sequence if it is exchangeable and satisfies condition (1) for

some ν ∈ P, some constant θ > 0 and some kernel K on (S,B). In particular, X is a kernel based
Dirichlet sequence if conditions (1)-(2) hold. In the sequel, L denotes the collection of all X satisfying
conditions (1)-(2).

If X ∈ L and G = B, then K = δ and X ∈ L0. At the opposite extreme, if G = {∅,S}, then K(x) = ν
for ν-almost all x ∈ S and X is i.i.d. Various other examples come soon to the fore. The following are
from [3] (even if, when writing [3], we didn’t know yet that X is exchangeable).

Example 1. Let G = σ(H), where H ⊂ B is a countable partition of S such that ν(H) > 0 for all
H ∈ H . A r.c.d. for ν given G is

K(x) =
∑
H ∈H

1H (x) ν(· | H) = ν
[
· | H(x)

]

where H(x) denotes the only H ∈ H such that x ∈ H. Therefore, X ∈ L whenever

X1 ∼ ν and P
(
Xn+1 ∈ · | Fn

)
=
θν(·) +

∑n
i=1 ν

[
· | H(Xi)

]
n + θ

a.s.

Note that

P
(
Xn+1 ∈ · | Fn

)
� ν(·) a.s.

This fact highlights a stricking difference between L and L0. In this example, if ν is non-atomic, the
probability distributions of X and Y are singular for any Y ∈ L0.

Example 2. Let S = R2 and G = σ( f ) where f (u,v) = u for all (u,v) ∈ R2. Let B0 be the Borel σ-field
on R and N(u,1) the Gaussian law on B0 with mean u and variance 1. Fix a probability measure r on
B0 and define

ν(A× B) =
∫
A
N(u,1)(B) r(du) for all A, B ∈ B0



1324 P. Berti et al.

where N(u,1)(B) denotes the value attached to B by N(u,1). Then, a r.c.d. for ν given G is

K(u,v) = δu ×N(u,1) for all (u,v) ∈ R2.

Hence, letting Xi = (Ui,Vi), one obtains X ∈ L provided (U1,V1) ∼ ν and

P
(
Un+1 ∈ A, Vn+1 ∈ B | Fn

)
=
θν(A× B) +

∑n
i=1 1A(Ui)N(Ui,1)(B)

n + θ
a.s.

Example 3. Let f : S → S be a measurable map. If ν is f -invariant, that is ν = ν ◦ f −1, it may be
reasonable to take

G =
{

A ∈ B : f −1(A) = A
}
.

As a trivial example, if S = R, f (x) = −x and ν is symmetric, then

K(x) = δx + δ−x
2

is a r.c.d. for ν given G. Hence, X ∈ L whenever X1 ∼ ν and

P
(
Xn+1 ∈ · | Fn

)
=

2 θν +
∑n

i=1(δXi + δ−Xi )
2 (n + θ) a.s.

This example is related to [3,9] and [17]. We will take up it again in forthcoming Example 17.

1.2. Sethuraman’s representation and conjugacy for L0

Before going on, a few basic properties of L0 are to be recalled.
A random probability measure on (S,B) is a measurable map μ : (Ω,A)→ (P,C).
Let X be exchangeable. Since (S,B) is a standard space, there is a random probability measure μ on

(S,B) such that

μ(A) a.s.= lim
n

1
n

n∑
i=1

1A(Xi)
a.s.
= lim

n
P
(
Xn+1 ∈ A | Fn

)

for each fixed A ∈ B. Moreover, X is i.i.d. conditionally on μ, in the sense that

P
(
X ∈ B | μ

)
= μ∞(B) a.s. for all B ∈ B∞

where μ∞ = μ× μ× . . .; see e.g. [6, p. 2090].
Suppose now that X ∈ L0 and define

D(C) = P(μ ∈ C) for all C ∈ C.

Such a D is a probability measure on C, called the Dirichlet prior, and admits the following represen-
tation. Define a random probability measure μ∗ on (S,B) as

μ∗ =
∑
j

Vj δZ j ,
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where (Z j ) and (Vj ) are independent sequences, (Z j) is i.i.d. with Z1 ∼ ν, and (Vj ) has the stick-breaking
distribution with parameter θ; see Section 2. Then,

D(C) = P(μ∗ ∈ C) for all C ∈ C.

Thus, D can be also regarded as the probability distribution of μ∗. This fact, proved by Sethuraman
[23], is fundamental in applications; see e.g. [11].

Finally, we recall the conjugacy property of L0. Write D(λ) (instead of D) if X ∈ L0 has parameter
λ. In this notation, if X has parameter θν, then

P(μ ∈ C | Fn) =D
(
θν +

n∑
i=1

δXi

)
(C) a.s. for all C ∈ C and n ≥ 1.

Roughly speaking, the posterior distribution of μ given (X1, . . . ,Xn) is still of the Dirichlet type but the
parameter turns into θν +

∑n
i=1 δXi . Once again, this fact plays a basic role in applications.

1.3. Our contribution

As claimed above, this paper aims to introduce and investigate the class L.
Our first result is that conditions (1)-(2) suffice for exchangeability of X . Thus, each X ∈ L is a

kernel based Dirichlet sequence, as defined in Subsection 1.1.
The next step is to develop some theory for L. The obvious hope is that, at least to a certain extent,

such a theory is parallel to that of L0. This is exactly the case. Essentially all main results concerning
L0 extend nicely to L. To illustrate, we assume X ∈ L and we mention a few facts.

• Up to replacing δ with K , the Sethuraman’s representation remains exactly the same. Precisely,
P(μ ∈ C) = P(μ∗ ∈ C) for all C ∈ C, where

μ∗ =
∑
j

Vj K(Z j )

and (Vj ) and (Z j ) are as in Subsection 1.2.
• The predictive distributions converge in total variation, that is

sup
A∈B

P (
Xn+1 ∈ A | Fn

)
− μ(A)

 a.s.−→ 0 as n →∞.

