
PHD PROGRAM IN SMART COMPUTING
DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE (DINFO)

Taming Runtime Dependencies
across Transient Stateful
Components in the Business
Logic of Software Architectures

Leonardo Scommegna

Dissertation presented in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Smart Computing



PhD Program in Smart Computing
University of Florence, University of Pisa, University of Siena

Taming Runtime Dependencies across
Transient Stateful Components in the
Business Logic of Software Architectures

Leonardo Scommegna

Advisor:

Prof. Enrico Vicario

Head of the PhD Program:

Prof. Stefano Berretti

Evaluation Committee:
Prof. Patrizio Pelliccione, Gran Sasso Science Institute
Prof. Ezio Bartocci, Technische Universität Wien

XXXV ciclo —March 2023





ii

Acknowledgments
I would like to express my deepest appreciation to my advisor, Professor Enrico Vi-
cario, for his invaluable scientific support and profound belief in my work. I am
extremely grateful to my supervisory committee for the valuable advice and exper-
tise given during my Ph.D. study. Additionally, the completion of this dissertation,
would not have been possible without my evaluation committee who generously
provided constructive criticism and suggestion.

I am also grateful to all the members of the Software Technologies Lab for the
friendship and scientific help provided.

Lastly, I would like to acknowledge my family and my girlfriend. Their encour-
agement and infinite patience have kept my motivation strong throughout the du-
ration of this process.



iii

Abstract

In the engineering of software architectures, transient data need to be man-
aged efficiently. As opposed to long-term data, persisting temporary, and usu-
ally unstable, information in a database will result in an overhead of transac-
tions and disk usage. In this case, using in-memory storage is considered the
best practice. Concretely, transient data are maintained by stateful components
that live concurrently in a layer commonly known as the Business Logic layer.

As a request arrives from the interface, business logic components start a
response process during which they dynamically develop dependencies with
each other also depending on their current internal state. The resulting config-
uration allows the implementation of advanced mechanisms also introducing
the possibility to make the application behavior dependent on past events.

Dealing with this complexity manually is an error-prone practice, and mid-
dleware technologies are usually exploited tomanage component dependencies
and life cycles. However, relying on third-party frameworks comes with a cost:
developers often use them without knowing all the underlying details and this
may introduce unexpected behavior in the application.

The problem is further emphasized by the tight relationship that the error
propagation phenomenon establishes with the sequence of actions that the user
may perform on the interface. At coding time, developers have to consider pos-
sible combinations of action that could be performed at runtime to predict how
the business logic will evolve. Instead, in case of service failure, they may have
to deal with a complex fault removal process due to the intertwined propaga-
tion scenario caused by the long sessions of usage.

This dissertation studies how business logic components evolve at runtime
and what are the consequences of this. As a first step, it is identified the com-
mon technical mechanisms involved in software architectures. Then, the er-
ror propagation phenomenon is contextualized in the business logic scenario
where components react to requests arriving over time. On top of this, three
approaches that face the identified problem with different strategies are pre-
sented. In order to identify development faults, it is proposed a model-based
testing technique that identifies significative sequences of requests as test cases.
To improve the robustness against faults activation and error propagation, this
dissertation studies the effectiveness of life cycle management mechanisms as
a software micro-rejuvenation strategy and the impact of different life cycle de-
sign policies is investigated. As a final step, an instrumentation tool able to
observe the business logic evolution is presented, opening the way to strategies
of runtime verification.
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Chapter 1

Introduction

In the development of software systems, following an architectural style becomes a
crucial practice to achieve a variety of so-called non-functional requirements which
comprise maintainability, testability, code-readability, and extensibility. To this end,
architectural styles guide developers in the modularization of the architecture iden-
tifying sub-systems with specific responsibilities that emphasize the separation of
concern and promote the encapsulation principle (Martin (2017)).

In presence of non-trivial applications, functional requirements go usually be-
yond simple CRUD operations, this requires the implementation and management
of components that can live for an undetermined period of time during which they
interact with each other in order to deliver final functionalities to the client. These
mechanisms are usually identified as the business logic of the system which is com-
monly further divided into two sub-modules: the domain model and the application
logic. While the domain logic involves purely the mechanisms affecting the domain,
the application logic deals with the application responsibilities managing in addi-
tion, the transient state of the business transactions also known as session state Fowler
(2012).

As the complexity of the business logic increases, implementing manually the
dependencies management becomes hard and error-prone. As a good practice, the
dependency resolution is supported by frameworks that take care automatically of
dependencies instantiation, injection, and destruction thus providing a service iden-
tified as dependency injection and automated life cycle management.

The Statefulness of business logic components enables the implementation of
complex behavior of the system. In particular, it makes the response process de-
pendent not only on the current request but also on previous ones. This is a funda-
mental aspect when dealing with stateful business transactions however, since the
functional behavior of the system is strictly related to the sequence of requests sent
to the system, testing and also detecting faults when failures occur, become hard
and often unfeasible without proper instruments.
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4 Introduction

This dissertation studies how components of the business logic react to the var-
ious inputs performed by the client to the interface and how, according to this, the
session state evolves over time, with a particular focus on the consequences of the
overall reliability of the system.

1.1 Contributions
In this dissertation, the implications of business logic managed by frameworks of
dependency injection and automated life cycle management are studied under var-
ious perspectives with a particular focus on the effects on system reliability.

In particular, as a first step, it is characterized how statically specified depen-
dencies and life cycle specifications impact the dynamic data flow couplings and
how this is strictly related to the inputs that the client generates at runtime on the
interface.

With this ground, it is identified a set of insidious failure modes caused by com-
mon faults in the dependencies configuration and it is consequently proposed a
model-based testing methodology aimed to provide in a semi-automated manner, a
testing procedure oriented to the identification of the faults of interest through the
execution of significant input sequences.

Since business logic components live for an unpredictable period of time in a not
so reliable environment (usually stored in-memory) it is plausible to assume that
eventually a component will be subject to a kind of software aging phenomenon.
This threat could be somehow relieved by the mechanism of life cycle management
implemented by the abovementioned frameworks of dependency injection, this dis-
sertation deepened this aspect through an experimental study aimed to define how
different policies of life cycle design impact the software aging phenomenon.

Finally, relying on the results of the previous step, it is proposed an automatic
procedure able to implement an adaptive software rejuvenation technique relying
on a software instrumentation that inspects the evolution of the application logic
over time. The instrumentation has also been implemented for JEEweb applications
and opens the way for reliability techniques combining software rejuvenation and
runtime verification strategies.

1.2 Structure of the Dissertation
The rest of the dissertation is organized as follows: in Chapter 2, basic concepts and
terminology of software architectures are provided with a particular focus on the
business logic and how frameworks support the dependency injection and auto-
mated life cycle management of application logic components.
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InChapter 3, themodel-based testingmethodology is initially provided for generic
software systems and then the evaluation is carried on for the specific case of stateful
software architectures.

Chapter 4 depicts the experimental investigation of how life cycle management
can act as a software micro-rejuvenation strategy identifying the life span and the
interactions of the components as the two main causes of aging-related failures.

On the basis of the results obtained, Chapter 5 proposes an adaptive strategy of
software aging based on software instrumentation able to conduct both offline and
online synchronous monitoring opening a way for a runtime verification strategy
aware of the software aging phenomenon.

Finally, conclusions and future research directions are drawn in Chapter 6.
As a side note, a collection of related works are provided in Chapter 3. Although

this section is present only in this chapter, the vast majority of scientific papers men-
tioned, also cover the related work of chapters 4 and 5. In order to avoid too small
sections, the literature strictly connected to software aging and runtime verification
is integrated into the introduction of the specific chapter.





Chapter 2

Software Architectures and
Application Logic

This Chapter provides an overview of software architectures and architectural styles
deepening the business logic organization with a particular focus on how depen-
dency injection and automatic life cycle management are implemented by third-
party frameworks and how this allows the implementation of advanced yet complex
mechanisms.

An introduction to software architectures is provided in Sect. 2.1while in Sect. 2.2
a more detailed description of the business logic structure is given with an in-depth
on how transient information is managed; Sect. 2.3 describes the main strategy that
frameworks implement to resolve dependency injection and manage components’
life cycle; Sect. 2.4 provides an insight into how the specification of the business logic
statically defined results in a complex dynamic behavior evolving over time. Finally,
Sect 2.5 defines two software architectural styles in the field of web applications and
Sect. 2.6 presents two concrete implementations of them.

2.1 Software Architectures
In the engineering of software systems the Quality of Service Requirements (QoS) be-
come increasingly important as their complexity increases. This is the case of en-
terprise applications (Fowler (2012)), particular applications that usually involve a
massive amount of data managed by multiple users. This implies that an enterprise
application should deal with complex tasks like: i) data persistence, often exploit-
ing one or more database instances, ii) concurrent access to data, due to the fact
that various users could interact with the application at the same time and possi-
bly generate race conditions, and iii) credential management since it is common to
define different types of users with different levels of authority and access. These
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8 Software Architectures and Application Logic

complexities are further exacerbated by the rise of the Web and Big Data: which on
the one hand, they made applications very accessible to users through the browser
but, on the other hand, has increased exponentially the number of users and data
to manage further highlighting the need to develop scalable systems easy to extend
and integrate with other systems.

Although Functional Requirements could be achieved even with a Big Ball of Mud
organization of the application (Foote et al. (1999)), improving non-functional qual-
ities like maintainability, testability and extensibility require following criteria out-
lining a neat structure and design able to extract from the system a collection of
modules each of them defining a specific responsibility. The set of modules, rela-
tions among them and their properties, is usually called architecture.

The main role of software architecture is to support the life cycle of the system
making the application easy to understand, develop, maintain and deploy and at
the same time, minimize the lifetime cost of the system andmaximize the developer
productivity.

As in the physical world, software architecture often follows a specific style, to
this end, Garlan & Shaw (Garlan and Shaw (1994)) define the architectural style as
follows:

“ An architectural style defines a family of such systems in terms of a pattern of struc-
tural organization. More specifically, an architectural style determines the vocabulary
of components and connectors that can be used in instances of that style, together with
a set of constraints on how they can be combined. ”

A software architecture that implements a specific style then follows a set of guide-
lines that indicates how a system should be divided into modules and how they
should communicate with each other.

Although state-of-art software architectural styles may vary in their details, they
have much in common: in particular, they share the same objective, which is the
separation of concerns, and they all achieve this separation by dividing the system
into layers. The layering technique, as a matter of fact, is one of the most common
yet effective strategies to break apart a software system: each layer rests on a lower
layer, the higher one uses various services defined by the lower layer while the latter
is unaware of the higher layer details. In addition, each layer usually hides its lower
layer from the layer above e.g., layer 3 uses the services provided by layer 2which in
turn uses services of layer 1, but layer 3 is unaware of layer 1.

One of the most popular architectural styles is the Three-Layers Architecture (also
called 3-tier architecture) (Brown et al. (2003); Fowler (2012))which identifies three
primary layers: Presentation, Business andData Source (see Fig. 2.1 for a graphical rep-
resentation). The Presentation Layer implements the logic that handles the interac-
tions between the client (human or another software entity) and the system. This
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can range from managing commands sent from a command line interface (CLI) to
processing interactions performed on aGraphical User Interface (GUI) or a browser.

Data

Presentation

Business

Figure 2.1: The Three-Layers architecture.

The Data Source Layer has the responsibility to communicate with other sys-
tems providing services to the application, these systems could be messaging sys-
tems, other applications etc. . .however, in enterprise applications the vast majority
of the logic in the Data Source Layer is about the database responsible for storing
the persistent data of the application.

Finally, the Business Layer involves all the specific logic that the application needs
to achieve its main tasks. It implements the core operations and it is the logic that
characterizes the application itself. Usually, the Business Layer maintains a passive
behavior meaning that the mechanisms embedded in this layer are triggered by in-
puts sent from the Presentation Layer (i.e., user interactions). More specifically: a
client interacts with the system through the interface managed by the Presentation
Layer which in turn converts the interaction in an input for the Business Layer, once
received the input, the Business Layer, with the aim of returning a proper answer to
the Presentation Layer, starts an elaborating process involving the business logic of
the application and possibly encompassing the lower Layer of Data Source.

It is worth noting that the Three-Layer Architecture identifies a guideline in the
design of software architectures and many variations are present both regarding
the number of layers and their organization. A popular variation in the number of
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layers, for instance, consists in inserting a Service Layer between the Business and the
Presentation Layer (Fowler (2012)).

Figure 2.2: The Hexagonal Architecture.

On the other side, architecture like the Hexagonal Architecture (in Fig. 2.2), the
Onion Architecture or the Clean Architecture provide a slightly different organization
where the business logic is placed at the center and the rest of the system is devel-
oped around it in order to prevent its infiltration into the other layers and reaching a
high degree of independence from the User Interface, the database and other exter-
nal agency. This style, especially theHexagonal Architecture one, is gaining more and
more popularity, especially with the advent of the micro-service paradigm where
the client of the system could be either an end user or another micro-service.

2.2 Application Logic and Session State
The Business logic, no matter the architectural style, represents the core of the ar-
chitecture, it provides the functionalities and models the domain of the application,
however, many designers found it convenient to further distinguish the business
into two categories: the application logic and the domain logic (Fowler (2012); Cock-
burn (2001)). While the domain logic involves purely the mechanisms affecting the
domain (e.g., a discount strategy that may vary depending on the user account), the
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application logic deals with the application responsibilities (e.g., notifying the user
that a discount is available for him before the checkout).

Figure 2.3: Architectural Style with the Service Layer and Domain Model Organiza-
tion Fowler (2012).

This distinction found its concretization through the realization of an additional
layer called Service Layer, populated by a set of classes that directly implement the
application logic and delegate the execution of the domain logic to an underlying
DomainModel (Fowler (2012); Buschmann et al. (2007)), an exemplary organization
is depicted in Fig 2.3.

In applications with a Graphical User Interface, the Front Controller or the Page
Controller pattern are used in combination with the Template View Pattern (Fowler
(2012); Buschmann et al. (2007)) where one unique input controller, for the Front
Controller case, or one input controller per logical application page, for the Page
Controller case, take care of the application logic while the view of the page is re-
sponsible to build the page through a template where fields are completed at run-
time through the support of controllers. This strategy provides a twofold benefit:
on the one hand, it separates the logic from the GUI allowing to build them sepa-
rately and at the same time, facilitating the testing phase that needs to be performed
on classes instead of the interface; on the other hand, it simplifies dramatically the
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management of dynamic pages i.e., pages where the content depends on external
factors like a database query and could look different with each result.

In presence of sufficiently complex systems, the number of classes in the appli-
cation logic can be substantial, for instance: with large enough applications, it is
not rare to have to deal with similar tasks at various points in the application, in
this case, a best practice to avoid code duplication and increase the separation of
concerns consists in the implementation of helper classes (often called service classes):
classes responsible for the management of common tasks to be shared among mul-
tiple controllers (Fowler (2012); Buschmann et al. (2007)).

2.2.1 Stateful Application Logic

Maintaining the application logic stateless, i.e., having controllers and service classes
that do not retain state between user interactions, provides several advantages: it
maintains the logic simpler, reduces the resources consumption, and, if implemented
server-side, allows the processing of other requests from other sessions without race
conditions. However, the tight relationship between the application logic and the
application use cases often makes it impossible to implement a completely stateless
application logic. The main reason is that frequently use cases themselves require
their executions to be stateful, in such cases, also the application logic is forced to
make the corresponding session (also called business transactions) stateful. The state
of the application logic is often referred to as session state (Fowler (2012); Buschmann
et al. (2007)) since it is usually related to a single business transaction and it is not
shared among other parallel sessions, however, this is not always the case and there
are certain situations where the state involves more than one session.

Even if they both represent a state, the session state and the so-called record state,
have relevant differences: while the record state identifies the long-term persistent
data, namely record data, it is visible amongmultiple sessions and it is usually held in
the database, the session state has a transient nature, it is usually stored in-memory
(although this is not always the case, as pointed out in Chapter 4) and it needs to be
committed to become record data.

To clarify the concept of stateful application logic and emphasize its importance,
consider the case of an online marketplace, where one of the most fundamental fea-
tures is represented by the shopping cart. In the domain of e-commerce applications,
the typical use case is carried out by users browsing items for sale and occasionally
adding to the cart those they want to buy. In this case, the shopping cart represents
the session state since the items added to the cart need to be remembered for the
user’s entire session. Note that such a common feature could not be represented
through stateless application logic.
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It is worth mentioning that it is not necessary for the session state to be commit-
ted and become eventually part of the record state: in the example of the shopping
cart, the purchasewill be persisted on the database only after the confirmation of the
order from the user, before that, it is still possible for the user to abort the operation.
This degree of freedom enables the use of the session state also as a convenient and
flexible tool in the application logic implementation. Popular uses involve main-
taining historical data for a session and improving performances both by exploiting
the session state as a kind of in-memory cache and implementing various laziness
principles maintaining data into the state postponing time-consuming persistence
operations.

2.3 Dependency Injection in the Application Logic
In software engineering, the practice of instantiating and installing dependencies
(i.e., resolution) on the behalf of the requiring components is commonly known as
Dependency Injection (DI) and, especially for the application logic development, it
is a consolidated pattern that enforces the dependency inversion principle Martin
(2000), promotes loosely-coupled classes and improves testability andmaintainabil-
ity. However, it is clear that even in small and medium software architectures, the
application logic can easily becomes a complex structure made of various compo-
nents, i.e., controllers and service classes, that develop dependencies on each other.

In this scenario, instantiating all the components and implementing the depen-
dency injection pattern manually results in an error-prone practice. This situation
is further exacerbated in presence of procedures requiring a session state: the func-
tionality provided by a component instance may depend on its current state, and
so, sharing a stateful dependency among multiple components, may incur in a race
condition leading to unexpected side effects.

