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Abstract— Deep neural networks (DNNs) have become a rele-
vant subject in the classification of radio frequency signals and
remote sensing data. A primary challenge is a tradeoff between
obtaining data that are suitable for DNN training and the effort
that making experimental measurements requires. Hence, the
quality and quantity of data used for the training and testing
of models are crucial for effective classifier development. The
training dataset should cover a wide range of cases that synthe-
size the actual scenarios being classified. This work proposes
a novel data augmentation method based on a deterministic
model to generate a simulated dataset of radar micro-Doppler
signatures suitable for unmanned aerial vehicle (UAV) target
classification, without requiring measurement data. It is shown
that the DNN trained using the properly generated model-based
data offers improved classification accuracy performance. Results
are presented for a two-class classification of the number of
UAV motors using a 77-GHz frequency-modulated continuous-
wave (FMCW) automotive radar system. The effectiveness of
the proposed methodology is proven: a classification accuracy of
78.68% is achieved using a convolutional neural network (CNN)
trained using the synthetic dataset, while an accuracy of 66.18%
is achieved by using a typical signal processing data augmentation
method on a limited measured dataset.

Index Terms— Data augmentation, deep convolutional neural
network (CNN), micro-Doppler signatures, radar classification,
remote sensing imagery.

I. INTRODUCTION

DESPITE the widespread attention given to unmanned aer-
ial vehicles (UAVs) in various civil and commercial [1],
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agricultural [2], industrial [3], and defense applications [4],
they are undoubtedly a serious threat to the public and to flight
safety [5]. Hence, it is necessary to identify drones in order
to decrease such risks [6], [7]. However, due to their small
size [8], low flight speed, and low flight altitude, UAVs are
easily hidden by buildings or misclassified as birds [9]; thus,
the identification and classification of drones is a challenging
task [10].

One of the foremost features of a UAV’s radar signal is the
micro-Doppler signature [11]. Contrary to a stationary object,
objects in motion generate modulated Doppler components
referred to as the micro-Doppler signature, which is provided
as additional components of the Doppler signature of the
drone’s fuselage. Furthermore, micro-Doppler signatures rely
on the number of motors, motor speed, and orientation of the
drone; therefore, by analyzing the micro-Doppler signatures,
information pertaining to the drone can be obtained [12], [13].

In the present literature about radar target classification
using micro-Doppler signatures, it has been demonstrated that
these techniques are capable of providing a high classification
accuracy. The most relevant are based on empirical mode
decomposition [14], feature extraction [15], and log-Gabor
filters [16], as well as singular value decomposition [17].
Nevertheless, the major drawback of the standard approaches
is their low scalability.

Recently, deep neural networks (DNNs) have gained much
attention in the radar community as a means of target clas-
sification [18], [19], [20], target detection [21], static object
recognition [22], and automatic target recognition [23]. Fur-
thermore, DNNs have also been utilized in micro-Doppler-
based systems for the classification of human activities [24],
hand gestures [25], and drones [26]. It should be mentioned
that although the use of DNNs, such as convolutional neural
networks (CNNs), for target recognition or classification was
presented as having a satisfactory scalability and a high
classification accuracy, it requires big databases, and one of
its fundamental challenges is that the available dataset might
lead to results that are quite limited.

In this study, we introduce a model-based data augmentation
method to produce a simulated dataset of radar micro-Doppler
signatures that is a suitable training database for
CNNs.
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Data augmentation is one of the most efficient techniques
for preventing model overfitting during the training of a net-
work [27]. In data augmentation, new synthetic data samples
are produced from existing data by combining different data
vectors and nonlinear operations [28]. Despite the effective-
ness of random data augmentation [28], the training of the
network requires a large number of epochs. Furthermore, the
final training relies on totally hidden features, which could be
related to measurement nonidealities rather than to effective
class characteristics. An example of this issue is the deep
learning (DL) network aging phenomenon [29] in which DL
network-based classifiers trained and continuously retrained
on augmented datasets show a decrease in the classification
accuracy as the training time increases. Such an effect is due
to the variation of hidden features in the measurement scenario
that are wrongly conisdered as actual class features during
training. This causes the negation of the training memory,
thus causing the DL network to be unable to make accurate
predictions. By replacing the physical information source with
a model dependent only on actual target-class properties,
it is possible to build extensive datasets that express effective
features, removing the dependence on real measurement chain
properties.

This work aims to prove the effectiveness of data augmen-
tation based on a UAV micro-Doppler model, relying only on
ideal parameters derived by the deterministic description of
the physical scenario under consideration. We demonstrate that
this dataset augmentation method, combined with CNN clas-
sification, is particularly suited for UAV classification, where
this latter considers radar images acquired by well-established
methods (i.e., noise reduction, focusing, and clutter removing),
and because these do not represent a critical aspect of this
study, they are not treated in this work.

According to the literature [26], the research on machine
learning (ML)-based UAV classification by radar considers
several objectives: UAV presence, UAV versus bird recognition
[30], multi-UAV presence [31], and UAV characterization in
terms of number of rotors classification [32]. In this work,
we selected this latter classification objective as a significant
case study, although it could in principle be extended to other
classes and other scenarios.

This article is organized as follows. In Section II, we discuss
a comprehensive treatment of the proposed model-augmenting
method, while a description of the CNN is provided in
Section III. Finally, in Section IV, we provide a detailed
independent validation of the approach by considering two
different classes of UAVs in a controllable and repeatable
environment.

