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Abstract: Alzheimer’s disease (AD) is a neurodegenerative disorder that leads to the loss of cognitive
functions due to the deterioration of brain tissue. Current diagnostic methods are often invasive or
costly, limiting their widespread use. Developing non-invasive and cost-effective screening methods
is crucial, especially for identifying patients with mild cognitive impairment (MCI) at the risk of
developing Alzheimer’s disease. This study employs a Machine Learning (ML) approach, specifically
K-means clustering, on a subset of pixels common to all magnetic resonance imaging (MRI) images
to rapidly classify subjects with AD and those with normal Normal Cognitive (NC). In particular,
we benefited from defining significant pixels, a narrow subset of points (in the range of 1.5% to 6%
of the total) common to all MRI images and related to more intense degeneration of white or gray
matter. We performed K-means clustering, with k = 2, on the significant pixels of AD and NC MRI
images to separate subjects belonging to the two classes and detect the class centroids. Subsequently,
we classified subjects with MCI using only the significant pixels. This approach enables quick
classification of subjects with AD and NC, and more importantly, it predicts MCI-to-AD conversion
with high accuracy and low computational cost, making it a rapid and effective diagnostic tool for
real-time assessments.

Keywords: Alzheimer’s disease; K-means clustering; permutation test; MRI image

1. Introduction

When Dr. Alzheimer met Auguste Deter (better known as “Auguste D”) in 1901, he
could not have had any idea that her story would make his name a well-known word
throughout the world. The lady was only 50 years old when her husband noticed her
increasing memory problems. She soon became more aggressive, paranoid, suspicious
about her family, and displayed other worsening psychological changes, so much so that
she needed to be admitted to the psychiatric hospital. She remained there for the rest of her
life and she passed away in 1906. Dr. Alzheimer examined her brain material using new
stains that revealed the presence of what we now call amyloid plaques and neurofibrillary
tangles. Dr. Alzheimer concluded that Auguste had a rare form of dementia that affects
people aged under 65. More than a century later, much remains to be discovered, mainly
concerning prevention.

1.1. Backgrounds and Motivations

Alzheimer’s disease is a progressive brain disorder: the symptoms develop gradually
and slowly, destroying memory, memories, thinking skills, and eventually, the ability to
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carry out simplest tasks. The damage initially takes place in parts of the brain involved
in memory, including the entorhinal cortex [1] and hippocampus [2]. It later affects areas
in the cerebral cortex [3], such as those responsible for language, reasoning, and social
behavior. Memory problems are typically one of the first signs of Alzheimer’s, even though
initial symptoms may vary from person to person [4]. A decline in other aspects of thinking,
such as finding the right words, vision/spatial issues, and impaired reasoning or judgment,
may also signal the very early stages of AD [4].

MCI is a condition that could be an early sign of Alzheimer’s [5], but not everyone
with MCI will develop the disease [6]. The symptoms of MCI are not as severe as those of
AD or dementia. For example, people with MCI do not experience the personality changes
or other problems that are typical of Alzheimer’s. People with MCI are still able to take
care of themselves and perform their normal daily activities [7]. Family and friends may
notice memory lapses and a person with MCI may worry about losing their memory. MCI
may be an early sign of more serious memory problems [8].

Researchers in [9–11] found that a higher percentage of people with MCI, when
compared to healthy subjects, are likely to develop AD or related dementia.

Furthermore, even when the shift MCI to AD does not occur, the symptoms of MCI
remain unchanged or even improve. Studies suggest that genetic factors may play a role in
determining who will develop MCI, as they do in AD and related dementias [12–14].

Unfortunately, different studies on diagnosed MCI subjects have found a high vari-
ability in the risk of developing AD, ranging, for each year, from 5% [15], 10–15% [6,16–19],
to 20% [20] and more. To obtain results, in most cases researchers exploited the predictive
capabilities of standard Machine Learning (ML) methods together with a mere statistical
analysis of the data at different time scans. As an example, both in [16,21] and in [6,22]
the authors used Support Vector Machine (SVM) applied to brain network graphs to de-
tect MCI-to-AD subjects using features computed from local and global graph measures,
with high percentages of accuracy, sensitivity, and specificity. On the other hand, we can
say that the difference in percentage can also occur when a different cohort of patients and
methodology are used: in [20], the authors investigate whether the combination of fluoro-2-
deoxy-d-glucose and PET measures with the APOE genotype would improve prediction
of the MCI-to-AD conversion. After one year, 8 of 37 subjects with MCI converted to AD
(22% rate).