These aspects of the application logic management are such a common andwell-
known pitfall that usually the manual dependency injection is avoided and in its
place, it is considered best practice to rely on an external participant, often known
as dependency injection container or injector, responsible of creation, sharing and res-
olution of dependencies which in this case are often referred to as managed compo-
nents. The DI container implementation is ensured by so-called dependency injec-
tion frameworks which, due to their relevance, exist for virtually all programming
languages e.g., Java, Python, C#, Angular, Vue, React (more details in Sect. 2.5)

2.3.1 Dependency Resolution through Visibility Contexts
Despite the great variety of implementations available, all the Dependency Injection
Frameworks provide dependency resolution as their main feature and they even
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share similar mechanisms to implement it.
Dependency resolution involves three main actors: i) the client component ii)

the required component and iii) the dependency injection container. In the speci-
fication of the client component (i.e., usually intended as the plain code definition
of the component class), a dependency on a specific required component type is
declared through meta-information (the type of meta-information strictly depends
on the specific framework). In a stateless world, this should be sufficient for the DI
container to safely resolve dependencies, however, with stateful application logic,
multiple instances of the same required component type might provide a different
behavior based on their current state, in this situation, identifying the right instance
to inject in the client component becomes fundamental for the functional perspec-
tive.

So statefulness, although necessary, introduces an ambiguity between depen-
dencies requirements, specified statically at the component type level, and the actual
injection of dependencies, which must be solved at runtime identifying the correct
stateful instance among a set of candidates. With the aim of providing an unam-
biguous dependency resolutionmechanism, dependency injection frameworks have
introduced the concept of visibility and visibility contexts.

The visibility relation guides the DI container in the identification of the correct
instance to inject into a given instance of the client component and it basically states
that a required component instance, “componentA”, can be injected into the client
component instance, “componentB”, if and only if “componentA” is visible for “com-
ponentB”.

To identify efficiently all the visible instances, frameworks implement a criterion
relying on the concept of visibility context. In particular, a visibility context defines
a “visibility range” also known as scope, the components instances associated with
a visibility context inherit its visibility range and they are singleton in the context,
meaning that no other instances of that component type can be associated with the
same visibility context. Instances are associated with a context by the DI container
at run-time following their class-level directives specifying the scope belonging and
defined by the developer at coding-time.

Visibility contexts can be nested giving rise to a hierarchical structure where a
context only contains or it is contained by another context (subset property) and
a context can not be contained by two non-nested contexts (non-overlapping prop-
erty). Since the creation and destruction of visibility contexts are triggered by inputs
from the presentation layer, the contexts’ structure is dynamic and constantly evolv-
ing enabling the implementation of advanced application logic mechanisms.

With this organization, the DI container can identify the injection candidates by
selecting the instances of the required type by simply selecting those that are within
the visibility range of the client instance, if there are no candidates, the DI container
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will instantiate an instance of the required type and it will associate it to the proper
visibility context before the injection in the client component.

The visibility relation introduces a criterion to identify the injectable instances
for a given client instance, however slightly different behavior is present among the
available frameworks: some completely disambiguate the operation identifying a
unique candidate (e.g., CDI and Spring DI are notable examples), others instead
offer a more flexible yet error-prone selection through specification setting (this is
the case of Angular for instance).

Another aspect that DI containers take care of, is the destruction of the instance
components, this feature can be considered as a side-effect of the visibility contexts
implementation: as stated above, a context is created and destroyed at runtime fol-
lowing the inputs from the presentation logic, when a context is destroyed, by defini-
tion all the component instances associated with the same context become unreach-
able and since they can not be injected anymore they are destroyed. Considering that
the DI container is responsible for the instantiation, the injection and subsequently
of the destruction of the dependencies, the dependency injection frameworks of-
fer far more than a simple instance resolution service implementing, in addition, a
sophisticated automated life cycle management mechanism.

2.4 Dynamic Behavior of the Application Logic
It is clear now that, the application logic represents a crucial aspect of the whole
application, especially for the implementation of the functional requirements: it is
the junction point between the user interface and the persistence mechanism and
as such, it supports the use cases scenarios executions reacting to inputs sent by the
presentation layer, maintaining the session state and interfacingwith the persistence
layer if necessary.

Its role is made even more central with the support of dependency injection
frameworks which encourages the implementation of advanced and complexmech-
anisms additionally, the automated life cycle management feature, enables the com-
ponents instances living in the application logic to vary among time and user inter-
actions. With this configuration, DI and automated life cycle management orches-
trate the execution of multiple concurrent contexts and component instances in a
way determined by: the static context assigned to required components at coding
time; and by the sequence of users’ interactions received at runtime. In this con-
current execution, component instances belonging to different contexts (and in turn
different life cycles) interact with each other throughmethod invocations that result
in implicit data flow coupling.

To make this coupling explicit is proposed here an abstraction able to visually
represent the progressive evolution among time and usage of the application logic,
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as an example of this, an illustrative instance is depicted in Fig. 2.4.
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Figure 2.4: Graphical representation of the application logic evolution during a use
case scenario execution.

Time is represented continuously, however, the horizontal axis also shows, with
irregular frequency, intervalsmarkedwith an id in the form int#n: these epochs rep-
resent the request/response processes triggered by user interactions, and they are
modeled as instantaneous intervals (note that the time before and after the interac-
tion is the same) since the time required to generate a response by the application
can be considered negligible in comparison with the time spent by a real user be-
tween two subsequent inputs.

The abstraction also shows areas with dotted margins that develop horizontally
representing the visibility context outlined in Sect. 2.3.1. It is shown neatly that
they are created (violet bars) and destroyed (red bars) at different times and that
they can contain entirely another context giving rise to the typical nested structures.
Note additionally that, when a context is destroyed, all its embedded contexts are
destroyed with him.

Inside contexts, associated component instances are represented, each of them
lives among multiple requests and can entertain interactions with other instances
(represented in the abstraction through solid arrows between the two interlocu-
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tors). In this regard, it is crucial to highlight the passive nature of the application
logic where interactions between component instances are triggered only within the
explicitly demarcated request/response procedures. However, once triggered the
application logic, multiple interactions could take place during the answering pro-
cedure, to preserve the ordering, interaction epochs are represented as thick bars
describing qualitatively the time even though epochs are considered instantaneous.
As an example, at context c2 opening, instance InstanceB is created inside it, more in
detail: at time t3 the user performs int#3 that triggers a response process in the ap-
plication logic involving the interactions of InstanceB first with InstanceC and then
with InstanceD both belonging to the newly opened context c3.

The abstraction also outlines that component instances’ life cycles are strictly tied
with their associated context and they are destroyed with its closure however, they
are not instantiated at the opening of the context but only when they are required
(Laziness principle), this is the case of InstanceE which is created at time t5 although
its context c2 was created at time t2.

Finally, note that the abstraction offers an explicit representation of the reacha-
bility range which, for two instances, is bounded by the structure of their associated
contexts e.g., again instanceB can interact with instanceC during interaction int#3
because InstanceB is associated with context c2 which embeds the context c3 where
instanceC lives, at the same time InstanceB can not reach InstanceA since their con-
texts are not nested.

2.5 Stateful VS Service-Oriented Architecture
Nowadays, the application logic is so important that choosing where to run it, and
in turn also where to maintain the session state, determines the architectural style
to implement.

Assuming a client-server organization of the architecture, which implies a physi-
cal separation between the client sending requests, usually corresponding to a desk-
top or amobile device, and the server responding to the received requests, the appli-
cation logic could be implemented on both sides. The advantages anddisadvantages
involved in this choice are out of the scope of this dissertation however, it is impor-
tant to point out that implementing a server-side or client-side application logic has
also implications on the type of technologies to be used and the way the architecture
is organized resulting in two different architectural styles called: Stateful Architec-
ture, referring to the fact that the server has a state, or Service-Oriented Architecture
(SOA) otherwise. Concretely, while a stateful architecture allows implementing a
monolithic server-side architecture avoiding burdening the clientwith computation,
a service-oriented architecture relieves the workload of the server but requires the
implementation of two distinct applications: the front-end application hosted on
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Figure 2.5: Comparison Between Stateful and Service Oriented Architectures

the client side and the back-end application hosted on the server, see Fig. 2.5 for a
graphical comparison.

More in detail, Fig. 2.5 represents two possible implementations of the 3-Layers
Architecture, as can be seen, the lower part of the architecture is the same for both
implementations: the data access layer is populated with objects implementing the
Data Access Objects pattern (DAOs), one for each main Entity, which exploit services
of an Object Relational Mapping (ORM) framework to perform CRUD operations
on the relational tables with guarantee compliance between the instances specified
above by theDomainModel and data schemes definedwithin underlying Relational
Database Management Systems.

The upper part of the architecture instead, has important differences in its orga-
nization: as can be seen if Fig. 2.5a, in the stateful architecture, above the domain
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model, the application logic and the presentation layer are hosted on the server
meaning that the client sends the requests remaining stateless and that the server
is responsible to process the received requests while also maintaining the session
state of the ongoing business transactions. In addition, in the case of an application
with a GUI, is up to the server to build, populate and then transfer the view to the
requesting client.

Conversely, in the service-oriented architecture (Fig. 2.5b) the presentation, the
application logic and the management of the business transaction are borne by the
client which is now stateful. This more balanced separation identifies then two dis-
tinct applications: the front-end application, hosted client-side, and the back-end
application, hosted in the server, which, with this configuration, remains stateless
and interacts with the front-end application by exposing a set of services that act as
thin-facades (Fowler (2012)) over the domain model providing simple CRUD-based
functionalities.

In the following, it is outlined how everything described so far about the applica-
tion logic organization, is realized in the field of Web Applications both under the
stateful and service-oriented architectural style. In Sect. 2.5.1 is depicted a detailed
formalization of how the business logic can be organized server-side and how DI
frameworks usually work. In Sect. 2.5.2, with the aim of showing the similarities be-
tween server-side and client-side application logic management, a similar although
the less rigorous and thorough description for the front-end applications is pro-
vided.

2.5.1 Server-Side Application Logic Management, the Web
Application Case

In the architecture of stateful Web Applications, the server-side commonly exposes
an application logic that features methods supporting the presentation layer to dis-
play pages, accept user interaction, and determine page navigation transitions. The
business logic maintains a state of the user interaction spanning along multiple
(HTTP) requests in a layer of Page Controllers Fowler (2012) and other stateful com-
ponents (sometimes termed Beans). As a consequence, the state of the application
during a user session is split across the participants of aModel-View-Controller Dea-
con (2009): i) the running objects representing domain entities (Model) Fowler
(2012); ii) the HTML page currently displayed to the user (View); and iii) the hi-
erarchy of managed components in the application logic (Controller).
Management of lifetime and dependencies among application logic components are
usually managed by a Container, according to annotations extending the plain code
definition of classes with meta-information. To implement the resolution, the con-
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tainer maintains a runtime representation based on the concepts of scope and con-
text: a scope defines a type of policy that the container can enforce in the lifetime
and visibility management of required components; besides, a context maintains a
collection of references to running objects, often termed contextual instances, man-
aged under a common scope. During the runtime, the container maintains a set of
contexts, and each managed object is associated with a scope specified by the object
type.

By nature, scopes in web applications are shaped by concepts of the underly-
ing HTTP protocol and its state management mechanism Barth (2011): components
with request scope are allocated and maintained on the server-side only for the time
between a user request and the server response; besides, components with session
scope maintain their state along multiple HTTP requests, spanning from the initial
contact (or login) to when the application is left (maybe with a logout). In many in-
teraction scenarios, the implementation of a use case requires data to be maintained
along a time span shorter than a session but longer than a single request. This is
commonly supported by a scope, termed here enclosed, whose boundaries are pro-
grammatically demarcated by explicit begin/end operations. In the opposite direc-
tion, the application scope encompasses multiple sessions by multiple users, along
with any long-term run from an application startup to shutdown. Finally, most DI
containers also support a kind of pseudo-scope that guarantees that a required com-
ponent assumes the scope of the dependent component where it is injected. In this
work, this will be called conforming, in contrast with all the other mentioned scopes
whichwill be termed absolute. Note that, consistent withwhatwas said in Sect. 2.3.1,
this system of scopes forms a hierarchy: a request context is always contained in a
session and possibly in an enclosed context; an enclosed context is always wrapped
in a single session context; and the application context wraps all the session contexts.
Since managed components have a lifecycle, frameworks usually provide the possi-
bility to define post-construct and pre-destroy actions for each component triggered,
respectively, immediately after the creation and immediately before the destruction
of the contextual instance. Table 2.1 enlists types of contexts supported by some
major frameworks for server-side DI and automated lifecycle management in web
applications.

Session data are stored and accessed through a unique session identifier pro-
vided by the client, often specified insideHTTPCookie and Set-Cookie header fields
or inside a query parameter or within the HTTP Authorization header, e.g., adopt-
ing username and password credentials or web tokens. Note that multiple contexts
and components of the same type may live at the same time, either for the existence
of multiple enclosed contexts or for the concurrent usage of the application by mul-
tiple users. The selection of the component to be injected and referred is performed
by the container, which identifies which are the visible instances within the current
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Language Framework Built-in Context
request enclosed session application conforming

C# Autofac ✓ ✓ ✓ ✓ ✓
Spring.NET DI ✓ ✓ ✓ ✓

Java
CDI ✓ ✓ ✓ ✓ ✓
Spring DI ✓ ✓ ✓ ✓
Guice ✓ ✓ ✓ ✓

Python
Dependency Injector ✓
Pinject ✓ ✓
Injector ✓ ✓ ✓ ✓ ✓

Table 2.1: Comparison among built-in contexts formainDI frameworks in high-level
programming languages C#, Java, and Python.

request.

2.5.2 Client-Side Application Logic Management, the Web
Application Case

In the engineering of service-orientedweb applications, the application logic isman-
aged client-side by a stateful front-end application, an application usually launched
through a web browser, that maintains the session state, implements the navigation
logic and consumes the services exposed by the back-end application (Fig. 2.5b).

Client-side application logic has a lot in common with its server-side counter-
part: it is populated by stateful components managed by a DI container and it is or-
ganized with the presentation layer in a Model-View-Controller scheme. However,
there is a substantial difference that comes into play switching from a server-side to
client-side application logic consisting in how the components’ life cycles are struc-
tured: in a stateful architecture, components maintain their state among multiple
HTTP requests and their scopes are shaped by the concepts of HTTP, conversely, in
a service-oriented architecture, the front-end application loses its tight connection
with the protocol since it relies on the HTTP only to communicate with the back-end
application invoking the exposed services. In this case, then, the application logic is
strictly related to the user interface and the user interactions assume now a central
role.

Modern user interfaces are designed with a compositional structure, inspired by
the composite pattern Gamma et al. (1995), where graphical elements are defined
through the definition of their sub-elements and so, concretely, the development of
a front-end application is usually based on the so-called Component Driven Devel-
opment Frost (2016); Godbolt (2016) where a single element of the user interface,
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the widget, can be developed in isolation through the specification of its template -
which defines both its composition with other widgets and its appearance - and the
specification of its controller - which defines the logic underneath.

This strategy enforces the coupling between the presentation layer and the ap-
plication logic and identifies a finer-grained version of the page controller pattern
where a controller drives a single widget rather than an entire page.

For the same reasons described in Sect. 2.2, along with controller components, it
is also possible to define stateful helper components detached from a specific graph-
ical element that can be injected and shared among other components through class-
level specifications.

In this configuration, controllers live as long as the widget is visualized in the
user interface and the helper components can be injected and shared at different
levels of the widget composition also inheriting the same visibility range and life
cycle. This delineates a similar scenario to that outlined for the stateful architectures
where here the visibility context features are implemented by the concept of widget.
A context can be characterized by nested structures and if it is the case, it ties its
destruction to the destruction of its sub-widgets, additionally, it also defines a scope
and a life cycle to be associated with: the related controller and the injected helper
components have a determined visibility and a life cycle that span multiple user
interactions.

This delineates a scenario equivalent to that outlined in Sect. 2.4 and in turn sim-
ilar to the case of the server-side application logic shown for the stateful architecture
case. In particular, in this case, the concept of widget acts as a visibility context for
the dependency injection container:

• it allows the definition of nested composite structures where the destruction
of a widget determines the destruction of all its embedded widgets;

• it defines a visibility scope: a component has a determined visibility that de-
pends on the structure to which the associated widget belongs;

• it defines a life cycle binding its destruction to the destruction of its associated
components.

It is worth noting that, DI frameworks for client-side application logic do not
provide built-in HTTP-based scopes since as anticipated above, the HTTP ceases to
play a central role in the application logic organization and session state manage-
ment, this paradigm shift impacts heavily on the contexts structure form, which now
allows an unbounded nesting level, and also on the component instances’ life cycles
that now span among multiple user interactions instead of requests.
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2.6 Software Architectures, from Theory to Practice
In this section, concepts are illustrated in a concrete setting through the discussion
of two real architectures implementations: FlightManager (Sect. 2.6.1), which is a
full-fledged mid-sized stateful web application implemented with the Java/Jakarta
Enterprise Edition (JEE) technological stack, and ToDoApp (Sect. 2.6.2), a simple
front-end application developed in Angular.

2.6.1 FlightManager, a Stateful Architecture Case Study

It is introduced here an exemplary application, named Flight Manager1, developed
according to a common artifact-driven good practice, implementing widespread ar-
chitectural patterns common to a large class of statefulWebApplications, FlightMan-
ager is amid-size statefulweb application implementing a sound andwidely adopted
combination of architectural patterns, developed at the Software Technologies Lab of
the University of Florence by software professionals with strong and consolidated
experience, with the aim of supporting experimentation in research and providing
a reference implementation for teaching in a master course on software architecture
and methodology. Functions and architecture are described here for the purposes
of the present treatment, and more extensively documented in the accompanying
repository.

Flight Manager features functions in the context of an online flight booking sys-
tem, selected without loss of generality as a context that can be intuitively under-
stood without specific domain knowledge, represented in the Use Case Diagram in
Fig 2.6: main actors are application administrators and customers that may want
to book a flight both as occasional users and as frequent users with a personal ac-
count; a Visitor can search flights connecting airports and then book and manage
reservations for multiple passengers; in addition, a user in the role of the Registered
customer, can obtain special discount rates.

