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Abstract We consider the radiation of a soft gluon (g)
and a soft quark—antiquark (¢g) pair in QCD hard scatter-
ing. In the soft limit the scattering amplitude has a singu-
lar behaviour that is factorized and controlled by a soft cur-
rent, which has a process-independent structure in colour
space. We evaluate the soft ggg current at the tree level for
an arbitrary multiparton scattering process. The irreducible
correlation component of the current includes strictly non-
abelian terms and also terms with an abelian character. Anal-
ogous abelian correlations appear for soft photon—lepton—
antilepton emission in QED. The squared current for soft ggg
emission produces colour dipole and colour tripole interac-
tions between the hard-scattering partons. The colour tripole
interactions are odd under charge conjugation and lead to
charge asymmetry effects. We consider the specific appli-
cations to processes with two and three hard partons, and
we discuss the structure of the corresponding charge asym-
metry contributions. We also generalize our QCD results
to the cases of QED and mixed QCD x QED radiative
corrections.

1 Introduction

The large amount of high-precision data already taken at the
CERN large hadron collider (LHC) demands theoretical pre-
dictions with a corresponding high precision. This situation
will be further accentuated with the Run 3, which already
started in the spring of 2022.

In the context of QCD, the theoretical accuracy is typically
increased by performing perturbative calculations of radia-
tive corrections at higher orders in the strong coupling «s.
The present high-precision frontier is represented by compu-
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tations at the next-to-next-to-next-to-leading order (N?LO)in
the QCD coupling (see, e.g., Ref. [1] and references therein).

In theories with massless particles, like QCD, scattering
amplitudes lead to infrared (IR) divergent contributions, and
finite results are obtained by combining real and virtual radia-
tive corrections in computations of physical observables. The
basic property that produces the cancellation of the IR diver-
gences is their universal (i.e., process-independent) struc-
ture. The IR singular behaviour of the scattering amplitudes
is indeed controlled by universal factorization formulae and
by corresponding singular factors for emission of soft and
collinear radiation (see, e.g., Ref. [2] and references therein).
The knowledge of these factorization formulae in explicit
form is therefore very important to practically organize and
greatly simplify the cancellation of the IR divergences in
perturbative calculations at various perturbative orders.

The cancellation mechanism of the IR divergences pro-
duces residual logarithmic contributions that are quantita-
tively large for a wide class of physical observables which
are evaluated in kinematical regions close to the exclusive
boundary of the phase space. These large contributions have
to be computed at high perturbative orders, and possibly
resummed to all orders in perturbation theory (see, e.g., Refs.
[3,4] and references therein). For instance, QCD resumma-
tion for transverse-momentum distributions has reached the
next-to-next-to-next-to-leading logarithmic (NLL) accu-
racy [5-8]. In general, soft and collinear factorization for-
mulae of scattering amplitudes are important ingredients in
the context of QCD computations and resummations of large
logarithmic contributions of IR origin.

Soft and collinear factorization formulae at O(as) had
a key role to devise process-independent and observable-
independent methods to perform next-to-leading order (NLO)
QCD calculations (see, e.g., Refs. [9—12]). Similarly, soft/
collinear factorization at O(aé) [13-24] is used to set up and
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develop methods (see, e.g., the reviews in Refs. [1,25-27])
at the next-to-next-to-leading order (NNLO).

The knowledge of soft and collinear factorization of scat-
tering amplitudes at O(ag) can be exploited in the context of
N3LO calculations and of resummed calculations at N3LL
accuracy. The singular factors for the various collinear limits
at (’)(ag) were presented in Refs. [23,28-40]. The study of
soft factorization of scattering amplitudes at O(ag) involves
two-loop, one-loop and tree-level contributions for various
soft-parton multiplicities. Single soft-gluon emission at two
loop order was examined in Refs. [39,41-43]. Double soft-
parton radiation at one loop level was considered in Refs.
[44,45]. Triple soft-gluon emission at the tree level was stud-
ied in Ref. [46]. This paper is devoted to study soft gluon—
quark—antiquark (gg¢g) radiation at the tree level, which has
been independently considered very recently in Ref. [47].
Comments on Ref. [47] are presented throughout the paper.

The outline of the paper is as follows. In Sect. 2 we first
introduce our notation and recall the soft factorization for-
mula for scattering amplitudes. Then we present the calcu-
lation of the tree-level current for soft ggg emission in a
generic hard-scattering process. The result for the current
has an irreducible correlation component that includes con-
tributions with both abelian and non-abelian characters. In
Sect. 3 we consider soft factorization of squared amplitudes
and we compute the squared current for soft ggq radiation.
The squared current leads to irreducible colour dipole and
colour tripole interactions. The colour tripole interactions
are odd under charge conjugation and they produce charge
asymmetry effects between the soft quark and antiquark. In
Sect. 4 we consider the specific applications to processes
with two and three hard partons and, in particular, we discuss
the structure of the corresponding charge asymmetry contri-
butions. In Sect. 5 we generalize our QCD results for soft
gqq emission to the cases of QED and mixed QCD x QED
radiative corrections for soft photon—fermion—antifermion
and gluon—fermion—antifermion emissions. A brief summary
of our results is presented in Sect. 6. In Appendix A we list the
action of colour tripole operators onto scattering amplitudes
with two and three hard partons.

2 Soft factorization and soft currents

In this section we first introduce our notation, mostly fol-
lowing the notation that is also used in Refs. [45,46] (more
details can be found therein). We also briefly recall the fac-
torization properties of scattering amplitudes in the soft limit
and the known tree-level results for the emission of one soft
gluon and the emission of a soft quark—antiquark pair. Then
we present and discuss our results of the soft current for the
emission of a ggg system at the tree level.

@ Springer

2.1 Soft factorization of scattering amplitudes

We study the soft behaviour of a generic scattering amplitude
M whose external-leg particles are on shell and with phys-
ical spin polarizations. In our notation all external particles
of M are treated as ‘outgoing’ particles (although they can
be initial-state and final-state physical particles), with cor-
responding outgoing momenta and quantum numbers (e.g.,
colour, spin and flavour). The perturbative evaluation of M is
performed by using dimensional regularizationind = 4 —2¢
space-time dimensions, and p is the dimensional regular-
ization scale. Specifically, we use conventional dimensional
regularization (CDR), with d — 2 spin polarization states for
on shell gluons (and photons) and 2 polarization states for on
shell massless quarks or antiquarks (and massless leptons).

We consider the behaviour of M in the kinematical config-
uration where one or more of the momenta of the external-leg
massless particles become soft. We denote the soft momenta
by q}f (¢ =1,...,N,and N is the total number of soft par-
ticles), while the momenta of the hard particles in M are
denoted by pf‘ (in general they are not massless and pi2 =
ml2 # 0) In this kinematical configuration, M ({g¢}, {pi})
becomes singular. The dominant singular behaviour is given
by the following factorization formula in colour space [17—
19]:

IM(ged. {pih) = J(q1, ..., gn) IM{pi]).

Here M({p;}) is the scattering amplitude that is obtained
from the original amplitude M ({q,}, {pi}) by simply remov-
ing the soft external legs. The factor J is the soft current for
multi-particle radiation from the scattering amplitude.

At the formal level the soft behaviour of M({g¢}, {p:i})
is specified by performing an overall rescaling of all soft
momenta as g; — £q; (the rescaling parameter £ is the same
for each soft momentum g;) and by considering the limit
& — 0. In this limit, the amplitude is singular and it behaves
as (1 /S)N (modulo powers of In& from loop corrections).
This dominant singular behaviour is embodied in the soft
current J on the right-hand side of Eq. (2.1). In this equation
the symbol ~ means that on the right-hand side we neglect
contributions that are less singular than (1/£)" in the limit
&E—0.

The soft current J (g1, . .., gn) in Eq. (2.1) depends on the
momenta, colours and spins of both the soft and hard partons
in the scattering amplitude (although the hard-parton depen-
dence is not explicitly denoted in the argument of J). How-
ever this dependence entirely follows from the external-leg
content of M, and the soft current is completely independent
of the internal structure of the scattering amplitude. In par-
ticular, we remark that the factorization in Eq. (2.1) is valid
[17,19,48] at arbitrary perturbative orders in the loop expan-
sion of the scattering amplitude. Therefore on both sides of
Eq. (2.1) the scattering amplitudes have the loop expansion
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M) = |IMOy MDYy ... where M© is the contribu-
tion to M at the lowest perturbative order, M is the one-
loop contribution, and so forth. Correspondingly, we have
J=JO 4 gb 4 .-+, where J® is the contribution to
J at the n-th loop accuracy. In the following sections of this
paper we limit ourselves to considering explicit expressions
of only tree-level currents J© and, for the sake of simplicity,
we simply denote them by J (removing the explicit super-
script (0)).

Considering the emission of soft QCD partons, the all-
loop current J in Eq. (2.1) is an operator that acts from the
colour + spin space of M({p;}) to the enlarged space of
M({qe}, {pi})- In particular, soft radiation produces colour
correlations. To take into account the colour structure we
use the colour (+ spin) space formalism of Ref. [10]. The
scattering amplitude M(! (2" depends on the colour (c;) and
spin (s;) indices of its external-leg partons. This dependence
is embodied in a vector | M) in colour + spin space through
the definition (notation)

MEI2 = ((cl,cz, ] ® (s, 82, ..

1) IM), (22)

where {|c1, c2,...) ® [s1,82,...)} = {lc1,s1;¢2,82,...)}
is an orthonormal basis of abstract vectors in colour + spin
space.

In colour space the colour correlations produced by soft-
gluon emission are represented by associating a colour charge
operator T'; to the emission of a gluon from each parton i. If
the emitted gluon has colourindexa (a =1, ..., N, 2 —1, for
SU (N.) QCD with N, colours) in the adjoint representation,
the colour charge operatoris T; = (a| T and its action onto
the colour space is defined by

(a,ci, .. SemlTilby, ...

= 8(;1171 e (Ta)cibi e (Sc,,,bm,

»bi»~--abrn)

., Ciy .

(2.3)

where the explicit form of the colour matrices TL? b depends
on the colour representation of the parton i:

(Tpe = ifP*  (adjoint representation) if i is a gluon,

(THap = tgﬁ (fundamental representation with o, 8 =1, . ..

(T“)ep = —tg, ifi is an antiquark.

ply expressed by the relation

Z T; |IM)=0, (2.4)

where the sum extends over all the external-leg partons i of
the amplitude M. For subsequent use, we also introduce the
shorthand notation

ZTZ-(::So,
1

where the subscript CS in the symbol I Mmeans that the
equality between the terms in the left-hand and right-hand
sides of the equation is valid if these (colour operator) terms
act (either on the left or on the right) onto colour-singlet
states.

2.5)

2.2 Tree-level currents

The tree-level current J(q) for the emission of a single soft
gluon of momentum ¢" is well known [49]:

pi - €(q)

1

=L@ (@). (26

J@) =gsu Y T

where gg is the QCD coupling (as = g% /(4m)). The notation
>_; means that the sum extends over all hard partons (with
momenta p;) in M, T'; is the colour charge of the hard parton
i, and €"(g) is the spin polarization vector of the soft gluon.