It is worthwhile noting that all the studies that involve brain scan data consider
pixel (or voxel)-based analysis and high-dimensional pattern classifications. In some
cases, features obtained from sophisticated shape analysis and density variations are also
involved. Those classification procedures, which act on high-dimensional spaces, turn out
to be extremely onerous in terms of time and resources.

Our study aims to establish a methodology for calculating a subset of pixels—specifically,
those deemed significative—that are shared among all the analyzed classes: NC, MCI, and
AD. This subset is crucial for conducting an analysis of the onset or progression of AD
while maintaining the prediction accuracy of the entire dataset, along with its geometric
and volumetric characteristics. Since the size of the subset of significant pixels is two orders
of magnitude lower than the size of the whole dataset, because of its faster nature it can
be a valid tool that can aid clinicians in an online diagnosis and guarantee the patient a
change in their lifestyle to a slower, although inevitable, degeneration.

1.2. Study Design

This study is an observational analysis with the aim of detecting the accuracy and
lowering the computational time required for the MCI-to-AD conversion prediction. This
choice is motivated by the presence in the literature of papers reporting a wide range of
variability in the conversion prediction percentage using high-computational-complexity
ML settings. The used ML models range from the simplest ones, such as the K-means
that we are employing, to more sophisticated models such as neural networks, SVM or
deep neural networks (see [23–26]). All of these should react in the same way to similar
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data, mainly MRI or fMRI acquisitions, but this is not the case. Furthermore, almost
all of them rely on all of the acquired images, sometimes performing with high time
complexity [26,27]. Our work uses a simple K-means model to demonstrate that to obtain
prediction performance similar to those studies already present in the literature (with
respect to the same data), it is sufficient to use a restricted number of pixels, thus reducing
the computational cost.

The reader can follow the design of our study in Figure 1.
Specifically, we considered three classes of MRI images of NC (normal cognitive),

AD, and MCI subjects from a public dataset of MRI images from the ADNI project [28].
For each subject, two resonances, taken at a time interval of about two years, were exam-
ined. Images were subjected to an initial pre-processing stage, including signal denoising,
before detecting white and gray matter with a standard process segmentation.

First, the focus was on NC and AD subjects considered first according to the gray
and then to the white matter’s differences. More specifically, we performed a permutation
test on all pixels of the segmented MRI images to detect in which positions there was a
significant difference between the NC and AD subjects during the two-year span. These re-
maining pixels were called signi f icant pixels. Based on that, we also selected two intervals
of slices, one for gray and one for white matter, where the maximal number of significant
pixels are located.

Then, K-means clustering was performed on the differences between the white (resp.
gray) matter in the subjects of the two classes, restricted to the significant pixels and to
the chosen interval slices. This allowed us to discriminate between normal aging versus
AD degeneration.

Finally, we moved to the third MCI class and, again, we used the obtained K-means
model to classify the subjects according to the degenerative processes of white and gray
matter in the two NC and AD classes.

In this case, the predictive capabilities of K-means clustering were tested only on
significant pixels, in order to speed up the detection of MCI subjects that showed AD-like
degeneration, proving to be likely candidates for MCI-to-AD behavior. The obtained
percentages agreed with those found in the literature (see [16–18,29]) with respect to the
same dataset, as observed in Section 4.

Figure 1. Block diagram of the study design. The data collected from the ADNI database first
undergoes a pre-processing stage where white and gray matter are segmented. Then, a permutation
test on the white and gray matter of NC and AD subjects allows significant pixels to be detected and
to restrict the dataset accordingly. The involved classes are defined in Sections 3 and 3.2. Finally, a
ML model, K-means, is trained, tested, and employed to distinguish between normal aging and AD
degeneration, as well as predict candidates exhibiting the MCI-to-AD pattern.
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2. Materials and Methods
2.1. Subjects

The data used in this study were obtained from the Alzheimer’s Disease Neuroimag-
ing Initiative (ADNI) database (adni.loni.usc.edu). The ADNI database was launched in
2003 as a public–private partnership led by principal investigator Michael W. Weiner, MD.
The primary goal of ADNI has been to test whether serial magnetic resonance imaging
(MRI), positron emission tomography (PET), other biological markers, and clinical and
neuropsychological assessment can be combined to measure the progression of mild cogni-
tive impairment (MCI) and early Alzheimer’s disease (AD). For up-to-date information
on ADNI, visit www.adniâĂŘinfo.org. The results are then shared by ADNI through the
USC Laboratory of Neuro Imaging’s Image and Data Archive (IDA) [28]. The participants for
the present study were recruited from 63 sites in the United States and Canada in order
to collect a variety of clinical and imaging assessments. The subjects were followed and
re-examined through time to track the pathology of the disease as it progressed.