The application structure implements a 3-tier stateful architecture, outlined in
the UML Deployment Diagram of Fig. 2.7: the Domain Model Fowler (2012) is com-
posed by 10 classes (partially) represented in the Class Diagram depicted in the
DomainModel package of the figure; the Data Source is implemented by a Relational
DatabaseManagement System (RDBMS), connected to theDomainModel by aData
Access Layer, featuring a Data Access Object (DAO) for each main Entity (for a total
of 6 DAO classes), which exploits services of an Object Relational Mapping (ORM)
framework; the Presentation Layer is organized in a User Interface made of XHTML
pages (roughly, 30 pages, shown in Fig. 2.8) and a Business Logic Layer that features

1made publicly available for the research community at https://github.com/
LeonardoScommegna/unravel-experimentation

https://github.com/LeonardoScommegna/unravel-experimentation
https://github.com/LeonardoScommegna/unravel-experimentation
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Figure 2.6: Use case diagrams of Flight Manager.

Controllers implementing the navigation logic and other components maintaining
information accumulated along the user interaction (roughly, 30 classes).
Without loss of generality, the architecture of Flight Manager is implemented by
adopting specifications of the Java/Jakarta Enterprise Edition (JEE) ecosystem. In
particular, ORM relies on the Java Persistence API (JPA, here provided byHibernate),
and interface XHTML pages are based on JavaServer Faces (JSF). More importantly
for the present treatment, DI and automated lifecycle management for objects run-
ning in the Business Logic layer is implemented using Contexts and Dependency In-
jection (CDI, here provided by the Weld reference implementation). Comparable
specifications and technologies are available in other ecosystems for Web Applica-
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Figure 2.7: Architecture of Flight Manager.

tion development. In particular, functionalities and concepts of CDI are paralleled
by Spring-DI in Java, Autofac in C#, and other frameworks outlined in Table 2.1.

The CDI framework of JEE provides tailored annotations for specifying that a
Java class be managed as a bean associated with one of the built-in contexts @Re-
questScoped (i.e., request),@SessionScoped (i.e., session),@ApplicationScoped (i.e., ap-
plication), @ConversationScoped (i.e., enclosed) and, @Dependent (i.e., conforming).
On the other hand, the annotation@Inject specifies that the target of a reference vari-
able is managed by the container as a required component. The snippet in Fig. 2.9-
left illustrates the concept showing the definition of class LoginController, which can
be injected as a component with request scope (specified by the annotation @Re-
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Figure 2.8: Page Navigation Diagram of Flight Manager.

questScoped stacked on the class definition), and which in turn receives an injection
of three components in the typesUserDao, LoggedUserComponent, and PasswordMan-
agerComponent (specified by the annotations @Inject stacked on the declaration of
reference variables that shall point them).

Note that the scope is a static property of each type of injectable component, spec-
ified by annotation of its class definition, and it is neither controlled nor made ex-
plicit at the injection point where the component is required: in particular, the scope
of instances referred by userDao, loggedUser, and pwdManager are not known to the
code of LoginController, and they shall rather be retrieved by inspection of the anno-
tations of the separate code of their class definitions. This practice, which is common
to DI and automated lifecycle management in all major frameworks, largely limits
design control and results in error-prone programming approaches, exacerbated
further when components are developed and reused by separate teams with differ-
ent practices, knowledge, and skill Sharma and Spinellis (2018). To cope with this
difficulty, Fig. 2.9-right shows a fragment of a UML Class Diagram with (informal)
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1 @RequestScoped
2 public class LoginController {
3 private String username;
4 private String pwd;
5 private String toHome = "index";
6
7 @Inject
8 private UserDao userDao;
9 @Inject
10 private LoggedUserComponent loggedUser;
11 @Inject
12 private PwdManagerComponent pwdManager;
13
14 public String loginAsCustomer () {
15 User u = userDao.login(this.username ,
16 pwdManager.encode(this.pwd));
17 if(u != null)
18 this.loggedUser.initUser(u);
19 return (u == null) ? "" : this.toHome;
20 }
21
22 public String logout () {
23 this.loggedUser.shutDownUser ();
24 return this.toHome;
25 }
26 }

«@RequestScoped»
LoginController

«@SessionScoped»
LoggedUserComponent

«@RequestScoped»
UserDao

«@RequestScoped»
PasswordManagerComponent

«@Inject»

«@Inject»

«@Inject»

Figure 2.9: (left) definition of the Java class LoginController, which handles the Flight
Manager login page. Username and password fields are supporting variables used
by XHTML forms in the Presentation Layer; userDao and pwdManager are injected
components, representing dependency relationships, and loggedUser is initialized
after successful authentication; the loginAsCustomer()method uses both dependen-
cies to apply the right database query. In case of authentication, the end-user is
redirected to the Home page (the toHome attribute is initialized with a return string
written in the JSF syntax);
(right) UML Class Diagram annotated so as to identify injected dependencies and
components scopes: LoginController, UserDao, and PasswordManagerComponent (in
request context); LoggedUserComponent (in session context).

stereotypes specifying the scope of injected components and identifying dependen-
cies that will be managed by the DI container.

A possible basic development methodology tailored for the characteristics of the
architecture of Fig. 2.7 is illustrated in Fig. 2.10 as a Data Flow Diagram. Displayed
pages are initially identified from Use Case Diagrams and Templates Curcio et al.
(2018), sketched in mockups and organized in a Page Navigation Diagram, shown in
Fig. 2.8 for the Flight Manager application example. Following the ICONIX process,
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Figure 2.10: A basic artifact-driven development process for a Web Application in
the Flight Manager architecture.

pages can then be refined through Robustness Analysis to associate user interaction
on displayed pages (represented as Boundaries) with objects in the underlying busi-
ness logic and domain model (represented as Entities), so as to obtain a Robustness
Diagram for each Use Case Rosenberg et al. (2005). For example, Fig. 2.11 illus-
trates the UML Robustness Diagram for the “View Airports” use case (UC:A4.2 in
Fig. 2.6). Note that the diagram represents the navigability between Boundary ele-
ments, in light blue, (i.e., pages AdministratorPage, AirportList, and AirportView) and
navigation actions (e.g., nav back or nav details). The diagram also reveals what hap-
pens at the traversal of a navigation edge, through the controller elements, in light
green, and the access to underlying Entity elements in light orange (e.g., from page
AirportList, some details of an airport are retrieved during the navigation action nav
details).

2.6.2 ToDoApp, a Front-End Sample Application
It is presented here ToDoApp, a simple front-end application that supports the task
management of a user. As can be seen by the use case diagrams in Fig. 2.12, ToDOApp
allows one to create a project and then populate it with various tasks. Each task has
a title and a field that marks if it is already done or not, optionally, a task can be
decorated also with a priority level ranging from 1 to 10 and enriched with a textual
description.

The application is entirely developed in Angular 2 exploiting the built-in Depen-
dency Injection framework for the management of the application logic. It is worth
mentioning that, since it is only a front-end application, it is not a complete software
architecture lacking server-side layers. This results in a lack of persistence of the ap-
plication meaning that all the tasks added during the usage will be deleted once the
application is closed. However, the persistence feature could easily be added with
minor modifications to ToDoAPP simply including calls to services exposed by an
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Figure 2.11: UML Robustness Diagram of “View Airports” admin use case (i.e.,
UC:A4.2): starting from AdministratorPage, by clicking nav view Airport List the ad-
min is redirected to theAirportList page. At any time, by clicking nav back, a forward
to the AdministratorPage page is performed while nav details and nav return actions
allow to inspect information about a specific airport in theAirportView page and then
come back to the main list. In the diagram, entities represent domain model objects
as (orange), boundaries represent web pages as (blue), and controllers, repre-
sent managed components as (green).

ad-hoc back-end application.
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Figure 2.12: Use case Diagram of ToDoApp.



Chapter 3

Characterizing Threats and
Testing Application Logic

Productive development of Application Logic in Software Architectures largely re-
sorts to Dependency Injection and automated management of life cycle and visibil-
ity of injected components. While promoting separation of concerns in design and
implementation, this practice hides runtime usage relationships and concurrency
among software components, blurring the overall structure and state of the applica-
tion and thus hurdling safe control along the development and verification stages.

This chapter characterizes the chain of threats induced by the use of DI and au-
tomated life cycle management in application logic with stateful components, iden-
tifying the specific fault model that they subtend and the failure modes that might
result additionally it is proposed a semi-automatedModel-Based Testing (MBT) ap-
proach Utting et al. (2012) that counteracts it.

To this end, an abstraction is proposed, named managed components Data Flow
Graph (mcDFG), which makes explicit data flow coupling occurring among compo-
nents under the orchestration of the container in the execution of each application
use case. It is then shown how this abstraction can be derived by the automated
transformation of annotation of basic artifacts of a disciplined SW development life
cycle, and how it can be used to select test cases according to various criteria of data
flow coverage Rapps and Weyuker (1985). The proposed approach is illustrated
and experimented on a suite of mutations of an exemplary web application, named
Flight Manager, which implements widespread architectural patterns of the good
practice of software engineering.

In this Chapter, motivation and related works are drawn in Sect. 3.1 and Sect. 3.2
respectively, in Sect. 3.3 the fault to failure chain related to the application logic
management is depicted identifying first a group of failure modes, and then the
associated fault model; the proposed testing methodology is shown in Sect. 3.4 and
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experimentation with related results are present in Sect. 3.5.

3.1 Motivation
DI and automated lifecycle management provide essential functionality for the pro-
ductive development of enterprise-scale applications, promoting abstraction, sep-
aration of concerns, and reuse, and it becomes definitely crucial in the application
logic where the state of user interaction ismaintained in a business logic layerManuel
and AlGhamdi (2003) made of Page Controllers Fowler (2012) and other stateful
components (sometimes termed Beans).

However, DI and automated lifecycle management also reduce designer control
over the intertwined effects of concurrency orchestrated by the container and dataflow
coupling among the instances of managed components that overlap their activity. In
fact, actual dependencies among instances are determined during the runtime as a
joint effect of the sequence of inputs issued by users’ navigation of application pages
and structural characteristics of application logic components, according to mecha-
nisms that remain implicit and often only partially understood by SW developers.

This gives raise to a specific chain of threats Avižienis et al. (2004), with types
of faults related to how components are associated with a lifecycle model and how
they are composed, andwith subtle mechanisms of fault-to-failure propagation that
are often hard to activate and observe.

Maintaining reliability while exploiting the potential of DI and automated life-
cycle management requires suitable means to provide a view of the effects of design
choices and to verify an implementation through effective tests focused on specific
types of fault and interpreted by an oracle able to identify error states that may be
not observable at the user interface.

3.2 Related Works
In the literature of software analysis, design, and testing, software systems, and in
particular Web Applications, have been modeled under various perspectives Diehl
(2007). Abstractions capturing static and structural characteristics of a system en-
able fine modeling of software components in isolation or in mutual dependence,
relying on the knowledge extracted from design documentation or implementation
artifacts. Besides, dynamic navigational and behavioral abstractions provide capabil-
ities for reducing the complexity of the verification problem by representing only
feasible sequences of operations and system behaviors in accordance also with func-
tional requirements specifications and use cases.

Structural characteristics in Object-Oriented (OO) applications are commonly
represented using theUnified Modeling Language (UML) Booch (2005) and its avail-
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able UML profiles Fuentes-Fernández and Vallecillo-Moreno (2004). In Conallen
(1999, 2003), theWeb Application Extension UML profile is presented for supporting
design activities for Web Applications through the abstraction of ad hoc primitives
about pages, forms, links, redirects, scripts, and style sheets. While in Souza et al.
(2007), the FrameWebUMLprofile is proposed for supporting designers inmodeling
web information systems based on specific types of frameworks (i.e., Model-View-
Controller frameworks, Object-Relational Mapping frameworks, and Dependency
Injection frameworks), providing four extendedUMLClass Diagrams (i.e., Domain
Model, Persistence Model, Navigation Model, and Application Model).

Further abstractions, inspired by Control Flow Graph (CFG) Allen (1970) and
Data Flow Graph (DFG) Rapps and Weyuker (1985), provide graph models focus-
ing on the OO paradigm Ferrante et al. (1987); Souter et al. (1999) for represent-
ing dependency relationships among dynamic and reusable components, also inte-
grated within distributed systems and orientated towards web development. InWu
et al. (2000) the Component Interaction Graph (CIG) is proposed to enable repre-
sentation of collaborative relationships and dependencies among software compo-
nents providing a structural overview of modeled interactions by depicting com-
ponents interfaces as nodes, and dependencies as edges, conceptually identifiable
as events (e.g., user actions or interface invocations). In order to support relia-
bility analysis processes over component-based applications, a probabilistic model
adapted from the CFG principles is proposed in Yacoub et al. (2004) for the identi-
fication of architectural dependencies among components. This abstraction, named
Component-Dependency Graph (CDG), is a directed graph whose nodes are compo-
nents, and whose directed edges are transitions between components, each one in
turn annotated with details about its estimated reliability and its execution prob-
ability. In Shatnawi et al. (2017) a Dependency Call Graph is proposed to represent
key aspects for the modernization of Service-Oriented Architectures of monolithic
legacy systems. Specifically, dependencies that commonly remain hidden are ex-
pressed through a language-independent meta-model termed Knowledge Discovery
Meta-Model Pérez-Castillo et al. (2011), enlightening dependencies related to con-
tainers regulated through Remote Method Invocations.

As a common trait, all these component-based graph abstractions are not aware
of the concurrency scenarios that underlie Web Applications exploiting DI and au-
tomated lifecycle management: they lack expressiveness about components scopes,
their visibilities, and their lifecycles boundaries, as well as proxy and interceptor
entities, automatically acting in the background through a DI container.

The rise ofWebApplications, subject to different enterprise architectural styles (e.g.,
monolithic, service-oriented, microservice-oriented), regulated by Internet proto-
cols, and deployed on remote Application Servers exacerbates the need for mod-
elling their navigational characteristics; consequently, some semi-formal and formal
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standards have been introduced.
In the practical experience, functional aspects ofWebApplications are expressed

through a simple and intuitive abstraction, namedPageNavigationDiagram (PND)Kung
et al. (2000), characterising the navigation design through the definition of a finite
state machine where web pages act as states and hyperlinks as transitions. Other-
wise, functional aspects can be expressed also through behavioural UML diagrams;
above all, a widely adopted artefact is the UML Robustness Diagram Rosenberg and
Scott (1999), subtending a reachability graph, decorated with dependency relation-
ships among actors, pages and page controllers, thus mixing information derived
both from functional and structural perspectives. Internal behaviours can be also
captured in a static or dynamic perspective adopting structural models, such as
UML Class Diagrams, as addressed by Ricca and Tonella (2001) with the aim of
extending the representation to navigation data flows. However, this latter work
does not consider the case of implementations exploiting containers for DI and au-
tomated lifecycle management.

Model-Based Testing (MBT) Utting et al. (2012); Anand et al. (2013) is a widely
adopted technique, exploiting formal and semi-formalmodels as primarydocumen-
tation artefacts leading the choice of a stimulus (or a sequence) to the SystemUnder
Test (SUT) and its verification, also in conformance with coverage criteria describ-
ing the confidence level in the absence of defects. MBT uses models to describe the
behaviour of a system and it can be considered as a specialisation of Model-Driven
Engineering Schmidt (2006), improving the quality of functional requirements, to
the automated generation of tests and systematic coverage of test suites Legeard and
Utting (2010).

In a white box perspective, MBT techniques perform structural testing for ver-
ifying the correctness of the SUT, exploiting the source code and implementation
details together with modelling abstraction for test case generation and selection.
Among structural testing techniques based on graph abstractions, the most relevant
are Control Flow Testing (CFT) Beizer (2003) and Data Flow Testing (DFT) Rapps
and Weyuker (1985); Frankl and Weyuker (1988) based on CFG and DFG respec-
tively. Later, various solutions Harrold and Rothermel (1994); Souter and Pollock
(2003); Denaro et al. (2008) have been proposed so as to adapt DFT for the case
of OO programming, thus covering def-use couples at different levels of granularity
by modelling also relationships among attributes and methods of different classes.
In Liu et al. (2000), the approach is further extended to the case of web components
covering couplings occurring in web interactions due to values exchanged in HTTP
requests/responses, as well as in XML and HTML documents.

Conversely, MBT techniques under a black box perspective perform functional
testing verifying the conformance between a SUT and a specification, neglecting
structural aspects of a system in favour of the adoption of functional or navigational
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design abstractions, such as software requirements or use cases, describing applica-
tion business scenarios Tiwari and Gupta (2015). Scenario-oriented testing practices,
also known as interaction-oriented, describe all reasonable runtime interactions be-
tween the SUT and the sequences of inputs or outputs from the end-user point of
view Vieira et al. (2006); Nebut et al. (2006); Kaplan et al. (2008). Another signif-
icant notation category is the state-oriented Offutt and Abdurazik (1999); Kuliamin
et al. (2003); Bouquet et al. (2007), which describes the SUT by reactions on inputs
and outputs through finite state automata, laying its foundations on the consideration
that the system behaviour can be fully abstracted by its state (i.e., the automaton cur-
rent state) and the invoked operation (i.e., the selected output of the current state).

This section proposes an approach able to fill the gap between the white box
and the black box perspective in software architecture and in particular in web ap-
plication testing and that takes advantage of the best of both worlds. On the one
hand, the white box perspective puts the focus on a single application module (or a
limited group) allowing an in-depth verification of the modules with the drawback
of a high number of test cases and the lack of possibility for containers to operate
during test execution. On the other hand, the black box perspective allows con-
tainers to be running and to identify considerably fewer test cases but lose control
of the implementation details and component states. The presented methodology
addresses the SUT verification taking into account of DI and automated lifecycle
management mechanisms. It is based on an abstraction (that can be considered in a
grey box perspective) aware of both navigational design and implementation details
regarding container configuration: the test case selection phase is then guided by
revised coverage criteria derived from DFT approaches. Thus, obtained test cases,
result constrained by allowed end-user sequences of inputs and at the same time are
built to be able to inspect how the state of the componentsmanaged by the container
reacts to these stresses.

3.3 The Chain of Threats

In this section, the chain of threats affecting the development of the application
logic of software architecture is characterized by classifying types of coding faults
(Sect. 3.3.1) and failure modes that they can produce (Sect. 3.3.2).