• If X ∈ L0, it is well known that μ is a.s. discrete. This result extends to L as follows. Denote
by D1, D2, D3 the collections of elements of P which are, respectively, discrete, non-atomic, or
absolutely continuous with respect to ν. Then, for each 1 ≤ j ≤ 3,

P(μ ∈ Dj) = 1 ⇔ K(x) ∈ Dj for ν-almost all x ∈ S.

Since δx ∈ D1 for all x ∈ S, the classical result is recovered. But now, with a suitable K , one
obtains P(μ ∈ D2) = 1 or P(μ ∈ D3) = 1. This fact may be useful in applications.

• The conjugacy property of L0 is still available. For each n ≥ 1, let

V (n) =
(
V (n)
j : j ≥ 1

)
and Z (n) =

(
Z (n)
j : j ≥ 1

)
be two sequences such that
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(i) V (n) and Z (n) are conditionally independent given Fn;
(ii) V (n) has the stick-breaking distribution, with parameter n + θ, conditionally on Fn;
(iii) Z (n) is i.i.d., conditionally on Fn, with

P(Z (n)
1 ∈ · | Fn) = P

(
Xn+1 ∈ · | Fn

)
=
θν(·) +

∑n
i=1 K(Xi)(·)

n + θ
a.s.

Then,

P(μ ∈ · | Fn) = P(μ∗n ∈ · | Fn)

where

μ∗n =
∑
j

V (n)
j K

(
Z (n)
j

)
.

Again, if K = δ, this result reduces to the classical one.
• A stable CLT holds true. Let S = Rp and

∫
‖x‖2 ν(dx) < ∞, where ‖·‖ is the Euclidean norm.

Suppose that K has mean 0, in the sense that
∫

yi K(x)(dy) = 0 for all x ∈ Rp and i = 1, . . . ,p

where yi denotes the i-th coordinate of a point y ∈ Rp . Then, n−1/2 ∑n
i=1 Xi converges stably (in

particular, in distribution) to the Gaussian kernel Np(0,Σ), where Σ is the (random) covariance
matrix

Σ =

( ∫
yi yj μ(dy) : 1 ≤ i, j ≤ p

)
.

Moreover, under some additional conditions, n−1/2 ∑n
i=1 Xi converges in total variation as well.

This is a brief summary of our main results. Before closing the introduction, however, two remarks
are in order.

First, to prove such results, we often exploit the fact that
(
K(Xn) : n ≥ 1

)
is a classical Dirichlet sequence with values in (P,C). (3)

Condition (3) is not surprising. We give a simple proof of it, based on predictive distributions, but
condition (3) could be also obtained via some known results on L0.

Second, the above results are potentially useful in Bayesian nonparametrics. Define in fact

Π(C) = P(μ ∈ C) = P(μ∗ ∈ C) for all C ∈ C.

Such a Π is a new prior to be used in Bayesian nonparametrics. In real problems, working with Π is
as simple as working with the classical Dirichlet prior D. In both cases, the posterior can be easily
evaluated. Unlike D, however, Π can be chosen such that Π(C) = 1 for some meaningful sets C of
probability measures. For instance, C = Dj with Dj defined as above for j = 1,2,3. Or else, C the set of
invariant probability measures under a countable class of measurable transformations; see forthcoming
Example 17. Finally, just because of its definition, L is particularly suitable in Bayesian predictive
inference. And predicting future observations is one of the main tasks of Bayesian nonparametrics.
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2. Preliminaries

For all λ ∈ P and bounded measurable f : S → R, the notation λ( f ) stands for λ( f ) =
∫

f dλ. More-
over, Np(0,Σ) denotes the p-dimensional Gaussian law (on the Borel σ-field of Rp) with mean 0 and
covariance matrix Σ.

Let θ > 0 be a constant, (Wn) an i.i.d. sequence with W1 ∼ beta(1, θ) and

T1 =W1, Tn =Wn

n−1∏
i=1

(1 −Wi) for n > 1.

A sequence (Vn) of real random variables has the stick-breaking distribution with parameter θ if (Vn) ∼
(Tn). Note that Vn > 0 for all n and

∑
n Vn = 1 a.s.

Stable convergence is a strong form of convergence in distribution. Let N be a random probability
measure on (S,B). Then, Xn converges to N stably if

E
[
N( f ) | H

]
= lim

n
E
[

f (Xn) | H
]

for all bounded continuous f : S → R and all H ∈ A with P(H) > 0. In particular, Xn converges in
distribution to the probability measure A �→ E

[
N(A)

]
.

We next report an useful characterization of exchangeability due to [13]; see also [5] and [3]. Let
F0 = {∅,Ω} be the trivial σ-field and

σn(x) = P
[
Xn+1 ∈ · | (X1, . . . ,Xn) = x

]
for all x ∈ Sn.

Theorem 4 ([13, Theorem 3.1]). The sequence X is exchangeable if and only if

P
[
(Xn+1,Xn+2) ∈ · | Fn

]
= P

[
(Xn+2,Xn+1) ∈ · | Fn

]
a.s.

for all n ≥ 0 and

σn(x) = σn(π(x))

for all n ≥ 2, all permutations π of Sn, and almost all x ∈ Sn. (Here, “almost all” is with respect to the
marginal distribution of (X1, . . . ,Xn)).

We conclude this section with two technical lemmas. Let

σ(K) =
{{

x ∈ S : K(x) ∈ C
}

: C ∈ C
}

be the σ-field over S generated by the kernel K .