In our research, we included a total of 191 subjects, divided into three groups: AD,
NC, and MCI. A total of 40 subjects with Alzheimer’s disorder were included in the AD
group, 50 healthy subjects in the control group (NC), and the remaining MCI group was
composed of 101 people who had been diagnosed with a mild cognitive impairment.

The subjects were followed for 3 years with regular visits. For the MCI and NC groups,
8 visits were made, while 6 visits were made for the AD group. Each visit, except for the
first one, was followed by a resonance. Visits 2, 4, and 8 for the two groups NC and MCI
were chosen for this work; visits 2, 3, and 6 for the AD group. This choice allowed us to
obtain homogeneous time spans of one year between the visits for the three groups. We
used t0, t1, and t2 as time stamps for the three series of data. This study focused on data at
t0 and t2 time (two-year time span), keeping time t1 as a benchmark for the analysis. The
choice of such a long time span allowed for heavier tissue degeneration, so increasing the
classification performance, and, at the same time, avoided possible side effect bias due to
the short time occurrences between MRI acquisitions.

The age ranges of the different groups were similar: AD (57–88 y; mean ± sd:
73.27 ± 8.5), NC (70–85 y; 77 ± 3.96), and MCI (63–87 y; 73.5 ± 6.74). We underline
that the NC group has a small variability although it remains inside the confidence interval
of the mean ± sd of the other two groups. This choice is motivated by the natural cognitive
decline that occurs in elderly people and that could lead to a trend similar to MCI behavior.

2.2. Clinical Evaluation

Details on the inclusion/exclusion criteria of the subjects can also be retrieved from the
ADNI information website www.adniâĂŘinfo.org. Here, we specify the main clinical scales
for the AD diagnosis used with the scores reported on the website: abnormal memory
function score on the Wechsler Memory Scale (WMS) (adjusted for education) [30], Mini-
Mental State Exam (MMSE) score between 20 and 26 [31], Clinical Dementia Rating scale
(CDR) equal to 0.5 and 1.0 [32] for MCI and AD, respectively. In addition, all the subjects
were required to have a Modified Hachinski score (HIS) less than or equal to 4 [33] and a
Geriatric Depression Scale (GDS) less than 6 [34].

2.3. MRI Acquisition

As reported on the ADNI website, the MRI protocol for ADNI images focused on
consistent longitudinal structural imaging on 1.5 T scanners using T1 and dual-echo T2-
weighted sequences. The image dimensions were 181 × 217 × 181. After the acquisition,
all the images underwent quality control at the Mayo Clinic, in particular, the adherence
to the protocol parameters and the series-specific quality (i.e., subject motion, anatomic
coverage, etc.). Mayo also provided intensity-normalized and gradient unwarped TI image
volumes. The image corrections were provided by ADNI [35].

adni.loni.usc.edu
www.adni‐info.org
www.adni‐info.org
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2.4. Pre-Processing

We carried out a further series of standard pre-processing steps on the images acquired
from the ADNI website using the Matlab CONN toolbox [36,37]. This was performed in
order to guarantee the perfect alignment and centering of the subjects in the standard
MNI space ICBM 2009c nonlinear asymmetric template [38], a brain template that is more
representative of the population while still preserving the main characteristics of the
Talairach atlas. The choice of the CONN toolbox was motivated by standard methods: it
operates both for co-registering and segmenting data. It also supports records that have
been already, either fully or partially, pre-processed, as performed at an early stage by
ADNI. For this reason, we also preferred to consider a software segmentation procedure
based on [39], in accordance with most of the cited literature.

Furthermore, we performed a signal denoising process to make the anatomical inter
and intra-subjects variances caused by inaccurate registration uniform. CONN uses a stan-
dardized denoising process pipeline, i.e., an anatomical component-based noise correction
procedure that estimates subject-motion parameters, identifies outlier scans, and removes
constant and first-order linear effects.

Then, we detected white matter and gray matter tissue volumes still using the Matlab
CONN toolbox. In particular, the tissue classification and the related bias correction were
set on the probabilistic framework, as defined in [39]. This procedure iteratively performs
tissue classification, estimating the posterior tissue probability maps from the intensity
values of the reference functional/anatomical image. Direct normalization is finally applied.

We underline that since the classification is based on the values of the pixel intensities,
then the white and gray matter volumes obtained after the segmentation turn out to be
non-self-complementary (see Figure 2). By abuse of terminology, we will refer to pixels in
both the cases of 2D and 3D unitary cells of an MRI image.

Figure 2. The axial slice 58 view of gray matter, white matter, and fluid (from left to right) extracted
from MRI data of an AD subject. The pixel classification is performed with the Matlab CONN toolbox.