Then, in Sect. 3.3.3 it is exemplified how fault types can occur in realistic scenar-
ios and illustrate how they can be activated and propagated by user actions in the
navigation of interface pages.
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3.3.1 Fault Model
It is here considered a taxonomy of fault types that can be introduced in annota-
tion or programmatic lifecycle specification, which makes the scope of a managed
component unfit for the needs of the point where it is injected.

• ShorterScope: a component is assigned an absolute scope lower than what
would be required.

• LongerScope: viceversa, a component is assigned an absolute scope higher
than what would be required.

• WrongConformance: a component is assigned a conforming scope while it
should have been absolute, or vice versa.

• EarlyOrUndueClosure: the end demarcation of an enclosed context is erro-
neously added or placed too early in the code.

• LateOrMissingClosure: the end demarcation of an enclosed context ismissing
or it is placed too late in the code.

• LateOrMissingBegin: the begin demarcation of an enclosed context is missing
or late in the code.

• MissingStateClearance: the codemisses a required clear-out or re-initialization
of a component, which should be triggered at the creation or destruction of
some other component as a post-construct or pre-destroy action.

• ErroneousDynamicInjection: the type of an injected component is erroneously
determined, whichmay occurwhen injection types is determined dynamically
during the run-time.

This taxonomy reflects structural characteristics of annotation-based or program-
matic specification of the lifecycle ofmanaged components, and it coversmajor com-
plexities observed in a long-termed experience of development of statefulweb appli-
cations (e.g. an Electronic Health Record in use for several years in a major Hospital
of Tuscany Region Patara and Vicario (2014)Fioravanti et al. (2016)). It also covers
issues reported by developers with different levels of skill in technical social forums
like StackOverflow,Github, andDZone (partially documented in the additional mate-
rials in Chapter A), and difficulties and limitations encountered by tens of students
developing JEE stateful components in assignments of a master level course active
for more than 5 years.
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3.3.2 Failure Modes
Faults in annotation and programmatic specification of managed components life
cycle may result in various kinds of errors in the type of injected components or in
the logic of the intervals Allen (1983) during which they exist, maintain their state,
and are shared by multiple dependants. In turn, this may cause various types of
deviations in the functional behavior delivered by the user interface.

To deepen this aspect, are identified four types of failures occurring when an in-
jected component: does not maintain memory as long as required (vanishing compo-
nent); or, vice versa, it is not renewedwhenneeded (zombie component); or it becomes
visible at the same time to multiple dependants that should not share it (unexpected
shared component); or it is created in a wrong type variant (unexpected injected compo-
nent).
Vanishing component. An injected component may not live and maintain its state
with continuity along the time interval needed by its dependants, thus resulting in
a null pointer exception or a data loss (if the component type is restarted by a new
injection), as illustrated in Fig. 3.1.

C1

C2

R1 R2 R3

C1

C2

R1 R2 R3
Figure 3.1: Vanishing component failure. (left) the expected correct behavior in some
scenario with two coupled instances and living in distinct contexts C1 and C2:

uses twice expecting that this maintains its state across subsequent requests.
(right) a faulty behavior: at the beginning of R3, context C2 is restarted (instead of
continuing) and the DI container constructs a new instance of the same compo-
nent type; the fault is activated at the point marked by , entering an erroneous state
that produces a data loss failure when is used by .

Zombie component. In the opposite situation, an injected component may remain
alive with continuity while a dependent component expects that it is destroyed and
restarted. This may lead to components that maintain an obsoleted state, as illus-
trated in Fig. 3.2, or it may also potentially produce an aging failure due to memory
leakage Grottke et al. (2008).
Unexpected shared component. A context may remain continuously active so as to
be accessible by two or more concurrent dependent contexts. This may lead multi-
ple dependants to erroneously share the same instance of some required component,
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C1
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R1 R2 R3

C1

C2

R1 R2 R3
Figure 3.2: Zombie component fault.( left) in a correct implementation, should ac-
cess two distinct instances of . (right) however, since the context C1 is not closed
and restarted, the instance retains memory also during R2 and the second access
of will find an obsoleted and not refreshed state.

causing failures due to interference on the component state, with complex race con-
ditions that may behave as Mandel- or Eisen-bugs Grottke and Trivedi (2007), as
illustrated in Fig.3.3.

C1

C2

R1 R2 R3

C3

C1

C2

R1 R2 R3

C3

Figure 3.3: Unexpected shared component fault. (left) The and contextual instances
expect each one to inject a different instance of the required component (i.e., and
, respectively). (right) yet, the DI container resolves both dependencies with the

same contextual instance, thus producing interference and unpredictable race con-
ditions.

Unexpected injected component. The type of a required componentmaybewrongly
specified at its injection point, for trivial coding error or for subtle defects in the
static selection of alternative implementations of a type or in the logic of a dynamic
programmatic lookup. this may cause a variety of deviations from the expected use
case flow, unpredictably leading to fast failure or complex aging effects Grottke et al.
(2008). Fig. 3.4 illustrates the concept.

Identified fault and failure types have some typical causal relation, whichmaydi-
rect analysis of root causes: vanishing components naturally result from ShorterScope,
EarlyOrUndueClosure, and LateOrMissingBegin faults; conversely, a zombie compo-
nent can be easily caused by LongerScope, LateOrMissingClosure andMissingState-
Clearance faults; an unexpected shared component can be produced by the same faults
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C1
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C3

R1 R2 R3
Figure 3.4: Unexpected injected component fault. The DI container, in R1 resolves the
dependency of with a wrong contextual instance (i.e., instead of ), thus pro-
ducing unpredictable behaviours.

that cause a zombie component but with a different mechanism; all failures due to
longer or shorter scope can also be due to a WrongConformance, with effects de-
pending on the specific mismatch between conforming and absolute expected com-
ponents; finally, unexpected type typically results from an ErroneousDynamicInjec-
tion.

3.3.3 Failure Logic scenarios

It is illustrated here how each failure mode can be produced by the activation of
a fault occurring in the execution of some use cases of the Flight Manager and the
ToDoApp examples. More comprehensive coverage of all fault types is reported in
the experimentation section (Sect. 3.5). Examples are selected so as to show how
faults can be realistically introduced, even in good practice of SW development of
both server-side and client-side application logic, and how they can be activated by
specific but realistic paths in the navigation of interface pages.

Vanishing components. The occurrence of this kind of failure is exemplified in
the “Search Flights” use case (UC:U6 in Fig. 2.6) where the user repeatedly visits
FlightDetails pages (see the PND in Fig. 2.8). To this end, the state of the FlightsResult
pagemust bemaintained by an enclosed context begun at the initial traversal of search
from the Home page and ended at the traversal of selectFlight from FlightsResult or
confirm or newSearch from FlightDetails. However, various faults can be introduced
in the begin/end programmatic demarcation of the enclosed context.

If the controller activated at traversal of back from FlightDetails includes an end
of context (EarlyOrUndueClosure fault), a commission failureMcDermid and Pumfrey
(1994) occurs in the interaction of the codewith the container, and the page FlightRe-
sults loses memory, causing an occurrence of the vanishing component failure.

Besides, if the controller that serves traversal of a newSearch does not include an
end of context (LateOrMissingClosure fault), an omission failure Bondavalli and Si-
moncini (1990) occurs and the page FlightResultsmaintains a stale state memory as
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in the zombie component fault, which can later produce a kind of value failure Bon-
davalli and Simoncini (1990); McDermid and Pumfrey (1994).

Amore subtle failure occurs if the controller of traversal of newSearch from Flight-
Details correctly ends the enclosed context but omits to begin it again, this is an in-
stance of LateOrMissingBegin fault causing a different instance of vanishing compo-
nent failure. Fig. 3.5 illustrates an exemplary sequence of HTTP requests that acti-
vates the fault: since all the contextual instances associated with the ended enclosed
context are destroyed but not re-instantiated, a null pointer exception will occur as
soon as any of these contextual instances is invoked; in the example of Fig. 3.5 this
occurs immediately, but other user navigation paths might leave the error hidden
for a much longer time. Note that this kind of fault will likely escape testing un-
less some tailored methodology is applied to select input sequences in light of the
fragility induced by dependency injection and automated lifecycle management.

Finally, note that the vanishing component failure can be caused by a large vari-
ety of further coding faults, beyond the specific defects in the programmatic demar-
cation of enclosed contexts. E.g., a session-scoped dependent componentmay receive
an injection of a required instance whose type is associated with request scope, this
is the case of a shorterScope fault: if the dependent component uses the injected de-
pendency across multiple requests, the reference is not valid and various types of
failures may occur. This may happen also if the type of the required component has
an enclosed scope, which makes detection much more subtle and dependent on the
specific navigation path of the user.

S

EC

R3
Another
Search

1R
Search 
Flights

R2
View

Detail

Figure 3.5: Coupling scenario which produces a vanishing component failure, both
for a visitor and a registered user. In R1 the end-user starts searching for flights (the
SearchFlightsController , living within the session S, depends on the FlightManager-
Component , living in the enclosed context EC); in R2 the end-user views the detail
of a flight; finally in R3 the end-user performs a new search (the EC is programmat-
ically closed, then the SearchFlightsController tries to invoke the FlightManagerCom-
ponent which does not exist anymore).

Consider now the case of ToDoApp, as stated in Sect. 2.6.2, the application allows
the user to decorate each task with notes. In the specific implementation of this fea-
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ture, the note management is entrusted to a specific component called noteManager
that maintains the text of the note as its own state.

The user interface enlists all the tasks on the same page and, inside the space
allocated for each task, allows to open and close awidget containing a textbox where
the note can be visualized and modified.

In this configuration, the obvious solution might be to associate noteManager to
the visibility context of this latter widget, however doing so the instance of this com-
ponent will be destroyed as the textbox is closed losing the state of noteManager. The
correct solution in this case is to associate the component to the visibility context re-
lated to the overall task area.

S

A

R1 R2 R3
Reserve
Seats

Confirm
Reservation

Back
Home

Rn
Reserve
Seats

Reserve

Reserve

Figure 3.6: Coupling scenario, for a registered user, producing a zombie component
failure. TemporaryReservationComponent lives within the session context S, inherit-
ing from RegisteredBookingController , and after R2 it is always in an active context,
thus falsifying reservation values of TemporaryReservationRepository within appli-
cation context A.

Zombie components. The failure can be activated during the “Book Flight” use
case, identified as UC:7.1, where the procedure is implemented and adapted differ-
ently distinguishing between visitor users and registered users. VisitorBookingCon-
troller and RegisteredBookingController delegate the seats reservation process to their
injected instances of TemporaryReservationComponent, living in a conforming context,
which is designed so as to allocate temporary reservations on demand, releasing
them just before it is destroyed (TemporaryReservationRepository takes the total count
of reserved seats within the whole application context).

Note that the two page controllers live in different contexts: the VisitorBooking-
Controller liveswithin the enclosed context, while theRegisteredBookingController lives
within the session context. The reuse of TemporaryReservationComponent, whose life-
cycle is inherited by its injector controller, hides a missingStateClearance fault for the
RegisteredBookingController side since the temporary seat releasewill not be activated
until the end of the user session and not immediately after the end of the “Book
Flight” use case as expected, this erroneous behavior may produce a zombie compo-
nent failure instance; as represented in the sequence of HTTP requests within the
conceptual abstraction of Fig. 3.6 for a registered user.
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The same failure can be experienced in ToDoApp, in particular, implementing
the “clear project” feature. As already pointed out, each project is made of various
tasks managed by a particular component named taskManager that maintains all the
tasks related to a project.

The user interface of ToDoApp displays on a single page all the information of
the project and, a particular bounded area is reserved for a widget that enlists all
the related tasks.

If the taskManager is programmatically associated with the context related to the
task widget, the zombie component failure may occur during the clear project pro-
cedure: when the client clicks the button to erase all the tasks the related widget
is destroyed, however, the taskManager continues to live and maintain the informa-
tion about the tasks since its life cycle is tied with the project widget. As proof of
this, when the task widget is opened again by the user, all the previous tasks will be
displayed.

Unexpected shared components. The failure can be activated during the execution
of the “Search Flights” use case, identified as UC:U6, and it is due to the reuse of
BillingComponent, which lives in a session context. BillingComponent is a managed
component with the responsibility of calculating the bill of a booking, as part of
this, it also deals with the identification of the fee that should be applied on a flight
ticket, which depends on the arrival country.

This component is injected at authentication time by the LoggedUserComponent
(also living in the session context), which initializes the BillingComponent with the
fee value of the countrywhere the end-user lives in (i.e., retrieving information from
its account); in this way, at any time, the LoggedUserComponent is able to directly
provide the bill calculation (i.e., through a getHomeCountryFee()method), acting as
a proxy for the BillingComponent. In this way, a registered user obtains additional
benefits, based on the years of affiliation, when the fee related to his home country
is processed.

This configuration may bring the system into an error state, whenever a regis-
tered user decides to navigate to the FlightDetails page just before buying the ticket,
within the use case UC:U6, for a flight whose destination is a country different
from that where he lives. Indeed, the FlightDetails page is controlled by Search-
FlightsController which in turn configures the instance of the BillingComponent by
setting the country of arrival to the one chosen for the flight; while, in the case
of destination within the home country, it directly exploits the LoggedUserCompo-
nent. These three managed components live within the same long-running session
context, thus sharing installed dependencies (i.e., LoggedUserComponent and Search-
FlightsController share theBillingComponent). So, the application enters an error state
which however is not manifested: the LoggedUserComponent, now referencing an in-
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stance of the BillingComponent which is not configured with its expected country;
thus, any subsequent fee computation based on this information may be wrong.

Its manifestation may be produced in a subsequent execution of the same use
case if the registered user searches for the return flight to come back to his home
country. Indeed, navigating again to the FlightDetails page, the wrong country is
exploited to calculate the fee to apply on the flight (i.e., it adopted the fee of the
previous destination country instead of the home country). Obviously, a failure is
manifested if and only if the two fees are different. The sequence of HTTP requests
leading to the fault occurrence is represented in the conceptual abstraction of Fig. 3.7.

Since the type of fault is strictly related to the provided solution and since this
configuration can be corrected in multiple ways, the described fault cannot be clas-
sified univocally. The failure could be avoided by assigning the conforming scope to
the BillingComponent and then preventing the instance sharing among LoggedUser-
Component and SearchFlightsController (this solution classify the fault as awrongCon-
formance fault), but could also be avoided through a specific cleaning of the Billing-
Component state after the visit of FlightDetails page or through an automatic reset
in the next instantiation of a dependent component (both faults classified as miss-
ingStateClearance faults).
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Figure 3.7: Coupling scenario, for a registered user, which produces an unexpected
shared component failure. LoggedUserComponent , BillingComponent , and Search-
FlightsController live within the session context S and the data of BillingComponent
are initialised after the authentication process in R1. After R4 the system enters a la-
tent error state, considering the unexpected sharing of BillingComponent contextual
instance.

TheUnexpected shared component failuremight be introduced also in the ToDoApp:
in particular let us focus on the “add priority” use case where the user adds a prior-
ity, in a form of an integer from 1 to 10, to a specific task. As already stated, on the
project page, tasks are enlisted in a specific area where each one is presented as an
embedded widget.

The priority value of the task is managed by a component called priorityManager
that beyond some additional features, it also maintains the priority of the related
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task. With this scenario, if the priorityManager is injected at the same level of the
task list widget, the component will be shared among all the tasks of the project
resulting in an unexpected shared component failure: each time the user modifies
the priority of a specific task, the application will assign the same priority to all the
tasks.

Unexpected injected components. The failure can again be activated during the
execution of the “Book Flight” use case, identified as UC:U7.1, and directly affects
the case of end-users interfacing with RegisteredBookingController which is responsi-
ble for controlling the BookingDetails page. Specifically, the dependencies hierarchy
of this managed component involves other three task-specific components, Billing-
Component living in session context, DiscounterComponent living in request context,
and LoggedUserComponent living in session context.

The “Book Flight” use case has been designed so as to compute in background
the final price of a flight ticket and this task is delegated to a chain of responsibility
split over the three managed components, mentioned above. The BillingComponent
is responsible for determining the final price of the booking, applying a country fee
on the ticket and asking the DiscounterComponent to determine at runtime if a set of
discounts is available for the purchase.

In particular, theDiscounterComponent implements a dynamic programmatic lookup
algorithm for instantiating at runtime the right discount strategies, also basing the
decision on some information maintained within the LoggedUserComponent (i.e., on
the purchasing history of the current registered user). In this scenario, the failure is
not induced by defects within the programmatic lookup implementation, but it may
arise when the information owned by LoggedUserComponent becomes obsolete and
inconsistent during end-users interactions. The stateful behavior of the software pro-
motes a kind of “trust” among managed components, so the DiscounterComponent
blindly relies on the LoggedUserComponent to retrieve information about the pur-
chasing history of the logged user. Obviously, stateful data may be subject to various
types of faults which can be produced by classical defects or antipatterns, also as a
consequence of previously presented fault types; in this case, the LoggedUserCompo-
nent retrieves the history of purchasing at instantiation time, but it is not automat-
ically updated when new bookings are accomplished within a same user session.
Thus, immediately after the completion of aUC:U7.1 use case, LoggedUserComponent
data may become obsolete, affecting in turn also the programmatic lookup mecha-
nism and classifying the fault as erroneousDynamicInjection. The sequence of HTTP
requests leading to the fault occurrence is represented in the conceptual abstraction
of Fig. 3.8.
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Figure 3.8: Coupling scenario, for a registered user, which produces an unexpected in-
jected component failure. Within the session context S there are threemanaged compo-
nents (i.e., RegisteredBookingController , BillingComponent , and LoggedUserCom-
ponent ) and by design they establish a chain of responsibility with Discounter-
Component which is injected only when invoked inside a request (i.e., in R2 and
R4). The programmatic lookup algorithm of dynamic injection, implemented in
DiscounterComponent, is disrupted after R2 for the whole end-user session for a data
inconsistency (i.e., ) induced on LoggedUserComponent.