The current for emission of soft gluons is conserved by
acting on colour-singlet states (see Ref. [46] for a general
discussion on soft-current conservation). From Eq. (2.6) we
have

q"Ju(@) =) _Ti 2.7)

N.)if i is a quark,

We normalize the colour matrices such as [T}, T;’] =
ifecTes;; and Tr(19t?) = Tg 845 with Tg = 1/2. We also
use the notation ), 7T} = T; - T and T? = C;, where
C; is the quadratic Casimir coefficient of the colour repre-
sentation, with the normalization C; = C4 = N.ifi isa
gluon and C; = Cf = (ch — 1)/(2N,) if i is a quark or
antiquark.

Note that each ‘amplitude vector’ |M) is an overall
colour-singlet state. Therefore, colour conservation is sim-

and, therefore, by using colour conservation in Eq. (2.4), the
current conservation relation ¢ J “(q)c__so is directly ful-
filled.

The tree-level currents for emission of two and three soft
gluons were computed in Refs. [18,46], respectively.

The emission of a soft quark—antiquark (g¢g) pair by tree-
level QCD interactions was studied in Ref. [18]. Using our
notation, the QCD current for radiation of a soft quark and

@ Springer
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Fig. 1 Feynman diagrams that contribute to the current J(q1, g2, ¢3) for soft ggg emission. The external-leg hard partons with momenta p; and
p; are coupled to gluons by using the eikonal approximation. The scattering amplitude M ({p;}) is denoted by the grey circle

antiquark at the tree level is [45]

2 e Di-J(1,2)
J(q1,92) = — (gs u* T ————,
a4 (85 1%) Z " opioqi2

1

2.8)

where we have introduced the fermionic current jV(1, 2),

1.2) = u(q1) J/2” U(!Iz)’
q12
The soft quark and antiquark have momenta ¢ and g,
respectively, and u(g) and v(g) are the customary Dirac
spinors. The spinindices (s1 and s7) and the colour indices (¢
and «) of the quark and antiquark are embodied in the colour
+ spin space notation of Eq. (2.8). Considering the projec-
tion ({1, o2| ® (s1,521) J(q1,92) = J5'35°(q1., q2) of the
current onto its colour and spin indices, we have ({(o1, a2| ®

(s1,821) 8 u(q1) y" v(q2) = 15,4, U(s1)(q1) V" V(sp)(q2)

q12 =q1 + q2. (2.9

2.2.1 The tree-level current for soft gqq emission

The tree-level current for soft ggg emission is denoted by
J(q1, q2, g3). The soft gluon has momentum ¢, while g»
and g3 are the momenta of the soft quark and antiquark,
respectively.

We compute J(q1, g2, q3) by using the method of Ref.
[18], namely, we consider eikonal emission of the three soft
partons from the external hard partons of the generic scatter-
ing amplitude M. The relevant Feynman diagrams are shown
in Fig. 1. The external-leg hard partons with momenta p; and
p; are coupled to gluons by using the eikonal approximation
for both vertices and propagators. The remaining contribu-
tions to the Feynman diagrams in Fig. 1 are treated without
any approximations for vertices and propagators. We note
that the propagators of the off shell (internal-line) gluons are

@ Springer

gauge dependent. We have computed the current by using
both axial and covariant gauges for the polarization tensor
of the internal-line gluons, and we have checked that the
final result for J (g1, g2, g3) is explicitly gauge independent.
More precisely, the total contribution of the gauge dependent
terms vanishes by using the colour conservation relation in
Eq. (2.4).

We present our result for J(q1, g2, ¢3) in the following
form:

J(q1.q2.93) = (J(q1) J (92, 613))”,,,1 + (g1, 92, 93),
(2.10)

where J(q1) and J(q2,q3) are the currents in Egs. (2.6)
and (2.8), and we have introduced the symbol (... )gyn, to
denote symmetrized products. The symmetrized product of
two colour space operators A and B is defined as

1

(A B)sym E

(AB + BA). (2.11)
The right-hand side of Eq. (2.10) has the structure of an
expansion in irreducible correlations, which is analogous to
the structure of the two-gluon and three-gluon soft currents
in Refs. [18,46], respectively. The first term in the right-
hand side of Eq. (2.10) represents the ‘independent’ (though
colour-correlated) emission of the soft gluon and the soft gg
pair from the hard partons. The term I'(¢1, g2, ¢3) is def-
initely an irreducible correlation contribution to soft ggg
emission.

To present our result for the irreducible contribution we
consider the projection J* = (aj|J of the current onto
the colour index a; of the soft gluon. The corresponding
projection I'*! = (a;|T of the irreducible correlation has the
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following explicit expression:

Tq1. q2. 43) = (gs 1u°) ZT‘ v, 2. 43), (2.12)

where

u|c

(g1, 92.q3) = —{t‘“ t }J/,( 41, 42, 43)

+ E[t“u ™G, g2, 93, (2.13)
enlqr)
v g1 42, 3) = ZLM(CD)
d123 Pi - 4123
13 12
(ﬁzq " "q—zlﬁl) v(q3),
q13 a1
(2.14)
EACI
v 1. 2. 43) = % u(q2)
.-
w
p; 1 1
X5 ( - ) pi
q>3 \Pi 41 Pi 423
1 1 "
+ 5| 5 (2pi- (@3 —q)y
‘1123 a3
12
—4q55pi +4p! d1) — “q ;é,
q13
—pi—5r" | [ vig3), (2.15)
q13

and we have defined ¢;; = ¢g; +¢; and q123 = q1 +q2 +g3.
The expression of y?‘c in Eq. (2.13) involves products (an
anticommutator and a commutator) of two matrices t? in
the fundamental representation. Considering the projection
Jéleoé3 = (ay, oy, o3| J of the current onto the colour indices
as and a3 of the soft quark and antiquark, the action of the
matrices #” in Eq. (2.13) is (o2, o3| t9t° = (t9t) apar3-

The ‘independent’ emission contribution
(J(qD) J (g2, Q3))sym in Eq. (2.10) embodies products of the

type T} ka of colour charges of two hard partons. In con-
trast, the irreducible component I in Eq. (2.12) has a linear
dependence on the colour charges 7 of the hard partons.
This feature of I' is analogous to the linear dependence on
Tf of the irreducible component of the currents for double
[18] and triple [46] soft-gluon emission.

We note that the irreducible component I' in Egs. (2.12)
and (2.13) embodies a contribution of abelian type, which is
proportional to the kinematical function yi(ab), in addition to
a purely non-abelian contribution, which is proportional to
yi(na). In contrast, in the case of double and triple soft-gluon
emission [18,46] the irreducible correlations are maximally
non-abelian. The presence of an abelian-type contribution
in Egs. (2.12) and (2.13) implies corresponding irreducible

correlations in the current for soft photon—lepton—antilepton
emission in QED (see Sect. 5).

Writing J (g1, 92, 93) = €"(q1) Jv(q1, q2, q3) we make
explicit the dependence of the current on the Lorentz index v
of the soft gluon. It is straightforward to check that the result
in Egs. (2.10) and (2.12)—(2.15) fulfils current conservation,
namely,

a1 Jv(q1, 92, 43) 50 (2.16)

The result of J(q1,q2, ¢g3) in Egs. (2.10)—-(2.15) fully
agrees with the corresponding result of the soft ggg cur-
rent that was first computed in Ref. [47]. Our results and
those in Ref. [47] formally differ only in the presentation
of the expression of p{'“ in Eq. (2.13). We use the two
independent colour structures {#%!, ¢} and [¢7!, ¢¢], while
Ref. [47] uses the three colour structures ¢41¢¢, t“t*! and
[t ¢t =if arcbgb \which are linearly dependent.

3 Tree-level squared currents

Using the colour + spin space notation of Sect. 2.1, the
squared amplitude | M|? (summed over the colours and spins
of its external legs) is written as follows

IMP2 = (M| M). (3.1)

Accordingly, the square of the soft factorization formula (2.1)
gives
Lan)PIMpih),

IMge) (piDI* = (MUpiDI 1T (1, - ..

3.2)
where
s
|J(611,...,qN)|2_ Z [JsCll s%v(q]’---,CIN)]
{eit{si}
)TN (g1, qn),s (3.3)

and, analogously to Eq. (2.1), the symbol ~ means that we
neglect contributions that are subdominant in the soft limit.
The squared current |J(q1, ..., gn)|? which is summed
over the colours cg ...cy and spins sj ... sy of the soft par-
tons, is still a colour operator that depends on the colour
charges of the hard partons in M ({p;}). These colour charges
produce colour correlations and, therefore, the right-hand
side of Eq. (3.2) is not proportional to |M({p;})|* in the
case of a generic scattering amplitude.'

The computation of the squared current in Eq. (3.3)
involves the sum over the physical spin polarization vec-
tors of the soft gluons. These polarization vectors are gauge
dependent, but the action of |J|?> onto colour singlet states

1 Colour correlations can be simplified in the case of scattering ampli-
tudes with two and three hard partons (see Sects. 4.1 and 4.2).

@ Springer
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is fully gauge invariant, since the gauge dependent contribu-
tions cancel as a consequence of the conservation of the soft
current (see, e.g., Ref. [46]).

We recall the known results of the squared currents for
emission of one soft gluon and of a soft ¢gg pair. The square
of the soft current J (¢1) in Eq. (2.6) for single gluon emission
is

2 _ i - _ €)2 . :
[T @I =T @) = — (gs 1) ;Tz T Sie(qn),
(3.4)

where

——
Siklq) =~
Di-q Pk -4
The square of the soft current J (g2, g3) in Eq. (2.8) for gg
emission is [18]

(3.5)

(g2, 43)* = T(q2. 43)" T (g2, a%3) 5 (gs ME)4 TR

x Y Ti - Tr Ti(q2. q3). (3.6)
ik
where
_ Pi*92 Pk 93+ DPi-q3 Pk 92 — Di - Pk 92" 93
Tir(q2.93) = .

(@2 - 93)? pi - 923 Pk - 923
3.7)

The colour charge dependence of both squared currents
in Egs. (3.4) and (3.6) is given in terms of dipole operators
T; Ty =)_,T T Theinsertion of the dipole operators in
the factorization formula (3.2) produces colour correlations
between two hard partons (i and k) in M({p;}).

Using colour charge conservation (see Eq. (2.4)), the
single-gluon and ¢gg squared currents in Egs. (3.4) and (3.6)
can be rewritten as follows

1
T@)P g —(ssn)” 32 Ti-Tewidg),  (38)

ik
wik(q1) = Sik(q1) + Ski(q1) — Sii(q1) — Skk(q1),
(3.9)
1
|J (g2, 43)|2C=S — (gs M€)4 TR 7 ; T; Tywir(g2,q3),
(3.10)
wik(q2, q3) = Lii(q2, 93) + Lrk (q2, q3)
— Tik(q2, 93) — Tki(q2. q3). (3.1D

As noticed in Refs. [45,46], the expressions in Egs. (3.8)
and (3.10) have a more straightforward physical interpreta-
tion, since the kinematical functions w;x(g1) in Eq. (3.9) and
wik(q2, q3) in Eq. (3.11) are directly related to the intensity
of soft radiation from two distinct hard partons, i and k, in a
colour singlet configuration (see Sect. 4.1).