II. MODEL-BASED AUGMENTATION METHODOLOGY

This section discusses the data augmentation method, which
is based on a mechanical model of the micro-Doppler signa-
tures that can be applied to the classification of UAVs.

A. Preliminary Concepts

It is well known that in automatic classification, a dataset
for object classification should include observations of a large

number of samples for each targeted class. Automatic classi-
fication relies on a classifier, which is defined as an unknown
nonlinear function that takes as an argument a vector of sample
points related to the features and outputs the predicted class;
such a function is determined through an optimization process
in the classifier training phase. On this basis, the DNN learns
about meaningful features during training by identifying the
similarities between measurements related to the same class.
In order to avoid an ill-posed numerical problem that would
lead to overfitting issues, a comprehensive set of linearly
independent equations is needed [33]. However, when one is
dealing with a high-dimensional feature space, the latter can
only be provided when they are associated with an exhaustive
training set, so a huge training dataset must be provided.

A measurement-based training dataset can benefit from data
augmentation, leading to exhaustive classifier training while
reducing the amount of experimental effort. Dataset augmen-
tation can be performed using two different approaches. Aug-
mentation in the data space is achieved by applying random
transformations to input datasets to produce new samples. It is
a straightforward process but might expose one to the risk of
erasing meaningful features or enhancing features that are not
related to the targeted classes. Augmentation in the feature
space is achieved by performing raw feature identification and
then combining only measurements that appear to be similar,
i.e., near each other in the feature space [34].

Data augmentation with analytical models can produce a
meaningful training dataset while reducing significantly the
effort required for experimental dataset acquisition. In a typical
scenario, as proposed here or in [35], this approach produces
a multitude of synthetic data vectors using the mathematical
generator function

f : x → s = f(x) with x ∈ C1×Nparams , s ∈ C1×Npts . (1)

The generator function in (1) is defined as a nonlinear trans-
formation between the C1×Nparams space of scenario parameter
vectors, or rather the vectors comprising all the parameters
that describe the physical scenario as following the model
definition, and the C1×Npts space of measurement data vectors.

As in [35], the augmentation in the data space for the
generic class “A” resembles the generation of synthetic data
vectors s“A”(i)1×Npts

with Npts samples according to the fol-
lowing equation:

s“A”(i) = di
(
f(x“A”) + ni,S

) + ni,M (2)

where ni, j are the perturbation vectors, x“A” is a set of scenario
parameters for class “A”, and di

(
f
)

is the nonlinear random
transformation function applied to the data vector.

The perturbation vector introduces the effects of nonideali-
ties into scenario ni,S and measurement chain ni,M , and both
can be written as

ni, j = N1×Npts

(
0, σ j

)
. (3)

Following a feature-space augmentation approach, synthetic
data vector generation for the class “A” data subset is obtained
as follows:

s“A”(i) = f
(
x“A” + ni,P

)
. (4)
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Fig. 1. Example of the definition of classes in the feature space.

In (4), as opposed to (2), the dataset variability is given
only by the perturbation vector ni,P applied to the vector of
scenario parameters. Random transformations or the addition
of noise to generated data vectors are expressly avoided,
as they could introduce new features that are totally unrelated
to the meaningful characteristics of the target. Note that noise
added to generated data vectors does not show impulsive
auto-correlation because of its limitation in a number of
samples. By this, different synthesized vectors could show
unexpected correlation due to the added noise term. In (4),
the parameter perturbation vector is defined as

ni,P = N1×Nparams(0, σP ) (5)

and it models the variability of the parameter vector x within
scenarios related to the same classes. In the case under inves-
tigation, this refers to the slight differences in the parameters
between different UAVs in the same class.

The amount of noise variance, σP , applied to the vector of
scenario parameters must be carefully chosen. It must be large
enough to effectively model the expected physical scenario
variability within a given target class. However, it must also
be limited to avoid spreading dataset samples along the feature
space, which can lead to misleading class specification.

The concept described above is schematized in Fig. 1 for a
simple 2-D space of the scenario parameters xi and x j ; it relies
on the theory of classifiers based on support vector machines
(SVMs) [36]. In this example, target classes are related to
specific relations between parameter vector terms. This leads
to the definition of straight lines in 2-D spaces (or hyperplanes
when dealing with higher dimensional spaces inside the feature
space).

SVM classification is achieved by assigning to each sample
the class described by the hyperplane with the minimum
distance to the target. Assuming that each provided sample
is assigned to the correct class, during the training phase, the
network coefficients are optimized to achieve a feature-space
clustering with a clear separation between classes. Therefore,
the training dataset should provide samples with clear distinc-
tions between classes, thus imposing an upper limit on the
standard deviation of the parameters σP .

B. Model-Based Dataset Augmenter

Passafiume et al. [12] introduced a fully deterministic
model for the micro-Doppler signatures of flying UAVs in

Fig. 2. Model-based dataset generation chain.

frequency-modulated continuous-wave (FMCW) radar echo
signals (6). Such a model considers the effects of mechanical
vibrations on the range distance and thus introduces a varying
term due to vibrations into the range argument alongside
the Doppler effects on the radar signal. By this model,
the micro-Doppler effect is included in the single IF signal
acquisition, given the mandatory condition that the period of
range fluctuations are way lower than the time window of
the single radar observation [12]. The model depends on the
target’s physical parameters, such as the expected radar cross
section (RCS) and the mechanical and vibration frequencies
of each UAV engine. In this work, we adopt such a model as
a data augmenter function within a feature-space model-based
dataset, as discussed in Section II-A.