3.4 Fighting Faults through Model-Based Testing

Searching defects in the specification of managed components lifecycle and in their
composition requires that testing be focused on input sequences that can activate
faults and let them propagate up to produce a failure in the behavior delivered by
the user interface or in some observable level of components state. This subtends
the ability to identify input sequences that cover component dependencies by re-
producing actual conditions of concurrency in the logic of intervals during which
managed components maintain their state.

To this end, it is proposedmodel-based testing approach Utting et al. (2012) that
jointly involves the constraints of the page navigation diagram of the user interface,
the lifecycle specification of back-end components and their data-flow dependen-
cies, and the actual concurrency produced by the effects of container orchestration.

The approach relies on an abstraction called here Managed Components Data
Flow Graph (mcDFG, Sect. 3.4.1), which supports the identification of test suites
implementing various data flow coverage criteria (Sect. 3.4.2), and which can be
derived from basic artifacts of the development process through a disciplined ap-
proach, with automation of themost expensive and error-prone transformation steps
(Sect. 3.4.3).
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3.4.1 The Managed Components Data Flow Graph abstraction
Coverage of couplings across contexts occurring among components requires a test-
ing approach able to cover the execution paths interconnecting the points where the
state of eachmanaged component is defined andused, namely the injection points of
in-dependence components and their method invocations, thus capturing the run-
time data flow produced by active contextual instances. In principle, these paths
might be abstracted into an Object-Oriented Data Flow Graph Souter et al. (1999).
However, this would require explicit unfolding and representation of the complex
actions performed by the DI container in the management of contextual instances
(e.g., components proxies, aspect-oriented programming techniques), with an ex-
plosion of graph elements leading to an infeasible dimension of test suites.
To this end, the Managed Components Data Flow Graph (mcDFG) abstraction is pro-
posed, inspired by the classical DFG and DFT theory Rapps and Weyuker (1985),
which combines elements of structural and functional perspectives by capturing
salient characteristics of involved components with their dependency hierarchies
and lifecycles together with admissible end-user navigation and interactions along
designed use cases.

Formally, themcDFG is a directed graph, labeled onvertices and edgesmcDFG :=
⟨V ,Vin : E , Ein, de f , use,P , Nav, CB⟩, where:

V is the set of vertices, with each v ∈ V representing a basic block, i.e. a sequence
of method invocations and DI container instantiations that are always executed as a
whole; Vin ⊆ V is the subset of vertices associated with basic blocks that terminate
in any state where the user interface waits for user input;

E ⊆ V ×V is a set of edges, with< vi, vj >∈ E iff there exists an executionwhere
the last operation of vi can be followed by the first operation of vj; Ein ⊆ Vin ×V is the
subset E made of the edges that leave a basic block that terminate with the interface
waiting for user input.

relations de f : V → 2MC and use : V → 2MC associate each vertexwith the subset
of used and definedmanaged components, where MC denotes the set of all managed
components, and, for any c ∈ MC, c ∈ de f (v)means that an instance of component
c is created during the execution of the basic block associated with vertex v, and
c ∈ use(v) means that an already existing instance of c is used by the invocation of
any of its methods; note that, as opposed to the classical theory of dataflow testing,
the relation of use does not distinguish whether the invocation will produce a side
effect on the used component; besides, the relation P : Vin → pages associates each
vertex v ∈ Vin with the page displayed on completion of its associated basic block;

the relation Nav : Ein → {nav page controller :: sign()} associates each edge ϵ ∈
Ein that exits from a vertex v ∈ Vin with the page controller method invoked on the
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input of the user action sign(); the relation CB : E → EnclosingActions associates
edges with any programmatic action of control of an enclosed context performed
when the edge is traversed, with EnclosingActions = {begin, end, end/begin}.

To exemplify the concept, Fig. 3.9b reports the mcDFG for the Admin use case
“View Airports” (UC:A4.2): vertices, associated with basic blocks, are represented
as green circles and they are labeled with de f and use operations performed in the
corresponding basic block, on a violet and green background, respectively (e.g. see,
vertex 1); vertices in Vin (e.g. vertex 5) are also associatedwith a pale blue label with
the name of the page where the interface waits for user input; output edges from Vin
vertices are labeled with the name of controller methods invoked on user actions
available in the input page (e.g. from vertex 5, AirportController::viewAirport()
and AirportController::redirectToHome()) actions for programmatic control of en-
closed contexts are labeled on edges where they occur (e.g. on edges ⟨1, 2⟩ and
⟨3, 0⟩).

Note that themcDFG is a kind of grey-box abstraction that seams the structure of
the page navigation diagram of Fig. 3.9a (the pale blue parts) together with lower-
level information related to the application code (green parts) and the DI container
behavior (violet parts).

3.4.2 Test Case generation based on the mcDFG
The mcDFG abstraction captures couplings among managed component instances
under the orchestration of the DI container according to actions taken by the user in
the navigation of interface pages. Coverage of these coupling comprises a focused
and effectivemeans for the identification of faults in annotation-based and program-
matic DI specification of back-end components. In so doing, a feasible mcDFG path
subtends a sequence of user interactions on the UI that triggers a specific chain of
interactions among managed components. A single path is embedded in a test case
and the set of paths satisfies a certain coverage criterion in a dedicated test suite.

Note that, a test case identified by the mcDFG abstraction implies a navigation
constraint to verify the actual implementation and so, the path identification phase
also defines a base oracle, open to be extended by the tester through specific inspec-
tions on the state of both the user interface and the business logic.

Without loss of generality, it is considered a suite of criteria inspired by the clas-
sical theory of Data Flow Testing Rapps and Weyuker (1985), while various other
coverage criteria could be implemented as well (e.g., page and hyperlink testing as
described in Ricca and Tonella (2001)).

• All Nodes coverage verifies that every reachable basic block is tested at least
once, which includes that each def (i.e., a component instantiation) and each
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AdministratorPage AirportList AirportView
view details

return

view airports

back

(a) A fragment of the Page Navigation Diagram.

AdministratorPage

nav AirportController::goToAirportListPage()

cb begin enclosed

AirportList

0

DEF AirportController
DEF AirportDao
USE AirportController

1

USE AirportDao2

nav AirportController::redirectToHome()

nav AirportController::viewAirport()

AirportView

nav AirportController::goToAirportListPage()

nav AirportController::viewAirport()

USE AirportController3

USE AirportController4

USE AirportController5

cb end enclosed

nav AirportController::redirectToHome()

AirportList

(b) Managed Component Data Flow Graph.

Figure 3.9: A snippet of PND and the corresponding mcDFG for the administrator
use case “View Airports” (UC:A4.2).
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use (i.e., a component method invocation) of any managed component is ex-
ercised;

• All Edges verifies that every edge is traversed at least once, which implies that
each nav use from each page (i.e., each end-user interaction) is tested;

• All Defs verifies that every def is tested at least one time, thus exercising each
managed component instantiation, reaching one of its uses (i.e., one of com-
ponent method invocations), without traversing intermediate defs of the same
component;

• All Uses verifies that for each def all the possible subsequent uses are covered,
i.e. that: for each component c, and each vertex vd where c is def ined, and
each vertex vu where c is used, at least one path that goes from vd to vu without
visiting any intermediate def is exercised;

• All DU-Paths verifies that all the possible acyclic paths between each def and
all its subsequent uses are covered, i.e. that: for each component c, and each
vertex vd where c is def ined, and each vertex vu where c is used, all the acyclic
paths that go from vd to vu without visiting any intermediate def are exercised.

All Uses All Defs

All Edges All Nodes

All 
DU-Paths

Figure 3.10: Inclusion relationships among coverage criteria for the mcDFG abstrac-
tion.

Inclusion relationships among different criteria are summarized Fig. 3.10. Note
that they differ from those of the classical theory of data flow testing in Rapps and
Weyuker (1985) in that All Uses coverage does not include All Nodes (and not ei-
ther All Edges): in fact, in the mcDFG, branching edges from a basic block represent
user choices in navigation control, not alternative complementary exits of a common
guard expression as leveraged in the proof of coverage inclusion referred to the Data
Flow Graph in Rapps and Weyuker (1985).

Theoretical complexity, expressed in terms of the limit number of tests sufficient
to implement each criterion, is reported in Tab. 3.1, where N is the number vertices
in the mcDFG abstraction, C the number of distinct managed components, and F
the maximum number of user choices in the navigation out of any page within a
use case
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Criterion Complexity
All Edges O(N · F)
All Nodes O(N)
All DU-Paths O(2N)
All Uses O(N2)
All Defs O(N · C)

Table 3.1: Complexities of mcDFG coverage criteria.

3.4.3 mcDFG generation
The mcDFG provides a powerful abstraction, well-tailored to unravel the actual de-
pendencies that result from the intertwined effects of user navigation of interface
pages, DI specification and method invocations in back-end components, and or-
chestration mechanisms implemented by the container. However, this effectiveness
comes with a corresponding price in the mcDFG construction, which involves a sig-
nificant and error-prone effort for the inherent complexity of integration of different
perspectives and for the possible misconception of the DI container behavior (see
Fig. 3.11a).
To overcome the hurdle, it is proposed a model transformation approach (outlined
in Fig. 3.11b) based on an intermediate artifact, termed Enriched Robustness Diagram
(ERD), which is then used for automated generation of the mcDFG. In this process,
the ERD remains completely unaware of the DI container behavior and can thus be
obtained with simplicity by the decoration of the basic Robustness Diagram, so that
most of the effort and error-proneness, and also the dependence on the specific DI
technology, are absorbed by the automated step of model transformation.

The Enriched Robustness Diagram (ERD) decorates the basic Robustness Dia-
gram with additional information about the structure of the business logic, which
can be conveniently expressed through ad hoc stereotypes or action edges, as illus-
trated in Fig 3.12 for the RD of Fig 2.11:

• each controller element is decorated with its context and its invoked primary
method (e.g., in Fig 3.12, the AirportController is bound to an enclosed context
and, on the navigation from AdministratorPage to AirportList page, its goToAir-
portListPage()method is invoked).

• method sub calls are repeatedly expanded and represented by usage relation-
ships (dashed edges) among controller entities, with labels marking the invo-
cation order; as a part of this, also programmatic actions on enclosed contexts
boundaries are determined and annotated with labels of type EnclosedCon-
text::begin() and EnclosedContext::end() (e.g., the goToAirportListPage()method
includes a sequence of sub calls made of the begin of an enclosed context and
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(a) Manual mcDFG generation process.

Navigation
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Logic Design

mcDFG
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ERD-to-mcDFG

Algorithm

Components Couplings

Navigability Information

RD
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ERD

mcDFG

Container Behaviour

(b) mcDFG generation process through ERD-to-mcDFG algorithm.

Figure 3.11: Comparison between the manual mcDFG generation process (a), and
the automated generation through the automated transformation from the interme-
diate ERD model (b).

the invocation of an AirportDao method, executed in this order as shown by
labels #1 and #2.).

Note that the production of the ERD is conceptually simple, and it can be easily ac-
complished manually by static inspection of salient information in the code of view
pages, page controllers, and referenced managed components, even by a developer
without strong knowledge of DI containers. In principle, this could also be gener-
ated automatically through automated source code static analysis.
ThemcDFG can then be derived from the ERDby adding the details related to theDI
containermechanisms. This is performed automatically bymerging the information
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nav view Airport List

#1

#1

nav back

nav details

nav return

#2

Administrator AirportList

AirportController::redirectToHome

AirportController::goToAirportListPage

AirportDao::getAllAirports
<<@request>>

Airport

EnclosedContext::begin

AirportController::viewAirport
<<@enclosed>>

EnclosedContext::end AirportController::goToAirportListPage
<<@enclosed>><<@enclosed>>

AdministratorPage

AirportView

<<@enclosed>>

Figure 3.12: Enriched UML Robustness Diagram of “View Airports” use case
(UC:A4.2) for an admin user, shown in Fig 2.11.

about application pages navigability and component dependencies provided by the
ERD in input with the characteristics of the behaviour of the DI container (See again
Fig. 3.11b). For this work, this automated transformation was implemented for the
case of the CDI container of the JEE Architecture. The implementation works itera-
tively starting from an initial boundary object of the ERD and, exploring all possible
actions that a user could undertake (i.e., outgoing edges), it transposes them into
edges and basic blocks of the mcDFG. As notable features, the algorithm optimises
the number of final basic blocks and implements heuristics that keeps the number
of cycles as low as possible, with a positive impact on the number of paths that shall
then be covered by different test cases.

Finally, note that the usage of the ERD as an intermediate abstraction provides a
manifold benefit: i) it speeds up the process since the ERD can be generated through
a simple decoration step of the robustness diagram or through source code static
analysis, ii) it prevents the developer to inject errors related to the DI container in
the mcDFG since this knowledge is encapsulated in the algorithm that represents
a “single point of container knowledge dependency”, iii) finally as a consequence
of this latter point, it allows to obtain mcDFG referring to different DI containers
implementationwithout effort by only changing the algorithm implementation itself
while maintaining the same ERDs.
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3.5 Experimentation
This section reports experimental results showing how the mcDFG provides an ef-
fective abstraction for the selection of test cases that are able to: activate faults oc-
curring in the usage of dependency injection and automated management of com-
ponents lifecycle; and propagate them up to failures in the functional behaviour of
the user interface or in some observable inconsistency of the state of business logic
components.

Specifically, the experimentation process and the obtained results are drawn in
Sect. 3.5.1 and Sect. 3.5.2 respectively and finally, validity threats are discussed in
Sect. 3.5.3.

3.5.1 Experimentation protocol
A suite of faulty mutations of the Flight Manager application of Section 2.6.1 was
tested using a variety of test suites covering the mcDFG abstraction according to
different criteria.

For each use case, the mcDFG was derived automatically from the correspond-
ingEnriched Robustness Diagram using the ERD-to-mcDFGmodel transformation de-
scribed in Section 3.4.3. On each mcDFG and for each of the coverage criteria dis-
cussed in Section 3.4.2 (i.e. All Nodes, All Edges, All Defs, All Uses and All DU Paths),
a test suite was identified as a set ofmcDFG paths, each comprising a test case. Each
test case was also associated with assertions about post-conditions for the expected
appearance of the frontend (e.g., after a given user navigation sequence only certain
items should be displayed in the list) and for the expected inner state of managed
components (e.g., at the end of the navigation sequence, the field field1 of the in-
stance instanceA should have a given value).

The correct baseline of the Flight Managerwas thenmutated to produce 32 faulty
versions by manually injecting faults so as to cover the classification of fault types
of Sect.3.3.1 and to produce one of the failure modes of Sect 3.3.2 under some navi-
gation sequence occurring in realistic common executions of addressed use cases.

Four instances of the 32 faulty versions are described in Section 3.3.3, and com-
plete documentation is provided in the GitHub repository, which thus includes
1 + 32 versions of Flight Manager: the branch main of the repository contains the
correct baseline version, while each of the other branches contains a different faulty
version obtained by manual injection of a type of fault causing one of the addressed
failure modes, each accompanied by respective diagrams and artifacts. Note that
this comprises a significant base of code and accompanying artifacts open to fur-
ther experimentation beyond the objectives of this work. In particular, the correct
baseline version is documented with both standard artifacts i.e., class diagram, de-
ployment diagram, use case diagrams and page navigation diagram and specific
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artifacts i.e., Enriched Robustness Diagrams, corresponding managed component
Data Flow Graphs and the test suites of each coverage criteria. Besides, each faulty
version is further decorated with an ERD that highlights the fault instance and the
corresponding test suites that are capable or not to detect the fault. 1

The test suite of each coverage criterion was finally run against each of the Flight
Manager faulty versions, to check whether each fault is revealed by the failure of at
least one assertion in at least one test case. In so doing, the fault detection capability
of the underlying coverage criteria is assessed, and, indirectly, the effectiveness of
the mcDFG abstraction is validated.

To further evaluate the proposed methodology, it is compared to the fault de-
tection capability against coverage criteria that can be implemented in end-to-end
functional testing directly based on the page navigation diagram (PND, see Fig. 2.8).
Specifically, it is considered All Pages coverage, which requires that each reachable
page is visited at least once, and All Navigations coverage, which verifies that each
navigation (i.e., each edge of the page navigation diagram) is traversed at least once.

3.5.2 Results and Discussion

Abstraction Coverage Test Suite Interactions Fault Detection Capability
Criterion Dimension per Test Case (%)

mcDFG

All Nodes 1.18 6.09 100
All Edges 1.27 9.25 100
All Defs 1.18 3.09 84.37
All Uses 2.27 5.04 100
All DU Paths 3.09 7.76 100

PND All Pages 2 18 28.12
All Navigations 3 26.33 50

Table 3.2: Complexity and fault detection of coverage criteria on the 32 faulty ver-
sions of Flight Manager.

Table 3.2 summarizes experimentation results showing complexity (Average num-
ber of Test Cases and interface interactions per Test Case) and detection capability
of different coverage criteria based on the mcDFG and the PND.

All coverage criteria based on the mcDFG show a high fault detection capability,
full in most cases, and definitely over-perform test suites based on the PND abstrac-
tion. This improvement can be explained as due to the ability of themcDFG to extend
the purely functional perspective of the PNDwith architectural information, which

1Aguide to the structure of the repository is also included in the additional material (Chapter A)
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supports both test case selection and oracle interpretation: on the one hand, test
cases identify navigational paths that stress the application not only under the end
user functional perspective of pages navigation but also under the business logic
and DI container structural perspective; on the other hand, test cases and interpre-
tation of their effects are built so as to be aware both of the user interface and of the
business logic components states, enabling detection of a fault even when its prop-
agation does not manifest a failure at the user interface and remains hidden with
consequences that are hard to observe and predict Grottke and Trivedi (2007).

It is worth noting that All Defs performs worse than all the other criteria, which
can be explained as a consequence of the fact that All Defs coverage can be imple-
mented by extremely compact paths, where some component methods may not be
exercised at all, as illustrated in Fig. 3.13.

1

2 3

nav 21

nav 12

nav 31

nav 13

DEF ComponentA

USE ComponentA USE ComponentA

All Nodes: 1-2-1-3
All Edges: 1-2-1-3-1
All Defs: 1-2

All Uses: 1-2-1-3
All DU Paths: 1-2-1-3

Figure 3.13: Different coverages on a specific mcDFG example.