@ Springer

3.1 The squared current for soft ggq radiation

The soft-g g kinematical functions Zjx (g2, ¢3) and wix (g2, q3)
in Eqgs. (3.7) and (3.11) are symmetric with respect to the
exchange ¢» <> g3 of the quark and antiquark momenta. The
evaluation of the one-loop QCD corrections to the soft-gg
squared current [45] produces also kinematical correlations
with an antisymmetric dependence with respect to g2 < g3.
As discussed in Ref. [45], such antisymmetric dependence is
related to charge asymmetry effects that are distinct features
of the radiation of quarks and antiquarks. An antisymmet-
ric dependence with respect to g» <> g3 and ensuing charge
asymmetry effects occur also in the tree-level squared cur-
rent |J (1, ¢2, ¢3)|? for soft ggg radiation, as we discuss in
the following. Similar to Ref. [45], the charge asymmetry
effects for soft ggg radiation involve colour correlations that
depend on the fully-symmetric colour tensor? d%>¢,

debe = TL Tr ({t“, tb} tC> :
R

which is odd under charge conjugation.

We compute the square of the tree-level ggg current by
using the structure in Eq. (2.10) and we obtain the follow-
ing three contributions: (/) the square of the ‘uncorrelated’
current (J (q1) J(q2, q3))sym, (1I) the product of the ‘uncor-
related’ current and the irreducible current I' (q1, g2, ¢3), (1I)
the square of the irreducible current.

The square of the  ‘uncorrelated”  current
(J (@) J (g2, q3))sym can be written in terms of the symmet-

(3.12)

ric product of the squared currents | J (¢1)|> and | J (g2, ¢3)|?,
and an additional irreducible term W), which involves
colour dipole correlations. We obtain

(J @) J@2.43)) 1> = (1T @D 1T (92, 43)),,
+ W1, 92, 93). (3.13)
WD (g1, q2.43) = — (g5 1) TRCA Y Ti - Ty

ik
s 3.14
x 85.°(q1, 92, q3), (3.14)
where the momentum function Sl.(lg )(ql, q2,q3) is?
I
Si(k)(‘Ih q2,q3)
. Piq2 [pipk (3 Prqs 2pi613>
4(q293)% piq1 pigs Lpeqi \ peqes  pigos
_ 2m} pigs 4 Pi Pk
Piq1 Pkq23 8q2q3 piq1 Piq23

2 If N. = 2 the tensor d“*¢ vanishes and there are no charge asymmetry
effects.

3 In Eq. (3.15) and in the following equations the scalar products v - u
between to generic momenta u* and v/ are simply denoted by vu.
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—3p; 1 1
% |: Pi Pk +2mi2 ( n )i|
Pkq1 Pkq23 Piq1 Pkqg23 Pkq1 Piq23

+ (2 < 3). (3.15)

The product of the ‘uncorrelated’ current and the irre-
ducible current leads to colour correlations that involve
dipoles and tripoles. We have

> (I I @2 99).,, T@1, 92, 3)
+he. = WD, g2, q3)

6
—(gsu)’ Tr | Ca E T:- T Sy (1. 42, 43)
ik

+ YT Sim(q1.42.93) |+ (3.16)

i,k,m

where ‘h.c’ denotes the hermitian-conjugate contribution,

ant;li we have defined the (hermitian) d-type colour tripole
T as
ikm

T\ = (3.17)

Z dabc Ta Tk

a,b,c

The complete symmetry of d**¢ causes 7:,((02 to be completely
symmetric in the permutations of its indices i, k, m.

Sitm (91, 92, q3)

1 { 1
a Piq1 Pkq23 Pmq123 611223 49192 9293
X [piQI (Pkq2 Pmq3 + Pkq3 Pmq2)

+ pig2 (Pkq1 Pma3 + Pd3 Pmd
+ 2 (prq2 Pma3 + Pk93 Pm4q2))
+ piq3 (—Prq1 Pmq2 + Pkq2 Pmq1)

+ q193 (Pi Pk Pmq2 — Pi Pm Pkq2 — PkPm Pi‘h)]

1

—— (pipm Pk

+ — PiPk Pmq1
q192

1
— pepm (Piq1 + 2 piq2)) + —— (P Pm Piq3
q293

— DiPk Pmq3 — DiPm pkq3)} - 2<3). (3.19)

Note that, while all dipole kinematical coefficients are sym-
metric in the exchange ¢» <> g3 of the quark and antiquark
momenta (see also Si(kI”’ab) nd S(”I 1) iy Egs. (3.21) and
(3.22)), the coefficient S;x, (q1, g2, q3) of the tripole is anti-
symmetric in such exchange.

The square of the irreducible current gives

T (g1, 92, 43) T(q1, 92, 43) = W'D (q1, q2, 43)
(111,ab)
= —(ssn) TRZ{ (CF—f) Sy a1, a2, 93)

The kinematical coefficient Si(,g D of the dipole contribu- Ca 11100
,ha
tion to Eq. (3.16) reads + TS”‘ (q1, q2, qS)}Ti Ty (3.20)
(an 1 2 Pkg2 2m? q1q3 — piqi23 Piq3)
29293 piq123 | 4723 9293 Piq1 Pkq23
_ Piq2 2 pipkg193 — (piq1 — pig2 + 3 piq3) pkq3)> n 1
Pkq1 Piq23 611223 q192
» 2 piqi2 (pi Pk 4243 — Piq2 Prq3 — Piq3 Pkq2) +m7 (Prq2 4193 — Prqi 4293)
Piq1 Pkq23
m} ((prq1 + 2 prd) 0243 + Preaz 9193) — 2 (piq prqi + (pig1 +2 pig2) peg2) pids
Pkq1 Piq23
1 pipk Pigi23 +m? (prq2 — 2 pkq1) _ 3m? prg> — pi Pk Pid1
I Piq1 prqa3 Pkq1 piq3
1 1 1 m? prqs Pi Pk Piq3 1 1 1
+— | rig2 < - ) : _ PPk Pig +—m? pipk -
4293 piq1 piq23 piq1 Pkq23 Pkq1 Piq23 2 Piq23 piq1
1 1
X — + (2 < 3). (3.18)
Piq1 Pkq23  Pkq1 Piq23

The kinematical coefficient S;,, of the tripole contribution
to Eq. (3.16) is

@ Springer
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The kinematical function Sl.(,g I1,ab) stems from the abelian-

type term proportional to y 2 in Egs. (2.12) and (2.13), and
we obtain

1
(@%23)% Piq123 Prq123

111,ab
ST q1.q2.3) =[

9293
X{———*QMMQ%+M—®mmmm

9192 9193
= 2piq1 k923 — 4 piq2 Pk‘]3)

1
+ P (Pipk ((d=2)q193 +4q2q93) +2(4 — d) p;iq1 pPrq2
+2Q@2—4d) piq1 pka3 +4 pig2 pr(q2 — q3))

+<d—4>pipk} +<2«>3>] + i ok, (3.21)

The kinematical function Si(,f Hnd) - omes from the non-
abelian term proportional to y ™ in Egs. (2.12) and (2.13),
and we have

1 1

111,

s\ "a)(ql,qz,qa)=[ { 73
Piq123 Prq123 | (q753)

» [8Pipk 9192 9193

(9293)?
n 2((d —6) pi(q1 —q3) — 2+ d) piq2) prq2 9193
9192 9293
q293
————— (=2 pi pr 9293
4192 9193

+ piq1 (4 —d) prq1 + 2 peq2) + 2 piq2 (prq1 + 2 prq3))

1
+ —— @ pirk 193 + piq1 (2 — d) prq
9293

+2(d —6) prg2) + 8 piq2 pr(q3 — q2))
1
+ P (piprk ((d = 2) q193 — 4 q293) + piq1 2(6 — d) prq:

+2(d -4 prq2 + (10 — d) prg3)
+2piq2 ((d +2) prq1 — 2 prq2 + 6 prq3)
+ pig3 ((d = 2) prq1 + 8 pkq2))

1
(9293)*

1 1
X (( - >2piq2 (2 pi pk
Piqi Piq»

X q193 — 2 piq2 pkq3 — Piq3 pkth))

1
+(4—d>p,-pk} L [
4123

1 ( 1 1 >
+ —
4192 9293 \ Piq1 piq23
x (2 pipr Piqz2 — mi2 Prq2) 9193
=2 piq2 (piqi2 pkq3 + Piqg3 Pkq12))

1 << 1 1 >
+ _ —
49293 pPiqi piq23

x (m? pr(q1 — q2) +2 pipr 2 piga — piql))>

1 1 1
+ — << - ) (2 pi pi piqa +m? prqr) _4Pipk>]
q192 piq1 Piq23

@ Springer

4 PiPkpia2 g3 < 1 )( 1 )
2 (q293)? piqr pign/) \pkq1 prg3
L =i P)?

49293

><< b )(L— ! >}+(2<—>3)i|+(i<—>k).
piq1  Piq23 Pkq1 Pkq23
(3.22)

In summary, the squared current for soft ggg emission is
obtained by summing the contributions of Egs. (3.13), (3.14),
(3.16) and (3.20), and we find

1 (g1, 92, 431> = (1T (qDI* 1T (g2, 43) )
+W(q1,q2, q3),

sym

(3.23)

where

Wi(q1,q2,q3)
= W1, q2.q3) + WD (q1. g2, q3)
+ WD (g1, 42, q3)

_ _ €\6 .
= —(esu)’Tr { D Ti - Ti
ik
A F
X [CA S,»(k '(q1,42,43) + CF S,»(k (1, 42, %)]

+2 T Sikm(a1, 42, 43) (3.24)

i,k,m

The kinematical function Sj,, is given in Eq. (3.19), and the
kinematical functions Sl.(,? ) and Si([ ) of the dipole contribu-
tions to Eq. (3.24) are

A
Sl-(k (g1, 2. q3) = 5,-(,?(!11 242, q3) + S,»(,fl)(éh, q2,43)

1
t3 (Si(,f”’na)(fh, 92, 93)

~84"* (1. 42, 613)) : (3.25)
S a2 q3) = Si(,f”’ab) (g1, 92, 93)- (3.26)

where Si(kl), Si(,fl), SUILab) anq Si(,f”’na)
Egs. (3.15), (3.18), (3.21) and (3.22).

The kinematical functions Sl.(,? ) , Si([ ) and Sikm In
Eq. (3.24) depend on the hard-parton momenta, and we recall
that our results are valid for both massless and massive hard
partons (see, e.g., the dependence on p? = ml2 in Egs. (3.15),
(3.18) and (3.22)).