When the analytical model is applied to a four-rotor UAV
(i.e., a quadcopter), the FMCW radar signal facing the quad-
copter on boresight is given as

sIF(t) =
Neng∑
k=1

�k cos

⎧⎨
⎩8πμ

c0

⎡
⎣R0+

4∑
j=1

Akj cos
(
ωk j t+φk j

)⎤⎦t

⎫⎬
⎭
(6)

where R0 is the distance to the quadcopter, �i is the expected
RCS related to the specific kth engine, and Ak, ωk , and φk are
the vibrational parameters related to each i th engine. In this
model, we assume that the UAV body’s RCS is negligible with
respect to those associated with the rotors.

From a radar signal point of view, each engine is defined by
an ensemble of 13 parameters, i.e., its RCS plus four sets of
amplitude, frequency, and phase values. Each set is related
to a different vibrational component carried by the engine
according to the mechanical model applied in [12].

The model-based dataset augmenter should completely
reproduce the data-gathering process, as shown in Fig. 2; thus,
the physical model output, as defined by the sIF(t) function
of (6), is subjected to the same vector transformations that are
expected to be caused by the FMCW radar signal processing.

Therefore, defining x as the scenario parameter vector
containing all the parametric terms of the function model
sIF(t), the final augmenter (generator) function f(x) related
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Fig. 3. UAV rotational reference system.

to this specific data-gathering chain is defined as

f(x) = FFT{sIF(t, x)}. (7)

According to [12], placing the reference system as shown
in Fig. 3 and considering that the FMCW radar is placed
on the top or bottom of the UAV, for each engine, only the
microrotations on the pitch and roll axes can be considered.

The projections of these movements on the radar line of
sight lead to four different vibrational micro-Doppler terms:
ωα , which is related to roll axis vibrations; ωβ , which is
related to pitch axis vibrations; and

∣∣ωα + ωβ

∣∣ and
∣∣ωα − ωβ

∣∣,
which mix components of both types of vibrations. Thus, the
parameter subvector for each engine is defined as

xk = 〈
�k, Akα, ωk α, φkα,

Akβ, ωkβ, φkβ,

Ak (α+β),
∣∣ωkα + ωkβ

∣∣, φk (α+β),

Ak (α−β),
∣∣ωkα − ωkβ

∣∣, φk (α−β)

〉T
(8)

retaining the information related to all the UAV vibrational
components. The overall vector has the following form:

x =

⎛
⎜⎜⎜⎝

x1

x2
...

xNeng

⎞
⎟⎟⎟⎠ (9)

comprising Neng × 13 scalar values, and x can be considered a
short representation of each class within a first-approximation
feature space.

Despite the fact that we can associate the mixing terms
to the roll and pitch components, we can optimize them to
consider higher order phenomena that are not considered by
the basic mechanical model [12]. The parameter vector for

Fig. 4. Expected probability density function of noise added to parameter
vector terms.

each engine is rewritten as

xk = 〈
�k, Akα, ωkα, φkα,

Akβ, ωkβ, φkβ,

Ak (α+β), Cωk (α+β)
, φk (α+β),

Ak (α−β), Cωk (α−β)
, φk (α−β)

〉T
(10)

where Cωk (α+β)
and Cωk (α−β)

are defined as

Cωk (α+β)
= ωk (α+β)∣∣ωkα + ωkβ

∣∣ , Cωk (α−β)
= ωk (α−β)∣∣ωkα − ωkβ

∣∣ (11)

thus introducing as a target class parameter the skew of
the mixing terms with respect to the expected mixing term
frequencies.

According to (4), data augmentation for each class
“A”, “B”, . . . is provided by spreading datasets around their
related model parameter vectors x“A”, x“B”, . . . Such vectors
could be initialized using an initial fit of the scenario model
to one sample measurement per class. Note that the parameter
vectors defined in (8) and (9) are highly heterogeneous; thus,
to introduce a balanced augmentation over the entire set of
parameters, the standard deviation of the noise added to each
vector term needs to be proportional to the value of the term
itself. Hence, for each i th synthetic vector of the class “A”
data subset, the related parameter perturbation vector defined
in (5) is redefined as

n“A”i,P =

⎛
⎜⎜⎜⎝

N1×1(0, σP |x“A”1|)
N1×1(0, σP |x“A”2|)

...
N1×1

(
0, σP

∣∣x“A”Nparams

∣∣)

⎞
⎟⎟⎟⎠, with σP ∈ [0, 1]

(12)

where x“A”n = x“A”n is equal to the i th term of the class “A”
model parameter vector, and σP is a single value representing
the relative amount of spreading introduced to every parameter.
Fig. 4 shows the expected probability density function for
every scenario parameter.

C. Training Method

Following the discussion in Section II-B, several augmented
datasets are produced for different values of σP , generating N
different augmented vectors for each class. Each subset of data
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Fig. 5. Flowchart of the proposed training methodology.

is produced by applying the generator function in (4), where
the class-related reference vector is described in (10) and the
perturbation vector is defined in (12).

The optimum σP parameter should be estimated to avoid
overfitting issues due to the possible lack of augmentation
effects and to prevent the risk of class misspecification due to
excess dispersion into the feature space, as shown in Fig. 1.
Identifying the optimum σP parameter is a step related to the
definition of the training dataset; thus, an appropriate approach
consists of introducing the optimization of this parameter
during the testing phase of the neural network.