With improvements to both scan quality and facial recognition software, there is an
increased risk of participants being identified by a 3D render of their structural neuroimag-
ing scans, even when all other personal information has been removed. To prevent this,
facial features should be removed before data are shared or openly released.

2.5. Matrix Differences and Statistical Analysis

Once the pre-processing was completed, we analyzed the obtained white and gray
matter separately. In particular, we considered the differences between the values of the
MRI images at t0 and t2 to enhance the changes in white and gray matter, and to slow down
the noise phenomena fluctuations, so avoiding a threshold process and the consequent
possibility of data loss (see Figure 3).
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Figure 3. From left to right, the axial slice 58 view of gray matter at t0, t2 time acquisitions and their
difference, highlighted in red. The data are from the MRI of an AD subject.

2.5.1. Permutation Test

To detect significant-pixel fluctuations between t0 and t2 in the white and gray matter,
the permutation test [40] was chosen for both the NC and AD subjects. This choice was
motivated by its non-parametric characteristic together with the requirement of only one
hypothesis: the exchangeability among data. This is a key point when no specific informa-
tion about the data distribution is present. On the other hand, one of the main drawbacks is
its high computational cost that may limit its applicability. However, when the data allows,
it is a powerful method to determine statistical significance.

So, for each pixel position, the t0 and t2 white (resp. gray) values were coupled,
resulting in two sequences of observations.

We expected a p-value reporting the significance of the differences between the two se-
quences of observations. To achieve this aim, we first computed the differences (in means)
of the two sequences of data, then we proceeded in randomly permuting them, dividing
them into two classes of the same starting cardinalities, i.e., 40 and 50 observations related to
the two NC and AD subjects’ classes. These steps allowed us to calculate the same statistics
on new data. Theoretically, all possible ways of dividing the data into two classes satisfying
the initial cardinality constraints should be explored. In practice, only 500 permutations
were performed versus a total number of permutations that was exponentially higher
than the number of observations. However, the permutation number was big enough to
highlight the cases where the difference between the observed and the permuted data were
significant by the correspondent p-value.

2.5.2. Slice Interval Choice

The next step consisted in selecting an appropriate range of horizontal brain slices
where most of the fluctuations in the white and gray matter occurred, calculated through
the significant-pixel values obtained from the permutation test. More specifically, we
considered three different thresholds: the standard α1 = 0.05 value; then, due to the
data not being fully independent, in a Bonferroni’s correction-like strategy, α2 = 0.025
and α3 = 0.01. After verifying that no significant differences occurred in the maximum-
significant-pixels-detected curves, we proceeded in selecting the slice intervals.

2.6. K-Means Clustering

In 1979, J. A. Hartigan and M. A. Wong introduced, in [41], the concept of clustering.
Since then, this technique has taken a big leap and has been extensively used as a predictive
ML method to unravel unknown relations between sets of features and categorize them.
Several areas of application benefit from the striking combination of the simplicity of
implementation and power of categorization that K-means clustering intrinsically provides,
especially in medical and diagnostic settings.

For our purpose, K-means clustering was used to group similar intervals of slices
related to the subjects of the classes AD and NC, dividing the dataset into two clusters that
were as similar as possible and detecting their centroids. So, we were acting in an already
categorized framework as if this was not the case, in order to both discover the strength of
the subjects’ separability throughout white and gray matter, and to detect the centroids of
the two clusters to be used in the final step of the study when considering MCI subjects.
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As a matter of fact, K-means is a centroid-based iterative clustering algorithm, where
we calculated, iteration after iteration, the distance between each data point and a centroid
that represents the cluster.

The chosen distance was the Euclidean distance and the pseudo-code is provided in
Algorithm 1, where the input variable subjects contains the subjects AD and NC, and cen-
troids contains the two starting centroids. The outputs of Algorithm 1 are the two detected
NC and AD clusters and the related centroids.

Algorithm 1 K-means(subjects, centroids)

while centroidsOLD != centroids do
centroidsOLD = centroids
for subject in subjects do

distance-to-NC-centroid = Euclidean-Distance(subject, centroids[1])
distance-to-AD-centroid = Euclidean-Distance(subject, centroids[2])
if distance-to-NC-centroid ≤ distance-to-AD-centroid then

nearest-centroid-index = 1
else

nearest-centroid-index = 2
end if
clusters[nearest-centroid-index].append(subject)

end for
centroids[1] = Mean(clusters[1])
centroids[2] = Mean(clusters[2])

end while
Return: clusters, centroids

We also tested different distances (City Block, Chebyshev, and Czekanowski) that per-
formed similarly or slightly worse. The similarity between the samples was used to model
clusters, causing similar observations to end up in the same set. Conventionally, however,
the chosen approach is opposite: one tries to separate different samples into specific healthy
subjects and unhealthy patients. Then, the K-means method attempts to maximize the
distance between samples and minimize the distance between clusters. The first phase
uses what the literature often describes as batch updates, where each iteration consists of
reassigning points to their nearest cluster centroid, all at once, followed by recalculation of
the cluster centroids.