We note that the dipole kinematical functions Sl.(,? ) and
S in Egs. (3.25) and (3.26) (i.e., SUI1:3) and §]/1
in Egs. (3.21) and (3.22)) have an explicit dependence on €
through the number d = 4 — 2¢ of space-time dimensions.

are given in
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Such € dependence actually derives from the fact that we
use CDR with hy, = d — 2 = 2(1 — €) spin polarization
states for the on shell soft gluon with momentum ¢;. Other
versions of dimensional regularization, such as dimensional
reduction (DR) [50] and the four-dimensional helicity (4DH)
scheme [51], use hg = 2 spin polarization states. The result
for | J(q1, g2, ¢3)|? in the DR and 4DH schemes is obtained
by simply setting € = 0 (i.e., d = 4) in our expressions for
SO and S,

In Eq. (3.23) the squared current for the radiation of the
three soft partons is decomposed in terms of irreducible cor-
relation contributions, similar to the analogous decomposi-
tion of the squared currents for double [18] and triple [46]
soft-gluon radiation. The first term in the right-hand side
of Eq. (3.23) represents the ‘independent’ (though colour-
symmetrized) radiation of a soft gluon and a soft-gg pair
according to the corresponding squared currents |J (¢1)|?
(see Eq. (3.8)) and |J (q2, q3)|2 (see Eq. (3.10)). The term
W(q1, g2, q3) in Eq. (3.23) is an irreducible correlation con-
tribution for soft ggg radiation.

The colour structure of W(q1, g2, ¢3) inEq. (3.24) is given
in terms of dipole operators T'; - T and tripole operators Tl,(:iz
(here, two or three of the hard-parton indices i, k and m can
also be equal). The presence in the tree-level squared current
|J (g1, g2, g3)|? of colour correlations due to the tripole oper-

ators ’T,(mz was first observed in Ref. [47]. We note that the

contributions to Eq. (3.24) that are proportional to Sl.(,? ) have
a purely non-abelian origin. The other contributions to W
in Eq. (3.24), namely, the dipole terms proportional to S;; (F)
and the tripole terms, have an ‘abelian character’, since corre-
sponding irreducible correlations also occur for soft photon—
lepton—antilepton radiation in QED (see Sect. 5).

The structure of Egs. (3.23) and (3.24) is identical to that
obtained in Ref. [47]. Exp101t1ng colour conservation and the
symmetries of T; - T and T with respect to their parton

ikm
indices, the kinematical functions Si(,? ), Si(: ) and Sim can
be written in different ways, without affecting the value of
W(q1, g2, q3) in Eq. (3.24) onto colour singlet states (scatter-
ing amplitudes). Our explicit expressions of these kinemat-
ical functions appear to be more compact than the related
expressions presented in Ref. [47]. Considering the action of
W onto colour singlet states, we have carried out numerical
comparisons between our result and the result of Ref. [47],
and we find complete agreement.

The irreducible correlation W (g1, g2, ¢3) in Eq. (3.24) can
be rewritten in the following equivalent form:

W(q1,q2,q3)

— (gs M€)6 Tr

%ZTi-Tk

ik

[CAw (91, 92,93) + CF w,k (g1, 2, %)]

d
+5 Z TP w™ (g1, g2, 43)
ik

g .
+ Z Tu(mi f/i;;)(éh,qz,%) ,
dist.{i,k,m}

(3.27)

where the subscript ‘dist.{i, k, m}’ in } ¢ (i x ) denotes
the sum over distinct hard-parton indices i, k and m (i.e.,
i # k,k # m,m # i). The dipole kinematical functions

1(1?) and w(F) are related to the corresponding functions

Si(,?) and Sl.(kF) in Eq. (3.24), and we have

w,(;?(fh, q2,93) = 5,»(;:) (q1,92,93) + S,g-)(fh, q2,93)
(r = A, F).
(3.28)

~S7 (1. 92.93) — S (1. 02, 43).

The kinematical functions wi(,t:i) and w( ri) depend on the

tripole functions Sk, in Eq. (3.24), and we obtain

wl™ (g1, 42, 43) —[ Siik(q1, 42, 43) + Siki (q1. 42, 43)

+ Skii(q1, 92, 93) — Siii(q1, g2, qa)]

— (i < k), (3.29)

(trt)

Wi @15 42, 43) = Sikm(q1, 42, 43)

1
—3 [Siik(éh 42, 93) + Siki(q1, 92, g3)

+ Sii(q1, 92, 93) — Siii(q1, 92, %)]-
(3.30)

The equality of Egs. (3.24) and (3.27) follows from colour
conservation and the symmetries of the operators T'; - T and
T (d) . With respect to their hard-parton indices. The proof of
the equlvalence between the two expressions in Egs. (3.24)
and (3.27) is presented at the end of this section.

The expression in Eq. (3.27) involves colour correlations
between two and three distinct hard partons. The size of the
two hard-parton correlations is controlled by the kinematical
functions w'y’, w) and ;™ which are are physically
related to the interaction of two hard partons, i and k, in a
colour singlet configuration (see Sect. 4.1).

The structure of W(q1, g2, g¢3) in Eq. (3.27) is almost
identical to that of the one-loop QCD corrections to the
squared current for soft-gg radiation (see Eq. (61) in Ref.
[45]). The only difference is due to the presence of three-
parton correlations of the type f@*¢ T ka T in the case of
the one-loop squared current. Such correlations have a one-
loop absorptive origin [45] and, therefore, they are absent
in the tree-level ggg correlation term W (g1, g2, ¢3). In Ref.
[45] the tripole operator with two distinct indices is written as

@ Springer
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’Tlf',f =D, T; = > o D{T¢ in terms of the ‘d-conjugated’
charge operator DY = Y, .d“** TP T¢. We note that the
kinematical function wi(/l:i) in Eq. (3.29) is antisymmetric
under the exchange i < k of the hard-parton indices. Such
antisymmetry of wl.(,i”) implies that in the sum over i and

k of Eq. (3.27) we can replace 7;;, @ by its antisymmetric

component, namely, l(d) (T fd) (d)) /2.

Some main features of W in Eq. (3.27) (or, equiva-
lently, Eq. (3.24)) are fully similar to those of the anal-
ogous one-loop corrections in Ref. [45]. The dipole kine-
matical functions wl.(,:) (q1.¢2.q3) (r = A, F)in Eq. (3.27)
(and S(q1,q2,93) in Eq. (3.24)) are symmetric with
respect to the exchange g2 <> ¢3 of the quark and anti-
quark momenta. In contrast, the functions w )(ql, q2,493)
and wi’ (g1, g2 ¢3) in Eq. (3.27) (and Sim(a1,42.45) in
Eq. (3.24)) are antisymmetric with respect to the exchange
q2» <> g3 and, therefore, they produce a quark—antiquark
charge asymmetry in the tree-level squared -current
|J (g1, g2, g3)|>. We note that such charge asymmetry func-
tions contribute to W(q1, g2, g3) with the associated colour
factors ’Z;l(.z) and 7;,(52 that have a linear dependence on the
colour tensor d9°¢. Therefore, since d%%¢ is odd under charge
conjugation, the charge asymmetry features of | J (q1, g2, ¢3)|*
are consistent with the charge conjugation invariance of the
QCD interactions (see also related comments in Sects. 4.1
and 4.2 and in Ref. [45]). In particular, we note [45] that
the charge asymmetry contributions of | J (g1, ¢2, ¢3)|> van-
ish if the squared current acts on a pure multigluon scatter-
ing amplitude M ({p;}), namely, if M ({p;}) has only gluon
external lines (with no additional external gg pairs or colour-
less particles). We also note [45] that the three-particle corre-
lations of the type 7;,((‘2 with three distinct partons contribute
only to processes with four or more hard partons. General
properties of the colour algebra of the d-type tripoles ’27,(([2
and their action onto two and three hard-parton states are
discussed in Ref. [45] (see also Appendix A).

We conclude this section by proving the equivalence of
Egs. (3.24) and (3.27). In the case of the dipole contributions
proportional to T'; - T, the equivalence directly follows from
the colour conservation relation in Eq. (2.4), in the same way
as the equivalence between Eqs. (3.4)—(3.7) and Eqs. (3.8)-
(3.11). Considering the tripole contributions to Eq. (3.24),
we can write

d d
Z ,Tzl(cnz Stkm = Z,]:l(l) iii

i,k,m
+ Z 7?51() (Siik + Siki + Skii)
ik
+ Y T Sikms (3.31)
dist.{i,k,m}

@ Springer

where we have separated the terms with three equal parton
indices, two equal indices and three distinct indices, and we
have also used the symmetry property ’Z:kl) ’Tk(fll) ’Z:EZ)
Considering the contributions to Eq. (3.27) with three distinct
parton indices, we can write

(d) (lri) _ d)
Z q:km ikm Cg Z lkm Szkm
dist.{i.k.m} dist.{i.k.m}
1 d d
+3 > (7:,((,) Zl(ck)) (Siik + Siki + Skii — Siii) »
i#k

(3.32)

where we have used the expression of w in Eq. (3.30)

ikm
and we have performed the sum over m in the terms of w(m)

that do not depend on m. Exploiting colour conservation,
. d d d
we have used the relation ) ,, Lik 7, ](mz = (Tl](a) 7;](( k))
to explicitly carry out the sum over m. We can now con-
sider the difference between the terms in the left-hand side

of Egs. (3.31) and (3.32), and we obtain

(d) (d) (f"i)
Z lftkm Sikm — Z ka ikm
i,k,m dist.{i,k,m}
1
(d) (d)
57 ; (7;,;( — Tk ) (Siik + Siki + Skii — Siii)
l
(3.33)
y ‘
= T wi. (3.34)
ik

In Eq. (3.33) we have first inserted the expressions in the
right-hand side of Eqs (3.31) and (3. 32) and then we have
used ’];,(ﬂ = ’T i ) and the relation 7; iy DL ”k
(which follows from colour conservation). cIn Eq. (3.34) we
have first renamed i < k in the terms of Eq. (3.33) that
are proportional to 7;,({?, and then we have simply used the
expression of wl.(,t:i) in Eq. (3.29). In conclusions, Eq. (3.34)
proves the equality of the charge asymmetry contributions in
Egs. (3.24) and (3.27).

4 Processes with two and three hard partons

The simplest applications of the QCD soft-factorization for-
mula (3.2) regard processes with two and three hard partons.
In these processes the structure of the colour correlations
produced by soft emission is simplified [18,45,46]. In this
section we present the explicit expressions of | J (¢1, g2, g3) |2
for ggq emission from amplitudes with two and three hard
partons and, in particular, we highlight the corresponding
charge asymmetry effects.
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4.1 Soft ggg emission from two hard partons

We consider a generic scattering amplitude Mpc({pi})
whose external legs are two hard partons (denoted as B
and C), with momenta pp and pc, and additional colour-
less particles. The two hard partons can be either a gg pair
({BC} = {qq}) (note the we specify B = g and C = g) or
two gluons ({BC} = {gg}). There is only one colour singlet
configuration of the two hard partons, and the correspond-
ing one-dimensional colour space is generated by a single
colour state vector that we denote as | BC). The colour space
amplitude | M pc) is a colour singlet state and, therefore, it
is directly proportional to |BC).