The size of mcDFG test suites, expressed as the average number of test cases re-
quested for implementation of each criterion, remains low and definitely affordable
even for expensive criteria, and notably for All DU Paths; this depends on the fact
that themcDFG is a high-level abstraction resulting in a sparse graph with a limited
number of vertices and edges, related by construction to the number of pages and
actions involved in each use case, by far lower thanwhatmay occur in a conventional
DFG expressed in terms of code-level basic blocks.

In the comparison of dimensions of mcDFG and PND test suites, it is worth not-
ing that the value related to the mcDFG represents the average number of test cases
needed to satisfy the coverage criterion in a use case, while the PND-related is the
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exact number of test cases needed to test the entire application. In fact, eachmethod-
ologywas used in its naturalway: mcDFG-based testing is use-case-wise, as it identi-
fies a different suite for each use case, while PND-based testing targets the interface
pages of the overall application, which can be covered with a limited number of
"long" test cases. However, even if the dimension required to test the entire appli-
cation with the proposed methodology is still low (the larger test suite is the one
related to the All DU Paths criterion and consists in 20 test cases), it is possible to
include multiple use cases in the samemcDFG and then exploit the connectivity be-
tween pages to further decrease the test suite dimension. This kind of trick, however,
has a drawback: while the number of test cases decreases, due to the redundant nav-
igation actions used, the length of each individual test case (i.e., the number of user
interactions required to carry out the selected navigational path) increase, suggest-
ing that the test suite execution time will not change too much with the use case
wise or the application-wide approach (see the number of interactions per test case
in the Table). As a showcase, anmcDFG comprising both the “search flights” and the
“book flight” use cases (UC:U6 + UC:U7.1) was also generated obtaining test suites
with the same fault detection capability obtained with the two separate diagrams,
with an overall smaller size and as expected, with longer sequences characterizing
each test case (see the details in the repository).

3.5.3 Threats to Validity

The proposedmethodologywas experimented on a specificWeb application (Flight
Manager), based on specific architectural patterns (1), developed on a specific lan-
guage (Java) and technological stack (JEE) (2), by software professionals connected
with the same Lab where the proposedmethodology is elaborated (3). In principle,
thismay jeopardize external validity, as a different architecturemight be adopted (1),
other languages and stacks be used (2), and developers might be prone to different
types of faults hidden by a bias due to a specific level of skill and experience (3). To
limit these threats, various countermeasures were assumed.

(1) Flight Manager implements a widespread combination of reference architec-
tural patterns, largely documented in the professional literature Richardson (2006);
Martin (2017); Fowler (2012), and (2) developed using a language and technology
stack (Java and JEE)with primary impact and spread in the practice of complexweb
applications.

Besides (3), types of Faults reproduced in the Flight Manager were not limited to
the accumulated experience and current level of skill of the Lab, but they also con-
sidered the inherent structural complexities of annotations and a collection of odd-
ities about components lifecycle management reported in technical social forums
(e.g., StackOverflow and GitHub) by developers with different levels of experience
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and different expertise in language and frameworks. 2.
Moreover (2,3), the types of faults addressed in this work refer to general mech-

anisms of dependency injection management for which the proposed methodology
provides a general abstraction independent of the specific architecture and stack of
technologies of the application under test.

It is also worth stressing that (2), while experimentation and presentation refer
to a specific programming language and technology, artifacts and navigation se-
quences that fulfill each of the coverage criteria would not substantially change in
the implementation of the same design on a different technological stack.

2A collection of discussion threads addressing this class of difficulties is included in the addi-
tional materials





Chapter 4

Using Life Cycle Management
as Software Rejuvenation

In the development of software architectures application logic, the scope of theman-
aged components is specified by the developer through class-level directives, which
define the rules of a choreography that determines when the state of components
will be refreshed. More specifically, this defines a kind of micro-rejuvenation Sun-
daram et al. (2008); Avritzer et al. (2020), that does not require reboot of the physical
servers Koutras and Platis (2006), of the Virtual Machine Machida et al. (2010), of
the Application Server Alonso et al. (2013), or of the client-side mobile device Cotro-
neo et al. (2016); Xiang et al. (2019), and it is instead obtained by restarting instances
according to the specified scope of their types.

In general, the same functional behavior of the user interface can be obtained
through different scopes, giving the developer the choice as to whether managed
objects shall live for a shorter or longer lifecycle. This gives raise to a design space
where the developer defines a kind of rejuvenation policy: shorter scopes will result
in a more frequent refresh of the state of managed objects, limiting the number of
paths through which errors can propagate across objects with overlapping activity
cycles; conversely, longer scopes maintain alive instances in-memory for a longer
time, limiting memory operations and database load, at the price of a higher expo-
sition to error propagation and aging processes Cotroneo et al. (2011, 2014).

In this Chapter, it is characterized how the session state maintained in the ap-
plication logic of software architectures may host and propagate errors, and how
this threat is contrasted by the mechanism of micro-rejuvenation produced by auto-
mated management of components’ life cycle.

To this end, the impact of micro-rejuvenation on the propagation of errors is
made observable through an experimental study, supported by a suite of novel tools,
open to reuse and extension beyond the specific objectives of this dissertation: a

59
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small-sized exemplary web application that reproduces the common architectural
patterns of a stateful web application based on the stack of Java/Jakarta Enterprise
Edition (JEE); a software fault injector Madeira et al. (2000); Natella et al. (2012)
that supports accelerated testing Meeker and Escobar (1993); Escobar and Meeker
(2006); Limon et al. (2017) by emulating the arrival process of faults activations in
the components of the business logic of any third-party web application; a moni-
tor that logs the state of the business logic of any third-party application so as to
identify the structure of epochs during which injected faults can propagate across
running componentswith overlapping life cycles. Experimental results qualitatively
confirm that different design choices have an impact on the resilience to faults due
to the impact of different frequencies of micro-rejuvenation of components. Auto-
mated reconstruction of duration and complexity of epochs during which compo-
nents overlap their life cycle permits to explain observations by highlighting paths
of error propagation.

In the rest of theChapter, first, it is characterized themechanismofmicro-rejuvenation
produced as a side effect of lifecyclemanagement (Sect. 4.1), and then it is described
the setup and tools implemented for the experimentation (Sect. 4.2), finally obtained
results are drawn in Sect. 4.3).

4.1 Micro-Rejuvenation by lifecycle management
When specifying the lifetime associated with different component types, the devel-
oper defines a choreography that will be enforced by the DI container during the
runtime. Different choices can produce the same functional behavior observed at
the user interface but with a different evolution of the session state, which results
from the composition of the states of running instances. In particular, this changes
the logic of intervals Allen (1983) during which instances live, and thus impacts the
structure of paths through which errors can be maintained in memory and propa-
gate across components up to possibly produce a failure.

In this perspective, the choice of scopes implicitly specifies a kind of software
rejuvenation policy that will be implemented by the Container through automated
handling of creation, initialization, and destruction of managed components (See
Fig. 4.1).

Note that thiswill not result in a reboot of the physical servers (hot/cold spares)Koutras
and Platis (2006), of the Virtual Machine Machida et al. (2010), of the Application
ServerAlonso et al. (2013), or of the client-side mobile device Cotroneo et al. (2016);
Xiang et al. (2019). Instead, this comprises a reboot at the software component-level
that produces a kind of micro-rejuvenation Sundaram et al. (2008); Avritzer et al.
(2020). In this perspective, wider scopes, maintain alive (in-memory) instances for
a longer time and thus expose components to aging processes Cotroneo et al. (2011,
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Figure 4.1: Software micro-rejuvenation process executed by the DI container. In
1) the session state has an error since the component instance ComponentB in an
erroneous state, in 2) ComponentB ends its life cycle and the DI container destroys
the instance, after the destruction, step 3), the session state is returned correctly.
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2014), while shorter scopes produce more frequent refresh of the state of each sin-
gle component instance, thus limiting the Age of Information and the probability of
failures Menasché et al. (2019).

For instance, in the field of stateful web application by associating eachmanaged
type with a request scope, the developer maximizes the frequency of rejuvenation,
which will occur for each component on completion of the actions triggered by each
HTTP request generated by the User Interface (UI). This minimizes the probability
that an error, occurred in the state of somemanaged component, is propagated in the
computation and then transferred, either to other components or to functional be-
havior delivered by the UI. However, components living only for the time of a single
request result in stateless application logic and thus require that data needed along
the user session, the session state, to be stored with some more resource demanding
action, usually implemented through a DBMS access or throughweb cookiesMoore
and Freed (2000)).

Conversely, if a component is associated with the session scope, any error accu-
mulated along its interactions may be maintained and propagate along the Fault-
Error-Failure (FEF) chain Avizienis et al. (2004) established by dependency rela-
tionships among components. as a logical consequence, the aging effects may be
reduced by conversation-scoped components and may be maximized by application-
scoped components, that maintain and propagate their states until the application
shut down.

4.2 Fault Injection and State Monitoring
This section describes an experimental setup developed to inject errors in the session
state of a web Application following the stateful architectural style and to observe
their propagation during user interaction.

To this end, initially, responsibilities and collaborations of themodules that com-
pose the experimental setup are outlined (Sect. 4.2.1), then they are provided struc-
tural details on the design and implementation of themost complexmodules (Sect. 4.2.2),
finally, observations that modules permit to obtain are characterized in Sect. 4.2.3.

4.2.1 Participants and collaborations
The experimental setup relies on a framework made of 4 modules:

• a stateful Web Application, which comprises the Implementation Under Test
(IUT), which is equipped with a suite of usage scenarios, each identifying a
navigation path across the pages of the User Interface, i.e. a sequence {⟨pagn :
actn⟩}N

n=0 where pagn is the n-th page visited and actn is the user action that
leads the application from pagn to pagn+1;
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• a Web Driver that is able to mock the behavior of a real user by replacing
his/her manual interaction with the IUT by applying an action among those
that are accepted in the current page of the User Interface (e.g., click a button,
fill a form etc. . . );

• a Fault Injector that is able to identify the currently living components in the
Business Logic of the IUT and to determine and apply a perturbation on their
state;

• an Orchestrator, which repeatedly selects a scenario, determines the sojourn
times in each traversed page and the time when a fault must be injected and
then performs the experiment by invoking theWeb Driver and the Fault Injec-
tor to reproduce the scenario flow and inject the fault.

Figure 4.2 represents how the Fault Injector and theWeb Driver interact with the
stateful web application.

Note that, when and how the application state is perturbed during the scenario
execution implicitly defines the type of reproduced faults. The framework allows
agile customization of both aspects (as detailed in Sect. 4.2.2);

Without loss of generality, experimentation reported here was focused on fail-
ures arriving over time, independently from the specific actions taken by the user
and by the application. As a notable case, this can result from soft errors affecting
transient and persistent memories (e.g., RAM, cache, hard disks) May and Woods
(1978, 1979); Baumann (2005). This class of errors was widely addressed in the
literature of dependability, in machine learning techniques based on (deep) neu-
ral networks dos Santos et al. (2017); Azizimazreah et al. (2018), in availability and
reliability analyses of system-level effects over data storage systems Kishani et al.
(2019), and more recently in the specific evaluation of sensitivity different RESTful
frameworks Cerveira et al. (2020). Various other conditionsmay result in the arrival
over time of errors due to external causes, including transient overloading of the ap-
plication server, limited resources or environmental noise in IoT edge computing
systems Andrade and Machida (2019).

For this reason, the time elapsing between the navigation interactions that char-
acterize the real usage of the IUT, assumes an important role in the proposed exper-
imentation, it has been decided then, to characterize each interaction with a random
sojourn time controlled by a tailored distribution, in this way it is possible to mark
each navigation step with a different amount of wait time that concretely takes the
form of a sleep time between the driver interactions; besides it has been represented
also the external failure activation time with proper distribution. In so doing, differ-
ent execution of the samenavigation pathwill present different situations influenced
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Figure 4.2: The concurrency behavior of the Fault Injection and the Web Driver on
the IUT.

by both the time waited between each interaction by the mocked user and both the
failure activation time.

In the experimentation, page sojourn times between subsequent requests were
exponentially distributed, while faults’ arrival timeswere distributeduniformlywithin
the total duration of the timed scenario. Note that the latter assumption of uniform
distribution comprises a fairly precise approximation for the case where: errors ar-
rive according to a Poisson process with a constant rate much lower than that of the
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sojourn time in each visited state; and, the evaluation is limited to observe only the
tests hit by at least one arrival. Under these conditions, the probability of multiple
errors during the same test case is negligible, and the arrival time is distributed ac-
cording to a truncated exponential that can be closely fit by a uniform distribution.

The abovepresented configuration allows to faithfully reproduce a situationwhere
an error is activated during the usage of the IUT, however, to obtain solid observa-
tion insights, each usage scenarios of the suite should be executed multiple times, for
this reason, the presence of various sojourn times in each execution prevents results
from being achieved within a reasonable amount of time. To minimize the required
time to execute a navigation path, active waits after each driver step are avoided and
in their place are used wait times extracted from the interaction steps distributions
combined with the error activation time, to only identify before which step the fault
injector tool should be triggered.

According to this, the Orchestrator executes a scenario: i) by sampling sojourn
times of subsequent steps; ii) by extracting the i-th step to perform the injection
following the probability distribution proportional to the sojourn times; iii) by exe-
cuting the web driver without actively waiting the sojourn times until the i-th step
is reached; iv) by injecting the fault through the fault injector; and finally v) by exe-
cuting the i-th and the remaining navigation steps through the web driver without
actual wait times. In so doing, an event-driven simulation is enabled where the time
is not linearly accelerated by “waiting” and “sleeping” mechanisms so as to speed
up the flow of time, but it is continuously carried forward to the instant correspond-
ing to the nearest future event (i.e., the lowest sample).

Note that this “acceleration” technique can be applied without loss of generality
since the application state changes only in response to a request which is triggered
by a user interaction, thus, an external failure manifested between two interactions,
will not show any side effect until the next interaction.

4.2.2 Structure and implementation
All the tools were implemented in the JEE ecosystem, leveraging Java Reflection and
the Service Provider Interface (SPI) of the CDI specification, in integration with the
Arquillian Framework Ament (2013), in particular, Arquillian Drone, an extension
of Selenium Web Driver), ShrinkWrap and Arquillian Warp. In the sequel subsec-
tion, major software design choices that permitted the implementation of the Fault
Injector and the Orchestrator modules are given.

Fault Injector

The Fault Injector is implemented as a framework (see Fig. 4.3) using the Factory
method (Strategy) pattern permit agile adaptation of aggregated classes InstanceFinder,
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Figure 4.3: Class Diagram of the Fault Injector Tool.

PerturbationStrategy, InstanceExtractorStrategy, andfinally InstanceToStateConverter.
InstanceFinder is used to retrieve the living components in the business logic

layer of the application under test. The implementation distributed in the reposi-
tory supports experimentation on applications based on the CDI specification and
uses the service provider interface (SPI). This is the single point of dependency on the
specific lifecyclemanagement technology so that InstanceFinder is the only class to
change to port the fault injector to operate with other frameworks (e.g., Spring). The
attribute (customBeanFilter) allows the selection of IUT components that must be
excluded from the effects of fault injection.

Once the component instances are retrieved, the fault injector uses the class
InstanceExtractorStrategy to extract a component (or a group of), this class has
to be implemented in order to provide the extraction strategy, note that this is the
point to infer different extraction probabilities for each state component that could
be also dependent on the current state composition; in the repository, a random
extractor strategy is provided through the RandomInstanceExtractor class.

When a component (or a group of) is extracted from the current active instances
group, the fault injector perturbs it through a specific strategy encapsulated in the
PerturbationStrategy class. With the implementation of this class is possible to
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specify a particular type of perturbation even field-specific1 and so, it is possible
to emulate the different type of problems like DB malfunctions, IoT failures, signal
jamming or gamma rays; the repository also provides a concrete implementation
(RandomPerturbationStrategy class) that performs the perturbation of an individ-
ual component field through the Java Reflection API. Also note that similarly to the
finder class, it is possible to specify a custom field filter allowing the preservation of
particular field types from the perturbation.

Finally, after the injection, the fault injector offers the possibility to retrieve a
representation of the target component (or the group of) before and after the per-
turbation through the conversion implemented by the InstanceToStateConverter
class, in the repository is provided a specific implementation that converts the state
of an application component in the JSON format (InstanceToJsonStateConverter
class).

Orchestrator

The Orchestrator is implemented following the structure of a testing class: the suite
of usage scenarios of the IUT is taken as input and converted in a test suite so that
each usage scenario {⟨pagn : actn⟩}N

n=0 (see Sect. 4.2.1) corresponds to a test case
allowing its controlled execution.

During each test case, the driver, the third-party tool named Arquillian Drone
which extends the Selenium Web Driver Gojare et al. (2015), is used to execute the
underlying execution scenario {⟨pagn : actn⟩}N

n=0 by performing for each step i the
action acti on page pagi. However, the Orchestrator does not simply deal with the
scenario execution rather, it is also responsible for the activation at the right time of
the Fault Injector and monitoring of the IUT parameters. To this end, the Orches-
trator requires the implementation of the boolean function shouldInject() which
is used to guide the fault injection activation before performing action acti of step
i; once landed on page pagi+1 through action acti, the Orchestrator checks if any
top-level failure is occurred (by comparing expected with actual displayed values).

Usually, test suites with driver-like capabilities do not allow access to the ac-
tual component instances living in the back end, preventing the activation of the
fault injector in combination with the user interface interactions and inspections. To
overcome this limitation, the Arquillian Ament (2013) ecosystem has been adopted
in conjunction with the Arquillian Warp extension for accessing all the contextual
instances living server-side before, or after, a simulated user interaction.

Finally, for each executed scenario, different indicators are collected:
1For example, if the field extracted is an ordered list, it could be defined a type of perturbation

that changes the order of the list items, alternatively, if the field is a string that requires a specific
input format (e.g., a mail address) it could be defined a perturbation that changes the address with
another random one, still respecting the constraint (e.g., email regexCrocker et al. (1982)).