The first fit for the reference vectors [cf. (9)] related to each
class, namely, “QUAD” for the quadcopter (reference vector
x“QUAD”) and “HELI” for the single-engine UAV (reference
vector x“HELI”), is achieved over one generic measured sample
for both classes. The risk of overfitting due to the choice
of only one measurement for the definition of the model
parameters is expected to be overcome by applying the pro-
posed augmentation method based on the perturbation of the
parameters.

A flowchart showing the training process for performing
UAV classification is shown in Fig. 5. The proposed method
performs the neural network training using all the different
augmented datasets, which are generated with different σP

values. After the training phase, each network is tested on
the limited measure dataset and the accuracy on the test
set is evaluated for each σP . The entire training and testing
process is completed for three different ML algorithms: the
SVM, gradient booster (XGBoost), and naive Bayes (NB). The

Fig. 6. Dataset acquisition chain.

dispersion parameter that achieves the highest classification
accuracy is considered the best dispersion parameter. At the
completion of the procedure, the best value of σP is given and
can be used to produce wider augmented datasets, which are
then used for the training of the more complex CNN.

D. Radar Data Acquisition

The entire processing flow discussed in Section II-C works
on measurement data generated by the radar data acquisition
block described in detail in Fig. 6. As expressed by (6),
the micro-Doppler signature model introduces the effect of
mechanical vibrations only with respect to the range distance,
ignoring the spreading over different scattering angles. As a
result, each synthetic measurement consists of a vector repre-
senting a range profile.

Dealing with a multiple-input–multiple-output (MIMO)
radar system means that each radar acquisition provides a
2-D radar image I(r, ϑ) defined in the range and direction-of-
signal-arrival domains. Considering an FMCW radar system
with n receiving antennas, each data acquisition leads to a set
of n different baseband time readings sIFn(t). The radar-angle
image is then calculated as

I(r, ϑ) = FFTn{FFT{sIFn(t)}} (13)

where the inner FFT{.} is calculated with respect to time for
each antenna trace, mapping the frequency domain to range
applying the transform

R = c0 · f

2μ
(14)

where c0 is the speed of light, μ is the FMCW radar ramp
coefficient, and f is the spectrum frequency domain. The outer
FFT{.} is calculated on the orthogonal domain for the different
antenna traces, thus achieving the angular domain, as described
in [37].

The micro-Doppler behavior is then extracted by applying a
moving-target indicator (MTI) filter [38]; thus, the radar image
is calculated as

IMTI(r, ϑ) = I(r, ϑ) − 1

NMTI

NMTI∑
i=1

I−i(r, ϑ) (15)
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where NMTI is the MTI frame depth and I−i (r, ϑ) is the
i th frame in the stack of the last NMTI frames.

Due to the actual limitations of the micro-Doppler model,
in order to obtain a measurement trace that is suitable for
target classification, a single-dimension range profile must be
extracted from each radar image after the application of the
MTI filter. Considering ϑ̂ as the estimated angular direction
for the UAV target, the data trace is given as

s = 1


ϑ

∫ ϑ̂+ 
ϑ
2

ϑ̂− 
ϑ
2

IMTI(r, ϑ) dϑ (16)

where 
ϑ is an approximation of the expected spreading of
peaks around the signal peak direction. For the experiments
provided hereinafter, we consider 
ϑ = 7◦.

In order to produce data suitable as input of the UAV classi-
fication network, the range profile, after the application of the
MTI algorithm, is passed through a target signature extraction
block. The latter extracts, from the overall MTI-filtered range
profile data vector, all the vector slices that could be related
to a UAV kind of target. The extraction works taking a slice
of 400 samples around each different peak throughout the
range profile vector. As a result of the MTI application, the
peaks result positioned in correspondence of targets showing
high-frequency vibrations, as introduced in [12]. Each slice
corresponds to a possible signature for a related UAV target
and the length of 400 samples is dependent on the radar
hardware parameters shown in Table I and [12]. These slices
are the actual input for the DL classification network, and the
latter is assumed to be able to identify the UAV target class
based on them.

The application of MTI together with the extraction block
allows to extract, from the radar image, only the signatures of
interest for the actual classification application, overcoming
the presence of artifacts as clutter or other scenario nonideali-
ties. In this work, the signatures not related to the UAV targets
are filtered out by the MTI algorithm, which removes targets
with low vibrational frequencies [38], [39].

Note that the actual work is about UAV target classification,
and thus, the proposed classification networks are supposed to
deal with an input dataset that comprises only the signatures
that must be classified. Considering the generality of radar sys-
tems and application scenarios, the classification is supposed
to be applied at the highest level of postprocessing after the
entire dataset acquisition chain shown in Fig. 6.

III. DEEP NEURAL NETWORKS

The architecture of a DNN depends significantly upon
the complexity of the problem under consideration; it is
related to how each layer is implemented, as well as the
computational method used in each layer. The most widely
used DL approaches are CNNs [40], recurrent neural networks
(RNNs) [41], deep belief networks (DBNs) [42], and the
recently introduced approach of generative adversarial net-
works (GANs) [43]. However, the most popular supervised
DNNs for image processing, object recognition, image for-
mation, and classification are based on CNN architectures

[44]. The layers that make up a CNN and proposed CNN
architectures will be discussed in detail in the following.