The squared current |J(q1, ..., qN)|2 in Eq. (3.2) con-
serves the colour charge of the hard partons and, conse-
quently, the state | J 12 |BC) is also proportional to | BC) and
we have

Lan)’ges
“.1)

1J(q1, ... qv)I* |IBC) =|BC) |J(qi, ...

(MpcUpiDI 1T @1, - an)* IMpcpi))

= |MpcUpiDI* 1T (g1, ... 4.2)

Lan)Ppe
where | J |2BC is a c-number (it is the eigenvalue of the oper-
ator |J |2 onto the colour state |BC)).

We note that the right-hand side of Eq. (4.2) is propor-
tional to the squared amplitude | M pc({pi}) | with no resid-
ual colour correlations between the hard partons B and C. In
this respect, the structure of soft factorization in Eq. (4.2) is
similar to that of soft-photon factorization in QED.

Werecall [46] that Egs. (4.1) and (4.2) are valid for squared
currents |J(q1,...,9nN) |2 of an arbitrary number N and an
arbitrary type (gluons and quark—antiquark pairs) of soft par-
tons. We also recall [46] that Egs. (4.1) and (4.2) are valid at
arbitrary loop orders in the perturbative expansion of both
the squared current and the squared amplitude.

We evaluate |J (q1, 92, q3)|2BC for soft ggg emission at
the tree level by using Eq. (3.23). The squared current terms
|J(q1)|23C for single-gluon emission and | J (g2, ¢3) |QBC for
soft-gg emission are well known [18]. The correlation term
W(q1, g2, q3) of Eq. (3.23) depends on dipole and tripole
colour operators (see Egs. (3.24) or (3.27)). The action of
the dipole operators onto |BC) is elementary [10], and the
action of the tripole operators is explicitly evaluated in Ref.
[45] (see also Appendix A). We straightforwardly obtain the
following result:

6
I (1. 42, 43¢ = (gs 1€)” Tr C
X [ [CF (U)Bc(th) wgc(q2, q3) + wEch)(éh, q2, 6]3))

A
+Ca wﬁgc)(%,fh, 613)]

1 , )
+3dawid @) (B=q.C=q). (3
6

1 (q1. 92, 93)’5c = (g5 1)’ Tr Ca
X [ Ca (ch(m) wpc(q2, q3) + wE;AC)(th, 9, %))

+Cr il gz} (BC) = (ge), (4.4)

where the colour coefficient d is related to d*?¢ as follows

2
Z dabcddbc ZdA (Sad’ dA — NC _4

4.5)
bc Ne

The dipole kinematical functions wpc(q1), wpc(q2, q3),
wie (@1, 42, 43) and wi (g1, g2, g3) are given in Egs. (3.9),
(3.11) and (3.28), and they are symmetric under the exchange
B < C of the hard partons (i.e., the exchange pp <> pc of
the hard-parton momenta). The tripole kinematical function
wgg) (g1, g2, g3) is given in Eq. (3.29), and it is antisymmet-
ric under the exchange B <> C. The term that is proportional
to wpc(q1)wpc (g2, q3) in Eqs. (4.3) and (4.4) is due to the
independent emission of the soft gluon and of the soft gg
pair. All the other contributions to Egs. (4.3) and (4.4) are
due to irreducible correlations for soft ggg emission.

In the case of soft ggg emission from the hard par-
tons {BC} = {qq}, the square-bracket contribution in the
right-hand side of Eq. (4.3) is symmetric with respect to
the exchange g2 <> g3 of the momenta of the soft quark
and antiquark. The kinematical function wgrcl)(ql, q2,4q3)
is instead antisymmetric under the exchange g2 < ¢3
and, therefore, the result in Eq. (4.3) explicitly shows the
presence of charge asymmetry effects. Since the function
wgrci)(ql, q2, q3) is antisymmetric with respect to the sep-
arate exchanges g» <> g3 and B < C, in Eq. (4.3) the
asymmetry in the momenta of the soft quark and antiquark is
correlated with a corresponding asymmetry in the momenta
pp and pc¢ of the hard quark and antiquark. In particular,
|J(q1, 92, q3) |23C is invariant under the overall exchange of
fermions and antifermions (i.e., {¢2, pp} < {¢3, pc}), con-
sistently with charge conjugation invariance.

In the case of soft ggg radiation from two hard gluons,
the tree-level result in Eq. (4.4) shows no charge asymmetry
effects. As argued in Ref. [45] on the basis of charge conju-
gation invariance, the absence of charge asymmetry effects
in |J(q1, g2, q3)|ZBC for {BC} = {gg} persists at arbitrary
orders in the QCD loop expansion.

4.2 Soft ggg emission from three hard partons

We consider a generic scattering amplitude Mapc({pi})
whose external legs are three hard partons and additional
colourless particles. The three hard partons, which are
denoted as A, B, C (with momenta py4, pp, pc), can be
either a gluon and a gg pair {ABC} = {gqq}) or three
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gluons ({ABC} = {ggg}). If {ABC} = {gqq}, there is only
one colour singlet state that can be formed by the three hard
partons. If the three hard partons { A BC} are gluons, they can
form two distinct colour singlet states. The different dimen-
sionality of the colour singlet space for the two cases leads to
different features of the associated soft radiation. We discuss
the cases {ABC} = {gqq} and {ABC} = {ggg} in turn.

In the case {ABC} = {gqq}, we specifically set A = g,
B = g and C = ¢q. The one-dimensional colour singlet
space of the three hard partons is generated by the state
vector |ABC), and the colour space amplitude |[Mpc) is
directly proportional to |ABC). Since we are dealing with a
one-dimensional colour singlet space, we can use the same
reasoning as in Sect. 4.1. The state |ABC) is an eigenstate
of the squared current | J (g1, . . ., gn)|? in Eq. (3.2), and we

have
IJ (1. ....qn)I* |ABC)
=|ABC) |J(q1.-...qv) 4 pc.  ({ABC} = {gqq}),
4.6)
(MuagcUpiDI 1T (@1, ... qn)I* IMagc{pi})
= IMuascUp DI 1T @1y - a0 Pages .7

where |J|2ABC is a c-number.

Similar to Egs. (4.1) and (4.2), we recall [46] that
Egs. (4.6) and (4.7) are valid for arbitrary squared currents
|J(q1, ..., qn)|? and at arbitrary loop orders.

Considering the tree-level squared current | J (g1, g2, g3)|*
for soft ggg emission, the eigenvalue |.J (g1, q2, q3)|2ABC in
Eqgs. (4.6) and (4.7) can be written in the following form:

F(in.em.)

6
IJ(q1, 92, 43) Page = (gs 1) TR[ e (41, g2, g3)

h.sym.
+ W/(chsym "1, 42, 43)

W™ @1 a2.09 | (ABC) = (847D, (48)

which directly derivgs from Eqs. (3.23) and (3.27).
The functions F{ <™ and Wff;gym') in Eq. (4.8) are
Fhe™ (@1.42.43) = [Cr wac(g1) + Ca wanc(qn)]

x [Cr wpc(g2.g3) + Ca wasc(q2.93)],  ({ABC} = {gtﬂ?}%,

h. . F
W™ (g1, 42, 43) = C3 wii2 (g1, 42, 43)

+CrCy (w(BAC)(m 42, q3) + wﬂ\?c(ql » 92, qs))
+ 3 we(@1,92,93), (ABCY = (gqq)), (4.10)

where the two hard-parton functions wix(q1), wix (g2, q3),
w?(q1,2,3) (r = F, A) are given in Egs. (3.9), (3.11),
(3.28), and we have used them to define the corresponding
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three hard-parton functions wX}S C:4

1
w,(:g;c(th,-u,qzv) = [w%(m,.--,qm

2
(r)

F0ll @) — v an ] @D

The function Wﬁ;gsym') in Eq. (4.8) is

(ch.asym.)
WABC
_ da (tri

TI:_CA (ch)(thn,%)

+wgf4i)(611 . q2,q3) + wxg)(fh . q2, 613))

+2Cr wi @1 @209 ], (ABCY = (89d),
(4.12)

(g1, 92, 93)

where the kinematical function wf,i”) is given in Eq. (3.29).

As discussed below, the symmetry properties of the kine-
tical functions w : o d

matical functions wix(q1), wix(q2, q3), w;;’ (q1, g2, g3) an

wl.(,i”)(ql,qz, g3) with respect to their dependence on the
hard and soft momenta (see Sect. 3.1) lead to ensuing sym-
metry properties of the functions Fn-em) yy(ch.sym) anq
W(ch.asym.) )

The term F/(xig'gm') in Eq. (4.8) is the contribution due to
the independent emission of the soft gluon and the soft ¢g
pair. It originates from the term (|.J (q1)|* |.J (g2, q3)|2)sym
in Eq. (3.23). We have used the results of the action of
both |J(¢1)|? and |J (g2, g3)|> onto the three hard-parton
state |ABC) [18]. Such squared currents only depend on
colour dipole operators, whose action onto |[ABC) is sim-
ply given in terms of Casimir coefficients Cr and Cy4 (see,
e.g., Ref. [10]). The colour dipole contributions of Eq. (3.27)
to the correlation term W (g, g2, g3) of the squared current
in Eq. (3.23) produce the corresponding irreducible correla-

tion contribution W/gcggym.) in Eq. (4.8). We note that both

FU%e™ (g1, g2, g3) and Wi32™ (g1, 42, g3) are symmet-
ric under the exchange ¢» <> g3 (see Egs. (4.9) and (4.10))
and, therefore, they do not lead to any charge asymmetry
of the soft quark and antiquark in |J (g1, g2, ¢3) |2ABC. Both
functions F/gig'gm') and Wf(fggym') are also symmetry under
the exchange pp <> pc of the momenta of the hard quark and
antiquark, consistently with the charge conjugation invari-
ance of |J (g1, g2, 43)*y g

The correlation term W(q1, q2, g3) of Eq. (3.23) also
includes charge asymmetry contributions. In Eq. (3.27) these
contributions are proportional to the tripole operators ZEZ)

and ’];,(:2 The action of these tripole operators onto the state
|ABC) of the three hard partons {ABC} = {gqgq} was eval-
uated in Ref. [45] (in particular, the operator TA(%)C with

4 In the cases of one and two soft momenta (N = 1, 2), the explicit
superscripts (r) have to be removed in Eq. (4.11).
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three distinct indices vanishes). Using the colour algebra
results of Ref. [45] (see also Appendix 1), we have computed
the charge asymmetry contribution to |J(q1, g2, q3)|2A BC>
which is given by the function W/gcggsym.) (91,92, 93) in
Eq. (4.8). We note the the expression of Wf(\cg'gsym') in
Eq. (4.12) is antisymmetric under the exchange pp < pc
of the momenta of the hard quark and antiquark, in complete
analogy with the charge asymmetry contribution to Eq. (4.3),
and consistently with the charge conjugation invariance of
1(q1, 42, 43) 4 pc in Eq. (4.8).