In our setting, the number of clusters was specified a priori, i.e., k = 2. The batch phase
should be thought of as a fast but approximate solution and it represented the starting
point of the second phase. Her, the starting centroids were the two means of the significant-
pixel values of the classes NC and AD. The second phase used what the literature often
describes as online updates, where points were individually reassigned. Now, the sum
of the distances, and the cluster centroids were recomputed after each reassignment. The
clustering process stopped when either the centroids stabilized or when the algorithm
completed a specified number of iterations.

After completing this training phase, we entered new data (MCI group) to be assigned
to the two clusters found. Cluster assignment was performed by choosing the class whose
subject-to-centroid distance was minimal.

2.7. Dunn Index for K-Means Clustering

We considered the Dunn index (DI), introduced in [42], as a standard measure to eval-
uate the clustering performances of the K-means algorithm with respect to the significant
pixels of the NC and AD classes and, consequently, its predictive strength with respect to
the MCI-to-AD subjects.

The DI is defined as the ratio between the minimal inter-cluster distances and the
maximal intra-cluster distance, and its general expression is
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DI =
min1≤i<j≤m δ(Ci, Cj)

max1≤k≤m ∆k

with m being the number of identified clusters.
Since different inter-cluster distances can be defined, the choice of the term δ(Ci, Cj)

is performed according to the data distribution and to the characteristic to be stressed.
Here, the presence of few borderline subjects in the gray matter distribution suggested to
consider the centroid linkage distance, i.e., the distance between the centroids of the Ci and
Cj clusters.

This index has a main drawback that needs to be controlled: if at least one of the
clusters contains one or more points far from the centroids, the index is heavily affected,
preventing a truthful overview of the clustering performance.

In our case, this problem is mitigated by the knowledge both of the number of clusters,
only two, and by the subjects’ initial group. So, the presence of outliers could be directly
spotted, and, if present, the K-means procedure could be repeated after pruning them.
Although some subjects presented MRI significant-pixel value distributions that were not
tight to the centroids, we preferred to keep them: their presence witnessed a probably
non-uniform distribution of the Alzheimer’s disease stage in the subjects (no data are
available in the ADNI dataset about that) that must be somehow estimated. On the other
hand, some tests performed after pruning outliers would have pushed the DI value not far
from what was obtained from the full class presented here.

3. Results

All the MRI images considered in this study first underwent a pre-processing stage
(the ADNI database provided already-processed MRI images; however, we preferred to
check them and perform a further signal-denoising step to uniform the anatomical inter
and intra-subjects variance caused by inaccurate registration). Then, the images were
segmented into white and gray matter at times t0 and t2 (for each subject) through the
Matlab CONN toolbox. We indicate with ADw

x the difference between the white matter
MRI images at t2 and t0 of subject x of the AD class. Similarly, we use ADg

x , NCw
x , NCg

x ,
MCIw

x , MCIg
x . Both normal aging and AD’s progress cause a loss in white and gray matter,

so these difference matrices contain natural numbers only ranging in the interval [0: 255].

3.1. Permutation Test Analysis and Slice Interval Choice

The permutation test was performed using the matrices ADw
x and NCw

y , for the
1 ≤ x ≤ 40 and 1 ≤ y ≤ 50 AD and NC subjects, respectively, to detect, pixel by pixel,
where white matter had a significant decreasing difference among the two classes. The same
test was performed on gray matter. In both of them, the tests’ outputs resulted in a two-
p-valued 3D matrix. The significant pixels were computed by thresholding the output
matrices in relation to the three standard α values, i.e., 0.05, 0.025, and 0.01. The final
distribution is plotted in Figure 4 with respect to the 181 sagittal MRI slices.

In the distribution of the two matters, we observed a high-density area that is common
to all the α thresholds, where we proceeded in selecting the MRI horizontal slices, so lying
in the interval [56: 105] for the white matter, and in the interval [51: 110] for the gray matter.
Only the significant pixels of these slices were considered in the next K-means clustering
step. As one can observe in Figure 4, for different α, the peak areas of the white matter are
similar (but not equal) to those of the gray matter; for this reason, we properly chose the
intervals of slices.
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Figure 4. Significant pixels’ distribution for the white and gray matter according to the three different
α thresholds.