Lemma 5 (Lemma 10 of [7]). Under condition (2), there is a set F ∈ σ(K) such that ν(F) = 1 and

K(x)(B) = δx(B) for all B ∈ σ(K) and x ∈ F .

Proof. This is basically [7, Lem. 10] but we give a proof to make the paper self-contained. The atoms
of the σ-field σ(K) are sets of the form

B(x) =
{
y ∈ S : K(y) = K(x)

}
for all x ∈ S.
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Hence, each B ∈ σ(K) can be written as

B =
⋃
x∈B

B(x).

Moreover, by [7, Lem. 10], there is a set F ∈ σ(K) such that ν(F) = 1 and

K(x)
(
B(x)

)
= 1 for all x ∈ F .

Having noted these facts, fix x ∈ F and B ∈ σ(K). If x ∈ B, then

K(x)(B) ≥ K(x)
(
B(x)

)
= 1.

If x � B, since Bc ∈ σ(K), then K(x)(B) = 1 − K(x)(Bc) = 0. Hence, K(x)(B) = δx(B).

Lemma 6. Under condition (2), there is a set F ∈ σ(K) such that ν(F) = 1 and∫
A

K(y)(B)K(x)(dy) = K(x)(A)K(x)(B) for all x ∈ F and A, B ∈ B.

Moreover, ∫
A

K(y)(B) ν(dy) =
∫
B

K(y)(A) ν(dy) for all A, B ∈ B.

Proof. Let F be as in Lemma 5. Fix x ∈ F and A, B ∈ B. Define

G =
{
y ∈ S : K(y)(B) = K(x)(B)

}
and note that x ∈ G and G ∈ σ(K). Since x ∈ G, then δx(G) = 1. Since G ∈ σ(K) and x ∈ F, Lemma 5
implies

K(x)(G) = δx(G) = 1.

Therefore, ∫
A

K(y)(B)K(x)(dy) = K(x)(B)
∫
A

K(x)(dy) = K(x)(A)K(x)(B).

Finally, ∫
A

K(y)(B) ν(dy) =
∫
A

Eν(1B | G) dν =
∫
B

Eν(1A | G) dν =
∫
B

K(y)(A) ν(dy).

3. Results
Recall that L is the class of sequences satisfying conditions (1)-(2) for some ν ∈ P and some constant
θ > 0. In this section, X ∈ L and μ is a random probability measure on (S,B) such that

μ(A) a.s.= lim
n

1
n

n∑
i=1

1A(Xi)
a.s.
= lim

n
P
(
Xn+1 ∈ A | Fn

)
for all A ∈ B.

Existence of μ depends on X is exchangeable and (S,B) is a standard space; see Subsection 1.2.
Our starting point is the following.
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Theorem 7. Under condition (1), X is exchangeable if and only if
∫
A

K(y)(B) ν(dy) =
∫
B

K(y)(A) ν(dy) (4)

and ∫
A

K(y)(B)K(x)(dy) =
∫
B

K(y)(A)K(x)(dy) (5)

for all A, B ∈ B and ν-almost all x ∈ S. In particular, X is exchangeable whenever X ∈ L (because of
Lemma 6).

Proof. For all A, B ∈ B, condition (1) implies

P(X1 ∈ A, X2 ∈ B) = E
{
1A(X1)P(X2 ∈ B | F1)

}

= E
{
1A(X1)

θν(B) + K(X1)(B)
1 + θ

}

=
θ

1 + θ
ν(B) ν(A) + 1

1 + θ

∫
A

K(y)(B) ν(dy).

Therefore,

condition (4) ⇐⇒ (X1,X2) ∼ (X2,X1).

Similarly, under (1), one obtains

P
(
X2 ∈ A, X3 ∈ B | F1

)
= E

{
1A(X2)P(X3 ∈ B | F2) | F1

}

= E
{
1A(X2)

θν(B) + K(X1)(B) + K(X2)(B)
2 + θ

| F1

}

=
1 + θ
2 + θ

P(X2 ∈ B | F1)P(X2 ∈ A | F1) +
1

2 + θ
E
{
1A(X2)K(X2)(B) | F1

}
a.s.

and

E
{
1A(X2)K(X2)(B) | F1

}
=
θ

1 + θ

∫
A

K(y)(B) ν(dy) + 1
1 + θ

∫
A

K(y)(B)K(X1)(dy) a.s.

Next, if X is exchangeable, condition (4) follows from (X1,X2) ∼ (X2,X1). Moreover, P
(
X2 ∈ A, X3 ∈

B | F1
)
= P

(
X2 ∈ B, X3 ∈ A | F1

)
a.s. implies

E
{
1A(X2)K(X2)(B) | F1

}
= E

{
1B(X2)K(X2)(A) | F1

}
a.s.

Therefore, (5) follows from (4) and the above condition.
Conversely, assume conditions (4)-(5). Define

σn(x) =
θν +

∑n
i=1 K(xi)

n + θ
for all n ≥ 1 and x = (x1, . . . , xn) ∈ Sn.
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By (1), P(Xn+1 ∈ · | Fn) = σn(X1, . . . ,Xn) a.s. Moreover, σn(x) = σn(π(x)) for all n ≥ 2, all permuta-
tions π of Sn and all x ∈ Sn. Hence, by Theorem 4, it suffices to show that

P
[
(Xn+1,Xn+2) ∈ · | Fn

]
= P

[
(Xn+2,Xn+1) ∈ · | Fn

]
a.s. for all n ≥ 0.

For n = 0, the above condition is equivalent to (4) (recall that F0 is the trivial σ-field). Therefore, it is
enough to show that

∫
A
σn+1(x, y)(B)σn(x)(dy) =

∫
B
σn+1(x, y)(A)σn(x)(dy) (6)

for all n ≥ 1, all A, B ∈ B and almost all x ∈ Sn (where “almost all” refers to the marginal distribution
of (X1, . . . ,Xn)).