We now consider the case {ABC} = {ggg}. The three hard
gluons generate a two-dimensional colour singlet space. We
choose the basis that is formed by the two colour state vectors
[(ABC) ) and |[(ABC)g ), which are defined as follows

(abc|(ABC) ;) =if*™, (abc|(ABC)y)=d™, ({ABC}={ggg),
(4.13)

where a, b, ¢ are the colour indices of the three gluons.
We note that the two states in Eq. (4.13) are orthogo-
nal and have different charge conjugation. The scattering
amplitude |[Mapc({pi})) is, in general, a linear combina-
tion of the two states in Eq. (4.13), and the action of the
squared current |J (g1, ..., qN)|2 for soft-parton radiation
onto |[M 4pc({pi})) can produce colour correlations between
these two states. In general, |J (q1, - . ., qN)l2 can be repre-
sented as a 2 x 2 correlation matrix that acts onto the two-
dimensional space generated by [(ABC) ) and [(ABC)y).
The structure of this correlation matrix is discussed in Refs.
[45,46] for the cases of multiple soft-gluon radiation and soft-
qq radiation, respectively. Soft ggg radiation is discussed in
the following.

The action of the tree-level squared current | J (q1, g2, ¢3) |2
for soft ggg emission onto the colour singlet states in
Eq. (4.13) can be written in the following form:

6 in.em.
(@1, 42.09) [ABC) = (g5 1°)° Tr[ Fi5™ @1, a2, )
h.sym.
F W™ (1 g2, q3)

F W™ (g1, 42,45 | 1ABC), (1ABC) = (sggD, (4.14)

(4.17) are given as follows>

1
EX};C(qu...,qN)EZ[ X};(ql,...,qzv)

(r)

+wBC(q1,...,qN)+w(c’}4(q1,...,qN)], (4.18)

in terms of the corresponding two hard-parton functions
wik(qD), wik(@2, 43), WL (g1, g2, ¢3) in Egs. (3.9), 3.11),
(3.28) and (3.29). The symmetry properties of the functions
E(r) are the conse f th di i
ABC quence of the corresponding symmetries

of the functions wf,? in the right-hand side of Eq. (4.18).

The function Eggé (91, q2, g3) is antisymmetric under the
exchange g2 <> g3 of the momenta of the soft quark and
antiquark, and it is also antisymmetric under the exchange of
the momenta of two hard gluons (e.g., pa <> pp). The func-
tions EX;C in Egs. (4.15) and (4.16) are instead symmetric
under the exchange g2 <> ¢3 and have a fully symmetric
dependence on the hard-gluon momenta p4, pg, pc.

The result in Eq. (4.14) directly derives from Egs. (3.23)
and (3.27), and it has a structure that follows the structure
of Eq. (4.8). The term F{%™ (g1, ¢2, ¢3) in Eq. (4.14)
is the contribution of the independent emission of the soft
gluon and the soft gg pair. The irreducible correlation term
W/(\ngym') (g1, g2, g3) in Eq. (4.14) is due to the colour dipole
contributions of Eq. (3.27) to W(q1, ¢2, g3). Both terms
F/gig,'gm') and W/gcggym.) originate from colour dipole interac-
tions, whose action onto a generic hard-parton state [ABC)
are simply proportional to the unit operator in colour space
[18].

The term Wzgcggsym.) in Eq. (4.14) is due to the colour
tripole contributions of Eq. (3.27) to the irreducible correla-
tion operator W(q1, g2, g3) in Eq. (3.23). The action of the
tripole operators onto the three-gluon states in Eq. (4.13) was
explicitly evaluated in Ref. [45] (see also Appendix A). In
particular, the tripoles T;?C with three distinct gluons vanish,
while the tripoles with two distinct gluons are proportional

to one another (the proportionality factors are +1). It turns

(ch.asym.)
WABC

portional to a single tripole operator (e.g., Tl;‘g 4) as shown
in Eq. (4.17). The tripole operators are odd under charge
conjugation and, therefore, they act differently onto the two
colour states in Eq. (4.13). Considering the operator ’Té‘g 4 1n
Eq. (4.17), we have [45]

out that the term in Eq. (4.14) is directly pro-

where
F%™ (41, g2, q3) = 4C% Eapc(q1) Eapc(qa, q3), ({ABC) = {ggg)), (4.15)
h. .
Wipe™ (@1, 42, 43) = 2Ca[ Cr EJc(@r, a2, 43) + Ca ESe(@1.02,. 4] (ABC) = (gg)), (4.16)
. .
WA (41 gn, q3) = 4 T.% EST (a1, 40, 43), ({ABC} = {ggg)). 4.17)

The three hard-parton functions Espc(q1), Eapc(q2, g3)
and E\) (1,2, ¢3) (with r = F, A, tri) in Egs. (4.15)

5 In the cases of one and two soft momenta (N = 1, 2), the explicit
superscripts (r) have to be removed in Eq. (4.18).
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C2
Typa I(ABC) ) = —2 [(ABC),).

Cady
4

Tipa l(ABC)g) = (ABC) ), (4.19)
and we note that the tripole operators produce ‘pure’ tran-
sitions between the colour symmetric and colour antisym-
metric states [(ABC) ¢) and [(ABC),), which have different
charge conjugation.

The results in Eqgs. (4.14)—(4.17) can be used to explic-
itly evaluate the action of the tree-level squared current
\J(q1, q2, q3)|* onto a scattering amplitude
[IMapc({pi})) with three hard gluons. The scattering ampli-
tude |Mapc({pi})) is, in general, a linear combination of the
two colour states in Eq. (4.13), and we write

IMasc({piD) =1(ABC)y) My(pa, pB. pc)

+I(ABC)y) Ma(pa, pB. pc), (4.20)

where M  and M are colour stripped amplitudes. Owing to
the Bose symmetry of M 4 pc) with respect to the three glu-
ons, the function M ¢(pa, pp, pc) is antisymmetric under
the exchange of two gluon momenta (e.g., pa < pB),
while My(pa, pp, pc) has a symmetric dependence on
PA, PB, Pc- Using Egs. (4.14)—(4.17), (4.19) and (4.20) we
obtain

(MagcUpiDl 1T(q1, 42, 43)1* IMagcUpih) = (g5 16)° Tr

< [IMascpibP [ Fige™ @1 a2.93)

h.sym.
+ W/(,‘CBCSym )(f]l,qz, %)]

+Chda (N2 = D[ M (pa. pB. PC)
x Myg(pa, pB, pC) + h-C-]EXg%(qL 92, q3)],

({ABC} = {ggg}). (4.21)
which is not simply proportional to |Mapc({pi})|* (unlike
the corresponding result in Eq. (4.7) for {ABC} = {gqq})).
The contribution to Eq. (4.21) that is proportional to
F /gig.gm.) + Wf(fg gym') is symmetric under the exchange ¢» <
g3 and, therefore, it does not lead to any charge asymmetry of
the soft quark and antiquark. The function E Xgé (q1, 92, q3)
isinstead antisymmetric under the exchange g» <> ¢3. There-
fore, in contrast with the case of scattering amplitudes with
two hard gluons (see Eq. (4.4)), the expression in Eq. (4.21)
involves a charge-asymmetry contribution that is not van-
ishing, provided the hard-scattering amplitude includes non-
vanishing components M s and My (i.e., |IMapc) has no
definite charge conjugation). This is the case, for instance,
of the amplitude for the decay process Z — ggg of the
Z boson (see, e.g., Ref. [52]). We note that the functions
Exgé and (M;M r + h.c.) are separately antisymmetric
under the exchange of two gluon momenta and, consequently,

@ Springer

their product is symmetric. Therefore, the right-hand side of
Eq. (4.21) is fully symmetric under permutations of the three
hard gluons, as required by Bose symmetry.

5 QED and mixed QCD x QED interactions

Our results of Sects. 2.2.1 and 3.1 for soft ggg radiation at
the tree level in QCD are generalized in this section to deal
with soft emission through QED (photon) interactions and
mixed QCD x QED (gluon and photon) interactions.

We consider a generic scattering amplitude M ({g¢}, {pi})
whose external soft massless particles are gauge bosons (b),
fermions (f) and antifermions ( f). The soft gauge bosons
can be gluons (b = g) or photons (b = y), and the soft
massless fermions are quarks (f = ¢) and charged leptons
(f = ¢£). The external massless and massive hard partons
in M({q¢}, {pi}) are gluons, (anti)quarks and electrically
charged particles, such as (anti)leptons and W bosons. The
amplitude M can also have external particles that carry no
colour charge and no electric charge.

We formally treat QCD, QED and mixed QCD x QED
interactions on equal footing. Therefore, the scattering ampli-
tude M has a generalized perturbative (loop) expansion in
powers of two unrenormalized couplings: the QCD coupling
gs and the QED coupling g (g2/(47) = « is the fine struc-
ture constant at the unrenormalized level). In the soft limit
the amplitude M ({q,}, {p;}) fulfils the factorization formula
(2.1), and the soft current J(gi,...,gn) also has a loop
expansion in powers of the two couplings gs and g. In the
following we only consider soft currents at the tree level with
respect to both couplings and, therefore, the N parton cur-
rent J(qi, ..., qn) includes all possible contributions that
are proportional to gév _kgk with 0 < k < N. The pure QCD
and pure QED cases are recovered by setting g = 0 and
gs = 0, respectively.

We first recall the known expressions of the soft cur-
rents for single-photon and fermion-antifermion emission.
The tree-level current J,, (g1) for emission of a single soft
photon with momentum g is

pie(q1)
piq

Jy(g) =gu) e (5.1)

where ¢; is the electric charge (in units of the positron charge
g) of the i-th hard parton in M({p;}). The conservation of
the electric charge in M ({p;}) implies that ) _; ¢, = 0 (anal-
ogously to the colour conservation relation in Eq. (2.4)). Note
that J,, (g1) is a c-number (more precisely, it is proportional
to the unit matrix in colour space) since the photon carries
no colour charge. The square of the current in Eq. (5.1) is



Eur. Phys. J. C (2023) 83:38

Page 150f 18 38

Iy @Dl* = —(g Me)zze; ex Sik(gn) = — (g )’
ik

1
x5 Zei ex wik(q1),
i#k

(5.2)

where the momentum dependent functions S;jix(q;) and
wik(q1) are given in Egs. (3.5) and (3.9).
The tree-level current J f f-»(qg, g3) for emission of a soft-

f f pair is [45]

T i@, 03) = 87q J(q2.93) — (g11°)" ey Ay

72,3
Xzei pij( ),
; Piq23

(5.3)

where ¢> and g3 are the momenta of the soft fermion f
and antifermion £, respectively. The first contribution in the
right-hand side of Eq. (5.3) is the QCD current J (g2, ¢3) in
Eq. (2.8) (the Kronecker delta symbol § 7, specifies that the
current is not vanishing only if f = g), and the second con-
tribution is due to the photon mediated radiation of the f f
pair. The fermionic current j¥ (2, 3) is given in Eq. (2.9), and
e 1 is the electric charge of the soft fermion f. The factor A ¢
in the right-hand side of Eq. (5.3) is a colour operator that
depends on the type of soft fermion f.If f = ¢, we simply
have Ay = 1.If f = g, Ay is the projection operator onto
the colour singlet state of the f f pair, namely, by using the
colour space notation of Sect. 2 we have (a2, o3| A = 8¢ya3,
where s and o3 are the colour indices of the soft quark and
antiquark, respectively.
The square of the current J ff-(q2, q3) is [45]

T 1 7(q2, 3)1> = 874 | T (g2, 43)°
4
— (g 1) (850 + Nedgq)
1
X5 > eier wik(qa. q3). (5.4)
i#k

where | J (g2, ¢3)|? is the QCD squared current in Eq. (3.10)
and the function wir(g2,¢3) is given in Egs. (3.7) and
(3.11). Similarly to its QCD part, the complete squared cur-
rent |.J ; 7(q2, ¢3)|? is charge symmetric with respect to the
exchange f < f (i.e., it is symmetric under g» < ¢3).
We note that the squared current result in Eq. (5.4) does not
include a mixed QCD x QED term proportional to gégz,
since such contribution vanishes.