3.2. K-Means Clustering and Centroid Detection: Classes AD and NC

As input, the K-means clustering process had a sequence of 90 matrices containing
white (resp. gray) values of the 40 AD and 50 NC subjects in the detected significant pixels
belonging to the chosen slices’ intervals. Those matrices resulted in sizes of 181 × 217 × 50
(resp. 181 × 217 × 60), and we indicate them as ÂD

w
x , N̂C

w
y (resp. ÂD

g
x, N̂C

g
y) for each

subject x ∈ AD and y ∈ NC.
To speed up the process, since the two expected clusters were known, we set the

matrices’ means of the classes ÂD
w

and N̂C
w

(resp. ÂD
g

and N̂C
g
) as the starting centroids.

Convergence was obtained after less than 10 iterations and led to two centroids that we
indicated as C(ÂD

w
) and C(N̂C

w
) (resp. C(ÂD

g
) and C(N̂C

g
)).

In order to estimate the difference in the computational time of theclustering process
when acting on the significant pixels only, we also performed the K-means on the full-values
matrices ÂD

w
x , N̂C

w
y (resp. ÂD

g
x, N̂C

g
y). Table 1 shows the obtained computational times

of illustrative runs of the K-means algorithm on an Intel(R) Core(TM) i7-4770 processor
(speed: 3.40 GHz) and 32 GB DDR3 RAM.

Table 1. The computational time performance (in seconds) of illustrative runs of the K-means
clustering algorithm on the full MRI images vs. the significant pixels only. The differences between
white and gray matter, as well as between the full MRI images and the selected slice intervals, are
also highlighted.

Full MRI Images Selected MRI Slice Intervals

All Pixels Significant Pixels All Pixels Significant Pixels

White matter 29.362 s 0.823 s 18.403 s 0.569 s

Gray matter 70.584 s 1.501 s 19.462 s 0.709 s
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Then, we tested the separability of the classes according to the detected centroids.
Tables 2 and 3 show the obtained results for the NC and AD classes. We underline
that white matter clustering performed optimally, while gray matter clustering missed
about 15% of the AD subjects. A discussion on this phenomenon will follow in Section 4.
A visual inspection of the computed subject-to-centroid distances showed that no outliers
were present.

Table 2. Results of the clustering analysis of the MCI subjects performed on the significant pixels
only of the white matter segmentation. Cl.D.: cluster diameter; W.c.d.: within cluster distance,
i.e., the mean of the distances from the subjects and the centroids of the class and the related standard
deviation, i.e., Std. Dev.; DI: Dunn Index.

Subjects Cl.D. W.c.d. Std. Dev. DI

NC 50 11,261.55 6313.38 662.79 0.56

AD 40 19,933.77 7236.79 1746.69 0.36

MCI-to-AD 37 20,832.19 8452.98 2677.15 0.40

MCI 64 14,954.89 7030.72 1271.85 0.47

Table 3. Results of the clustering analysis of the MCI subjects performed on the significant pixels only
of the gray matter segmentation. Cl.D.: cluster diameter; W.c.d.: within cluster distance, i.e., the mean
of the distances from the subjects and the centroids of the belonging class and the related standard
deviation, i.e., Std. Dev.; DI: Dunn Index.

Subjects Cl.D. W.c.d. Std. Dev. DI

NC 56 17,447.07 9581.68 1008.61 0.55

AD 34 24,415.07 11,426.67 1909.34 0.47

MCI-to-AD 29 24,291.55 12,768.19 2106.07 0.53

MCI 72 20,219.51 10,482.42 1360.34 0.52

We point out that the K-means clustering process has been also performed varying
both the considered distance measure, in particular using the Euclidean, Czekanowski,
Chebyshev, and City Block distances, and the slices’ interval widths, always keeping
the central highest significant pixels density areas. What is reported here is the optimal
performance (not only in time but also in accuracy, according to the parameters’ choices
and related to the Euclidean distance) among all the K-means instances. For the sake of
completeness, we show in Figure 5 the confusion matrices of the K-means clustering related
to the classes ÂD

g
and N̂C

g
, according to the four distances indicated above.