A. CNN Architecture

Generally, CNNs are made up of several essential layers
for feature extraction. A convolutional layer, an activation
function, a pooling layer, a fully connected (FC) layer, and a
classification module are the main components of each CNN.
Each component is briefly described as follows.

1) Convolutional Layer: A convolutional layer is the pri-
mary component of a CNN. It is like a filter bank that can be
repeated numerous times. Suppose that the input array of the
model is a tensor with a size of (C1 × W1 × H 1) in which
W1 is the width, H1 is the height, and C1 is the number of
input channels. In the first convolutional layer, a small square
filter with a size of (C1 × K × K ) in which the number
of channels is equal to the number of channels of the input
tensor is applied to the input tensor, and using elementwise
addition and multiplication, an output tensor with a size of
(1 × W2 × H 2) is created. In each convolutional layer, there
are multiple filters (M) and corresponding output tensors
(1 × W2 × H 2), which are added together to create the final
feature map (M × W2 × H 2) of that layer. Compared to FC
layers, convolutional layers have fewer parameters to train.
In these kinds of architectures, there are some unchangeable
hyperparameters in the training process, namely, the size of
each filter (K ), the number of filters in each layer (M), and
stride [44].

2) Activation Function: An activation function is a critical
part of designing a neural network. It is a mathematical
function applied elementwise to the outputs of convolutional
layers to provide nonlinearity to the network. Note that the
nonlinearity property enables the network to be made deeper.
Otherwise, the network would have only a single layer, regard-
less of the complexity of the architecture. The rectified linear
unit (ReLU), defined as y = max(0, x), is the most common
activation function used in CNNs for hidden layers. In contrast,
the activation function for the output layer depends on the type
of prediction problem being considered [44], [45], [46].

3) Pooling Layer: A pooling layer, commonly used after
convolutional and nonlinear layers, is applied to reduce the
dimensions of each feature map. Pooling is accomplished by
sliding a window (typically a square window) across each
feature map and extracting only one value from each window.
The number of channels will not be modified after pooling
since downsampling is only performed on the width and
height dimensions. Average pooling and max pooling are the
two standard pooling methods that are most used in CNNs.
Furthermore, pooling helps in making the representation nearly
invariant to slight changes in the input.

4) FC Layer: The last pooling/convolutional layer’s output
is passed into an FC layer. An FC layer is responsible for
learning nonlinear combinations of prior high-level informa-
tion, and one or more FC layers can be utilized sequentially.
Furthermore, all the inputs of this layer are attached to its
output elements, as in a normal multilayer perceptron neural
network.
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Fig. 7. Proposed CNN model architecture for extracting features for UAV classification. The input data consist of a subset of 400 samples of range profile
from the output of the dataset acquisition chain, centered about the identified target range.

5) Classification Module: The last unit in the CNN is the
classification layer, which is applied to transform the output
of the last FC layer into the probability that the input belongs
to a given class. For multiclass classification, the softmax
classifier [47] with cross-entropy loss [48] is extensively used.

B. Proposed CNN Architecture

The proposed CNN architecture is shown in Fig. 7. The
model consists of the input data, two convolutional layers,
two ReLU functions, two pooling layers, and two FC layers
used as a classifier. The input data generated as described in
Section II-B consist of a (400 × 1) frequency-domain vector.
It represents 400 samples of range profile from the output of
the dataset acquisition chain shown in Fig. 6.

As shown in Fig. 7, before the convolution operation, the
input is reshaped to (1 × 20 × 20); then, it is introduced
into the network. Feature extraction is performed by using
two convolutional layers, where the first convolutional layer
was configured with K = 32 filters and the next layer
was configured with K = 64 filters. Furthermore, to reduce
the computational complexity, two max- and average-pooling
layers with pooling sizes of (2 × 2) and (7 × 7), respectively,
were applied after the convolutional layers.

To formulate a nonlinear model, the ReLU was chosen as
the activation function

f (x) =
{

x, if x ≥ 0

0, if x < 0
(17)

where x is the convolutional layer output. Eventually, after the
pooling layer, a flattening layer [49] is deployed to transform
the 1-D input matrix into a vector. Then, all feature vectors
x are given to the FC layers, which perform the following
operation:

c f = w f x + b f (18)

where c f is the output vector of the FC layer, which is
calculated by multiplying the input feature vector x , and w f ,

which is the FC layer weight matrix, and adding b f , which
is the bias of w f . Finally, a softmax activation function and a
classification module are applied to finalize the network.

The softmax function is applied to the last FC layer, thereby
normalizing the output of the FC layer between 0 and 1. The
softmax transfer function is

ŷ = softmax(c f ) = exp(c f )∑
(exp(c f ))

(19)

where ŷ is the result of the softmax function. Finally, we per-
formed class generalization by calculating the maximum out-
put of the softmax algorithm. Furthermore, the proposed model
employs an Adam optimizer [50] to make use of the adaptive
learning rate’s (LR) power for each parameter.

In addition, we chose a cross-entropy loss function to reduce
the loss (L) of the CNN

L = − 1

m

m∑
i=1

yi · log(ŷi) (20)

where ŷi is the class predicted by the CNN, yi is the label
of the input data, and m denotes the number of classes. The
parameter m is equal to 2 because there are two different
classes in the UAV classification: “QUAD” and “HELI.”

IV. EVALUATION AND RESULTS

This section discusses the experimental validation of
the method described in Section III using a commercial
millimeter-wave radar open platform and two classes of com-
mercial UAVs.