68 Using Life Cycle Management as Software Rejuvenation

• the final state of the application: it is interpreted as the collection of the living
contextual instances after the completion of the last HTTP request of the sce-
nario;

• the state of the component: during the execution, the fault injection is triggered
at a time defined by the shouldInject() function perturbing one of the liv-
ing components. Due to the implemented rejuvenation strategy and the error
propagation mechanism, it may be difficult to retrieve the original perturbed
component simply by inspecting the final application state. To this end, after
the injection, the component’s fully qualified name, its scope and the type of
perturbation are saved;

• the number of failures manifested during the simulation: in an FEF chain perspec-
tive, only top-level failures (i.e., failures manifested on the UI and visible to
the end-user) have been considered, thus neglecting failures of intermediate
components.

Let us consider the following scenario execution of the IUT:

⟨HomePage, clickLoginButton()⟩

→ ⟨LoginPage, per f ormLogin()⟩

→ ⟨MeanFirstPage, insertFirstOperator(”10.0”)⟩

→ ⟨MeanSecondPage, insertSecondOperator(”20.0”)⟩

→ ⟨Con f irmationPage, clickReturn()⟩

TheOrchestrator tool will convert it in a test casemade of 5 steps, which template
illustrating the implementation style is reported in Listing 4.1.

The Warp.initiate()method (line 5) defines what happens in a single user in-
teraction from the end-user perspective, defined in turn by the Activity class def-
inition through the overriding of the perform() method (line 7). Assertions and
behaviors from the server-side perspective are defined in the inspect() method
(line 15) through the InjectionInspection class definition; since considered sce-
narios are composed by a sequence of user interactions, their implementation will
be a sequence of invocations of initiate() and inspect() methods. The snippet
also shows the invocation of the prescribed user action (in the particular case act2

i.e., clickLoginButton() at line 13) only after the evaluation of the occurrence of a
top-level failure (i.e., checkPageCorrectState() at line 10) within the current page
(in the particular case pag2 i.e., loginPage). The InjectionInspection class has
been defined for setting up some action hooks, through ad hoc annotation decorators
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1 @Test
2 public void testScenario1 () {
3 ...
4 // A user interaction
5 Warp.initiate(new Activity () {
6 @Override
7 public void perform () {
8 loginPage = new SimpleAppLogin(driver);
9
10 if (! loginPage.checkPageCorrectState ())
11 failureOccurred(runInfoFilePathStr);
12
13 login.performLogin ();
14 }
15 }).inspect(new InjectionInspection () {
16
17 String path = testDirStr;
18
19 boolean executeFaultInj = shouldInject ();
20
21 @Inject
22 BeanManager bm;
23
24 @BeforeServlet
25 public void injectFault (){
26 if (e xecuteFaultInj)
27 injectFault(bm ,
28 path + "/errorInjected");
29 }
30
31 // Invoked only in the final interaction
32 @AfterServlet
33 public void saveFinalState () {
34 printState(
35 instanceFinder.
36 retrieveContextualInstances ());
37 }
38 });
39 ...

Listing 4.1: Template of a navigation step implemented by the Orchestrator.
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1 @Deployment(testable = true)
2 public static WebArchive createDeployment () {
3 WebArchive war = ShrinkWrap
4 .create(WebArchive.class , "deployment.war")
5 .addPackages(true , "appPackageName")
6 .addClass(InjectionInspection.class);
7 .addClass(FaultInjector.class)
8 .addClass(InstanceFinder.class)
9 .addClass(InstanceToStateConverter.class)
10 .addClass(PerturbationStrategy.class)
11 .addClass(InstanceExtractorStrategy.class)
12
13 return war;
14 }

Listing 4.2: Custom deployment for scenarios execution.

(i.e., @BeforeServlet and @AfterServlet), where invoke specific methods (e.g.,
injectFault() and saveFinalState()). Specifically, the injectFault() method
(line 25) is responsible for triggering the fault injection if required (i.e., shouldInject()
evaluation at line 19), and save the state of the perturbed component. Finally,
saveFinalState() method at line 33 retrieves all the component instances in order
to save them within a file in the JSON format.

Note that, through theArquilliandeploymentmechanism,which adoptsShrinkWrapHat
(2016) for the creation of Java archives files, our implementedmodule does not need
to be integrated within the production source code of the IUT, thus enabling an ex-
perimentation stage with “no modifications” on the Web Application under test.

Listing 4.2 represents the deployment of the archive referred to the application
(i.e., usually a .war file) that is essential for the configuration of the test environ-
ment. This is accomplished by implementing the public static method annotated with
@Deployment that returns the archive. As mentioned above, the approach allows
dynamic insertion of classes into an application without modifying the real source
code of the IUT; this also enables the design of tailored archiveswith only the classes
needed for the test suite, thus obtaining lighter deployments and, consequently,
speeding up test executions. As appearing at line 5, it is possible to add entire pack-
ages to the deployment (in this snippet, the root package of the IUT is added), but
also to add single classes, as in lines 6 − 11 where classes for the classes of fault
injector tool described previously are added.

4.2.3 Observed effects of fault injection
To correctly study the effects of errors in the IUT, different behavior has to be taken
into account: a fault activation does not necessarily causes an immediate failure,
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(b) Manifested failure scenario
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(c) Latent error scenario
Figure 4.4: Possible states considered after each execution during experimentations

it could rather lead to an erroneous internal condition (i.e., the erroneous state)
remaining silent for an unpredictable period of time or evolving into further errors
(i.e., error propagation). Under these assumptions, a failure could be caused by a set
of events occurring over a long-termperiod of time,making the failure detection and
the subsequent fault removal phase extremely difficult Grottke and Trivedi (2007).

For all these reasons, not only failures caused by the fault injection are considered
but also the possible configuration of the IUT internal state (also represented graph-
ically in Fig. 4.4); to do this, it was used the implementation described in Sect. 4.2.2
in particular, exploiting the raw data given by the indicators collected by theOrches-
trator and comparing the final state of the application after each scenario execution
with the state of a “clean” run: execution of the same scenario which, however, is
not subject to fault injection, thus acting as a ground truth. Doing so, each scenario
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execution is classified into one of the following categories:

• manifested failures: top-level failuresmanifestedduring the execution (Fig. 4.4b);
a manifested failure highlights that errors have deviated from some external
states of the system also affecting functionalities and services offered through
the UI, thus implying that the rejuvenation policy was “too soft”. This infor-
mation is derived, addressing the number of failures observed by the Orches-
trator during each execution;

• latent errors: errors that do not contribute to top-level failure manifestations
either are corrected by the rejuvenation policy (Fig.4.4c); a latent error remains
hidden even after the end of the execution, since a usage scenario represents
only a possible navigation path, and further interactions are not taken into
account, the absence of failures during the execution does not guarantee that
it will not eventually manifest. Thus, this outcome describes a situation where
the state of the application is corrupted by software aging and the rejuvenation
policy has not been yet applied. This information is derived by comparing the
final state of the “clean” run with the final state of the examined execution
(if at least one component state differs from its counterpart obtained after a
“clean” run and there are no manifested failures in the execution, then a latent
error occurs);

• corrected errors: errors that are automatically corrected by the Dependency
Injection container (Fig. 4.4a); the correction of the errors outlines the suc-
cess of the rejuvenation strategy defined through the designed component
scope. This information is derived by comparing the final state obtained af-
ter a “clean” run with the final state of the examined execution (if there are no
differences and if no failures have occurred, then the error has been corrected
successfully).

Besides, during the experimentation, information about errors propagationwas
collected. (i.e., errors that manifest and propagate failures in external components
dependent on directly affected ones, also producing the activation of external faults
and consequent errors) that increase the number of possible sources of failures.
Specifically, the observation only consideredpropagations affectingdependent com-
ponents that are in an erroneous state at the end of the scenario execution (neglect-
ing cases inwhich the propagation is corrected by a rejuvenation of the component).
This information is derived by comparing the final state of the “clean” run with the
final state of the “faulty” run (i.e., if other components near the one, affected by the
injection, are in an erroneous state - different from the state obtained after a “clean”
run - then the error propagation occurs).
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Errors propagation is a crucial parameter for the overall sensitivity to errors: it
gives rise to the error accumulation problemDohi et al. (2020) (Fig. 4.5), complicat-
ing the correction (i.e., more than one component has to activate the rejuvenation
strategy to fix the error, also generating “chain reactions” where more components
could cause failures and propagate errors, recursively).

Although these measures give an idea of the actual error propagation for each
scope, they only partially express how components could spread errors throughout
the IUT and to complete this observation, the propagation capacity was also moni-
tored for each scope. In order to assess this measure, a “dirty bit” is added on each
instance which indicates whether a component has been exposed to the possibility
of being contaminated with an erroneous state by another instance, during the run,
every time a component, with the dirty bit set to true, interacts with another com-
ponent the dirty bit of the latter becomes true. Note that, the component interaction
involves both sides of the dependency between scoped components: a dirty compo-
nent (with the dirty bit enabled) could use a method of a component with the dirty
bit disabled and then dirt it, on the other side, a clean component (with the dirty bit
disabled) could call a method of a dirty component and, consequently, getting itself
dirty.

4.3 Experimentation

Experimentationwas carried out in two different flavors: a scope-wise experimentation
(Sect. 4.3.1) aimed at measuring how components with different life cycle scopes
impact the overall IUT unreliability; and a policy-wise experimentation (Sect. 4.3.2)
aimed at evaluating how different strategies of life cycle design can protect the IUT.

Both the experimentations were executed on a simple JEE (Java/Jakarta Enter-
prise Edition) Web Application, developed so as to exemplify the mechanisms of
interaction occurring between the User Interface and the Business Logic of a 3-tier
stateful architecture, with a User Interface made of 6 main pages, and a Business
Logic made of 8 components, 5 acting as Controllers serving page requests and 3
additional Beans, using CDI (Context & Dependency Injection) as Automatic Lifecy-
cle Manager. As mentioned in Sect. 4.2, the tools performing fault injection and
state monitoring do not require access to the source code of the application under
test. However, different variants of the same application were used, with the same
functionality and pages featured in the User Interface but different specifications of
components scopes.
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Figure 4.5: Error propagation phenomenon among application logic instances. In
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4.3 Experimentation 75

Table 4.1: Scope-wise experimentation results.

Manifested Latent Corrected
Scope failures errors errors

(%) (%) (%)
application 42.4 57.6 0
session 48 36 16
conversation 12 24 64

4.3.1 Scope-wise experimentation

The scope-wise experimentation aims at observing how componentswith different life-
cycle lengths are hit by errors and how these errors are then propagated or corrected
by the component refresh. To this end, the experimentation was performed with a
variant of the IUT with a balanced use of scopes: 2 components with application
scope, 2 with session scope, 1 with conversation scope and 3 have request scope. In
the experiments, 2 different scenarios were considered with different lengths of 5
and 10 user interactions, respectively, and their execution was repeated 100 times
each to randomize sojourn time in visited pages and the arrival time of injected
faults. In each experiment, a single fault was injected.

Results are outlined in Tab. 4.1, reporting, for each scope of the component hit
by the fault injection, the fractions of errors that are: corrected before the end of the
scenario by a refresh of all affected components states (Corrected); or propagated
up to appear as a failure in the functional behavior exposed by the User Interface
before the end of the scenario; or propagated until the final state at the end of the
scenario, but not manifested as a failure (Latent).

By design, in the application scope, the state is never refreshed, i.e. no rejuve-
nation is applied, and no errors are thus corrected; besides, the conversation scope
corrects more errors than the session scope, as the component is refreshed after a
shorter activity cycle. Results for the request scope are not reported, as they are con-
tinuously refreshed, at each HTTP interaction, so that the probability that the fault
injection hits a specific life interval and this can even be propagated to other com-
ponents is negligible with respect to what observed for the other scopes.

It is also interesting to examine how components associated with wider scopes
are more likely to be picked up by the fault injector (the experimentation has shown
a sampling probability of 0.625, 0.25 and 0.125 for application, session and conversa-
tion, respectively). This intrinsically reflects the stochastic characterization of the
approach, adopted in sampling times and choosing components for the fault injec-
tion mechanism, described in Sect. 4.2.1: components with wider scope live longer
and thus have a higher probability to be living at the time of fault injection.
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Table 4.2: Error propagation in scope-wise experiments.

Errors Mean Mean Prop.
Scope propagation propagated touched ratio

(%) errors components (%)
application 44 1 4.6 21.7
session 32 1.33 2.5 53.2
conversation 16 1.25 1.7 73.5

Tab. 4.2, reports measurements related to propagation in the same scope-wise
experiments, according to metrics introduced in Sect. 4.2.3. Results are grouped
according to the scope of the component first perturbed by the fault injection, and
they report in the first two columns the fraction of executions where the error was
propagated by at least one hop (Errors propagation); the mean number of compo-
nents touched by the error propagation (excluding the initially perturbed compo-
nent from the count) with an erroneous state at the end of each simulation (Mean
propagated errors).

Note that the application scope has, on average, a lower number of propagated
errors, but the propagation occurs more frequently with application scoped compo-
nents (44% of the times against the 16% of the conversation scoped ones) and in ad-
dition, the mean touched components for each scope are directly proportional with
the lifecycle of the scope.

The last two columns of Tab. 4.2 also reports: the ratio between the “Mean prop-
agated errors” (Prop. ratio) and “Mean touched components”, which counts how
many components have been effectively affected in average w.r.t. the components
that might have been affected. This provides an interesting insight: in absolute,
wider scoped components result in propagating much more errors, but narrower
scoped components have a higher rate of deviating the runtime behavior of inter-
acting components (i.e., activating some external faults in dependent components).
This is probably due to the fact that implementations of narrower scoped compo-
nents are strictly related to the inner business logic of use cases, thus generating
stronger relationships and implementation couplings between components. Thus,
the propagation ratio seems to suggest that not only the component scope affect the
reliability but also the interactions of the components act an important role in the
propagation phenomenon.

4.3.2 Policy-wise experimentation
The policy-wise experimentation aims at measuring how a general policy in life cycle
design can influence the immunity of the IUT to errors. To this end, this second
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Table 4.3: Policy-wise experimentation results.

Manifested Latent Corrected
Principle failures errors errors

(%) (%) (%)
data long retention 42 46 12
lower scope 30 26 48

experimentation was carried out evaluating the effects of the same injected faults
on two functionally equivalent versions of the IUT designed under distinct principles
for the lifecycle design of managed components:

• the data long retention principle promotes the use of wide scopes (e.g., applica-
tion, session), allowing in-memory information retention for longer time inter-
vals so as to reduce the need to repeat retrieval or evaluation of the same data;
this increases responsiveness and reduced the energy footprint, but, as a draw-
back, it also increases the memory load and the space for error propagation;

• the lower scope principle promotes the usage of scopes as narrow as possible
(the best case being request), minimizing memory occupation and exposition
to aging effects, but requiring a dedicated place to store runtime data (e.g.,
the local or session storages in the client-side or dedicated databases in the
server-side), thus producing an overhead in computation.

The same 2 scenarios were considered as for the scope-wise experimentation, and
their execution was repeated 50 times for each variant of the IUT. Also in this case,
in each experiment, a single fault was injected.

Results of the policy-wise experimentation are summarized in Tab. 4.3; Values are
consistent with the scope-wise experimentation: since under the lower scope principle is
plausible to assume that components are predominantly conversation or even request
scoped, while under the data long retention principle the scopes will be mainly session
and application.

While providing higher immunity to errors, the lower scope principle cannot yet
be considered a silver bullet for every case; indeed, the selection of a specific policy
implies a trade-off between the ability to correct errors Cotroneo et al. (2013) and
the related computation overhead.

If the rejuvenation is rarely applied, errors could be activated and propagated,
conversely, if the rejuvenation is frequently applied, the components state needs to
be stored in other dedicated places (e.g., the DB) increasing the number of opera-
tions required to manage it (e.g., DB transactions).





Chapter 5

Towards Runtime Verification
of Application Logic

In the previous Chapter, it was demonstrated that in software architectures with a
session state subject to software aging, the automated life cycle management can re-
lieve the phenomenon by acting as a mechanism of software micro-rejuvenation. In
particular, experimental results show that components with a narrow life cycle are
less prone to manifest top-level failures than those with an extended life cycle and,
at the same time, the error propagation measures, seem to suggest that components
interactions act a central role for the propagation among multiple instances, thus
making component relations a feature as critical as the life cycle length for the over-
all reliability of the architecture. However, generalized adoption of minimal scopes
for all components, as in the case of the lower-scope design policy, does not repre-
sent a viable solution: business transactions continue to require the management
of a session state (Sect. 2.2) that, if not retained server-side (as in stateful architec-
tures) or client-side (as in service-oriented architectures), must be kept somewhere
else, usually in the database, with various drawbacks like performance degradation
(Fowler (2012)) as itsmanagement requires the use of transactions even for transient
and temporaries information which usually are subject to frequent manipulations.

On the other hand, designing the application logic with the aim of minimizing
the dependencies among components may lead to code duplication, poor maintain-
ability and testability (Sect. 2.2), besides the fact that this practice could result in
an overshoot: the number of interactions between components instances occurring
dynamically during their life cycle may be much less than the statically declared
dependencies of the corresponding classes.

In order to observe this dynamic behavior of the session state and represent both
the lifetime and the entertained interactions of each component instance during a
usage scenario, it is proposed an abstraction identified as timeline.
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On top of that with the aim of identifying a micro-rejuvenation policy maximiz-
ing the reliability of the systemwithout jeopardizing performances, it is proposed a
solution in the field of runtime verification Bartocci et al. (2018) based on source code
level software instrumentation which by the way, was also developed concretely as
an adaptable plug-and-play tool for stateful JEE architectures.

This chapter is organized as follows: in Sect. 5.1 it is presented a timeline ab-
straction capturing both the lifecycle and the internal interactions of managed com-
ponents and in Sect. 5.2 it is proposed a solution based on a classic runtime verifica-
tion configuration aimed to exploit the expressivity of the abstraction to implement
a tailored and component-wise software rejuvenation strategy.