Fix m ≥ 1 and A ∈ B. If Xi ∼ ν for i = 1, . . . ,m, then

E
{
K(Xi)(A)

}
=

∫
K(y)(A) ν(dy) = ν(A) for i = 1, . . . ,m,

where the second equality is by (4) (applied with B = S). Hence,

P(Xm+1 ∈ A) = E
{
P(Xm+1 ∈ A | Fm)

}
=
θν(A)
m + θ

+

∑m
i=1 E

{
K(Xi)(A)

}
m + θ

= ν(A).

By induction, it follows that Xi ∼ ν for all i ≥ 1.
Finally, fix n ≥ 1 and A, B ∈ B. By (5), there is a set M ∈ B such that ν(M) = 1 and

∫
A

K(y)(B)K(x)(dy) =
∫
B

K(y)(A)K(x)(dy) for all x ∈ M .

Thanks to this fact and condition (4), if x = (x1, . . . , xn) ∈ Mn, one obtains

∫
A

K(y)(B)σn(x)(dy) =
θ
∫
A

K(y)(B) ν(dy) +
∑n

i=1

∫
A

K(y)(B)K(xi)(dy)
n + θ

=
θ
∫
B

K(y)(A) ν(dy) +
∑n

i=1

∫
B

K(y)(A)K(xi)(dy)
n + θ

=

∫
B

K(y)(A)σn(x)(dy).

It follows that
∫
A
σn+1(x, y)(B)σn(x)(dy) =

∫
A

θν(B) +
∑n

i=1 K(xi)(B) + K(y)(B)
n + 1 + θ

σn(x)(dy)

=
n + θ

n + 1 + θ
σn(x)(B)σn(x)(A) +

∫
A

K(y)(B)σn(x)(dy)
n + 1 + θ

=
n + θ

n + 1 + θ
σn(x)(B)σn(x)(A) +

∫
B

K(y)(A)σn(x)(dy)
n + 1 + θ

=

∫
B
σn+1(x, y)(A)σn(x)(dy).
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Therefore, equation (6) holds for each x ∈ Mn. To conclude the proof, it suffices to note that, since
ν(M) = 1 and Xi ∼ ν for all i,

P
(
(X1, . . . ,Xn) ∈ Mn) = 1.

In view of Theorem 7, X is a kernel based Dirichlet sequence, as defined in Subsection 1.1, if and
only if conditions (1) and (4)-(5) hold. Since (2) ⇒ (4)-(5) (because of Lemma 6), a sufficient condition
for X to be a kernel based Dirichlet sequence is that X ∈ L. We do not know whether (4)-(5) ⇒ (2). In
the sequel, however, we always assume X ∈ L, namely, we always assume conditions (1)-(2).

The next step is to develop some theory for L. To this end, the following result is useful.

Theorem 8. If X ∈ L, the sequence
(
K(Xn) : n ≥ 1

)
is a Dirichlet sequence with values in (P,C) and

parameter the image measure θ ν ◦ K−1.

Proof. By Lemma 5, there is a set F ∈ σ(K) such that

ν(F) = 1 and K(x)(B) = δx(B) for all B ∈ σ(K) and x ∈ F .

Since P(Xn ∈ F) = ν(F) = 1 for all n, it follows that

P
(
Xn+1 ∈ B | Fn

)
=
θν(B) +

∑n
i=1 δXi (B)

n + θ
for all B ∈ σ(K) a.s.

Having noted this fact, define

Kn = σ
[
K(X1), . . . ,K(Xn)

]
.

Since Kn ⊂ Fn and P
(
Xn+1 ∈ · | Fn

)
is Kn-measurable,

P
(
Xn+1 ∈ · | Kn

)
= P

(
Xn+1 ∈ · | Fn

)
a.s.

Finally, fix C ∈ C and define B = {K ∈ C}. Since B ∈ σ(K), one obtains

P
[
K(Xn+1) ∈ C | Kn

]
= P

(
Xn+1 ∈ B | Kn

)
= P

(
Xn+1 ∈ B | Fn

)

=
θν(B) +

∑n
i=1 δXi (B)

n + θ
=
θν ◦ K−1(C) +

∑n
i=1 δK(Xi )(C)

n + θ
a.s.

We next turn to a Sethuraman-like representation for L. Let μ∗ be the random probability measure
on (S,B) defined as

μ∗ =
∑
j

Vj K(Z j ),

where (Z j ) and (Vj ) are independent sequences, (Z j) is i.i.d. with Z1 ∼ ν, and (Vj ) has the stick-breaking
distribution with parameter θ; see Section 2.

Theorem 9. If X ∈ L, then

P(μ ∈ C) = P(μ∗ ∈ C) for all C ∈ C.
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Proof. Let μ0 and μ∗0 be the restrictions of μ and μ∗ on σ(K). Then, μ0 ∼ μ∗0 by [23] and since
(
K(Xn) :

n ≥ 1
)

is a classical Dirichlet sequence. Hence,
(
μ(g1), . . . , μ(gk )

)
∼
(
μ∗(g1), . . . , μ∗(gk)

)

whenever g1, . . . ,gk : S → R are bounded and σ(K)-measurable. In addition, for fixed A ∈ B, one
obtains

∫
K(x)(A) μ(dx) = lim

n

∑n
i=1 K(Xi)(A)

n
= lim

n
P(Xn+1 ∈ A | Fn) = μ(A) a.s.

Similarly, Lemma 6 (applied with B = S) implies
∫

K(x)(A)K(Z j )(dx) = K(Z j )(A) a.s. for all j ≥ 1.