A. Dataset Generation

1) Experiment-Based Dataset: The measurement campaign
was accomplished in a semi-anechoic scenario (Fig. 8). The
adopted radar is a compact commercial open platform [51],
implementing a 77-GHz FMCW MIMO radar system, with
eight receiving and four transmitting antennas. The system is
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Fig. 8. Experimental setup adopted for the experimental validation.

based on a commercial chipset, allowing a certain degree of
flexibility on the most relevant radar parameters (e.g., chirp
parameters, carrier, transmitter power, and analog IF path
parameters). The receive antennas involve serial fed patch
antennas with eight elements, while the transmitting ones use
two serial fed patch antennas that are fed from the differential
output signal of the power amplifier; with the latter capable
to provide 10 dBm of output power at 77 GHz. The reference
oscillator is capable of generating a chirp signal with a
maximum frequency range of 4 GHz, from 75 to 79 GHz.
This carrier frequency was selected due to the potential
imaging-enabling capability due to the short wavelength, and
the availability of commercial platforms normally adopted for
transport and traffic telematics and radio-determination appli-
cations in vehicular communications. The radar platform is
controlled at a higher level by a field-programmable gate array
(FPGA), which controls the switching between transmitters
and the chirp, which is capable to carry on the basic signal
processing operations (e.g., sample rate reduction). The high-
est level of platform control is actuated by a microcontroller
unit, which allows a fast connection to a remote processor
unit through which the baseband RX channel signals can be
acquired coherently, while the postprocessing of the radar
image was carried out using a MATLAB code. Each receiver
path is equipped with a single mixer device, as is common in
FMCW radar architectures [37], [52]. The mixer is followed
by the six-channel Analog Devices AD8283 integrated radar
receive path, which is equipped with a corresponding number
of analog front end and a 12-bit analog-to-digital converter
capable of a maximum sampling frequency of 72 MSPS [53].
The FMCW MIMO radar parameters adopted in this study are
presented in Table I.

Two different kinds of UAV targets were used for mea-
surements; they are both shown in Fig. 9. The drone targets
used for the new measurements dataset belong to the same
classes of reference dataset presented in [12], leading to the

TABLE I

FMCW MIMO RADAR PLATFORM PARAMETERS

Fig. 9. Target UAVs for experimental validation. (a) Single-engine UAV,
RadioFLY Helicopter. (b) Quadcopter UAV, DJI Drone Mavic Mini.

model parameters shown in Table II, but they have different
mechanical specifications than the ones previously involved.
This aspect is of fundamental importance because the objective
of actual work is to provide by augmentation a training dataset
able to instruct a DNN to recognize targets belonging to the
same classes of reference ones despite having totally different
specifications.

For the single-engine UAV (class “HELI”), we selected
a small plastic helicopter with body dimensions of
10 × 30 × 20 cm, while for the quadcopter UAV (class
“QUAD”), a DJI Mavic Mini 2 drone [54] with body dimen-
sions of 24.5 × 29 × 5.5 cm was adopted.

As shown in [12] and briefly discussed in Section II-D,
an MTI algorithm [55] with a depth of 10 frames was used
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Fig. 10. Examples of acquired radar images for both target classes. (a) Drone-DJI quadcopter, single-frame acquisition. (b) RadioFLY helicopter, single-frame
acquisition. (c) Drone-DJI quadcopter, radar image after MTI algorithm. (d) RadioFLY helicopter, radar image after MTI algorithm. (e) Drone-DJI quadcopter,
range profile in boresight direction. (f) RadioFLY helicopter, range profile in boresight direction.

to extract the micro-Doppler signatures and remove the clutter
from the acquired measurements. For each measurement, the
range domain was sampled over 4096 points, but to lighten
the dataset, only 400 points (or rather, features) centered with
respect to the actual target range were utilized. For each target
class, 45 measurements were taken for various yaw orienta-
tions (Fig. 3). Fig. 10 shows two example radar acquisitions
for each target class before and after the application of the
MTI filtering algorithm and after the extraction of the range
profiles; being these latter evaluated as in Section II-D.

2) Synthetic Dataset: The model introduced in (6) does
not consider the angular information provided by the MIMO
array. UAV classification is done by evaluating only the
range profiles on the line of sight between the radar system
and the target. Several datasets comprising 32000 synthetic
measurements of 400 features each, equal to the number

of points for each real measurement, are produced by con-
sidering various standard deviation parameters (i.e., σP =
[0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.40, 0.50, 0.60]) for the
terms n“QUAD”i,P and n“HELI”i,P in (12) in the data generator
function shown in (4). For each class, the model parameter
vectors x“HELI” and x“QUAD”, as shown in (4), are those
proposed in [12] and shown in Table II. These vectors were
obtained by fitting the model parameters to one sample mea-
surement for each target class [12].

It is noteworthy that the UAV models considered in pre-
vious measurements are different from those involved in this
work. The use of the model coefficients related to different
UAVs, similar only within a given class, further demonstrates
the methodology’s effectiveness, showing that a model-based
augmenter can easily cover measurement scenarios that were
not considered initially.
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TABLE II

MODEL PARAMETER VECTORS FOR EACH CLASS

Fig. 11 shows several measurements related to each class
of the actual measured dataset; they are compared with one
measurement from the other class aligned to the target range
distance and with the synthetic data vector produced using the
model parameter vectors of Table II [12]. It is clear that the
synthetic model is able to reproduce features related to differ-
ent classes that are expressed through different trace behaviors
found on both sides of the maximum peak identifying the main
body of the drone target.