Figure 5. The confusion matrices computed after the K-means clustering of the ÂD
g

and N̂C
g

classes
with respect to the four (Euclidean, Czekanowski, Chebyshev, and City Block) distances (the first one
outperforming the others). The distances led to convergence after 2, 8, 10, and 6 iterations, respectively.
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3.3. MCI-to-AD Predictions Based on Centroid Distances

The detected centroids C(ÂD
w
) and C(N̂C

w
) (resp. C(ÂD

g
) and C(N̂C

g
)) were used

in the final stage of this research to predict the MCI subjects that showed an AD pattern
similar to the patients diagnosed with AD. Now, we moved to the 101 MRI images MCIw

x
(resp. MCIg

x ) for each x ∈ MCI and we selected the white (resp. gray) significant pix-
els in the same interval [56:105] (resp. [51:110]) considered for white (resp. gray) matter

classification of the AD and NC subjects, obtaining the matrix M̂CI
w
x (resp. M̂CI

g
x)). In clos-

ing, the distances d(M̂CI
w
x , C(N̂C

w
)) and d(M̂CI

w
x , C(ÂD

w
)) (resp. d(M̂CI

g
x, C(N̂C

g
)) and

d(M̂CI
w
x , C(ÂD

g
)) ) between each MCI subject and the two centroids were calculated in

order to proceed to the predictive classification.
Tables 2 and 3 show the statistics of the performed classification task on white and

gray matter, respectively.
Figure 6 shows the final intra-cluster distance distributions between subjects and

the centroids of the corresponding clusters. Both the plots of the white and gray matter
are provided. The values of the distributions’ means (W.c.d) and of the related standard
deviations are reported in Tables 2 and 3.

Figure 6. Subject-to-centroid distance distributions inside each cluster.

4. Discussion

This observational study pursued the aim of shedding light and gaining low compu-
tational cost on the predictive capability of white and gray matter decay in MCI subjects,
with respect to the same phenomenon in NC, related to normal aging, and AD, related
to the Alzheimer’s disease course. As a matter of fact, different studies, even relying
on the same type of data, produced quite different percentages of MCI showing an AD
pattern-like decay. The dataset we used contained MRI images from the public ADNI
database of NC, AD, and MCI subjects acquired in two scans separated by two years.

The results of our study can be summarized as follows:

1. We have introduced the notion of significant pixels, i.e., the pixels of the MRI images
where the white (resp. gray) matter decays in the considered two-year time span,



Information 2024, 15, 96 12 of 16

significantly differ between AD and NC subjects. The number of significant pixels,
in the brain slices where the phenomenon mostly appeared, according to the different
α values obtained after performing a permutation test on all the pixels of the images,
i.e., 0.05, 0.025, and 0.01, was about 4%, 2%, and 1.5% of the totality of the white
matter and slightly more, i.e., 6%, 4%, and 2.5%, of the totality of the gray matter.
Such a small number of significant pixels is sufficient to discriminate between AD
and NC, as reported in Tables 2 and 3, using the K-means clustering technique. Not
surprisingly, when considering the white matter, all the NC and AD subjects were
correctly clustered, i.e., the white matter decay of NC subjects significantly differed
from that of AD ones. On the other hand, when considering gray matter, the NC
subjects were correctly classified, while 6 of the 40 AD subjects were assigned to the
NC class, with a percentage of error of 15%. This can be ascribed to the fact that
Alzheimer’s disease strongly impacts on the white matter first, and later leads to the
decay of the gray matter.
We also underline that, according to the wide and consolidated literature, the most
involved areas of the brain affected by Alzheimer’s decay are the medial portion of
the temporal lobe, where the hippocampus, amygdala, entoryl cortex, and parahip-
pocampal cortex reside. These areas are located inside the selected slice intervals
where most of the significant pixels were detected. As an example, Figure 7 shows
the significant pixels of slice 58, where a peak in the white and gray matter occurred,
with the involved brain areas highlighted.

2. Moving to the MCI-to-AD predictive capability of the K-means model restricted to
significant pixels, again we found different percentages according to the considered
white or gray matter in the considered two-year time span. As expected, analyzing
the white matter a high percentage of MCI, namely, MCI−to−AD

MCI−to−AD+MCI = 37
101 ≃ 37%

(Table 2), showed an AD pattern-like decay, similar to what was detected in [16–18]
on the same dataset. So, our result, with a time span of two years, was slightly below
the results presented in [20], where after one year only 8 of 37 patients with MCI
converted to AD (22%), verifying the reduction in the regional glucose metabolic rate,
a truthful signal of early-onset AD.
This high percentage of AD pattern in MCI could be attributed to the similarly
located decay of white matter in the two classes of subjects, as reported in [43]. This
study involved 23 AD, 15 MCI, and 15 NC subjects that underwent diffusion tensor
magnetic resonance imaging (DTI), an advanced MRI technique extremely sensitive
to white matter alterations. The authors found that patients with AD had an increase
in mean diffusivity in the limbic, interhemispheric, cortico-cortical, and corticospinal
tracts and, similarly, patients with MCI showed an increase in axial diffusivity only
in tracts projecting to the frontal cortex and splenium of the corpus callosum.
On the other hand, time passing caused a milder effect on the gray matter of MCI
subjects, whose analysis revealed only 29% of MCI-to-AD cases (see Table 3),