Thus, ∫
K(x)(A) μ∗(dx) =

∑
j

Vj

∫
K(x)(A)K(Z j )(dx)

=
∑
j

Vj K(Z j )(A) = μ∗(A) a.s.

Having noted these facts, fix k ≥ 1, A1, . . . ,Ak ∈ B, and define gi(x) = K(x)(Ai) for all x ∈ S and
i = 1, . . . , k. Then,

(
μ(A1), . . . , μ(Ak )

)
a.s.
=

(
μ(g1), . . . , μ(gk )

)
∼

(
μ∗(g1), . . . , μ∗(gk)

)
a.s.
=

(
μ∗(A1), . . . , μ∗(Ak )

)
.

This concludes the proof.

Theorem 9 plays for L the same role played by [23] for L0. Among other things, it provides a
simple way to approximate the probability distribution of μ and to obtain its posterior distribution; see
forthcoming Theorem 13 and its proof. For a further implication, define

D1 =
{

p ∈ P : p discrete
}
, D2 =

{
p ∈ P : p non-atomic

}
, D3 =

{
p ∈ P : p � ν

}
.

Then, Theorem 9 implies the following result.

Theorem 10. If j ∈ {1,2,3} and X ∈ L, then P(μ ∈ Dj) ∈ {0,1} and

P(μ ∈ Dj) = 1 ⇔ K(x) ∈ Dj for ν-almost all x ∈ S.

In addition,

sup
A∈B

P (
Xn+1 ∈ A | Fn

)
− μ(A)

 a.s.−→ 0 as n →∞. (7)

Proof. Fix j ∈ {1,2,3} and define aj = ν{x : K(x) ∈ Dj }. If aj = 1, Theorem 9 yields

P(μ ∈ Dj) = P(μ∗ ∈ Dj) = P
(
K(Zi) ∈ Dj for all i ≥ 1

)
= 1.
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Similarly, if aj < 1,

P(μ ∈ Dj) ≤ P
(
K(Zi) ∈ Dj for 1 ≤ i ≤ n

)
= anj −→ 0 as n →∞.

It remains to prove (7). Define the random probability measure

λn =
1
n

n∑
i=1

K(Xi).

To prove (7), it is enough to show that limn supA∈B |λn(A) − μ(A)|
a.s.
= 0 and this limit relation is

actually true if X ∈ L0; see e.g. [21, Prop. 11]. Hence, since
(
K(Xn) : n ≥ 1

)
is a classical Dirichlet

sequence, one obtains

sup
A∈σ(K)

|λn(A) − μ(A)|
a.s.−→ 0.

Now, we argue as in the proof of Theorem 9. Precisely, for each A ∈ B, Lemma 6 (applied with B = S)
yields

∫
K(x)(A)λn(dx) = 1

n

n∑
i=1

∫
K(x)(A)K(Xi)(dx) = 1

n

n∑
i=1

K(Xi)(A) = λn(A) a.s.

Similarly,
∫

K(x)(A) μ(dx) = μ(A) a.s. Therefore, after fixing a countable field B0 such that B = σ(B0),
one finally obtains

sup
A∈B

|λn(A) − μ(A)| = sup
A∈B0

|λn(A) − μ(A)|

a.s.
= sup

A∈B0


∫

K(x)(A)λn(dx) −
∫

K(x)(A) μ(dx)


≤ sup
A∈σ(K)

|λn(A) − μ(A)|
a.s.−→ 0.

It is worth noting that, for an arbitrary exchangeable sequence X , convergence in total variation of
P
(
Xn+1 ∈ · | Fn

)
is not guaranteed; see e.g. [6].

A further consequence of Theorem 9 is a stable CLT (stable convergence is briefly recalled in Section
2). For each y ∈ Rp , let yi denote the i-th coordinate of y.

Theorem 11. Let S = Rp and X ∈ L. Suppose
∫
‖x‖2 ν(dx) < ∞, where ‖·‖ is the Euclidean norm,

and ∫
yi K(x)(dy) = 0 for all x ∈ Rp and i = 1, . . . ,p.

Then,
∑n

i=1 Xi
√

n

stably
−→ Np(0,Σ) as n →∞,
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where Σ is the random covariance matrix

Σ =

( ∫
yi yj μ(dy) : 1 ≤ i, j ≤ p

)
.

Proof. By standard arguments, it suffices to show that
∑n

i=1 b′Xi
√

n

stably
−→ N1(0, b′Σ b) for each b ∈ Rp,

where points of Rp are regarded as column vectors and b′ denotes the transpose of b. Define

σ2
b = E

[
(b′X1)2 | μ

]
− E(b′X1 | μ)2.

For fixed b ∈ Rp , one obtains

n−1/2
n∑
i=1

{
b′Xi − E(b′X1 | μ)

}
stably
−→ N1(0,σ2

b);

see e.g. [4, Th. 3.1] and the subsequent remark. Furthermore,

E(b′X1 | μ) =
∫

(b′y) μ(dy) =
p∑
i=1

bi

∫
yi μ(dy) a.s. and

E
[
(b′X1)2 | μ

]
=

∫
(b′y)2 μ(dy) =

p∑
i=1

p∑
j=1

bibj

∫
yi yj μ(dy) = b′Σ b a.s.

Hence, it suffices to show that
∫
yi μ(dy)

a.s.
= 0 for all i, and this follows from Theorem 9. In fact,∫

yi μ(dy) ∼
∫
yi μ

∗(dy) and

∫
yi μ

∗(dy) =
∑
j

Vj

∫
yi K(Z j )(dy) = 0.

This concludes the proof.

Theorem 11 applies to Examples 3 and 16. In fact, in Example 3, one has p = 1 and K(x) = (δx +
δ−x)/2. Hence,

∫
y K(x)(dy) = 0 for all x ∈ R. Example 16 is discussed below. Here, we give conditions

for convergence in total variation of n−1/2 ∑n
i=1 Xi .