Fig. 11. Measured range profile (blue line) and synthetic range profile made
with model parameters (red line) for both classes. Each curve in this figure
contains 4096 samples of the range profile, of which 400 samples centered
around the target range are used as inputs to the CNN model of Fig. 7.
(a) Single-engine UAV, RadioFLY helicopter. (b) Quadcopter UAV, DJI Drone
Mavic Mini.

B. Performance Metrics for Classification Problems

Following the model implementation and the feature extrac-
tion, as well as the class estimation, the next step consists
of determining the effectiveness of the model-based dataset
generation method using some statistical indicator. The met-
rics employed to assess the DL model are important since
they determine how the DL network performs. Nevertheless,
various performance metrics are used to evaluate different
learning algorithms. For the sake of this study, we focus on the
metrics that are relevant to classification problems. Among the
classification performance metrics, we employ the confusion
matrix (CM), accuracy, and precision [56].

1) Confusion Matrix: A CM is composed of predicted and
actual classification information that is presented in a specific
table layout. During the predictive analysis, a square CM with
positive and negative rates is constructed (including both true
and false outcomes). Fig. 12 shows an example of a CM for
a binary classification, where TP stands for true positive and
indicates that the model correctly identified the class to which
a sample belongs. FP stands for false positive and indicates
that the model predicted that a sample belongs to a class that it
does not belong to. FN stands for false negative and indicates
that the model predicted that a sample does not belong to the
class that it actually does belong to. Finally, TN stands for
true negative and indicates that the model correctly predicted
that a sample does not belong to a class that it actually does
not belong to. An appropriate model will have high values for
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Fig. 12. CM for a binary classification.

the principal diagonal elements, TP and TN, and low values
for the off-diagonal elements.

2) Accuracy: The accuracy of the classification problem is
the ratio of the number of correct predictions made by the
model to the total number of predictions made by the model.
The accuracy (acc) is given by

acc = TP + TN

TP + FP + FN + TN
. (21)

3) Precision: The precision describes how many samples
were correctly classified in each class, and it is calculated as

prec = TP

TP + FP
. (22)

C. Experimental Results

In this section, we prove the effectiveness of the pro-
posed methodology by presenting the classification accuracy
obtained by the data augmentation method using the pro-
posed model-based augmenter versus the classification accu-
racy of a typical random signal processing augmentation
method.

First, the best σP value, leading to the highest classification
accuracy, should be chosen in order to obtain the optimal
model-based dataset. Since a large number of tests involv-
ing network training and testing should be carried out over
several σP values, the ML algorithms, due to their reduced
computational cost and lower computation time, are preferred
over CNNs. Then, the final classification accuracy is further
improved by applying the proposed CNN architecture.

1) ML Accuracy Versus σP : Several SVM, XGBoost, and
NB networks were trained with synthetic datasets with σP =
[0, 0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.40, 0.50, 0.60].

The trained network was assessed on three distinct datasets
referred as it follows. The “Old” refers to the dataset obtained
in [12] that includes 30 measured signatures for the UAVs
mentioned in [12], the “New” refers to the measurement
dataset described in Section IV-A1, which consists of 136 mea-
sured signatures for the UAVs considered in this article,
and “Mix” dataset is generated by merging the “Old” and
“New” datasets. Table III shows the class distribution between
measurements for each dataset.

With augmentation, trained CNNs are expected to be capa-
ble of correctly classifying new measurements not related to

TABLE III

CASE DISTRIBUTION IN MEASURED DATASETS

Fig. 13. Trend of classification accuracy on measured dataset with respect
to σP parameter values.

those used to extract model parameters. Therefore, the pro-
posed approach should provide the highest level of accuracy
for the “New” dataset choosing higher values for the σP

parameter since the objective is to augment the training dataset
to provide a reliable dataset that is not related to the “Old”
measurements reducing the risk of overfitting.

Table IV provides the classification accuracy results for
these three test datasets, and Fig. 13 shows the accuracy trends
with respect to σP parameter values. Due to space limitation
considerations, only a limited set of σP values are reported
in Table IV. Due to the different number of measurements
considered between the “Old” and “New” datasets, as shown
in Table III, the accuracy achieved for the “Mix” dataset results
to be equal to the weighted averages of the accuracies for each
single dataset. The relative weights for each dataset are listed
in Table III.

Table IV and Fig. 13 reveal that σP = 0.20 leads to the
highest accuracy on the dataset of new measurements com-
pared to the other σP values. Therefore, we chose σP = 0.20 to
create our best possible input dataset of 32 000 samples, each
of which has 400 features (i.e., range profile sample points).
In Fig. 13, it is noteworthy that the maximum accuracy is
achieved within a specific interval of σP , i.e., between 0.1 and
0.2, and in the same interval, the accuracy is maximized
for all the measurement datasets. Such behavior is expected,
as discussed in Section II, because the spreading of model
parameters by the perturbation vector provides a reliable
augmentation until relative ratios between features for each
sample are preserved. Furthermore, the provided results prove
the effectiveness of the proposed methodology for achieving
training datasets extended by augmentation, reliable enough to
cover measurement scenarios not initially considered.