In the following we present our results for soft bf f radi-
ation at the tree level. The boson b has momentum ¢; and
the fermion f and antifermion f have momenta ¢> and g3,
respectively. Similarly to the results in Sect. 2.2.1, we express
the current J bf f for soft bf f radiation in terms of an inde-
pendent emission contribution and an irreducible correlation
term I’y 7.

In the case of soft g f f radiation we obtain

Joriar.a2.93) = (J (@) J 1 7(q2.93)),,

+L,r7(q1, 92, 93), (5.5

where J (q1) is the QCD soft-gluon current in Eq. (2.6) and
J;7(q2. q3) is the soft- f f current in Eq. (5.3). Introducing
the explicit dependence on the colour index a; of the soft
gluon, the irreducible correlation T of is

I‘Z'ff(th, q2.q3) =84 [Fa'(%, 92, 93)

b
+es g2 er > et v (g1, qo. qa)], (5.6)
i

where the term T'“! (¢1, g2, ¢3) in the right-hand side is the
QCD irreducible correlation in Eq. (2.12), and the function
yi(ab) (g1, q2, g3) is given in Eq. (2.14). We note that the cor-
relation I', - 7 is not vanishing only if f = ¢. The second
term in the square bracket of Eq. (5.6) is the mixed QCD x
QED correction to the QCD irreducible correlation for soft
gqq emission. We note that such QCD x QED correlation
term is proportional to yi(ab) (91, g2, g3) and, therefore, it has
an abelian character.
The tree-level current for soft y f f emission is

I rilar, a2, 93) = Jy(q) J ; 7(q2. 93)

+ryff'(qlv C]2» q3)7 (57)

where J, (g1) and Jff(qz, g3) are the currents in Egs. (5.1)
and (5.3). We note that the independent emission contribution
in Eq. (5.7) does not require colour symmetrization, since
Jy and J £ commute in colour space. The expression of
the irreducible correlation component L7 is

T, 7(q1. g2, q3) = >y Z [5fq gs g TSt
i

+gere Af] V,-(ab)(¢11,€12,613), (5.8)
where yi(ab) (91, g2, g3) is given in Eq. (2.14). The term pro-
portional to g3 in Eq. (5.8) is entirely due to QED (photon)
interactions. We note that even in an abelian gauge theory,
like QED, the current for soft y f f emission includes an irre-
ducible correlation component, which is due to soft-photon
radiation in cascade from soft charged fermions. In contrast,
we recall that the current for emission of N soft photons fac-
torizes in terms of N independent emission contributions,
with no additional irreducible correlations. The term pro-
portional to gég in Eq. (5.8) is the irreducible correlation
component that is due to mixed QCD x QED interactions.
Also this correlation component is controlled by the abelian
function y,*” (q1. ¢2. ¢3).

The squared current for soft gf f emission is computed
by using the expressions in Egs. (5.5) and (5.6). We write the
result as follows
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T o 7 (a1, g2, 43)1> = (1T @D T ; 7(q2, 43)I7)
+W,r (a1, g2, 43),

sym

(5.9)

where | J (q1)|2 is the QCD squared current in Eq. (3.8) and
|Jff-(q2, q3)|2 is the squared current in Eq. (5.4). The irre-
ducible correlation contribution W . 7 is not vanishing only
if the soft fermion is a quark (f = ¢), and we explicitly have

Werilar, a2, q3)

=68rg Y W(q1,92,93)

— 838 n*2Tres Y Ti-Tren

i,k,m

X[Sikm(Q1a q2, C]3) + (k <~ m)]

— 838 1 Cr N 2 Y eier S (q1.q2.93) ¢ .
ik
(5.10)

where W(q1, q2, g¢3) is the QCD term in Eq. (3.24), and
the momentum dependent functions S;x, (g1, g2, g3) and
S8(q1, 42, q3) are given in Egs. (3.19) and (3.26). The
right-hand side of Eq. (5.10) includes two types of mixed
QCD x QED contributions, which both have an abelian char-
acter. The contribution proportional to gé g? is controlled by
the function Sjk, (1, g2, ¢3) and, therefore, it leads to charge
asymmetry in the exchange of the soft quark and antiquark.
In contrast, the contribution proportional to g% g* is charge
symmetric, since it depends on the function Si(,f ) 41, g2, q3)-

Using Eqs. (5.7) and (5.8) the squared current for soft y f f
emission is

T, 7, a2, a9 = 1T, (@D | ; 7(q2, g3)I

+W,, 71 02 43). (5.11)

where |J y(q1)|2 is the soft-photon squared current in
Eq. (5.2) and |J ;7(q2, ¢3)|* is given in Eq. (5.4). The
irreducible correlation component W7 has the following
expression:

W, 7(@1.42.43) = — 858" 1* 8rq Trey
X I:Zef Ti . Tk 81(]5)(6117 q2, 613)
ik

+ Y 26Ty Ty Sikm(‘]hQ%‘B)]

i.k,m
_ (g lf)6 (ng + N, qu) e}
X [ Zef eirer S (q1.92. 43)

ik
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+ ) 2eierem Sim(qr. q2. 613)],

i,k,m

(5.12)

where the charge symmetric function Si(,f ) (g1, g2, q3) is
given in Eq. (3.26) and the charge asymmetry function
Sitm(q1, g2, q3) 1s given in Eq. (3.19). The term proportional
to g% in Eq. (5.12) is entirely due to QED interactions. The
term proportional to g‘S‘g2 is due to mixed QCD x QED
interactions, and it is not vanishing only if the soft fermion
is a quark. We note that both the QED and QCD x QED
contributions to W, , 7 involve charge symmetric and asym-
metric effects. We also note that the contribution of O(gé gh
to |Jyff-(q1, g2, ¢3)|? vanishes.

6 Summary

We have considered the radiation of a soft gluon and a soft ¢g
pair in QCD hard scattering. The scattering amplitude for soft
£qq emission in a generic hard-scattering process is singular,
and the singular behaviour is controlled in factorized form
by a current J (q1, g2, g3), which has a process-independent
structure.

We have evaluated the soft ggg current J(q1, g2, g3) at
the tree level for a generic scattering amplitude with an arbi-
trary number and type of external hard partons (gluons and
massless and massive quarks and antiquarks). The soft cur-
rent acts in colour space, and it is written in terms of the
colour charges and momenta of the external hard partons.
We have expressed the current in terms of two contributions:
the contribution of ‘independent’ (and colour symmetrized)
emission of the soft gluon and the soft gg pair, and an irre-
ducible correlation contribution. The irreducible correlation
component of the current includes strictly non-abelian terms
(which are analogous to the non-abelian correlations for soft
multi-gluon emission) and also terms with an abelian char-
acter (analogous correlations appear for soft photon—lepton—
antilepton emission in QED).

We have computed the tree-level squared -current
|J(q1, g2, q3)|*> of soft ggg emission for squared ampli-
tudes of generic multiparton hard-scattering processes. We
have checked that our result for |J (g1, ¢2, q3)|2 numeri-
cally agrees with the result obtained in Ref. [47] in a fully
independent way. The irreducible correlation component of
|J(q1, g2, g3)|* leads to two types of colour interactions
between the hard partons: colour dipole interactions (which
also appear in the independent emission component) and
interactions of tripole type that are proportional to the fully-
symmetric tensor %, These tripole interactions are the real-
emission counterpart of the analogous tripole interactions for
soft-gg radiation at the one-loop level [45]. The tripole cor-
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relation contributions to | J (g1, g2, ¢3)|* are antisymmetric
under the exchange ¢» <> g3 of the momenta of the soft quark
and antiquark and, therefore, they produce charge asymmetry
effects in the soft limit of the squared amplitudes. We have
explicitly considered the evaluation of |J (g1, ¢2, ¢3)|* for
processes with two and three hard partons, and we have dis-
cussed the corresponding charge symmetric and asymmetric
contributions.

We have finally generalized our QCD study of soft ggg
emission to the study of QED and mixed QCD x QED
interactions in the context of soft gluon—fermion—antifermion
and photon—fermion—antifermion radiation. In particular, we
have noticed that soft photon—lepton—antilepton emission in
QED received (abelian) irreducible correlation contributions
due to soft-photon radiation in cascade from soft charged lep-
tons. Both QED and mixed QCD x QED interactions lead to
charge asymmetry effects in the exchange of the soft fermion
and antifermion.
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Appendix A: Tripoles on two and three hard particles

In this appendix we present the action of the d-type colour
tripoles in Eq. (3.17) onto colour singlet states of two or
three QCD particles. The corresponding colour algebra was
discussed in details in Ref. [45]. In the following we limit
ourselves to list the explicit results [45].

As discussed in Sect. 4.1, there are two possible colour-
singlet QCD states of two particles: |gg) and |¢g). They are

both eigenvectors of all tripole operators. In fact, we have

T Dgg) =

ikm O’
& - (=D
Ti,(miqu) =

daCrlqq),

where /; is the number of indices i, k, m corresponding to
the antiquark.

As pointed out in Sect. 4.2, we consider three colour-
singlet states formed with three QCD particles: |gqq),
[(ggg) r) and |(ggg)a)- The state |ggq) is an eigenvector of
all colour tripoles. The corresponding eigenvalues are sum-
marized in the following table:

{i, k, m} lggq)

888 0

884 Cadp/4

884 —Cada /4

849 —Cadp/4

2494 Cadp/4

849 0

q99 Crdp/2

qq9q —Crdy/2

999 da(Ca —2CF)/4
999 —ds(Cp —2Cp)/4

and the remaining eigenvalues are obtained by exploiting
their full symmetry under permutations of the indices i, k, m.
In contrast, the colour tripoles swap the hard three-gluon
states [(ggg) r) and |(ggg)a) in Eq. (4.13), and we can write

} .
T 1(gge) 1) = 1Y) (ggg)a),

T 1(gge)a) = 1 1(g22) r)- (A1)

The values of the coefficients )\l(,f;l and )»l%)n fori <k <m
are collected in the following table:

{i, k, m} A 2D

AAA 0 0

BBB 0 0

cce 0 0

AAB -C%/4 —Cada/4
ABB /4 Cady /4
AAC Ci/4 Cada/4
ACC —C3/4 —Cada/4
BBC —C3/4 —Cada/4
BCC Cc%/4 Cady/4
ABC 0 0

and the remaining coefficients are obtained by using their full
symmetry under permutations of the indices i, k, m.