Theorem 12. In addition to the conditions of Theorem 11, suppose that K(x) is not singular, with
respect to Lebesgue measure, for ν-almost all x ∈ Rp . Define

Yn = n−1/2
n∑
i=1

Xi and λ(A) = E
{
Np(0,Σ∗)(A)

}

for all A ∈ B, where Σ∗ =

( ∫
yi yj μ

∗(dy) : 1 ≤ i, j ≤ p
)
.
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Then,

lim
n

sup
A∈B

P(Yn ∈ A) − λ(A)
 = 0.

Proof. Let D be the collection of elements of P which are not singular with respect to Lebesgue
measure. By Theorem 9, P(μ ∈ D) = P(μ∗ ∈ D) = 1. Hence, conditionally on μ, the sequence X is
i.i.d. and the common distribution μ belongs to D a.s. Arguing as in Theorem 11, one also obtains∫
yi μ(dy) = 0 and

∫
‖y‖2μ(dy) <∞ a.s. for all i. Thus, conditionally on μ, Yn converges to Np(0,Σ) in

total variation (see e.g. [2]) that is

sup
A∈B

P(Yn ∈ A | μ) −Np(0,Σ)(A)
 a.s.−→ 0.

Finally, Σ ∼ Σ∗ implies λ(·) = E
{
Np(0,Σ)(·)

}
. Hence,

sup
A∈B

P(Yn ∈ A) − λ(A)
 = sup

A∈B

P(Yn ∈ A) − E
{
Np(0,Σ)(A)

} 

≤ E
{

sup
A∈B

P(Yn ∈ A | μ) −Np(0,Σ)(A)

}
−→ 0 as n →∞.

Our last result deals with the posterior distribution of μ. We aim to find the conditional distribution
of μ given Fn = σ(X1, . . . ,Xn). To this end, for each n ≥ 1, we denote by

V (n) =
(
V (n)
j

: j ≥ 1
)

and Z (n) =
(
Z (n)
j

: j ≥ 1
)

two sequences such that:

(i) V (n) and Z (n) are conditionally independent given Fn;
(ii) V (n) has the stick-breaking distribution with parameter n + θ conditionally on Fn;
(iii) Z (n) is i.i.d. conditionally on Fn with

P(Z (n)
1 ∈ · | Fn) = P

(
Xn+1 ∈ · | Fn

)
=
θν(·) +

∑n
i=1 K(Xi)(·)

n + θ
a.s.

Moreover, we let

μ∗n =
∑
j

V (n)
j K

(
Z (n)
j

)
.

Theorem 13. If X ∈ L, then

P(μ ∈ C | Fn) = P(μ∗n ∈ C | Fn) a.s. for all C ∈ C and n ≥ 1.

We recall that, if X ∈ L0 and X has parameter θν (i.e., if K = δ) then

P(μ ∈ C | Fn) =D
(
θν +

n∑
i=1

δXi

)
(C) = P(μ∗n ∈ C | Fn) a.s.

Hence, Theorem 13 extends to L the conjugacy property of L0. Such a property is clearly useful as
regards Bayesian statistical inference. On one hand, the Bayesian analysis of X ∈ L is as simple as
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that of X ∈ L0. On the other hand, L is able to model much more situations than L0. As an obvious
example, for X ∈ L, it may be that P(Xi = Xj) = 0 if i � j. See e.g. Example 1 and Theorem 10.

Theorem 13 can be proved in various ways. We report here the simplest and most direct proof. Such
a proof relies on Theorem 9 and the definition of L in terms of predictive distributions.

Proof of Theorem 13. Throughout this proof, if X satisfies conditions (1)-(2), we say that X ∈ L and
X has parameter (θν, K).

Fix n ≥ 1 and define the sequence

X (n) =
(
X (n)
i : i ≥ 1

)
=
(
Xn+i : i ≥ 1

)
.

Define also the random measure

Jn = θν +
n∑
i=1

K(Xi).

It suffices to show that, conditionally on Fn, one obtains

X (n) ∈ L and X (n) has parameter (Jn, K) a.s. (8)

In fact, under (8), Theorem 9 implies that μ ∼ μ∗n conditionally on Fn, namely

P(μ ∈ · | Fn) = P(μ∗n ∈ · | Fn) a.s.

In turn, condition (8) follows directly from the definition. Define in fact

PFn
(
X (n) ∈ B

)
= P

(
X (n) ∈ B | Fn

)
for all B ∈ B∞ a.s.

Then,

PFn
(
X (n)

1 ∈ ·
)
= P

(
Xn+1 ∈ · | Fn

)
=
θν +

∑n
i=1 K(Xi)

n + θ
=

Jn
n + θ

a.s.

and

PFn

(
X (n)
m+1 ∈ · | X (n)

1 , . . . ,X
(n)
m

)
= P

(
Xn+m+1 ∈ · | Fn+m

)

=
θν +

∑n+m
i=1 K(Xi)

n +m + θ
=

Jn +
∑m

i=1 K
(
X (n)
i

)
(n + θ) +m

a.s. for all m ≥ 1.

This concludes the proof.

4. Open problems and examples
This section is split into two parts. First, we discuss some hints for future research and then we give
three further examples.

• An enlargment of L. The class L could be made larger. In this case, however, some of the basic
properties of L0 would be lost. As an example, suppose that

X1 ∼ ν and P
(
Xn+1 ∈ · | Fn

)
= cn ν(·) + (1 − cn)

∑n
i=1 K(Xi)(·)

n
a.s.,
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where the kernel K satisfies condition (2) and cn ∈ [0,1] is a constant. To make X closer to L0,
suppose also that limn cn = 0. Then, X is exchangeable and X ∈ L provided cn = θ/(n + θ). Fur-
thermore, various properties of L0 are preserved, including μ ∼

∑
j Vj K(Z j ) where (Vj ) and (Z j)

are independent sequences and (Z j ) is i.i.d. with Z1 ∼ ν. Unlike Theorem 9, however, the prob-
ability distribution of (Vj ) is unknown (to us). Similarly, we do not know whether some form of
Theorem 13 is still valid.