2) Proposed CNN Performance Results: Next, we initiated
the training of the proposed CNN (cf. Section III-B) using the
optimal input dataset produced in the previous step.
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TABLE IV

CLASSIFICATION ACCURACY ON MEASURED DATASET WITH RESPECT TO σP PARAMETER VALUES WHERE “OLD” REFERS TO THE DATASET IN [12],
“NEW” REFERS TO THE DATASET IN THIS ARTICLE, AND “MIX” REFERS TO THE DATASET DERIVED BY MERGING THE TWO

Fig. 14. CM of the network trained on the model-based augmenter dataset
and tested on measurement data.

In the training procedure, we first split the 32 000-sample
dataset into three different parts: 1) training dataset; 2) val-
idation dataset; and 3) test dataset, which contains 80%,
10%, and 10% of the samples, respectively. The model is
then trained with a backpropagation algorithm and an LR of
LR = 0.001 for 50 epochs. Finally, the best model, chosen
using the validation dataset, is tested on the real measurement
dataset from Section IV-A1.

Fig. 14 shows the predictive performance of the proposed
CNN model for UAV classification using the real measurement
dataset. The columns in the matrix presented in Fig. 14
represent the predicted classes, while the rows represent the
actual classes. Considering Fig. 14 and based on the precision,
defined in (22), it is obvious that in the proposed network, 78%
of the samples taken from the quadcopter are correctly clas-
sified as “QUAD”-class samples, while 80% of the samples
taken from the helicopter are correctly classified as “HELI”-
class samples. Accordingly, the total network classification
accuracy, as defined in (21), is equal to 78.68%.

Next, to assess the effectiveness of the proposed aug-
mentation method, the CNN model is retrained following
the procedure described previously for 100 epochs using the
experimental dataset adopted in [12], which uses the random
signal processing augmenter. The process of data augmentation
involves transforming existing data to increase the number of
samples without collecting new data. In order to accomplish
this, we used the “tsaug” signal processing augmentation [57].
The “tsaug” is a Python package that augments signal data,
offering a variety of augmentation methods: in this study, drift,

Fig. 15. CM of the network trained on a conventional signal processing
augmenter dataset and tested on measurement data.

TABLE V

CLASSIFICATION PRECISION OF THE NETWORK TRAINED
ON DIFFERENT TRAINING DATASETS

pool, and reversing are used to augment the signal, as they
maintain the input sample size [57].

Fig. 15 shows the predictive performance of the CNN
model for UAV classification on the real measurement dataset
described in Section IV-A1. According to Fig. 15 and (22),
90% of the samples taken from the quadcopter are cor-
rectly classified as “QUAD”-class samples, while 15% of
the samples taken from the helicopter are correctly classified
as “HELI”-class samples. Accordingly, the total network acc
is equal to 66.18%; however, the classifier is highly biased
toward the “QUAD” class.

Table V shows the classification precision achieved by
the different networks: one trained with the conventional
augmented dataset and one trained with dataset built through
the proposed deterministic augmenter for two different σP

values. It is clear that despite achieving a similar accuracy,
the network trained with the deterministic augmented dataset
exhibits a far lower classification bias. We can thus draw the
conclusion that conventional augmenter leads to the unreliable
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training dataset, even for the basic case of the two UAV classes
classification considered in this work.

V. CONCLUSION

This article introduced a new data augmentation method-
ology based on a deterministic model of a physical sce-
nario. This work specifically addressed the classification of
UAV targets according to the number of motors using the
micro-Doppler radar signatures collected by a millimeter-wave
FMCW radar system.

The proposed method successfully trained a CNN for UAV
classification without requiring a measurement session to
generate a training dataset. The initial model parameters were
obtained through a fitting procedure that took into account
measurement data collected in a different scenario with UAV
targets different from those considered in this work; however,
these UAV targets did belong to the same classes as the targets
considered in this work. A perturbation vector is introduced on
vector of model parameters achieved by fitting to reduce the
dependence of the augmented dataset on reference measure-
ments, allowing the latter to cover the new targets involved in
this study.

In contrast to typical random signal processing augmenta-
tion methods, the augmented dataset produced with the deter-
ministic augmenter provides the variability required to perform
successful training while avoiding the risk of overfitting and
preserving physically significant features.

By the proposed methodology, a CNN trained on a synthetic
dataset produced by the deterministic augmenter introduced in
this work achieved a classification accuracy of 78.68% with a
minimum classification precision of 78.02%. In comparison,
the same network trained on a dataset built using the standard
augmentation methods obtained a classification accuracy of
66.18% with a far lower minimum precision of 15.55%,
thus showing a dramatic classification bias, which makes
such network unusable also in the case of the fundamental
classification objective considered in this work.

The proposed deterministic augmenter is based on a simple
and scalable physical model of the backscattering for the
expected radar targets. The achieved results have shown that
despite the simplicity of the model, the latter was able to
provide a meaningful of informative features for the training,
as demonstrated by the lowering of the classification bias for
the CNN network trained by deterministic augmenter.

Therefore, it can be expected that increasing the model
complexity and introducing more parameters, i.e., extending
the model to provide range profiles collected from different
receiving antennas, it could be possible to produce large
training datasets covering different kinds of UAVs, by spec-
ifying details about their own geometries. Following this,
it could be considered to train future DL networks to provide
more detailed information about the identified UAV targets,
without the need of large measurement campaigns for training
involving several UAV specimens.

The same approach in principle could be extended to other
application scenarios, as human recognition [58], or medical
imaging [59], where the collection of a large training dataset
would require a significant amount of time and resources.
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