MCI−to−AD
MCI−to−AD+MCI = 29

101 ≃ 29% , in accordance with the more optimistic studies in the
work of [8], obtained through using machine learning techniques on fMRI images.
Tables 2 and 3 report the obtained statistics on the classification performance of
MCI subjects, together with the related DI indexes. In Figure 6, the distributions of
subjects’ distances within the clusters show smaller distances between the subjects
and the related centroids when white matter is considered with respect to gray matter.
This implies that the classification using white matter produces tighter clusters and,
consequently, a stronger accuracy than gray matter. All the clusters show some
borderline subjects that produce small local maxima while moving away from the
centroids. However, the computation of the Dunn indexes showed the high reliability
of the obtained clustering. Again, we underline that the small diameter of the NC
cluster may also be due to the smaller variability in the age range of the NC subjects.
However, this does not constitute an issue in the final results of the research.
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3. A crucial aspect of our research, related to point 1, concerns the possibility of using
exclusively the significant pixels instead of the whole MRI images to significantly
lower the computational costs (in time and resources) when performing statistics on
the Alzheimer’s disease course. One can realize the benefits of shrinking the data
size by about 95% when nonlinear statistical analysis has to be performed or, even
more, when machine learning predictive studies or feature detection are required.
As a matter of fact, the step with the highest resource consumption in our research
was the detection of the significant pixels, carried out by performing a permutation
test on all the MRI image pixels, which lasted some days.
Furthermore, lowering the computational costs of the MCI classification task set the
path for a real-time process to aid specialists’ examinations (and predictions) of the
Alzheimer’s status and development.

Figure 7. Slice 58 of an AD subject. (Left) white and gray matter locations. (Right) the significant
pixels of the same slice and the brain areas in which they are located, divided according to Brodmann
areas. The vast majority of significant pixels are located in the fusiform gyros, hyppocampus,
amigdala, parahippocampal gyrus, and orbitofrontal lobe.

A final comment, to stress a limitation to this study, relates to the very nature of the
data: in the concept of MCI, a wide range of different illnesses (pathological status) are
included, such as depression, anxiety, sleep apnea, and also side effects of drugs; hence,
for different reasons, not all MCI subjects are destined to move into Alzheimer’s dementia.
Actually, we did not know the specificity of each MCI subject classification, and this may
result in underestimating the real extent of the phenomenon. However, the only trustworthy
bench mark of our and similar studies, is the follow-up of the MCI subjects that will slip
into Alzheimer’s disease and that, as quite rarely happens, will be the last word.

5. Conclusions

In this paper, we have defined the notion of significant pixels, i.e., a subset of pixels of
an MRI image where most of the changes in white and gray matter are present during the
AD degenerative process. After a first white and gray matter segmentation of NC and AD
subjects obtained from the ADNI database, we performed a permutation test in order to
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obtain the positions where a significant difference between NC and AD appeared. In the
literature, several ML approaches tried to detect and predict AD onset at an early stage
from MRI scans, and used sophisticated models and features obtained from shape analysis
and density variations that balanced accuracy with high computational time complexity.
We stress that the obtained results, even from similar datasets, showed a wide range of
variability. The use of significant pixels lowers the computational cost, preserving the
information enclosed in the MRI dataset.

Concerning the prediction capability, first, the use of K-means on significant pixels
was successfully tested to separate NC from AD subjects. Subsequently, the model was
applied to the MCI class and the coherence of the percentage predictions of MCI-to-AD
conversions with similar studies on the same dataset, i.e., [16–18] was verified. This could
be of relevance in providing information about the subjects that changed from MCI to
AD together with the related time spans to further stress the accuracy of significant-pixel
prediction on each subject. Unfortunately, in most of the databases used in the literature,
including the ADNI database we relied on, those data are lacking or are not fully available.

So, our results on the ADNI population seem to indicate that significant pixels pre-
serve the potential to detect MCI with an AD-like pattern over a short span of time.
Clinicians could have a real-time support diagnostic assessment in order to assist and
carry out on their own patients in the natural course of the disease. Future research may
benefit from the use of significant pixels, both for speeding up, by two orders of magnitude,
the application of ML models on image datasets, and for restricting the prediction vari-
ability of the MCI with AD-pattern-like subjects by pruning unnecessary and sometimes
misleading information.
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