• A characterization of L. Denoting by L∗ the class of kernel based Dirichlet sequences, it is
tempting to conjecture that L = L∗. Since L ⊂ L∗, the question is whether there is an exchange-
able sequence satisfying condition (1) but not condition (2). Lemma 6 and Theorem 7 may be
useful to address this issue.

• Self-similarity. Suppose X ∈ L0 and take A ∈ B such that 0 < ν(A) < 1. Then, the distribution
of the random probability measure μ(· | A) is still of the Dirichlet type with ν and θ replaced by
ν(· | A) and θ ν(A), respectively. In addition, μ(A), μ(· | A) and μ(· | Ac) are independent random
elements; see [14, p. 61]. A question is whether this property of L0, called self-similarity, is
still true for L. Suppose X ∈ L and K is a r.c.d. for ν given the sub-σ-field G ⊂ B. If A ∈ G,
then K(Xi)(A) = 1A(Xi) a.s. for all i. Based on this fact, μ(· | A) can be shown to have the same
distribution as μ with ν and θ replaced by ν(· | A) and θ ν(A). Hence, L satisfies some form of
self-similarity when A ∈ G. However, we do not know whether μ(A), μ(· | A) and μ(· | Ac) are
independent. Similarly, we do not know what happens if A � G.

• Topological support. The topological support of a Borel probability λ on a separable metric
space, denoted S(λ), is the smallest closed set A satisfying λ(A) = 1. Let P be equipped with the
topology of weak convergence, i.e., the weakest topology on P which makes continuous the maps
p �→

∫
f dp for all bounded continuous functions f : S → R. Moreover, let

Π(C) = P(μ ∈ C), C ∈ C,

be the prior corresponding to μ. It is well known that

S(Π) =
{

p ∈ P : S(p) ⊂ S(ν)
}

whenever X ∈ L0; see [12] and [20]. As a consequence, S(Π) = P if S(ν) = S. A (natural) ques-
tion is whether, under some conditions on K , this basic property of L0 is preserved by L. The
next result provides a partial answer.

Proposition 14. If X ∈ L and S(Π) = P, then

ν
{

x ∈ S : K(x)(A) ≤ u
}
< 1 (9)

for all u < 1 and all non-empty open sets A ⊂ S.

Proof. First note that S(Π) = P if and only if Π(U) > 0 for each non-empty open set U ⊂ P. Having
noted this fact, suppose ν

{
x ∈ S : K(x)(A) ≤ u

}
= 1, for some u < 1 and some non-empty open set

A ⊂ S, and define

U =
{

p ∈ P : p(A) > u
}
.

Then, U is open and non-empty. Moreover, if Vj , Z j and μ∗ are as in Section 3, one obtains K(Z j )(A) ≤
u for all j a.s. and

μ∗(A) =
∑
j

Vj K(Z j )(A) ≤ u
∑
j

Vj = u a.s.
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By Theorem 9, it follows that

Π(U) = P
(
μ(A) > u

)
= P

(
μ∗(A) > u

)
= 0.

Hence, S(Π) is a proper subset of P.

Possibly, some version of condition (9) suffices for S(Π) = P. However, condition (9) alone suggests
that S(Π) is usually a proper subset of P. In Example 3, for instance, condition (9) fails (just take
A = (0,∞) and note that K(x)(A) ≤ 1/2 for all x). Finally, we mention here a property of L0 which is
preserved by L. If X ∈ L and S(ν) = S, the prior Π a.s. selects probability measures with full support,
i.e.

Π
{

p ∈ P : S(p) = S
}
= 1.

We next turn to examples.

Example 15 (Example 1 continued). Let H ⊂ B be a countable partition of S such that ν(H) > 0 for
all H ∈ H . Then, K(x) = ν

[
· | H(x)

]
is a r.c.d. for ν given σ(H), where H(x) is the only H ∈ H such

that x ∈ H. Therefore, X ∈ L provided X1 ∼ ν and

P
(
Xn+1 ∈ · | Fn

)
=
θν(·) +

∑n
i=1 ν

[
· | H(Xi)

]
n + θ

a.s.

In this example, for each A ∈ B, one obtains

μ(A) = lim
n

P
(
Xn+1 ∈ A | Fn

)
=

∑
H ∈H

μ(H) ν(A | H) a.s.

where μ(H) a.s.= limn(1/n)
∑n

i=1 1H (Xi). To grasp further information about μ, define

b(H) =
∑
j

Vj 1H (Z j), H ∈ H,

where (Vj ) and (Z j ) are independent, (Z j) is i.i.d. with Z1 ∼ ν, and (Vj ) has the stick breaking distribu-
tion with parameter θ. Then, Theorem 9 yields

μ ∼ μ∗ =
∑
H ∈H

b(H) ν(· | H).

Therefore,

(
μ(H) : H ∈ H

)
∼
(
μ∗(H) : H ∈ H

)
=
(
b(H) : H ∈ H

)
.

To evaluate the posterior distribution of μ, fix n ≥ 1 and take two sequences V (n) =
(
V (n)
j

: j ≥ 1
)

and

Z (n) =
(
Z (n)
j : j ≥ 1

)
satisfying conditions (i)-(ii)-(iii). Recall that, by (iii), Z (n) is i.i.d. conditionally

on Fn with

P(Z (n)
1 ∈ · | Fn) = P

(
Xn+1 ∈ · | Fn

)
a.s.