5.1 Making components interactions explicit

Dynamic interactions of component instances and evolution of the session state are
regulated statically during the application logic implementation (i.e., component
class definition and dependencies specification), however, the actual lifetime of a
component instance and the number of interactions performed with other instances
are guided by the sequence of user interactions carried out by the client using the
application. This mechanism makes it difficult for a developer to figure out how
the application logic will behave at run time, with this purpose it is introduced the
timeline abstraction.

An example of this timeline abstraction is depicted in Fig. 5.1: the x-axis marks
the succession of inputs received from the user interface (requests) along contin-
uous time, for the sake of conciseness irregular occurrence of requests in time is
represented with a timestamp associated with each request which is represented as
instantaneous epochs preserving the qualitative order of interactions among time
(equivalently to the application logic representation of Fig. 2.4 represented in Sect. 2.4).
The y-axis instead, represents the components types that live among multiple re-
quests during which they can interact with each other. Concretely, in request r3,
which arrives at time t3 identified as the timeshift of δ3 with respect to the previous
t2, a component instance of type c3 is created and it is subsequently destroyed at
request r5, during its life as represented by the link at request r5, it interacts with a
component of type c2 which in turn interacts with components of types c1 and c4.

Propagation of errors in components states due to data-flow def and use actions
Rapps and Weyuker (1985) are captured by vertical links, which thus represent a
way for a possible error to be propagated from one component to another, nomatter
what the directionality expressed by the relation.
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Figure 5.1: Timeline abstraction of overlapping cycles and dataflow dependencies
among 4 component types along a user interaction with 10 steps.

5.1.1 The Propagation Range
The timeline abstraction is a good tool to study and understand how an error could
spread among component instances, to better depict the phenomenon, it is intro-
duced here the concept of propagation range identifying which component instance
might be affected by a specific error activation.

The propagation range group PropRangerb,re(c) is defined as the group of com-
ponents instances that, during the ordered sequence of requests starting at request
rb and ending at request re, have had the opportunity to influence each other and
consequently to spread an error activated at request rb in the state of component
c. Initially, c is the only member of the group, however as the requests come in,
the number of alive members may vary: some components are added as they inter-
act with a member of the epoch, and some others die because they have completed
their life cycle; when no more members are alive it means that the error can not be
survived to the rejuvenation policy.

As an example, consider again the timeline of Fig. 5.1, if an error activates at re-
quest r1 in component c1, propRanger1,r1(c1)will contain only c1, however, propRanger1,r10(c1)

will contain all the component instances in the represented scenario meaning that
instances c1 and c2 at request r10 may be affected by an error propagated by their
contemporaries or by dead instances and originated at request r1.
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The propagation range brings important information about the state of the ap-
plication:

• the length of the underlying requests sequence says how long an error could
be latent among the members;

• the number of alive members at a certain time says how wide the error prop-
agation could be in the worst scenario.

• it identifies a cluster of components in which, the error has no possibility of
being propagated to non-members components.

5.2 Combining Rejuvenation with Runtime
Verification

It is clear that the application logic design identifies a number of data flow coupling
scenarios which is unfeasible to consider beforehand at implementation time: the
application could hide frequent unexpected and sometimes counter-intuitive pat-
terns (e.g., a lower scoped component that often lives for an extended period of
time) or conversely some rare input sequences could bring the system to a failure
with high probability.

System

Business Logic

Instrumentation

Intercepts

Monitor

Updates

Analyses

Figure 5.2: The runtime verification setup.

For these reasons, it is proposed a solution aimed to exploit the timeline abstrac-
tion beyond the simple graphical support use, to do this, it is proposed a monitor
setup that, as can be seen in Fig. 5.2, is heavily inspired by configurations often pro-
posed in the runtime verification field and consists in: the system, an instrumentation
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that runs concurrently to the system observing it and finally, amonitor instance that
processes the observation.

Each requestmade by the client on the user interface triggers the instrumentation
which in turn records the application logic behavior during the answering process
of the system, in particular, it collects components interactions, instantiation and
destruction and adds this information to the execution trace as a system event for
the monitor. Note that, a system event takes the form of a request epoch and in turn,
the execution trace takes the form of a timeline progressively built while the system
is used.

With this workflow, the system trace could be processed with an offline monitor-
ing activity, in this case, the obtained timeline results in a powerful tool to analyze
how and when the session state enters a configuration particularly prone to failure
manifestation and then change the scope configuration of specific components ac-
cording to it. It could be used to perform predictive analysis (what-if analysis) on
a usage scenario: what could happen if at time t during request r the component
c enters in an erroneous state? To this end, the propagation range defined previ-
ously could be used to assess the worst-case scenario. However, if done with the
aim of improving the scope design of the application, the predictive analysis could
be dispersive due to the endless number of combinations and scenarios to consider,
instead, it could be carried out a reliability evaluation for each component.

For this purpose, referring to the experimental results obtained in the previous
chapter, the timeline abstraction offers all the information needed to assess component-
wise reliability: a component instance can be subject to aging depending on its in-
trinsic sensitivity and its current lifetime, at the same time, a component could be
entered an erroneous state also during an interaction with another component with
a probability that depends on the reliability of the latter. Thus, the proposed reliabil-
ity metric depends not only on the actual life span but also on the level of reliability
of the components with which the component of interest has interacted so far.

As a showcase let us consider one more time the abstraction of Fig.5.1 and let
us assume that this timeline was generated by an actual system, deepening its com-
position, it can be seen that it captures a scenario made of a sequence of 10 subse-
quent requests {r1, r2, r3, ...} involving 4 component types {c1, c2, c3, c4} with differ-
ent life cycles i.e., instances of component c1 live within the sub-sequences {r1, r2},
{r4, r5, r6, r7} and {r9, r10}, c2 instance lives from request r2 to the end of the scenario
etc. . .

The representation outlines the presence of a specific instance, c2, that according
to the above describedmetric, shows a high level of unreliability: assuming high val-
ues of δ, at request r10 has accumulated a considerable amount of uptime in addition
to 5 interactions with other components, this fragility is also confirmed by the prop-
agation range propRanger1,r10(c1) discussed above and enforced by the propagation
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scenario depicted in Fig. 5.3a.
Note now that changing the scope configuration adopting a drastic design policy

like lower scope (described in Sect. 4.3), will relieve the situation: as can be seen in
Fig. 5.3b the error can be propagated only to the instance of type c2 and the propaga-
tion range stops at request r2 thanks to component c2 that nowends its life cycle early.
However, this solution comeswith a high price: the state of various components pre-
viously kept in memory among multiple requests and not particularly threatening
for reliability, now have to be maintained somewhere else, probably stored in the
DB, requiring several additional transactions to implement the same scenario.

Relying on the timeline instead, it is possible to elaborate a less conservative, but
still effective, tailored solution: just lowering the life cycle of c2, the component iden-
tified by the reliability metric as the weak point, will cause a significant reduction
of the error propagation potential with a minimal impact regarding the number of
additional transactions as represented in Fig. 5.3c.

The above mentioned strategy is configured as an offline monitoring analysis
that can be conducted after a phase of a in-vivo scenarios collection, however, the
instrumentation and the reliability metric could be exploited also to implement a
synchronous online monitoring process, in this case, the timeline changes its useful-
ness moving from being an analytical tool able to provide insights of the system, to
be a heuristic for the implementation of adaptive micro-rejuvenation strategy.

5.3 Implementing Instrumentation of a Runtime
Verification Environment

To experiment with the proposed approach, an instance of the instrumentation rep-
resented in Fig 5.2 has been developed in the form of a software tool named beanIn-
terceptor, able to inspect Stateful JEE architectures.

The tool is developed relying on several advanced mechanisms of JEE: a CDI
extension has been developed combining also CDI interceptors, listeners and the
Service Provider Interface of CDI.

It can intercept each request received and distinguish among multiple parallel
sessions:

• the arrival time;

• the set of instances created during the response process;

• the sequence of methods called (the interactions);

• the set of instances destroyed at the end of the response process.
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Figure 5.3: Comparison of overlapping cycles and dataflowdependencies under dif-
ferent policies of scope design.
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Thanks to its implementation, beanInterceptor, does not require to modify the
code of the target system and it can start its job by simply deploying it in the same
application server of the system and automatically it will gather all the information
to build the timeline, however, it is also possible to fine-tune its behavior defining
ad-hoc filters to ignore some components and identify the core application logic.

This implementation enabled the study (currently offline) of the application logic
of a real-world application specifically an Electronic Health Record in use for sev-
eral years in amajorHospital of Tuscany Region Patara andVicario (2014)Fioravanti
et al. (2016) made of ≈ 35 pages, ≈ 30 DAOs and ≈ 35 domain classes supported
by a wide internal library of ≈ 200 classes.



Chapter 6

Conclusion

This final chapter summarises the contribution of this dissertation and then de-
scribes works in progress and proposes possible further steps.

6.1 The Contribution of this Dissertation

This dissertation contributes to a characterization of how crucial the development
of the business/application logic is for the overall reliability of the software archi-
tecture. Specifically, this document identifies two major threats in the configuration
of the business logic both related to instances couplings that occur dynamically dur-
ing the usage of the software system, and, for each of them, it provides a strategy to
decrease failures occurrence.

In case of faults hidden in the components implementation, it was provided a
model based methodology that reinterprets the data flow testing practice at the ar-
chitectural level (gray-box) and which is aimed to identify and execute usage sce-
narios that could identify the faults, basing its selection on the business logic com-
position and the DI container behavior.

In presence of external faults affecting the state of the system, as for the case
of software aging, experimentation was first conducted to verify if the automated
life cycle management implemented by DI frameworks, can somehow address these
events, once demonstrated that the DI container acts a kind of micro-rejuvenation
procedure on the managed components, an adaptive procedure based on the dy-
namic state of the system has been proposed combining practices of software aging
with practices of runtime verification.
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6.2 Future Works Open
The presented dissertation opens the way to new research works in various direc-
tions.

Ongoing work is focused on the application of the runtime verification setup
to the real-world application discussed, with particular effort on implementing a
synchronous online monitor making it possible to refresh components dynamically
and identifying heuristics based on the observed timeline.

These directions allow several additional studies, in particular, the trade-off be-
tween the reliability and performance of the system should be characterized for-
mally to identify optimal strategies for rejuvenation.

Another research line of interest consists in using these techniques and knowl-
edge, especially the one related to runtime verification, in the field of cyber-physical
systems and Internet of Things (IoT) architectures where external faults and aging
are frequent problems.



Appendix A

Additional Material

A.1 The FlightManager Repository
This Section reports additional materials, providing guidance on access to the ac-
companying repository and illustrating an excerpt of its contents.

A.1.1 Flight Manager Repository Structure
Flight Manager is a full-fledged stateful web application in the functional context of
an online flight booking system; the whole source code and detailed documenta-
tion, are made available in a repository hosted on Github1; this subsection provides
a description of the repository structure and explains how to consult the documen-
tation.

The README.md file is the starting point for the Flight Manager documentation, a
brief introduction is provided along with the most standard artifacts, most of which
are also presented within this paper. In addition to this, for each use case, a specific
documentation page is available with the related Enriched Robustness Diagram and
managed component Data FlowGraph; for instance, the ERD of Fig. A.1 and themcDFG
of Fig. A.2 can be found on the Search Flight use case documentation page.

On the same page, we also make available groups of mcDFG paths each of them
fulfilling one of the proposed coverage criteria; for example, the screenshot in Fig.A.3
represents these collections reported in the Search Flight use case documentation
page: note that each path is identified through a sequence of numbers correspond-
ing to the node id of the related mcDFG.

The identified use cases test suites are grouped into 5 packages, one for each cov-
erage criterion, resulting in the application test suites; Fig. A.4 shows their structure
that can be found at the src/e2e/java path of the repository.

1Repository link: https://github.com/LeonardoScommegna/unravel-experimentation
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Figure A.1: Enriched Robustness Diagram available at the Search Flight use case
documentation page.

The main feature of the Flight Manager repository is that it brings the correct
version of theweb application aswell as 32 other versions that differ from the correct
one in a manually injected fault. To this end, the repository has 32+ 1 branches: the
first one (the main branch) brings the correct version of Flight Manager while the
remaining ones are faulty versions. The documentation of each faulty version is
briefly reported in the README.md file where the table (also reported in Fig. A.5)
outlines the type of fault, the type of failure induced by the fault, and also the use
case involved. However, each faulty version has a dedicated documentation page
with additional information, for instance, the diagram of Fig. A.6 can be found in
the Faulty Version #1 documentation page and provides a graphical representation of
the fault through the ERD of the Search Flight use case decorated with the symbol
representing the fault, that in the specific example consists in the lack of the enclosed
context begin. In addition to this, each faulty version documentation page reports
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information about the fault detection capability of each test suite related to the use
case involved, for instance, Fig. A.7 represents the test report for the Faulty Version
#1; keeping in mind that we consider a test suite capable of detecting a fault if at
least one test case fails, thanks to the check marks it is possible to see whether a test
suite is successful and also see which particular test fails i.e., all the coverage criteria
detect the fault of the example, in addition, the specific case of the All Edges test
suite, only the first test case detects the fault.

Finally, also the all pages and all navigation test suites, obtained on top of the page
navigation diagram are reported in the documentation in addition also their fault
detection capabilities are summarised in a table (see Fig. A.8).

A.1.2 Collection of Issues Related to Automatic Contexts
Management

The following collection represents a subset of the available issues encountered by
users using frameworks for dependency injection and automatic contexts manage-
ment. The collection does not aim to contain all existing cases of the problem but to
demonstrate the wide range of possible pitfalls that a programmer might face.

• stackoverflow.com: “how end one cdi conversation and completely destroy all
variable of CDI bean”;

• living-sun.com: “JSF combined with CDI, issue with conversation scope”;
• stackoverflow.com: “new-cdi-conversation”;
• stackoverflow.com: “CDI conversationscope: end andbeginwith one request?”;
• stackoverflow.com: “Error in JSF + CDI conversation scope when begin is

called two times”;
• stackoverflow.com: “CDI conversation id is always 1 and NonexistentConver-

sationException caught when trying to resume conversation”;
• stackoverflow.com: “Why my spring session scoped bean is shared across ses-

sions?”;
• github.com spring-vaadin repository, Issue: “Session scoped component #10”;
• github.com spring-vaadin repository, Issue: “Refreshing a viewwith a session

scoped component throws error No child node found with id -1 #5229”;
• github.com spring-vaadin repository, Issue: “ Automatically check for incom-

patible scopes for Vaadin components #288”

https://web.archive.org/web/20220406110439/https://stackoverflow.com/questions/23510857/how-end-one-cdi-conversation-and-completely-destroy-all-variable-of-cdi-bean 
https://web.archive.org/web/20220406110439/https://stackoverflow.com/questions/23510857/how-end-one-cdi-conversation-and-completely-destroy-all-variable-of-cdi-bean 
https://web.archive.org/web/20220406150634/https://living-sun.com/it/jsf-2/532675-error-in-jsf-cdi-conversation-scope-when-begin-is-called-two-times-jsf-2-cdi-conversation-scope.html
https://web.archive.org/web/20220406150923/https://stackoverflow.com/questions/9572418/new-cdi-conversation
https://web.archive.org/web/20170213171052/http://stackoverflow.com/questions/29280296/cdi-conversationscope-end-and-begin-with-one-request
https://web.archive.org/web/20220406152030/https://stackoverflow.com/questions/10300603/error-in-jsf-cdi-conversation-scope-when-begin-is-called-two-times/37879053
https://web.archive.org/web/20220406152030/https://stackoverflow.com/questions/10300603/error-in-jsf-cdi-conversation-scope-when-begin-is-called-two-times/37879053
https://web.archive.org/web/20220406152729/https://stackoverflow.com/questions/13906167/cdi-conversation-id-is-always-1-and-nonexistentconversationexception-caught-when
https://web.archive.org/web/20220406152729/https://stackoverflow.com/questions/13906167/cdi-conversation-id-is-always-1-and-nonexistentconversationexception-caught-when
https://web.archive.org/web/20220406153222/https://stackoverflow.com/questions/36609316/why-my-spring-session-scoped-bean-is-shared-across-sessions
https://web.archive.org/web/20220406153222/https://stackoverflow.com/questions/36609316/why-my-spring-session-scoped-bean-is-shared-across-sessions
https://web.archive.org/web/20220406153431/https://github.com/xpoft/spring-vaadin/issues/10
https://web.archive.org/web/20220406153706/https://github.com/vaadin/flow/issues/5229
https://web.archive.org/web/20220406153706/https://github.com/vaadin/flow/issues/5229
https://web.archive.org/web/20220406154042/https://github.com/vaadin/spring/issues/288
https://web.archive.org/web/20220406154042/https://github.com/vaadin/spring/issues/288
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Figure A.2: managed component Data Flow Graph available on the Search Flight
use case documentation page.
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Figure A.3: Coverage documentation at the Search Flight use case documentation
page.

Figure A.4: Application test suites structure.
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Figure A.5: Table describing faulty versions of Flight Manager.
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Figure A.6: Table describing faulty versions of Flight Manager.
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Figure A.7: Test report of Faulty Version #1.
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Figure A.8: Fault detection capabilities of All Pages and All Navigation coverage cri-
teria.
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quantitative analytics ”, European Performance Engineering Workshop , 2022

Workshop papers
1. J. Parri, L. Scommegna, S. Sampietro, E. Vicario, “ Evaluation of software ag-

ing in component-based Web Applications subject to soft errors over time ”,
WoSAR: International Workshop on Software Aging and Rejuvenation , 2021

2. L. Carnevali, M. Paolieri, R. Reali, L. Scommegna, E. Vicario, “ A Markov Re-
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1. L. Scommegna, J. Parri, S. Sampietro, E. Vicario, “ Model-Based Testing of de-

pendency injection and automated lifecycle management in stateful Web Ap-
plications”, IEEE Transactions on Software Engineering

2. N. Bertocci, L. Carnevali, L. Scommegna, E. Vicario, “ Efficient derivation
of optimal semaphore schedules for multimodal urban intersections.”, IEEE
Transactions on Intelligent Transportation Systems
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