@ Springer


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

38

Page 18 of 18

Eur. Phys. J. C (2023) 83:38

References

10.

11.
12.

15.

16.

17.

18.

19.

20.

21.

22.
23.

24.

25.

26.

. G. Heinrich, Phys. Rep. 922, 1-69 (2021). arXiv:2009.00516 [hep-
ph]

N. Agarwal, L. Magnea, C. Signorile-Signorile, A. Tripathi,
arXiv:2112.07099 [hep-ph]

T. Becher, A. Broggio, A. Ferroglia, Lect. Notes Phys. 896, 1
(2015). arXiv:1410.1892 [hep-ph]

G. Luisoni, S. Marzani, J. Phys. G 42(10), 103101 (2015).
arXiv:1505.04084 [hep-ph]

Mx. Luo, T.Z. Yang, H.X. Zhu, Y.J. Zhu, Phys. Rev. Lett. 124(9),
092001 (2020). arXiv:1912.05778 [hep-ph]

M.A. Ebert, B. Mistlberger, G. Vita, JHEP 09, 146 (2020).
arXiv:2006.05329 [hep-ph]

Mx. Luo, T.Z. Yang, H.X. Zhu, Y.J. Zhu, JHEP 06, 115 (2021).
arXiv:2012.03256 [hep-ph]

M.A. Ebert, B. Mistlberger, G. Vita, JHEP 07, 121 (2021).
arXiv:2012.07853 [hep-ph]

S. Frixione, Z. Kunszt, A. Signer, Nucl. Phys. B 467, 399 (1996).
arXiv:hep-ph/9512328

S. Catani, M.H. Seymour, Nucl. Phys. B 485 (1997) 291 [Erratum:
Nucl. Phys. B 510 (1998) 503] arXiv:hep-ph/9605323

S. Frixione, Nucl. Phys. B 507, 295 (1997). arXiv:hep-ph/9706545
S. Catani, S. Dittmaier, M.H. Seymour, Z. Trocsanyi, Nucl. Phys.
B 627, 189-265 (2002). arXiv:hep-ph/0201036

. J.M. Campbell, E.-W.N. Glover, Nucl. Phys. B 527,264-288 (1998).
arXiv:hep-ph/9710255

S. Catani, M. Grazzini, Phys. Lett. B 446, 143-152 (1999).
arXiv:hep-ph/9810389

Z. Bern, V. Del Duca, C.R. Schmidt, Phys. Lett. B 445, 168-177
(1998). arXiv:hep-ph/9810409

D.A. Kosower, P. Uwer, Nucl. Phys. B 563, 477-505 (1999).
arXiv:hep-ph/9903515

Z. Bern, V. Del Duca, W.B. Kilgore, C.R. Schmidt, Phys. Rev. D
60, 116001 (1999). arXiv:hep-ph/9903516

S. Catani, M. Grazzini, Nucl. Phys. B 570, 287 (2000).
arXiv:hep-ph/9908523

S. Catani, M. Grazzini, Nucl. Phys. B 591, 435 (2000).
arXiv:hep-ph/0007142

M. Czakon, Nucl. Phys. B 849, 250-295 (2011). arXiv:1101.0642
[hep-ph]

I. Bierenbaum, M. Czakon, A. Mitov, Nucl. Phys. B 856, 228
(2012). arXiv:1107.4384 [hep-ph]

M.L. Czakon, A. Mitov, arXiv:1804.02069 [hep-ph]

S. Catani, D. de Florian, G. Rodrigo, JHEP 07, 026 (2012).
arXiv:1112.4405 [hep-ph]

G.FR. Sborlini, D. de Florian, G. Rodrigo, JHEP 01, 018 (2014).
arXiv:1310.6841 [hep-ph]

J.R. Andersen, J. Bellm, J. Bendavid, N. Berger, D. Bhatia, B. Bie-
dermann, S. Briuer, D. Britzger, A.G. Buckley, R. Camacho et al.,
arXiv:1803.07977 [hep-ph]

S. Amoroso, P. Azzurri, J. Bendavid, E. Bothmann, D. Britzger,
H. Brooks, A. Buckley, M. Calvetti, X. Chen, M. Chiesa et al.,
arXiv:2003.01700 [hep-ph]

@ Springer

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.
42.

43.

44,
45.

46.

47.

48.

49.

50.

51.
52.

W.J. Torres Bobadilla, G.F.R. Sborlini, P. Banerjee, S. Catani,
A.L. Cherchiglia, L. Cieri, PX. Dhani, F. Driencourt-Mangin,
T. Engel, G. Ferrera et al., Eur. Phys. J. C 81(3), 250 (2021).
arXiv:2012.02567 [hep-ph]

V. Del Duca, A. Frizzo, F. Maltoni, Nucl. Phys. B 568, 211-262
(2000). arXiv:hep-ph/9909464

T.G. Birthwright, E.-W.N. Glover, V.V. Khoze, P. Marquard, JHEP
05, 013 (2005). arXiv:hep-ph/0503063

T.G. Birthwright, E.-W.N. Glover, V.V. Khoze, P. Marquard, JHEP
07, 068 (2005). arXiv:hep-ph/0505219

V. Del Duca, C. Duhr, R. Haindl, A. Lazopoulos, M. Michel, JHEP
02, 189 (2020). arXiv:1912.06425 [hep-ph]

V. Del Duca, C. Duhr, R. Haindl, A. Lazopoulos, M. Michel, JHEP
10, 093 (2020). arXiv:2007.05345 [hep-ph]

S. Catani, D. de Florian, G. Rodrigo, Phys. Lett. B 586, 323-331
(2004). arXiv:hep-ph/0312067

G.ER. Sborlini, D. de Florian, G. Rodrigo, JHEP 10, 161 (2014).
arXiv:1408.4821 [hep-ph]

G.ER. Sborlini, D. de Florian, G. Rodrigo, JHEP 03, 021 (2015).
arXiv:1409.6137 [hep-ph]

S. Badger, F. Buciuni, T. Peraro, JHEP 09, 188 (2015).
arXiv:1507.05070 [hep-ph]

M. Czakon, S. Sapeta, JHEP 07, 052 (2022). arXiv:2204.11801
[hep-ph]

Z. Bern, L.J. Dixon, D.A. Kosower, JHEP 08, 012 (2004).
arXiv:hep-ph/0404293

S.D. Badger, E.W.N. Glover,
arXiv:hep-ph/0405236

C. Duhr, T. Gehrmann, M. Jaquier, JHEP 02, 077 (2015).
arXiv:1411.3587 [hep-ph]

Y. Li, H.X. Zhu, JHEP 11, 080 (2013). arXiv:1309.4391 [hep-ph]
C. Duhr, T. Gehrmann, Phys. Lett. B 727, 452 (2013).
arXiv:1309.4393 [hep-ph]

L.J. Dixon, E. Herrmann, K. Yan, H.X. Zhu, JHEP 05, 135 (2020).
arXiv:1912.09370 [hep-ph]

Y.J. Zhu, arXiv:2009.08919 [hep-ph]

S. Catani, L. Cieri, Eur. Phys. J. C 82(2), 97 (2022).
arXiv:2108.13309 [hep-ph]

S. Catani, D. Colferai, A. Torrini, JHEP 01,
arXiv:1908.01616 [hep-ph]

V. Del Duca, C. Duhr, R. Haindl, Z. Liu, arXiv:2206.01584 [hep-
ph]

I. Feige, M.D. Schwartz, Phys. Rev. D 90(10), 105020 (2014).
arXiv:1403.6472 [hep-ph]

A. Bassetto, M. Ciafaloni, G. Marchesini, Phys. Rep. 100, 201
(1983)

W. Siegel, Phys. Lett. B 84, 193 (1979)

Z. Bern, D.A. Kosower, Nucl. Phys. B 379, 451 (1992)

J.J. van der Bij, E.W.N. Glover, Nucl. Phys. B 313, 237 (1989)

JHEP 07, 040 (2004).

118 (2020).


http://arxiv.org/abs/2009.00516
http://arxiv.org/abs/2112.07099
http://arxiv.org/abs/1410.1892
http://arxiv.org/abs/1505.04084
http://arxiv.org/abs/1912.05778
http://arxiv.org/abs/2006.05329
http://arxiv.org/abs/2012.03256
http://arxiv.org/abs/2012.07853
http://arxiv.org/abs/hep-ph/9512328
http://arxiv.org/abs/hep-ph/9605323
http://arxiv.org/abs/hep-ph/9706545
http://arxiv.org/abs/hep-ph/0201036
http://arxiv.org/abs/hep-ph/9710255
http://arxiv.org/abs/hep-ph/9810389
http://arxiv.org/abs/hep-ph/9810409
http://arxiv.org/abs/hep-ph/9903515
http://arxiv.org/abs/hep-ph/9903516
http://arxiv.org/abs/hep-ph/9908523
http://arxiv.org/abs/hep-ph/0007142
http://arxiv.org/abs/1101.0642
http://arxiv.org/abs/1107.4384
http://arxiv.org/abs/1804.02069
http://arxiv.org/abs/1112.4405
http://arxiv.org/abs/1310.6841
http://arxiv.org/abs/1803.07977
http://arxiv.org/abs/2003.01700
http://arxiv.org/abs/2012.02567
http://arxiv.org/abs/hep-ph/9909464
http://arxiv.org/abs/hep-ph/0503063
http://arxiv.org/abs/hep-ph/0505219
http://arxiv.org/abs/1912.06425
http://arxiv.org/abs/2007.05345
http://arxiv.org/abs/hep-ph/0312067
http://arxiv.org/abs/1408.4821
http://arxiv.org/abs/1409.6137
http://arxiv.org/abs/1507.05070
http://arxiv.org/abs/2204.11801
http://arxiv.org/abs/hep-ph/0404293
http://arxiv.org/abs/hep-ph/0405236
http://arxiv.org/abs/1411.3587
http://arxiv.org/abs/1309.4391
http://arxiv.org/abs/1309.4393
http://arxiv.org/abs/1912.09370
http://arxiv.org/abs/2009.08919
http://arxiv.org/abs/2108.13309
http://arxiv.org/abs/1908.01616
http://arxiv.org/abs/2206.01584
http://arxiv.org/abs/1403.6472

	Soft gluon–quark–antiquark emission in QCD hard scattering
	Abstract 
	1 Introduction
	2 Soft factorization and soft currents
	2.1 Soft factorization of scattering amplitudes
	2.2 Tree-level currents
	2.2.1 The tree-level current for soft gqbarq emission


	3 Tree-level squared currents
	3.1 The squared current for soft gqbarq radiation

	4 Processes with two and three hard partons
	4.1 Soft gqbarq emission from two hard partons
	4.2 Soft gqbarq emission from three hard partons

	5 QED and mixed QCD times QED interactions
	6 Summary
	Acknowledgements
	Appendix A: Tripoles on two and three hard particles
	References