Dirichlet sequences 1339

Define

bn(H) =
∑
j

V (n)
j 1H

(
Z (n)
j

)
and μ∗n =

∑
H ∈H

bn(H) ν(· | H).

Then, Theorem 13 implies μ ∼ μ∗n conditionally on Fn.

Example 16. Let ‖·‖ be the Euclidean norm on S = Rp . For t ≥ 0, let Ut ∈ P be uniform on the
spherical surface {x : ‖x‖ = t} (with U0 = δ0) and

ν(A) =
∫ ∞

0
Ut (A) e−t dt for all A ∈ B.

Then, K(x) =U‖x ‖ is a r.c.d. for ν given σ(‖·‖). Hence, X ∈ L whenever X1 ∼ ν and

P
(
Xn+1 ∈ · | Fn

)
=
θν(·) +

∑n
i=1 U‖Xi ‖(·)

n + θ
a.s.

Theorem 11 applies to this example. To see this, first note that
∫

‖x‖2 ν(dx) =
∫ ∞

0

∫
‖x‖2 Ut (dx) e−tdt =

∫ ∞

0
t2 e−tdt <∞.

Moreover, since Ut is invariant under rotations,∫
yiUt (dy) =

∫
yi yj Ut (dy) = 0 and

∫
y2
i Ut (dy) = t2/p (10)

for all t, all i and all j � i. (Recall that yi denotes the i-th coordinate of a point y ∈ Rp). Because of
(10), ∫

yi K(x)(dy) =
∫

yiU‖x ‖(dy) = 0 for all x ∈ Rp and i = 1, . . . ,p.

Therefore, Theorem 11 yields
∑n

i=1 Xi
√

n

stably
−→ Np(0,Σ)

where Σ is the random covariance matrix with entries

σi j =

∫
yi yj μ(dy) = lim

n

1
n

n∑
r=1

∫
yi yj U‖Xr ‖(dy) a.s.

It is even possible be more precise about Σ. In fact, using (10) again, one obtains σi j = 0 for i � j and

σii = lim
n

1
n

n∑
r=1

∫
y2
i U‖Xr ‖(dy) =

1
p

lim
n

1
n

n∑
r=1

‖Xr ‖2 =
1
p

∫
‖x‖2 μ(dx) a.s.

Hence, if I denotes the p × p identity matrix,

Σ = σ11 I where σ11 = (1/p)
∫

‖x‖2 μ(dx).
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Two last remarks are in order. First, in the notation of Theorem 9,
∫

‖x‖2 μ(dx) ∼
∫

‖x‖2 μ∗(dx) =
∑
j

Vj ‖Z j ‖2.

Second, exploiting stable convergence and σ11 > 0 a.s., one also obtains

√
p

∑n
i=1 Xi√∑n
i=1‖Xi ‖2

=
√

p
n−1/2 ∑n

i=1 Xi√
n−1 ∑n

i=1‖Xi ‖2

stably
−→ Np(0, I).

Example 17. Let F be a countable class of measurable maps f : S → S and

I =
{
λ ∈ P : λ = λ ◦ f −1 for each f ∈ F

}

the set of F-invariant probability measures. Let

G =
{

A ∈ B : f −1(A) = A for all f ∈ F
}

be the sub-σ-field of F-invariant measurable sets. In this example, we assume that ν ∈ I and conditions
(1)-(2) hold with G as above.

Under these conditions, it is not hard to see that K(x) ∈ I for ν-almost all x ∈ S; see e.g. [19]. Hence,
P
(
Xn+1 ∈ · | Fn

)
∈ I a.s. which in turn implies

μ( f −1 A) a.s.= lim
n

P
(

f (Xn+1) ∈ A | Fn
) a.s.
= lim

n
P
(
Xn+1 ∈ A | Fn

) a.s.
= μ(A)

for fixed A ∈ B and f ∈ F. Since F is countable and B countably generated, one finally obtains

P(μ ∈ I) = 1.

This fact is meaningful from the Bayesian point of view. It means that the prior corresponding to μ
(namely, Π(C) = P(μ ∈ C) for all C ∈ C) selects F-invariant laws a.s. Such priors are actually useful in
some practical problems; see e.g. [9] and [17].

Example 3 is a special case of the previous choice of G. Another example, borrowed from [3, Ex.
12], is S = Rd and F the class of all permutations of Rd . In this case, I is the set of exchangeable
probabilities on the Borel sets of Rd . Moreover, if ν is exchangeable, K can be written as

K(x) =
∑

π∈F δπ(x)
d!

for all x ∈ Rd .

A last remark is in order.
Claim: If A1, . . . ,Ak is a partition of S such that Ai ∈ G for all i, then the k-dimensional vector(
μ(A1), . . . , μ(Ak )

)
has Dirichlet distribution with parameters θ ν(A1), . . . , θ ν(Ak).

To prove the Claim, because of Theorem 9, it suffices to show that
(
μ∗(A1), . . . , μ∗(Ak )

)
has the

desired distribution. In addition, K(x)(Ai) = 1Ai (x) = δx(Ai), for ν-almost all x ∈ S, since Ai ∈ G and
K is a r.c.d. for ν given G. Therefore,

μ∗(Ai) =
∑
j

Vj K(Z j )(Ai)
a.s.
=

∑
j

Vj δZ j (Ai) for all i,
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and this implies that
(
μ∗(A1), . . . , μ∗(Ak)

)
has Dirichlet distribution with parameters θν(A1), . . . ,

θν(Ak).
In view of the Claim, μ is a Dirichlet invariant process in the sense of Definition 2 of [9]. Thus,

arguing as above, a large class of such processes can be easily obtained. Note also that, unlike [9], F is
not necessarily a group.
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